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Disorder-induced critical phenomena in hysteresis:
Numerical scaling in three and higher dimensions
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We present numerical simulations of avalanches and critical phenomena associated with hysteresis loops,
modeled using the zero-temperature random-field Ising model. We study the transition between smooth hys-
teresis loops and loops with a sharp jump in the magnetization, as the disorder in our model is decreased. In a
large region near the critical point, we find scaling and critical phenomena, which are well described by the
results of ane expansion about six dimensions. We present the results of simulations in three, four, and five
dimensions, with systems with up to a billion spins (1%)00S0163-1829)03709-1

I. INTRODUCTION periments can be quantitatively explained by a mbaelth
two tunable parameter@xternal field and disordgrwhich
The increased interest in real materials in condensedexhibits universal nonequilibrium collective behavior. The
matter physics has brought disordered systems into the spdnodel is athermal and incorporates collective behavior
light. Dirt changes the free-energy landscape of a systenthrough nearest-neighbor interactions. The roldidfor dis-
and can introduce metastable states with large energgrder, as we call it, is played by random fields. This paper
barrierst This can lead to extremely slow relaxation towardsPresents the results and conclusions of a large scale simula-
the equilibrium state. On long length scales and practicaﬂon of that model: the nonequilibrium zero-temperature ran-
time scales, a system driven by an external field will movedom field Ising mode(RFIM), with a deterministic dynam-
from one metastable local free-energy minimum to the nextics. The results compare very well to oarexpansiort;***
The equilibrium, global free-energy minimum and the ther-and to experiments in Barkhausen ndie.
mal fluctuations that drive the system toward it, are in this We should mention that there are other models for ava-
case irrelevant. The state of the system will instead depeni@nches in disordered magnets. There is a large body of work
on its history. on depinning transitions and the motion of the single
The motion from one local minima to the next is a col- interface!®=*n these models, avalanches occur only at the
lective process involving many loc&nagneti¢ domains in growing interface. Our model though, deals with many inter-
a local region—an avalancheln magnetic materials, as the acting interfaces: avalanches can grow anywhere in the sys-
external magnetic fieléh is changed continuously, these ava- tém. Models of hysteresis similar to ours eXincluding
lanches lead to the magnetic noise: the Barkhausen éffect. 0nes with random boné#* and random anisotropies.
This effect can be picked up as voltage pulses in a coil sur- This paper is a condensed version of an unpublished
rounding the magnet. The distribution of pul&evalanchg manuscript, available electronicaflyWe focus here on the
sizes is fount® to follow a power law with a cutoff after a Numerical results and scaling methods in dimensions three
few decades, and was interpreted by sdtebe an example through six. Some of the other topics touched upon in the
of self-organized criticalitfSOQ.” (In SOC, a system orga- Original manuscript are being published separately. Our in-
nizes itself into a critical state without the need to tune arf€rpretation of the behavior in dimension two has been sub-
external parametrOther systems can exhibit avalanches asstantially altered by further analysi$A full description of
well. Several examples where disorder may play a part aréhe numerical method is available, including sample code
superconducting vortex line avalanchesesistance ava- and executables, on the World Wide Wétior a full dis-

lanches in Superconducting f||rﬂ$nd Capi”ary condensa- cussion of the behavior in mean field theory, and interesting

tion of helium in Nucleporé® behavior below the critical point in seven and nine dimen-
The history dependence of the state of the system leads &0ns, we refer the reader to the electronic version of the

hysteresis. Experiments with magnetic tdpesave shown original manuscript’ and to recent work on the Bethe

that the shape of the hysteresis curve changes with the afpttice?®

nealing temperature. The hysteresis curve goes from smooth

to _discont?ryuous as the annealing temperature is inpreased. Il THE MODEL

This transition can be explained in terms gblain old criti-

cal point with two tunable parameters: the annealing tem- The model we use is the zero-temperature random-field

perature and the external field. At the critical temperaturdsing model:®¢-*314yhich we briefly review here. Magnetic

and field, the correlation length diverges, and the distributiordomains are represented by spfé®n a hypercubic lattice,

of pulse(avalanchgsizes follows a power law. which can take two values;= = 1. The spins interact fer-
We have argued earlirthat the Barkhausen noise ex- romagnetically with their nearest neighbors with a strength
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Ji;, and are exposed to a uniform magnetic figldwhich is . SCALING

directed along the spipsDisorder is simulated by a random  \we use data obtained from the simulation to find and
field h;, associated with each site of the lattice, which isgescribe the critical transition. We do so using “scaling col-
given by a Gaussian distribution functigith;), lapses,” which we review briefly here. For example, the
magnetization as a function of external fiéglds expected to
have the form

p(hy)= ———e 12, &y
V27R M(H,R) =M (H¢,R)~[r|AM.(h'/]r|B%), (4
of width proportional toR, which we call the disorder. The whereM . is the critical magnetizatiofthe magnetization at
reduced disorder and reduced field, respectively,
H:_E ‘]ijsisj_E (H+h,)S, (2) ,:h+Br (5)

() i is a(nonuniversglrotation between the experimental control

, . ) ) '
For the analytic calculation, as well as the simulation, wea"ables (,h) and the scaling variables "), andM.. is

have set the interaction between the spins to be independetUniversal scaling functioni( refers to the sign of). [In

of the spins and equal to one for nearest neighbgys; J the plots shown in this paper, we use (R—R;)/R, which

=1, and zero otherwise. We use periodic boundary condi"€ have found produces better collapses than usiagR
R.)/R;. The latter is more traditional, but the two defini-

tions in the results of this paper; we've checked that the : hich i
results nearR, are unchanged when a slab of preflippedtions agree aR—R., and differ by an amount which is

spins is introducedfixed boundary conditions along two irrelevant in a renorm_ahzatlon-group sense. One method we
sides use to estimate error in our exponents is to compare extrapo-

The dynamics is deterministic, and is defined such that #tions based on the two definitiohsScaling is expected
spins; will flip only when its local effective fielch®", asymptotically for smalt andh—i.e., for H nearH. andR
! : nearR.. The critical exponenp gives the scaling for the

magnetization at the critical fieltH, (h=0). If we plot
hef'=3> s+ H+h;, 3) |r|'*/3(M(H,R)— Mc(Hc Ro)) versush/r?°, we should ob-
i tain the curveM(x), independently of what disord& we
choose(so long as it is close t&;): different experimental
changes sign. All the spins start pointing doven—1 for  and numerical data sets should collapse onto one universal
all'i). As the field is adiabatically increased, a spin will flip. curve M(x). (Actually, one has two curve$!. depending
Due to the nearest-neighbor interaction, a flipped spin willon whetheR>R, or R<R..) We use scaling forms similar
push a neighbor to flip, which in turn might push anotherto Eq. (4) to analyze all of our measurements.
neighbor, and so on, thereby generating an avalanche of spin One can easily show using the scaling fof# that the
flips. During each avalanche, the external field is kept conmagnetization scales with a power law— M ~h? at R,
stant. For large disorders, the distribution of random fields isand that the jump in the magnetizati¢the size of the infi-
wide, and spins will tend to flip independently of each other.pjte avalanchescales aa M ~r# as one varies the disorder
Only small avalanches will exist, and the magnetizationpg|ow R.. Thus the critical exponentg and & give the
curve will be smooth. On the other hand, a small disordefower laws for the singularities in these measured quantities:
implies a narrow random-field distribution which allows jngeed, that is how these exponents were originally defined
larger avalanches to occur. As the disorder is lowered, at thgnd measured. In our system, we will find that directly mea-
disorderR=R; and fieldH=H_, an infinite avalanche in the  syring power laws is not effective in getting good exponents:
thermodynamic system will occur for the first time, and thethe critical regime is so large that we need both to use the
magnetization curve will show a discontinuity. N&&r and  general scaling form and to extrapolate to the critical point.
HC, we find critical Scaling behavior and avalanches of all The exp|anat0ry power of the theory resides in the fact
sizes. Therefore, the system has two tunable parameters: thgat the same universal critical exponegtsand & and the
external fieldH and the disordelR. We found from the same universa' functiom(x) Shou'd be obtained by Simu_
mean-field calculatio—*°and the simulation that a discon- |ations at different values of the disorder, simulations of dif-
tinuity in the magnetization exists for disordéRs<R;, at  ferent Hamiltonians, and simulations of real experiments, so
the fieldH (R)=H(R.), but that only at R;,H.), do we  |ong as the systems share certain important features and sym-
have critical behavior. For finite size systems of lenigtthe  metries(so long as they lie in the same universality cjass
transition occurs at the disord®S'(L) near which ava- The underlying explanation for why universality and scaling
lanches first begin to span the system in one ofdltémen-  should occur near the critical point is given by the renormal-
sions (spanning avalanchesThe effective critical disorder jzation group?®!41%22 Above six dimensions, fluctuations
R(L) is larger tharR,, andR"f(L)—R, asL—. are asymptotically not important, and we can calculate
The algorithm we use to simulate this model is describedM(x) and the values o3 and § from mean-field theory
in a separate manuscriitFor a simulation wittN spins, the  (Bye=1/2, dyr=3).X° Below six dimensions, the exponents
computer time scales &slog N and the memory required for and scaling curves are nontrivial, and to find them one must
the simulation scales to one bit per sfir., we do not store rely on either perturbative methods!® experiments, or nu-
the random fields merical methods$?? as used here.
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FIG. 1. (8 Magnetization curves in three dimensions for size lowest peak (b) Scaling collapse of the data ife) with g

L =320, and three values of disorder. The curves are averages of upg 3¢ B5=1.81, B=0.39, H,=1.435, andR.=2.16. While
. ) . ) . ] c . ] C . .

to 48 different random-field configurations. Note the discontinuitythe curves are not collapsing onto a single curve, the quality of the

in the magnetization foR=2.20. In finite size systems, the discon- ¢, ;3nse is quite similar to that found at similar distances fRynin

tinuity in the magnetization curve occurs even B>R; (Re  mean-field theor§? for which we know analytically that scaling
=2.16 in three dimensions(b) Scaling collapsdsee text of the works asR—R
..

magnetization curves in three dimensions for 4ize320. The dis-
orders range frolR=2.35 toR=23.20. The critical magnetization is

: A tuations in disordered systems often persist even in the limit
chosen aM.=0.9 from an analysis of the magnetization curves

: . X ) of infinite system sizellack of self-averaging There has
and is kept fixed during the collapse. The universal exponents argis, een recent interest in the distinction in finite-size simu-
B=0.036, 36=1.81. The nonuniversal critical fielth,=1.435, . . .
N ) > . - lations between scaling collapses using the average value of
critical disorderR.=2.16, and rotation parametBr=0.39. " : . X : .
the critical point versus scaling while allowing the effective
critical point to fluctuate between systems. In some systems
IV. THE SIMULATION RESULTS scaling collapses with effective, sample dependent critical
epoints can converge substantially fastem some systems it
has been suggested that new critical exponents can be
revealec?® and in one system an unusual new regime of
large fluctuations was reveal@Our major obstacle to good
dcollapses and exponents was getting close to the critical dis-
order(demanding huge simulations to encompass the result-
ing avalanches not in extracting average behavior from the
fluctuations. A future study of the fluctuations in the mea-
sured properties in this system would be worthwhile.

The following measurements were obtained from th
simulation as a function of disordd®: the magnetization
M(H,R) as a function of the external field; the avalanche
size distribution integrated over the field: D;,(S,R); the
avalanche correlation function integrated over the fiel
H:Gini(X,R); the number of spanning avalanch¢d.,R) as
a function of the system length integrated over the fielH;
the discontinuity in the magnetizatichM (L,R) as a func-
tion of the system length; the second S?);n(L,R), third
(S*im(L,R), and fourth(S*;,:(L,R) moments of the ava- o
lanche size distribution as a function of the system letgth A. Magnetization curves
integrated over the fielti. In addition, we have measured:  Unfortunately the most obvious measured quantity in our
the avalanche size distributidd(S,H,R) as a function of simulations, the magnetization curwd(H), is the one
the field H and disorderR; the distribution of avalanche which collapses least well in our simulations. We start with it
timesD{")(S,t) as a function of the avalanche siSeatR  nonetheless.
=R, integrated over the fiel&. Figure ¥a) shows the magnetization curves obtained from

We do not present results on the sample-to-sample fluosur simulation in three dimensions for several values of the
tuations in these systems, which would themselves have hatlsorderR. As the disordeR is decreased, a discontinuity or
interesting scaling propertié$?® at the critical point, fluc-  jump in the magnetization curve appears where a single ava-
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TABLE I. Universal critical exponents. Values for the exponents extracted from scaling collapses in
three, four, and five dimensions. The mean-field values are calculated analyfid4lly.is the correlation
length exponent and is found from collapses of avalanche correlations, number of spanning avalanches, and
moments of the avalanche size distribution data. The expofiésnta measure of the number of spanning
avalanches and is obtained from collapses of those datac36—3)/ov is obtained from the second
moments of the avalanche size distribution collapses. i4¢/associated with the cutoff in the power-law
distribution of avalanche sizes integrated over the fi¢ladvhile 7+ o886 gives the slope of that distribution.
7 is obtained from the binned avalanche size distribution collap$¢g3/v is obtained from avalanche
correlation collapses ané/ v from magnetization discontinuity collapsesvz is the exponent combination
for the time distribution of avalanche sizes and is extracted from those data. Error bars are based on variations
in the results based on different approaches to the analysis: statistical fluctuations are typically smaller.

Measured exponents 3d 4d 5d Mean field

1y 0.71+0.09 1.12-0.11 1.47-0.15 2

0 0.015£0.015 0.32:0.06 1.03:0.10 1

(r+aoB6—3)ov —2.90+0.16 —3.20+£0.24 —2.95+0.13 -3

1o 4.2+0.3 3.20£0.25 2.35:0.25 2

Tt aBd 2.03£0.03 2.0 0.03 2.15-0.04 9/4

T 1.60+£0.06 1.53:0.08 1.48-0.10 3/2

d+Blv 3.07£0.30 4.15-0.20 5104 7(atd.=6)

Blv 0.025+0.020 0.190.05 0.370.08 1

ovz 0.57+0.03 0.56£0.03 0.545-0.025 1/2
lanche occupies a large fraction of the total system. In the B. Avalanche size distribution

thermodynamic limit this would be the infinite avalanche:
the largest disorder at which it occurs is the critical disorder

1. Integrated avalanche size distribution

R.. For finite size systems, like the ones we use in our N our model the spins flip in avalanches: each spin can
simulation, we observe an avalanche which spans the systekifk over one or more neighbors in a cascade. These ava-
at a higher disorder, which gradually approackesas the lanches come in different sizes. The integrated avalanche
system size grows. size distribution is the size distribution of all the avalanches
Figure 2 shows the slopM/dH and its scaling collapse. that occur in one branch of the hysteresis Igigy H from
By using this derivative, the critical region is emphasized as— to «). Figure 3(Ref. 12 shows some of the raw data
the peak in the curve, and the dependence on the parametghick lines in three dimensions. Note that the curves follow
M. drops out. The lower graphs in Figgbland Zb) show an approximate power-law behavior over several decades.
the scaling collapses of the magnetization and its slopeEven 50% away from criticalityat R=3.2), there are still
Clearly in neither case are all the data collapsing onto awo decades of scaling, which implies that the critical region
single curve. This would be distressing, were it not for theis large. In experiments, a few decades of scaling could be
fact that this also occurs in mean-field theSrat a similar  interpreted in terms of self-organized criticali§O0. How-
distance to the critical point. ever, our model and simulation suggest that several decades
Because the scaling of the magnetization is so bad, we usg# power-law scaling can still be present ratffier from the
other quantities to estimate the critical exponents and theritical point (note that the size of the critical region is non-
location of the critical poin{Tables | and ). Fixing these universa). The slope of the log-log avalanche size distribu-
guantities, we use the collapse of ti#&/dH curves to ex- tion atR, gives the critical exponent+ o845. Notice, how-
tract the rotatiorB mixing the experimental variablesandh  ever, that the apparent slopes in Fig. 3 continue to change
into the scaling variablé’=h+Br [Eq. (5)]. even after several decades of apparent scaling is obtained.

TABLE II. Nonuniversal scaling variables. Numerical values for the critical disorders and fields, and the
rotation parameteB [Eqg. (5)], in three, four, and five dimensions extracted from scaling collapses. The
critical disorder is obtained from collapses of the spanning avalanches and the second moments of the
avalanche size distribution. The critical field is obtained from the binned avalanche size distribution and the
magnetization curvesi, is affected by finite sizes, and systematic errors could be larger than the ones listed
here. The mean-field values are calculated analyti¢af§.The rotationB is obtained from thedM/dH
collapses.

3d 4d 5d Mean field
R. 2.16+0.03 4.10-0.02 5.96-0.02 0.79788456
H. 1.435+0.004 1.265-0.007 1.175:0.004 0

B 0.39+£0.08 0.46£0.05 0.23:0.08 0
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FIG. 3. Integrated avalanche size distribution curves in three FIG. 4. Integrated avalanche size distribution scaling functions
dimensions for 329 spins and disorder®@=4.0, 3.2, and 2.6. The in two, three, four, and five dimensions, and mean field. The curves
last curve is aR=2.25, for a 1009 spin system. The 3%(curves  are fits(see textto the scaling collapses done with exponents from
are averages over up to 16 initial random-field configurations. Thdable | and corresponding calculations in two dimensfonghe
inset shows the scaling collapse of the integrated avalanche siZeeaks are aligned to fall oii,1). Due to the “bump” in the scaling
distribution curves in three dimensions, using (R—R.)/R, function the power-law exponent can not be extracted from a linear
+0B6=2.03, and 0=0.24, for sizes 160 32¢°, 80¢, and fit to the raw data for reasonable simulation sizes.
100¢%, and disorders ranging fronR=2.25 to R=3.2 (R,
=2.16). The two top curves in the collapse,Rst 3.2, show no- The scaling function in the inset of Fig. 3 has a peculiar
ticeable corrections to scaling. The thick dark curve through theshape: it grows by a factor of 10 before cutting off. The
collapse is the fit to the datesee text In the main figure, the consequence of this bump in the shape is that in the simula-
distribution curves obtained from the fit to the collapsed data argjgns it takes many decades in the size distribution for the
plotted(thin lineg alongside the raw datfghick lines. The straigaht slope to converge to the asymptotic power law. This can be
dashed line is the expected asymptotic power-law behaSict™,  saa from the comparison between a straight line fit through
l’(‘;ht'ﬁg gﬁgseng; ?hgeresia\fllil;h tfl:;:;g:ssrg(lslope of the raw data dygs R 25 (billion spin) simulation in Fig. 3 and the

P 9 asymptotic power lavg~ 23 obtained from extrapolating the
The cutoff in the power law diverges as the critical disorderScallng cpll_apse$th|ck dqshe_d straight _Ilne n the same fig-
ure). A similar bump exists in other dimensions and mean

R. is approached. This cutoff size scalesSas|r| ™. : . ; > Gl
These critical exponents can be obtained by using a ScaIl_eld as well. Figure 4 shows the scaling functions in differ-

ing collapse for the curves of Fig. 3, shown in the inset. Th ent dimensions and in mean field. In this graph, the scaling
scaling form is 7 ’ efunctions are normalized to one and the peaks are aligned

(the scaling forms allow th)s The curves plotted in Fig. 4
are not raw data but fits to the scaling collapse in each di-
mension, as was done in the inset of Fig. 3. For five, four,
and three dimensions, we have, respectively:

Dint(S,R)~S~ (778D (57r]), (6)
whereD\" is the scaling functiorithe + sign indicates that
the collapsed curves are f&>R;). We are sufficiently far
from the critical point that corrections to scaling are impor-

ibed i DM (X) = 0515 (0.112+0.459K — 0.26(X2
tant: as described in Ref. 22, we do collapses for small

ranges ofR and then linearly extrapolate the best-fit critical +0.201X3—0.050¢%), 8
exponents tdr;. We estimate from this curve that the criti-
cal exponents+ 086=2.03 ando=0.24. —int) 0,951 5
The scaling functioD{"(X) with X=S|r| is a univer- Dy (X)=e < (0.058+0.396X+0.248
sal pr_ediction of our model. To facilitate compgrisong, with —0.140¢3+0.026¢%), 9)
experiments, we fit a curve to the data collapse in the inset of
Fig. 3. We have fit the scaling collapses in dimensions three,
four, and five to a phenomenological form of an exponential ﬁz‘m)(x) — o 1076<Y7 (0.492- 4. 472X+ 14.70%?
times a polynomial. In three dimensions, our fit is
—20.936¢3+ 11.303*%), (10

DU (X) = e~ 078%"" 5 (0.021+ 0.002 + 0.531X>
with 1/0=2.35, 3.20, and 10.0. The errors in the fits are
again in the 10% range, judging from mean-field theSry.
where 16=4.20. The distribution curves obtained using the In 2r£1ean—f|eld theqr}(dlmen5|ons SixX and grea)gn simi-
above fit are plottedthin lines in Fig. 3 alongside the raw lar f|_t to the analytical form of the scaling function above
data(thick lines. They agree remarkably well even far above Rc 9ives

R.. We should recall though, that the fitted curve to the
collapsed data can differ from the “real” scaling function
even for large sizes and close to the critical disofdemean
field®? the error in the corresponding curve was about 10%).

—0.266X%+0.261X%),

DY (X)=e" XZ’Z(o.zozH 0.482X—0.391X?

+0.204X3—0.048%). (12)
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It is clear from the figure that the growing bump in the
scaling curves as the dimension decreases is a foreshadowing
of a zero in the scaling curve in two dimensions: this will be
discussed further in Ref. 23.

2. Binned in H avalanche size distribution

D(S.H)

The avalanche size distribution can also be measured at a iy
field H or in a small range of fields centered arouddWe
have measured this binned kh avalanche size distribution
for systems at the critical disord®; (r=0). To obtain the 107"
scaling form, we start from the distribution of avalanches at 10
field H and disordeR: Avalanche Size (S)

0

D(S,R,H)~S ™D (S°|r'|,|h|/|r"|#?), (12

where as befor®.. is the scaling function and: indicates
the sign ofr.

The parameteB of Eq. (5), which rotates the measured
axes (,h) into the scaling axesr(h’=h+Br), will be
important? only for large avalanches of si®&>h"" near
the critical point. In three and four dimensions, this does not
affectzzour scaling collapses; in five dimensions we account ()
for it.

i The scaling function can X be rewritten as 10° 102 107 10° 10
D (S%|r|,(S°Ir[)2%|h|/|r|#?), whereD. is a new scaling Ihl $°%

function and+ represents whethet is greater than or less ) ) . o )
thanH, (i.e., H rather tharR). Letting R—R,, the scaling FIG. 5. (a) Binned inH avalanche size distribution in four di-

for the avalanche size distribution at the fieldmeasured at gﬁir;llof?;(;ci); : iyftgg_) O;hgecscpu':‘vse:t;: :Q%?a(ics:otifiiolzfo .
the critical disordeR; is: ¢~ 4409 g

random-field configuration. Only a few curves are shoin.Scal-
ing collapse of the binned avalanche size distributionHoerH
(upper collapseand H>H, (lower collaps¢ The critical expo-

. . . . . .. nents arer=1.53 andoB46=0.54, and the critical field iH,
Figure 5a) shows the binned il avalanche size distri- —1.265. The bins are at fields 1.162, 1.185, 1.204, 1.220,

bution curves in four dimensions, for valuestdfbelow the ) 55,7y 545 1 254 1276, 1.285, 1.296, 1.310, 1.326, 1.345,
critical field H.. (The curves and analysis are similar in and 1.368.

three and five dimensions; results in four dimensions are

used here for variety.The simulation was done at the best ing o845), and to calculate3s. The latter is then used to
estimate of the critical disordd®, (4.1 in four dimension)s  obtain collapses of the magnetization curves. We should
The binning inH is logarithmic and started from an approxi- mention here thalti; in all the dimensions is difficult to find
mate critical field H, obtained from the magnetization and that it is influenced by finite sizes. The values listed in
curves; better estimates ¢f. are then obtained from the Table Il are the best estimates obtained from the largest sys-

binned distribution data curves and their collapses. Our bedgm Sizes we have. Nevertheless, systematic errorsifor
estimate for the critical fieldd, in four dimensions is could be larger than the errors given in Table Il. These errors

1.265-0.007. The scaling form for the logarithmically Could produce systematic errors fe3d which depends on
binned data is the same as in E&3), if the log-binned data H., and forB6§ which is calculated fromrB45: hence errors

is normalized by the size of the bin. Figuréobshows the in these exponents could also be larger than the errors listed
. i .in Table IIl.
scaling collapse for our data, both below and above the criti- From Fig 5b), we see that the two-binned avalanche size

cal field He. The "top™ collapse gives the shape of the distribution scaling function does not have a “bump” as

D_ (H<H,) function, while the “bottom” collapse gives does the scaling function for the integrated avalanche size
theD, (H>H,) function. Above the critical fieldH., there  distribution (inset in Fig. 3. Therefore we expect that the
are spanning avalanches in the systérfihese are not in- exponentr which gives the slope of the distribution in Fig.
cluded in the binned avalanche size distribution collaps®(@ can also be obtained by a linear fit through the data
shown in Fig. %b). curve closest to the critical field. Figure 6 shows the curve
The exponentr which gives the power-law behavior of for theH=1.265 bin(dashed curveas well as the linear fit.
the binned avalanche size distribution is obtained from col-The slope from the linear fit is 1.55 while the value of
lapses of neighboring curves as described aBdextrapo- Obtained from the collapses and the extrapolation in Fig. 5 is
lating to H=H,. The exponenir34 is found to be very 1.53+0.08.
sensitive toH., while 7 is not. We have therefore used the
values ofr+ o B8 and o from the integrated avalanche size
distribution collapses, and from the binned avalanche size  The avalanche correlation functidd(x,R,H) measures
distribution collapses to further constrath, (by constrain-  the probability that the initial spin of an avalanche will trig-

S* D(S,H)
3

D(S,H)~S D.(|h|S7#). (13)

C. Avalanche correlations
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TABLE IIl. Values for exponents in three, four, and five dimensions that are not extracted directly from
scaling collapses, but instead are derived from Table | and the exponent relsgenRef. 1% The mean-
field values are obtained analyticaliy'* Both o868 and 85 could have larger systematic errors than the
errors listed here. See the binned avalanche size distribution section for details.

Calculated exponents 3d 4d 5d Mean field
oBéS 0.43+0.07 0.540.08 0.67:0.11 3/4
B 1.81+0.32 1.73:0.29 1.57#0.31 3/2
B 0.035+0.028 0.1690.048 0.252-0.060 1/2
oV 0.34+0.05 0.28£0.04 0.29-0.04 1/4
n=2+(B—B8Iv 0.73+0.28 0.25-0.38 0.06-0.51 0

ger, in that avalanche, another spin a distaxegvay. From above. Our function basically ignores the difference between
the renormalization-group descriptibh'® close to the criti-  the triggering spin and the other spins in the avalanche: al-
cal point and for large distancasthe correlation function is  ternatively, it calculates for avalanches of s&the correla-
given by tion function for pairs of spins, and then averages over all
avalanches(weighting each avalanche equallyWe've
checked that our correlation function agrees to within 3%
with the “triggered” correlation function described above,

h dh velv. th duced disord dfor R>R; in three dimensions and abovén two dimen-
wherer and h are, respectively, the reduced disorder an sions, the two definitions differ more substantially, but ap-
field, G. (= indicates the sign of) is the scaling function,

. : e . . pear to scale in the same wW&y.
dis the dimensiong is the correlation length, ang is called We have measured the avalanche correlation function in-
the “anomalous dimension.” Corrections can be shown t

Otegrated over the fieltH, for R>R,. For every avalanche
be subdominarf? The correlation lengtk(r,h) is a macro- g ¢ v

: . oSN that occurs betweeH = —o andH =+, we keep a count
scopic length scale in the system which is on the order of th P

i f the | lanches. At th ... on the number of times a distank@ccurs in the avalanche.
mean linear extent of the largest avalanches. At the criticar, jecrease the computational time not every pair of spins is
field H. (h=0) and neafR;, the correlation length scales

k . ’ ; A selected; instead we do a statistical sampling. The spanning
like &~[r[~", while for small fieldh it is given by avalanches are not included in our correlation measurement.
£~ |r] ="V, (h|r|B%) (15) Fjgure 7 shows several avalanghe correlation curves in three
- ' dimensions forL =320. The scaling form for the avalanche
where).. is a universal scaling function. The avalanche cor-correlation function integrated over the fidi] close to the
relation function should not be confused with the cluster orcritical point and for large distances is obtained by inte-
“spin-spin” correlation which measures the probability that grating Eq.(14):
two spins a distance away have the same valu@he alge-
braic decay for this other, spin-spin correlation function at
the critical point ¢=0 andh=0), is 1&% 4" 714
We’'ve mostly used, for historical reasons, a slightly dif- U
ferent avalanche correlation function, which scales the same
way as the “triggered” correlation functioc described

1
G(X,RH)~ Sg=m39:[X/&(r, ) ], 14

1
Gim(X,R)~f @279 [x/&(rh]dh. (16)

sing Eq.(15) and definingu=h/|r|#%, Eq.(16) becomes

G (X, R)~r [P (@247 f G.[x/|r|~*Y.(u)]du.

. 17
10 . . . .
The integral €) in Eq. (17) is a function ofx|r|” and can be
_ written as:
T 107
2
A
107 10°°
~
107" q ") T 6 3/: _10
10 10 10 10 510
Avalanche Size (S)
FIG. 6. Linear fit to binned avalanche size distribution curve in 10 . .
four dimensions, for a system of 88pins atR.=4.09. The mag- 0 1 10 100
netic field isH=1.265. The straight solid line is a linear fit to the Distance (x)

data forS<13,000 spins. The slope from the fit is 1.8Bis varies

by not more than 3% as the range over which the fit is done is FIG. 7. Avalanche correlation function integrated over the field
changedgl while the exponent obtained from the collapses and the H in three dimensions, fdr =320. The curves are averages of up to
extrapolation in Fig. 5 is 1.580.08. 19 random-field configurations. The critical disordris 2.16.
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Avalanche Correlation
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Distance (x)
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FIG. 8. Scaling collapse of the avalanche correlation function
integrated over the fieldH, in three dimensions fok =320. The FIG. 9. Anisotropies in the avalanche correlation function. The
values of the disorders range froR=2.35 to R=3.0, with R, curves are for a system of 328pins atR=2.35. Four curves are
=2.16. The exponents used in the collapsearel.39+-0.20 and  shown on the graph: one is the avalanche correlation function inte-
d+ B/v=3.07+0.30. When collapses of neighboring curves are ex-grated over the fieldd (as in Fig. 7, while the other three are
trapolated toR,, we get a slightly smaller value of=1.37  measurements of the correlation along the three axis, the six face
+0.18. diagonals, and the four-body diagonals. Avalanches involving more
than four spins show no noticeable anisotropy: the critical point
_ W — Bl Y appears to have spherical symmetry. The same result is found in
I=(|r") G=(x|r|") (18) two dimensions.
to obtain the scaling form
point where one of them will span the system from one side
1 . to another in at least one direction. This avalanche is not the
Gint(X,R) ~ G- (X|r]"), (19 infinite avalanche; if the system was larger, this avalanche
X would typically be nonsystem spanning. Such an avalanche
where we have used the scaling relation(g)v=g86—p  (Which spans the systgmwe call a spanning avalanche.
(see Ref. 14 for the derivation In our numerical simulation, we find that for finite sides
Figure 8 shows the integrated avalanche correlatior'€T€ are not one buhanysuch avalanches in four and five
curves collapse in three dimensions for=320 andR  dimensions(and maybe three and that their number in-
>R,. The exponent is obtained from such collapses by C€@ses as the system size incredS#sgures 102)-10(c)
extrapolating toR=R, as was done for other collaps®s show the number of spanning avalanches as a function of
The exponen/ v cancbe obtained from these collapses t60 disorderR, for different sizes and dimensions. In four and
but it is much better estimated from the magnetization dis-f've dimensions, the spanning _ayalanche curves become
continuity covered below. The value gf v listed in Table | more narrow as th.G. system size Is mc_reased. Also, the peaks
is derived exclusively from the magnetization discontinuityShlft tovyard the critical value of the dlsorder (4.1 and 5.96,
collapses. respectively, and the number of spanning avalanchefat
We have also looked for possible anisotropies in the inteincreases. This suggests that in four and five dimensions, for

grated avalanche correlation function in two and three dit—: there will be one infinite avalanche beld¥, none
bove, and an infinite number of infinite, spanning ava-

mensions. The anisotropic integrated avalanche correlatiof} . . k .
functions are measured along “generalized diagonals”: on anches at the critical Q|sordétc. In three d|men_S|ons, the
along the three axis, the second along the six face diagonal©€SUlts are not conclusive, as noted both from Figajland
and the third along the four-body diagonals. We compare thom the value of the spanning avalanche exporéen0.15
integrated avalanche correlation function and the anisotropic O-15 defined below: a value @=0 is consistent with one
integrated avalanche correlation functions to each other, angfinite or spanning avalanche Bt asL — . It is clear that

find no anisotropies in the correlation, as can be seen froff=0 in two dimensions, since spanning avalanches can't
Fig. 9. interpenetrate: it's thus plausible thétis near zero in three

dimensions because it must vanish one dimension lower.

In percolation, a similar multiplicity of infinite
clusters®34 as the system size is increased is found for di-

The critical disordeR, was defined earlier as the disorder mensions above six which is the upper critical dimension
R at which aninfinite avalanche first appears in the system,(UCD). The UCD is the dimension at and above which the
in the thermodynamic limit, as the disorder is lowered. Atmean-field exponents are valid. Below six dimensions, there
that point, the magnetization curve will show a discontinuityis only one such infinite cluster in percolation. The existence
at the magnetizatioM (R.) and field H.(R.). For each of a diverging number of infinite clusters in percolation is
disorderR below the critical disorder, there sneinfinite  associated with the breakdown of the hyperscaling relation
avalanche that occurs at a critical fitf(R)>H(R.),***®  above six dimensions. Since a hyperscaling relation is a re-
while aboveR, there are only finite avalanches. This is the lation between critical exponents that includes the dimension
behavior for an infinite-size system. In a finite-size systerd of the system, it is always only satisfied up to and includ-
far below and abovér, the above picture is still true, but ing the upper critical dimension. In our system, the upper
close to the critical disorder, as we approach the transitiongritical dimension is also 6, but we find spanning avalanches
the avalanches get larger and larger, and there will be a firsh dimensions even below that. In a comment by Maritan

D. Spanning avalanches
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et al,3 it was suggested that our system should satisfy the
hyperscaling relatiordv— 8= 1/c found in percolatiorf*

But since our system has spanning avalanches below the
upper critical dimension, this hyperscaling relation breaks
down below six dimensions. Due to the existence of many
spanning avalanches neRg, the new “violation of hyper-
scaling” relation for dimensions three and above becdthes

Spanning Avalanches (N)

(d—=0)v— B=1lo, (20)

21 23 2.5 27 _ . .
Disorder (R/J) where @ is the “breakdown of hyperscaling” or spanning

avalanches exponent defined below. One can check that our
exponents in three, four, and five dimensions and mean field
satisfy this equatiorisee Tables | and I)l
For the simulation, we define a spanning avalanche to be

. an avalanche that spans the system in a particular direction.

i‘;\: _________ We average over all the directions to obtain better statistics.
TN, T Depending on the size and dimension of the system and the
distance from the critical disorder, the number of spanning
avalanches for a particular value of disoréRis obtained by
averaging over as few as 5 to as many as 2000 different
random-field configurations. We define the expongisuch
that the numbemN of spanning avalanches, at the critical
disorderR;, increases with the linear system size &k:
~L? (6>0). The finite-size scaling forfn for the number
of spanning avalanches close to the critical disorder is

®

16.0

Spanning Avalanches (N)

s

N(L,R)~ LA (LY™|r]), (21)

where v is the correlation length exponent and. is the

corresponding scaling function( indicates the sign of).

. ] The collapse is shown in Fig. ld). (We show the collapses

Disorder (R/T) in four dimensions here since the existence of spanning ava-
" lanches in three dimensions is not conclusiviehese values

30| are used along with the results from other collapses to obtain

Table 1. In the analysis of the avalanche size distribution,

2 magnetization, and correlation functions f&>R., how

El 20} close we chose to come to the critical disorBerwas deter-

o mined by the spanning avalanches: we include no vaRies

=10t below the first value which exhibited a spanning avalanche.

Spanning Avalanches (N)

—_
o
<

0.0 E. Magnetization discontinuity
-2.0 0.0 2.0 4.0 6.0

(d) LY We have mentioned earlier that in the thermodynamic
limit, at and below the critical disordd&®., there is a critical
FIG. 10. Spanning avalanches in three, four, and five dimenfield H.(R)>H.(R.) at which the infinite avalanche occurs.
sions.(a) Number of spanning avalanchésin three dimensions, Close to the critical transition, for smalk 0, the change in

occurring in the system betweéh= — to H=, as a function of  the magnetization due to the infinite avalanche scal¢Eas
the disorderR, for linear sizesL: 20 (dot-dashef 40 (long @]

dashegl 80 (dashed, 160 (dotted, and 320(solid). The critical
disorderR; is at 2.16. The error bars for each curve tend to be AM(R)~rB (22)
smaller than the error bar shown at the peak for disorders above the '

peak and larger for disorders below the peak. They are not give(ynerer = (R.—R)/R, while above the transition, there is no
here for clarity. Note that the number of avalanches increases °n|i5hfinite avalanche.

slightly as the size is increase) Number of spanning avalanches

in four dimensions. The critical disorder is 4(t) Number of span- have spanning avalanches above the critical disorder. If we

ning avalanches in five dimensions. The critical disorder is 5.96, . o i
Both in four and five dimensions, the peaks grow and shift towardsmeasure the change in the magnetization due to all the span

R, as the size of the system is increasgt].Collapse of the span- ning avalanches asa fynctlon c_)f .dlso.rmaat various system
ning avalanche curves in four dimensions for linear sites sizesL, we expec.t it will obey finite-size scalin@gs did the
=20, 40, and 80. The exponents a&e 0.32 andv=0.89, and the number of spanning avalanches

critical disorder isR.=4.10. The collapse is done using (R,

~R)/R. AM(L,R)~[r[PAM.(LYr]), (23

In finite-size systems, the transition is not as sharp: we
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FIG. 11. Jump in the magnetization, in four dimensiot®. FIG. 12. Second moment¢a) Second moments of the ava-

Change in the magnetization due to the spanning avalanches in fob':_}nche size distribution integrated over the fiéldin five dimen-

dimensions, for several linear sizesas a function of the disorder Sions. Error bars are largest for smaller disordatsown on the
R. (b) Scaling collapse of the curves {@a) usingr=(R.—R)/R. curves. The curves have between 24 and 50 points, and the value

The exponents are i+ 1.12 andg/»=0.19, and the critical disor- of the second moment for each disorder is averaged over 3 to 100
der isR,=4.1. different random field configurationgb) Scaling collapse of the
L=10, 20, and 30 curves froff@) usingr =(R.— R)/R. The expo-
nents are ¥=1.47 andp=—(r+oB6—3)/ov=2.95, and the

whereA M. is a universal scaling functiofThe parameter - . :
v 9 U b critical disorder isR,=5.96.

B here, Eq(5), is unimportarf® becauseé\M is measured at

h’=0.] Defining a new universal scaling functidnM..., length exponent. We can similarly define the third and fourth

Yol ts ot Ul ls— B A = v moment, with the exponent (7+ oB86—3)/ov replaced by
AM (L) =) PAML (L)), (24) —(r+oB6—4)lov and —(7+aB5—5)/av, respectively.
Figures 12a) and 12b) show the second moments data in
five dimensions for sizels=5, 10, 20, and 30, and a collapse
AM(L,R)NLfﬁ/VAMi(L1/V|r|)_ (25) (again, results in three and four dimensiqns are sim'ilar and
we have chosen to show the curves in five dimensions for

Figures 11a) and 11b) show the change in the magneti- variety). The curves are normalized by the average
zation due to the spanning avalanches in four dimension@valanche — size  integrated  over  all  fields
and a scaling collapse of that dafsimilar results exist in  H: [ZZ/7SD(S,R,H,L)dS dH The spanning avalanches
three and five dimensionsNotice that as the system size are not included in the calculation of the moments. We omit
increases, the curves approach |[Hé behavior. The expo- theL =5 curve from the collapse; it doesn't collapse with the
nents 14 and B/ v are extracted from scaling collapdésg. others well, presumably because of subdominant finite size
11(b)] and extrapolated tR..?? The value of8 is calculated  €ffects. The exponents for the third and fourth moment can
from B/v and the knowledge of, and is the value used for be calculated from those of the second moment, and we find

collapses of the magnetization curveiscussed earligr that they agree with the values obtained from their respective
collapses.

we obtain the scaling form

F. Moments of the avalanche size distribution

The second moment of the integrated avalanche size dis- G. Avalanche time measurement

tribution has a finite-size scaling form The exponents we have measured so far are static scaling
exponents: they do not depend on the dynamics of the model.
(SP)ing~ L7+ oBO= o2 (| W), (26)  If we measure the time an avalanche takes to occur, we are

] . ] ) making a dynamical measurement. The time measurement in
whereL is the linear size of the system,is the reduced the numerical simulation is done by increasing the time clock
disorder,5?) is the scaling function, and is the correlation by one for each shell of spins in the avalanche. That is, we
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implement time as a synchronous dynamics, where in each
time step all unstable spins from the previous step are 10
flipped. The scaling relation between the tin# takes an g
avalanche to occur and the linear sigeof the avalanche §
defines the critical exponert®®3’ B
.z 107
t~ ¢ (27) 2’
The exponent is known as the dynamical critical exponent. B
Equation(27) gives the scaling for the time it takes for a spin e
to “feel” the effect of another a distancgé away. Since the > —
correlation lengthé scales liker ~” close to the critical dis- 10 Ti 10
order, and the characteristic siSeasr ', the timet then me
scales with avalanche size as 10°
t"’SO—VZ. (28) (b)
In our simulation, we measure the distribution of times for Q@:
each avalanche siZ The distribution of time®,(S,R,H,t) TG
for an avalanche of siz8 close to the critical fieldH, and 5
critical disorderR, is §
Di(S.RH,)~S DY(S|r[h/|r|#2,1/577), (29 1
“~ 10
whereq= 7+ ovz, and is defined such that . .
0.0 2.0 40
t S*GVZ

+ oo e} .
J J D{(S,R,H,t)dH dt=S"(7+oBIDUNY (g7 |r|),
e J1 FIG. 13. (a) Avalanche time distribution curves in three dimen-

(30 sions, for avalanche size bins from about 2000 to 40000 spins

where Z3(+im) was defined in the integrated avalanche Size(from upper left to lower right corngr The system size is 88t

distribution section. The avalanche time distribution inte-_ 2-26: The curves are from only one random-field configuration.
rated over the fieltH, at the critical disorderr(=0) is (b) Scaling collapse of curves if@). The values of the exponents
9 ' a areovz=0.57 and ¢+ oB6+ ovz)lovz=4.0.

Dilm)(s't)wt (HUB(Hwz)/wngmt)(tlswz)’ (3D hysteresis model and the thermal random-field model in 6

which is obtained from Eq29) (Ref. 22. — e can be mapped to all orders onto thexpansion of the

Figures 18a) and 13b) show the avalanche time distribu- pure, thermal Ising model in4e. The critical exponents in
tion integrated over the fieldl for different avalanche sizes, lower dimensions, and in particular the lower critical dimen-
and a collapse of these curves using the above scaling forrgion, do not map onto one another. Either there is a nonana-
for a 80F system atR=2.260 (just above the range where lytic correction with a zero power series like exl/e), or
spanning avalanches ocgufhe data are saved in logarith- perhaps the derivation of theexpansion is flawed. Since the
mic size bins, each about 1.2 times larger than the previous €xpansion works rather well for our modeletails below,
one. The time is also measured logarithmicalext bin is  and since the argued flaws in the calculational approach for
1.1 times larger than the previous 9n&he extracted value the thermal model did not appear to apply to our method of
for zin three dimensions is 1.680.07. The results for other calculation, we suggestéti® that the discrepancy between

dimensions are listed in Table |. pure and disordered exponergtack of dimensional reduc-
tion) was possibly due to a nonanalytic term, leaving &he
V. COMPARISON WITH THE ANALYTICAL RESULTS expansion valid, but incomplet€This conclusion was com-

patible with the observation of replica symmetry breaking in

Here we compare the simulation results with thethe 1N expansions for these models: the bounds in Ref. 38
renormalization-group analysis of the same systéfiAc-  when examined near six dimensions are compatible with a
cording to the renormalization group the upper critical di-nonanalytic correctioh.Recent work® has suggested a far
mension(UCD), at and above which the critical exponents more tangible cause for the failure of the theory for the ther-
are equal to the mean-field values, is 6. Close to the UCD, itnal random-field Ising model: a divergence in certain na-
is possible to do a 6 € expansion, and obtain estimates for ively irrelevant diagrams which occur both in replica theory
the critical exponents and the magnetization scaling functionand in an unconventional limit of the dynamical theory. We
which can then be compared with our numerical results.  are corresponding with these authors discussing details of

The study of the 6- € expansion for the equilibrium, ther- their calculations. Pending resolution of these knotty analyti-
mal random-field Ising model has a contentious history anctal questions, we compare our results to this controversial
remains controversial. Much of this controversy is relevantexpansion in 6- € dimensions.
also to our model, and a brief summary would seem neces- Figure 14 shows the numerical and analytical results for
sary despite the numerical focus of this paper. Details anfive of the critical exponents obtained in dimensions 2 to 6
references can be found in Ref. 14. Thexpansion for our (in six dimensions, the values are the mean-field priEise
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Dimension (d) FIG. 15. Comparison between simulaihf/dH curves in five

dimensions, and thdM/dH curve obtained from the expansion.
eThe thick dashed line shows the prediction of thexpansion to
third order ine for the slope of the magnetization curdd/dH in

FIG. 14. Comparison between the critical exponents from th
simulation and the: expansion. Numerical valud§illed symbolg

of the exponentsr+af39, 7, 1lv, avz, and ow (circles, dia five dimensions. The theoretical curve is a parametric fdaken

mond, triangles up, squares, and triangle) lefttwo, three, four, . . . .
. . . from the analysis of the ordinary, pure, thermal Ising model in three
and five dimensions. The empty symbols are values for these expo:

nents in mean fielddimension §. Exponents in two dimensions are dimensiqn§.5 Th? six simulation curveghin lines are fqr a s_ystem
discussed elsewhetd?223 Note that the value ofr is two- of 30° spins at disorders 7.0, 7.3, and 7.R.£5.96 in five dimen-

dimensional conjectured vald®.We have simulated sizes up to siong, and for a system of B0spins at disorders 6.3, 6.4, and 6.5.

30006, 100F, 80*, and 56, where for 328, for example, more The latter curves are closer to the th.eoretlcal Qashed line. All t.he
X . . - curves have been stretched/shrunk in the horizontal and vertical
than 700 different random-field configurations were measured. Th

long-dashed lines are theexpansions to first order for the expo- %lrectlon and shifted horizontally to lie on each other.

nentst+oB45, 7, ovz, andov. The short-dashed lines are Borel model a random system that exhibits hysteresis. We found
suméP for 1/v, as discussed in Ref. 12. The lowest is the variable-that the model has a transition in the shape of the hysteresis
pole Borel sum from LeGuilloet al.*° the middle uses the method loop, and that the transition is critical. The tunable param-
of Vladimirov et al. to fifth order, and the upper uses the method of eters are the amount of disordeand the external magnetic
LeGuillou et al, but without the pole and with the correct fifth- field H. The transition is marked by the appearance of an
order term. The error bars denote systematic errors in flndlng thfhf"’“te avalanche in the thermodynamic System. Near the
exponents from extrapolation of the values obtained from collapsegyitical point, (R ,Hc), the scaling region is quite large: the
of curves at different disordeiR. Statistical errors are smaller. system can exhibit power-law behavior for several decades,
and still not be near the critical transition. This is important
other exponents can be obtained from scaling relatidns. to keep in mind whenever experimental data are analyzed:
The exponent values in Fig. 14 are obtained by extrapolatingecades of scaling need not imply self-organized criticality.
the results of scaling collapses to eittie~R. or 1L —0 We have extracted critical exponents for the magnetiza-
(see Ref. 22 The long-dashed lines are tleeexpansions to tion, the avalanche size distributi¢imtegrated over the field
first order forr+o B8, 7, ovz, andov. The three short- and binned in the fielgd the moments of the avalanche size
dashed lin€¥ are Borel sunt® for 1/v. Notice that the nu- distribution, the avalanche correlation, the number of span-
merical values converge nicely to the mean-field predictionspning avalanches, and the distribution of times for different
as the dimension approaches 6, and that the agreement kmralanche sizes. These values are listed in Table I, and were
tween the numerical values and th@xpansion is quite im- obtained as an average of the extrapolation reswitsR
pressive. —R, or L—x) from several measuremerifsAs shown ear-
The e expansion can be an even more powerful tool if itlier, the numerical results compare well with the
can predict the scaling functions. This has been done for thexpansiort*'® Comparisons to experimental Barkhausen
magnetization scaling function of the pure Ising model in 4noise measurementsare very encouraging.
— e dimensiong?*! Since, as discussed above, thexpan-
sion for our model is the same as the one foreqailibrium ACKNOWLEDGMENTS
RFIM,* and the latter has been mapped to all orders in
the corresponding expansion of the regular Ising model ir]:
two lower dimensiond}*3#4we can use the results obtained
in Refs. 42 and 41. This is done in Fig. 15, which shows th
comparison between theM/dH curves obtained in five di-
mensions and the predicted scaling functionddd/dH, to
third order ine, wheree=1 in five dimensiongsee Ref. 41
As we see, the agreement is very good in the scaling regio
(close to the peaks
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