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Disorder-induced critical phenomena in hysteresis:
Numerical scaling in three and higher dimensions

Olga Perkovic´,* Karin A. Dahmen,† and James P. Sethna
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 27 July 1998!

We present numerical simulations of avalanches and critical phenomena associated with hysteresis loops,
modeled using the zero-temperature random-field Ising model. We study the transition between smooth hys-
teresis loops and loops with a sharp jump in the magnetization, as the disorder in our model is decreased. In a
large region near the critical point, we find scaling and critical phenomena, which are well described by the
results of ane expansion about six dimensions. We present the results of simulations in three, four, and five
dimensions, with systems with up to a billion spins (10003). @S0163-1829~99!03709-1#
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I. INTRODUCTION

The increased interest in real materials in condens
matter physics has brought disordered systems into the s
light. Dirt changes the free-energy landscape of a syst
and can introduce metastable states with large ene
barriers.1 This can lead to extremely slow relaxation towar
the equilibrium state. On long length scales and pract
time scales, a system driven by an external field will mo
from one metastable local free-energy minimum to the ne
The equilibrium, global free-energy minimum and the th
mal fluctuations that drive the system toward it, are in t
case irrelevant. The state of the system will instead dep
on its history.

The motion from one local minima to the next is a co
lective process involving many local~magnetic! domains in
a local region—an avalanche. In magnetic materials, as th
external magnetic fieldH is changed continuously, these av
lanches lead to the magnetic noise: the Barkhausen effe2,3

This effect can be picked up as voltage pulses in a coil s
rounding the magnet. The distribution of pulse~avalanche!
sizes is found3–6 to follow a power law with a cutoff after a
few decades, and was interpreted by some6 to be an example
of self-organized criticality~SOC!.7 ~In SOC, a system orga
nizes itself into a critical state without the need to tune
external parameter.! Other systems can exhibit avalanches
well. Several examples where disorder may play a part
superconducting vortex line avalanches,8 resistance ava
lanches in superconducting films,9 and capillary condensa
tion of helium in Nuclepore.10

The history dependence of the state of the system lead
hysteresis. Experiments with magnetic tapes11 have shown
that the shape of the hysteresis curve changes with the
nealing temperature. The hysteresis curve goes from sm
to discontinuous as the annealing temperature is increa
This transition can be explained in terms of aplain old criti-
cal point with two tunable parameters: the annealing te
perature and the external field. At the critical temperat
and field, the correlation length diverges, and the distribut
of pulse~avalanche! sizes follows a power law.

We have argued earlier12 that the Barkhausen noise e
PRB 590163-1829/99/59~9!/6106~14!/$15.00
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periments can be quantitatively explained by a model13 with
two tunable parameters~external field and disorder!, which
exhibits universal, nonequilibrium collective behavior. Th
model is athermal and incorporates collective behav
through nearest-neighbor interactions. The role ofdirt or dis-
order, as we call it, is played by random fields. This pap
presents the results and conclusions of a large scale sim
tion of that model: the nonequilibrium zero-temperature ra
dom field Ising model~RFIM!, with a deterministic dynam-
ics. The results compare very well to oure expansion,14,15

and to experiments in Barkhausen noise.12

We should mention that there are other models for a
lanches in disordered magnets. There is a large body of w
on depinning transitions and the motion of the sing
interface.16–18 In these models, avalanches occur only at
growing interface. Our model though, deals with many int
acting interfaces: avalanches can grow anywhere in the
tem. Models of hysteresis similar to ours exist,19 including
ones with random bonds20,21 and random anisotropies.

This paper is a condensed version of an unpublis
manuscript, available electronically.22 We focus here on the
numerical results and scaling methods in dimensions th
through six. Some of the other topics touched upon in
original manuscript are being published separately. Our
terpretation of the behavior in dimension two has been s
stantially altered by further analysis.23 A full description of
the numerical method is available, including sample co
and executables, on the World Wide Web.24 For a full dis-
cussion of the behavior in mean field theory, and interest
behavior below the critical point in seven and nine dime
sions, we refer the reader to the electronic version of
original manuscript,22 and to recent work on the Beth
lattice.25

II. THE MODEL

The model we use is the zero-temperature random-fi
Ising model,19,16,13,12which we briefly review here. Magnetic
domains are represented by spinssi on a hypercubic lattice,
which can take two values:si561. The spins interact fer-
romagnetically with their nearest neighbors with a stren
6106 ©1999 The American Physical Society
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PRB 59 6107DISORDER-INDUCED CRITICAL PHENOMENA IN . . .
Ji j , and are exposed to a uniform magnetic fieldH ~which is
directed along the spins!. Disorder is simulated by a random
field hi , associated with each site of the lattice, which
given by a Gaussian distribution functionr(hi),

r~hi !5
1

A2pR
e2hi

2/2R2
, ~1!

of width proportional toR, which we call the disorder. The
Hamiltonian is then

H52(
^ i , j &

Ji j sisj2(
i

~H1hi !si . ~2!

For the analytic calculation, as well as the simulation,
have set the interaction between the spins to be indepen
of the spins and equal to one for nearest neighbors,Ji j 5J
51, and zero otherwise. We use periodic boundary con
tions in the results of this paper; we’ve checked that
results nearRc are unchanged when a slab of preflipp
spins is introduced~fixed boundary conditions along tw
sides!.

The dynamics is deterministic, and is defined such tha
spin si will flip only when its local effective fieldhi

e f f ,

hi
e f f5J(

j
sj1H1hi , ~3!

changes sign. All the spins start pointing down (si521 for
all i ). As the field is adiabatically increased, a spin will fli
Due to the nearest-neighbor interaction, a flipped spin w
push a neighbor to flip, which in turn might push anoth
neighbor, and so on, thereby generating an avalanche of
flips. During each avalanche, the external field is kept c
stant. For large disorders, the distribution of random field
wide, and spins will tend to flip independently of each oth
Only small avalanches will exist, and the magnetizat
curve will be smooth. On the other hand, a small disor
implies a narrow random-field distribution which allow
larger avalanches to occur. As the disorder is lowered, at
disorderR5Rc and fieldH5Hc , an infinite avalanche in the
thermodynamic system will occur for the first time, and t
magnetization curve will show a discontinuity. NearRc and
Hc , we find critical scaling behavior and avalanches of
sizes. Therefore, the system has two tunable parameters
external fieldH and the disorderR. We found from the
mean-field calculation13–15 and the simulation that a discon
tinuity in the magnetization exists for disordersR<Rc , at
the field Hc(R)>Hc(Rc), but that only at (Rc ,Hc), do we
have critical behavior. For finite size systems of lengthL, the
transition occurs at the disorderRc

e f f(L) near which ava-
lanches first begin to span the system in one of thed dimen-
sions ~spanning avalanches!. The effective critical disorder
Rc

e f f(L) is larger thanRc , andRc
e f f(L)→Rc asL→`.

The algorithm we use to simulate this model is describ
in a separate manuscript.24 For a simulation withN spins, the
computer time scales asN logN and the memory required fo
the simulation scales to one bit per spin~i.e., we do not store
the random fields!.
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III. SCALING

We use data obtained from the simulation to find a
describe the critical transition. We do so using ‘‘scaling c
lapses,’’ which we review briefly here. For example, t
magnetization as a function of external fieldH is expected to
have the form

M ~H,R!2Mc~Hc ,Rc!;ur ubM6~h8/ur ubd!, ~4!

whereMc is the critical magnetization~the magnetization a
Hc , for R5Rc), r 5(R2Rc)/R and h5(H2Hc) are the
reduced disorder and reduced field, respectively,

h85h1Br ~5!

is a ~nonuniversal! rotation between the experimental contr
variables (r ,h) and the scaling variables (r ,h8), andM6 is
a universal scaling function (6 refers to the sign ofr ). @In
the plots shown in this paper, we user 5(R2Rc)/R, which
we have found produces better collapses than usingr 5(R
2Rc)/Rc . The latter is more traditional, but the two defin
tions agree asR→Rc , and differ by an amount which is
irrelevant in a renormalization-group sense. One method
use to estimate error in our exponents is to compare extra
lations based on the two definitions.# Scaling is expected
asymptotically for smallr andh—i.e., for H nearHc andR
nearRc . The critical exponentb gives the scaling for the
magnetization at the critical fieldHc (h50). If we plot
ur u2b

„M (H,R)2Mc(Hc ,Rc)… versush/r bd, we should ob-
tain the curveM(x), independently of what disorderR we
choose~so long as it is close toRc): different experimental
and numerical data sets should collapse onto one unive
curveM(x). ~Actually, one has two curvesM6 depending
on whetherR.Rc or R,Rc .) We use scaling forms simila
to Eq. ~4! to analyze all of our measurements.

One can easily show using the scaling form~4! that the
magnetization scales with a power lawM2Mc;hd at Rc ,
and that the jump in the magnetization~the size of the infi-
nite avalanche! scales asDM;r b as one varies the disorde
below Rc . Thus the critical exponentsb and d give the
power laws for the singularities in these measured quantit
indeed, that is how these exponents were originally defi
and measured. In our system, we will find that directly me
suring power laws is not effective in getting good exponen
the critical regime is so large that we need both to use
general scaling form and to extrapolate to the critical poi

The explanatory power of the theory resides in the f
that the same universal critical exponentsb and d and the
same universal functionM(x) should be obtained by simu
lations at different values of the disorder, simulations of d
ferent Hamiltonians, and simulations of real experiments,
long as the systems share certain important features and
metries~so long as they lie in the same universality clas!.
The underlying explanation for why universality and scali
should occur near the critical point is given by the renorm
ization group.26,14,15,22 Above six dimensions, fluctuation
are asymptotically not important, and we can calcul
M(x) and the values ofb and d from mean-field theory
(bMF51/2, dMF53).13 Below six dimensions, the exponen
and scaling curves are nontrivial, and to find them one m
rely on either perturbative methods,14,15 experiments, or nu-
merical methods13,22 as used here.
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IV. THE SIMULATION RESULTS

The following measurements were obtained from
simulation as a function of disorderR: the magnetization
M (H,R) as a function of the external fieldH; the avalanche
size distribution integrated over the fieldH:Dint(S,R); the
avalanche correlation function integrated over the fi
H:Gint(x,R); the number of spanning avalanchesN(L,R) as
a function of the system lengthL, integrated over the fieldH;
the discontinuity in the magnetizationDM (L,R) as a func-
tion of the system lengthL; the second̂ S2& int(L,R), third
^S3& int(L,R), and fourth^S4& int(L,R) moments of the ava
lanche size distribution as a function of the system lengthL,
integrated over the fieldH. In addition, we have measured
the avalanche size distributionD(S,H,R) as a function of
the field H and disorderR; the distribution of avalanche
timesDt

( int)(S,t) as a function of the avalanche sizeS, at R
5Rc , integrated over the fieldH.

We do not present results on the sample-to-sample fl
tuations in these systems, which would themselves have
interesting scaling properties:27,28 at the critical point, fluc-

FIG. 1. ~a! Magnetization curves in three dimensions for si
L5320, and three values of disorder. The curves are averages
to 48 different random-field configurations. Note the discontinu
in the magnetization forR52.20. In finite size systems, the disco
tinuity in the magnetization curve occurs even forR.Rc (Rc

52.16 in three dimensions!. ~b! Scaling collapse~see text! of the
magnetization curves in three dimensions for sizeL5320. The dis-
orders range fromR52.35 toR53.20. The critical magnetization i
chosen asMc50.9 from an analysis of the magnetization curv
and is kept fixed during the collapse. The universal exponents
b50.036, bd51.81. The nonuniversal critical fieldHc51.435,
critical disorderRc52.16, and rotation parameterB50.39.
e
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tuations in disordered systems often persist even in the l
of infinite system size~lack of self-averaging!. There has
also been recent interest in the distinction in finite-size sim
lations between scaling collapses using the average valu
the critical point versus scaling while allowing the effectiv
critical point to fluctuate between systems. In some syste
scaling collapses with effective, sample dependent crit
points can converge substantially faster;28 in some systems it
has been suggested that new critical exponents can
revealed;29 and in one system an unusual new regime
large fluctuations was revealed.30 Our major obstacle to good
collapses and exponents was getting close to the critical
order~demanding huge simulations to encompass the res
ing avalanches!, not in extracting average behavior from th
fluctuations. A future study of the fluctuations in the me
sured properties in this system would be worthwhile.

A. Magnetization curves

Unfortunately the most obvious measured quantity in o
simulations, the magnetization curveM (H), is the one
which collapses least well in our simulations. We start with
nonetheless.

Figure 1~a! shows the magnetization curves obtained fro
our simulation in three dimensions for several values of
disorderR. As the disorderR is decreased, a discontinuity o
jump in the magnetization curve appears where a single a

up

re

FIG. 2. dM/dH curves in three dimensions.~a! Derivative of
the magnetizationM with respect to the fieldH for disordersR
5 2.35, 2.4, 2.45, 2.5, 2.6, 2.7, 2.85, 3.0, and 3.2~highest to
lowest peak!, ~b! Scaling collapse of the data in~a! with b
50.036, bd51.81, B50.39, Hc51.435, and Rc52.16. While
the curves are not collapsing onto a single curve, the quality of
collapse is quite similar to that found at similar distances fromRc in
mean-field theory,22 for which we know analytically that scaling
works asR→Rc .
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TABLE I. Universal critical exponents. Values for the exponents extracted from scaling collaps
three, four, and five dimensions. The mean-field values are calculated analytically.13,14 n is the correlation
length exponent and is found from collapses of avalanche correlations, number of spanning avalanch
moments of the avalanche size distribution data. The exponentu is a measure of the number of spannin
avalanches and is obtained from collapses of those data. (t1sbd23)/sn is obtained from the second
moments of the avalanche size distribution collapses. 1/s is associated with the cutoff in the power-la
distribution of avalanche sizes integrated over the fieldH, while t1sbd gives the slope of that distribution
t is obtained from the binned avalanche size distribution collapses.d1b/n is obtained from avalanche
correlation collapses andb/n from magnetization discontinuity collapses.snz is the exponent combination
for the time distribution of avalanche sizes and is extracted from those data. Error bars are based on va
in the results based on different approaches to the analysis: statistical fluctuations are typically sma

Measured exponents 3d 4d 5d Mean field

1/n 0.7160.09 1.1260.11 1.4760.15 2
u 0.01560.015 0.3260.06 1.0360.10 1
(t1sbd23)/sn 22.9060.16 23.2060.24 22.9560.13 23
1/s 4.260.3 3.2060.25 2.3560.25 2
t1sbd 2.0360.03 2.0760.03 2.1560.04 9/4
t 1.6060.06 1.5360.08 1.4860.10 3/2
d1b/n 3.0760.30 4.1560.20 5.160.4 7 ~at dc56)
b/n 0.02560.020 0.1960.05 0.3760.08 1
snz 0.5760.03 0.5660.03 0.54560.025 1/2
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lanche occupies a large fraction of the total system. In
thermodynamic limit this would be the infinite avalanch
the largest disorder at which it occurs is the critical disor
Rc . For finite size systems, like the ones we use in
simulation, we observe an avalanche which spans the sy
at a higher disorder, which gradually approachesRc as the
system size grows.

Figure 2 shows the slopedM/dH and its scaling collapse
By using this derivative, the critical region is emphasized
the peak in the curve, and the dependence on the param
Mc drops out. The lower graphs in Figs. 1~b! and 2~b! show
the scaling collapses of the magnetization and its slo
Clearly in neither case are all the data collapsing ont
single curve. This would be distressing, were it not for t
fact that this also occurs in mean-field theory22 at a similar
distance to the critical point.

Because the scaling of the magnetization is so bad, we
other quantities to estimate the critical exponents and
location of the critical point~Tables I and II!. Fixing these
quantities, we use the collapse of thedM/dH curves to ex-
tract the rotationB mixing the experimental variablesr andh
into the scaling variableh85h1Br @Eq. ~5!#.
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B. Avalanche size distribution

1. Integrated avalanche size distribution

In our model the spins flip in avalanches: each spin c
kick over one or more neighbors in a cascade. These a
lanches come in different sizes. The integrated avalan
size distribution is the size distribution of all the avalanch
that occur in one branch of the hysteresis loop~for H from
2` to `). Figure 3~Ref. 12! shows some of the raw dat
~thick lines! in three dimensions. Note that the curves follo
an approximate power-law behavior over several deca
Even 50% away from criticality~at R53.2), there are still
two decades of scaling, which implies that the critical regi
is large. In experiments, a few decades of scaling could
interpreted in terms of self-organized criticality~SOC!. How-
ever, our model and simulation suggest that several dec
of power-law scaling can still be present ratherfar from the
critical point ~note that the size of the critical region is no
universal!. The slope of the log-log avalanche size distrib
tion at Rc gives the critical exponentt1sbd. Notice, how-
ever, that the apparent slopes in Fig. 3 continue to cha
even after several decades of apparent scaling is obtai
d the
The
of the

nd the
listed
TABLE II. Nonuniversal scaling variables. Numerical values for the critical disorders and fields, an
rotation parameterB @Eq. ~5!#, in three, four, and five dimensions extracted from scaling collapses.
critical disorder is obtained from collapses of the spanning avalanches and the second moments
avalanche size distribution. The critical field is obtained from the binned avalanche size distribution a
magnetization curves.Hc is affected by finite sizes, and systematic errors could be larger than the ones
here. The mean-field values are calculated analytically.13,14 The rotationB is obtained from thedM/dH
collapses.

3d 4d 5d Mean field

Rc 2.1660.03 4.1060.02 5.9660.02 0.79788456
Hc 1.43560.004 1.26560.007 1.17560.004 0
B 0.3960.08 0.4660.05 0.2360.08 0
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The cutoff in the power law diverges as the critical disord
Rc is approached. This cutoff size scales asS;ur u21/s.

These critical exponents can be obtained by using a s
ing collapse for the curves of Fig. 3, shown in the inset. T
scaling form is

Dint~S,R!;S2~t1sbd!D̄1
~ int !~Ssur u!, ~6!

whereD̄1
( int) is the scaling function~the1 sign indicates that

the collapsed curves are forR.Rc). We are sufficiently far
from the critical point that corrections to scaling are impo
tant: as described in Ref. 22, we do collapses for sm
ranges ofR and then linearly extrapolate the best-fit critic
exponents toRc . We estimate from this curve that the crit
cal exponentst1sbd52.03 ands50.24.

The scaling functionD1
( int)(X) with X5Ssur u is a univer-

sal prediction of our model. To facilitate comparisons w
experiments, we fit a curve to the data collapse in the inse
Fig. 3. We have fit the scaling collapses in dimensions th
four, and five to a phenomenological form of an exponen
times a polynomial. In three dimensions, our fit is

D̄1
~ int !~X!5e20.789X1/s

3~0.02110.002X10.531X2

20.266X310.261X4!, ~7!

where 1/s54.20. The distribution curves obtained using t
above fit are plotted~thin lines in Fig. 3! alongside the raw
data~thick lines!. They agree remarkably well even far abo
Rc . We should recall though, that the fitted curve to t
collapsed data can differ from the ‘‘real’’ scaling functio
even for large sizes and close to the critical disorder~in mean
field22 the error in the corresponding curve was about 10%

FIG. 3. Integrated avalanche size distribution curves in th
dimensions for 3203 spins and disordersR54.0, 3.2, and 2.6. The
last curve is atR52.25, for a 10003 spin system. The 3203 curves
are averages over up to 16 initial random-field configurations.
inset shows the scaling collapse of the integrated avalanche
distribution curves in three dimensions, usingr 5(R2Rc)/R, t
1sbd52.03, and s50.24, for sizes 1603, 3203, 8003, and
10003, and disorders ranging fromR52.25 to R53.2 (Rc

52.16). The two top curves in the collapse, atR53.2, show no-
ticeable corrections to scaling. The thick dark curve through
collapse is the fit to the data~see text!. In the main figure, the
distribution curves obtained from the fit to the collapsed data
plotted~thin lines! alongside the raw data~thick lines!. The straight
dashed line is the expected asymptotic power-law behavior:S22.03,
which does not agree with the measured slope of the raw data
to the shape of the scaling function~see text!.
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The scaling function in the inset of Fig. 3 has a pecul
shape: it grows by a factor of 10 before cutting off. Th
consequence of this bump in the shape is that in the sim
tions it takes many decades in the size distribution for
slope to converge to the asymptotic power law. This can
seen from the comparison between a straight line fit thro
the R52.25 ~billion spin! simulation in Fig. 3 and the
asymptotic power lawS22.03 obtained from extrapolating the
scaling collapses~thick dashed straight line in the same fi
ure!. A similar bump exists in other dimensions and me
field as well. Figure 4 shows the scaling functions in diffe
ent dimensions and in mean field. In this graph, the sca
functions are normalized to one and the peaks are alig
~the scaling forms allow this!. The curves plotted in Fig. 4
are not raw data but fits to the scaling collapse in each
mension, as was done in the inset of Fig. 3. For five, fo
and three dimensions, we have, respectively:

D̄5
~ int !~X!5e20.518X1/s

3~0.11210.459X20.260X2

10.201X320.050X4!, ~8!

D̄4
~ int !~X!5e20.954X1/s

3~0.05810.396X10.248X2

20.140X310.026X4!, ~9!

D̄2
~ int !~X!5e21.076X1/s

3~0.49224.472X114.702X2

220.936X3111.303X4!, ~10!

with 1/s52.35, 3.20, and 10.0. The errors in the fits a
again in the 10% range, judging from mean-field theory.22

In mean-field theory~dimensions six and greater! a simi-
lar fit22 to the analytical form of the scaling function abov
Rc gives

D̄MF
~ int !~X!5e2 X2/2~0.20410.482X20.391X2

10.204X320.048X4!. ~11!

e

e
ize

e

e
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FIG. 4. Integrated avalanche size distribution scaling functio
in two, three, four, and five dimensions, and mean field. The cur
are fits~see text! to the scaling collapses done with exponents fro
Table I and corresponding calculations in two dimensions.23 The
peaks are aligned to fall on~1,1!. Due to the ‘‘bump’’ in the scaling
function the power-law exponent can not be extracted from a lin
fit to the raw data for reasonable simulation sizes.12
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It is clear from the figure that the growing bump in th
scaling curves as the dimension decreases is a foreshado
of a zero in the scaling curve in two dimensions: this will
discussed further in Ref. 23.

2. Binned in H avalanche size distribution

The avalanche size distribution can also be measured
field H or in a small range of fields centered aroundH. We
have measured this binned inH avalanche size distribution
for systems at the critical disorderRc (r 50). To obtain the
scaling form, we start from the distribution of avalanches
field H and disorderR:

D~S,R,H !;S2tD6~Ssur 8u,uhu/ur 8ubd!, ~12!

where as beforeD6 is the scaling function and6 indicates
the sign ofr.

The parameterB of Eq. ~5!, which rotates the measure
axes (r ,h) into the scaling axes (r ,h85h1Br), will be
important22 only for large avalanches of sizeS.h21/s near
the critical point. In three and four dimensions, this does
affect our scaling collapses; in five dimensions we acco
for it.22

The scaling function can be rewritten a
D̂6„S

sur u,(Ssur u)bduhu/ur ubd
…, where D̂6 is a new scaling

function and6 represents whetherH is greater than or les
thanHc ~i.e., H rather thanR). Letting R→Rc , the scaling
for the avalanche size distribution at the fieldH, measured at
the critical disorderRc is:

D~S,H !;S2tD̂6~ uhuSsbd!. ~13!

Figure 5~a! shows the binned inH avalanche size distri
bution curves in four dimensions, for values ofH below the
critical field Hc . ~The curves and analysis are similar
three and five dimensions; results in four dimensions
used here for variety.! The simulation was done at the be
estimate of the critical disorderRc ~4.1 in four dimensions!.
The binning inH is logarithmic and started from an approx
mate critical field Hc obtained from the magnetizatio
curves; better estimates ofHc are then obtained from th
binned distribution data curves and their collapses. Our b
estimate for the critical fieldHc in four dimensions is
1.26560.007. The scaling form for the logarithmicall
binned data is the same as in Eq.~13!, if the log-binned data
is normalized by the size of the bin. Figure 5~b! shows the
scaling collapse for our data, both below and above the c
cal field Hc . The ‘‘top’’ collapse gives the shape of th
D̂2 (H,Hc) function, while the ‘‘bottom’’ collapse gives
theD̂1 (H.Hc) function. Above the critical fieldHc , there
are spanning avalanches in the system.31 These are not in-
cluded in the binned avalanche size distribution colla
shown in Fig. 5~b!.

The exponentt which gives the power-law behavior o
the binned avalanche size distribution is obtained from c
lapses of neighboring curves as described above,22 extrapo-
lating to H5Hc . The exponentsbd is found to be very
sensitive toHc , while t is not. We have therefore used th
values oft1sbd ands from the integrated avalanche siz
distribution collapses, andt from the binned avalanche siz
distribution collapses to further constrainHc ~by constrain-
ing

t a

t

t
t

e

st

i-

e

l-

ing sbd), and to calculatebd. The latter is then used to
obtain collapses of the magnetization curves. We sho
mention here thatHc in all the dimensions is difficult to find
and that it is influenced by finite sizes. The values listed
Table II are the best estimates obtained from the largest
tem sizes we have. Nevertheless, systematic errors forHc
could be larger than the errors given in Table II. These err
could produce systematic errors forsbd which depends on
Hc , and forbd which is calculated fromsbd: hence errors
in these exponents could also be larger than the errors li
in Table III.

From Fig 5~b!, we see that the two-binned avalanche s
distribution scaling function does not have a ‘‘bump’’ a
does the scaling function for the integrated avalanche
distribution ~inset in Fig. 3!. Therefore we expect that th
exponentt which gives the slope of the distribution in Fig
5~a! can also be obtained by a linear fit through the d
curve closest to the critical field. Figure 6 shows the cu
for theH51.265 bin~dashed curve! as well as the linear fit.
The slope from the linear fit is 1.55 while the value oft
obtained from the collapses and the extrapolation in Fig.
1.5360.08.

C. Avalanche correlations

The avalanche correlation functionG(x,R,H) measures
the probability that the initial spin of an avalanche will trig

FIG. 5. ~a! Binned in H avalanche size distribution in four di
mensions for a system of 804 spins atR54.09 (Rc54.10). The
critical field isHc51.265. The curves are averages over close to
random-field configuration. Only a few curves are shown.~b! Scal-
ing collapse of the binned avalanche size distribution forH,Hc

~upper collapse! and H.Hc ~lower collapse!. The critical expo-
nents aret51.53 andsbd50.54, and the critical field isHc

51.265. The bins are at fields 1.162, 1.185, 1.204, 1.2
1.234, 1.245, 1.254, 1.276, 1.285, 1.296, 1.310, 1.326, 1.3
and 1.368.
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TABLE III. Values for exponents in three, four, and five dimensions that are not extracted directly
scaling collapses, but instead are derived from Table I and the exponent relations~see Ref. 14!. The mean-
field values are obtained analytically.13,14 Both sbd and bd could have larger systematic errors than t
errors listed here. See the binned avalanche size distribution section for details.

Calculated exponents 3d 4d 5d Mean field

sbd 0.4360.07 0.5460.08 0.6760.11 3/4
bd 1.8160.32 1.7360.29 1.5760.31 3/2
b 0.03560.028 0.16960.048 0.25260.060 1/2
sn 0.3460.05 0.2860.04 0.2960.04 1/4
h521(b2bd)/n 0.7360.28 0.2560.38 0.0660.51 0
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ger, in that avalanche, another spin a distancex away. From
the renormalization-group description,14,15 close to the criti-
cal point and for large distancesx, the correlation function is
given by

G~x,R,H !;
1

xd221hG6@x/j~r ,h!#, ~14!

where r and h are, respectively, the reduced disorder a
field, G6 (6 indicates the sign ofr ) is the scaling function,
d is the dimension,j is the correlation length, andh is called
the ‘‘anomalous dimension.’’ Corrections can be shown
be subdominant.22 The correlation lengthj(r ,h) is a macro-
scopic length scale in the system which is on the order of
mean linear extent of the largest avalanches. At the crit
field Hc (h50) and nearRc , the correlation length scale
like j;ur u2n, while for small fieldh it is given by

j;ur u2nY6~h/ur ubd!, ~15!

whereY6 is a universal scaling function. The avalanche c
relation function should not be confused with the cluster
‘‘spin-spin’’ correlation which measures the probability th
two spins a distancex away have the same value.~The alge-
braic decay for this other, spin-spin correlation function
the critical point (r 50 andh50), is 1/xd241h̃.14!

We’ve mostly used, for historical reasons, a slightly d
ferent avalanche correlation function, which scales the sa
way as the ‘‘triggered’’ correlation functionG described

FIG. 6. Linear fit to binned avalanche size distribution curve
four dimensions, for a system of 804 spins atRc54.09. The mag-
netic field isH51.265. The straight solid line is a linear fit to th
data forS,13,000 spins. The slope from the fit is 1.55~this varies
by not more than 3% as the range over which the fit is done
changed!, while the exponentt obtained from the collapses and th
extrapolation in Fig. 5 is 1.5360.08.
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above. Our function basically ignores the difference betwe
the triggering spin and the other spins in the avalanche:
ternatively, it calculates for avalanches of sizeS the correla-
tion function for pairs of spins, and then averages over
avalanches ~weighting each avalanche equally!. We’ve
checked that our correlation function agrees to within 3
with the ‘‘triggered’’ correlation function described abov
for R.Rc in three dimensions and above.~In two dimen-
sions, the two definitions differ more substantially, but a
pear to scale in the same way.23!

We have measured the avalanche correlation function
tegrated over the fieldH, for R.Rc . For every avalanche
that occurs betweenH52` andH51`, we keep a count
on the number of times a distancex occurs in the avalanche
To decrease the computational time not every pair of spin
selected; instead we do a statistical sampling. The span
avalanches are not included in our correlation measurem
Figure 7 shows several avalanche correlation curves in th
dimensions forL5320. The scaling form for the avalanch
correlation function integrated over the fieldH, close to the
critical point and for large distancesx, is obtained by inte-
grating Eq.~14!:

Gint~x,R!;E 1

xd221hG6@x/j~r ,h!#dh. ~16!

Using Eq.~15! and definingu5h/ur ubd, Eq. ~16! becomes

Gint~x,R!;ur ubdx2~d221h!E G6@x/ur u2nY6~u!#du.

~17!

The integral (I) in Eq. ~17! is a function ofxur un and can be
written as:

is FIG. 7. Avalanche correlation function integrated over the fie
H in three dimensions, forL5320. The curves are averages of up
19 random-field configurations. The critical disorderRc is 2.16.
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I5~xur un!2bd/nG̃6~xur un! ~18!

to obtain the scaling form

Gint~x,R!;
1

xd1b/n
G̃6~xur un!, ~19!

where we have used the scaling relation (22h)n5bd2b
~see Ref. 14 for the derivation!.

Figure 8 shows the integrated avalanche correla
curves collapse in three dimensions forL5320 and R
.Rc . The exponentn is obtained from such collapses b
extrapolating toR5Rc as was done for other collapses22

The exponentb/n can be obtained from these collapses to
but it is much better estimated from the magnetization d
continuity covered below. The value ofb/n listed in Table I
is derived exclusively from the magnetization discontinu
collapses.

We have also looked for possible anisotropies in the in
grated avalanche correlation function in two and three
mensions. The anisotropic integrated avalanche correla
functions are measured along ‘‘generalized diagonals’’: o
along the three axis, the second along the six face diago
and the third along the four-body diagonals. We compare
integrated avalanche correlation function and the anisotro
integrated avalanche correlation functions to each other,
find no anisotropies in the correlation, as can be seen f
Fig. 9.

D. Spanning avalanches

The critical disorderRc was defined earlier as the disord
R at which aninfinite avalanche first appears in the syste
in the thermodynamic limit, as the disorder is lowered.
that point, the magnetization curve will show a discontinu
at the magnetizationMc(Rc) and field Hc(Rc). For each
disorderR below the critical disorder, there isone infinite
avalanche that occurs at a critical fieldHc(R).Hc(Rc),

14,15

while aboveRc there are only finite avalanches. This is t
behavior for an infinite-size system. In a finite-size syst
far below and aboveRc the above picture is still true, bu
close to the critical disorder, as we approach the transit
the avalanches get larger and larger, and there will be a

FIG. 8. Scaling collapse of the avalanche correlation funct
integrated over the fieldH, in three dimensions forL5320. The
values of the disorders range fromR52.35 to R53.0, with Rc

52.16. The exponents used in the collapse aren51.3960.20 and
d1b/n53.0760.30. When collapses of neighboring curves are
trapolated toRc , we get a slightly smaller value ofn51.37
60.18.
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point where one of them will span the system from one s
to another in at least one direction. This avalanche is not
infinite avalanche; if the system was larger, this avalan
would typically be nonsystem spanning. Such an avalan
~which spans the system! we call a spanning avalanche.

In our numerical simulation, we find that for finite sizesL,
there are not one butmanysuch avalanches in four and fiv
dimensions~and maybe three!, and that their number in-
creases as the system size increases.32 Figures 10~a!–10~c!
show the number of spanning avalanches as a function
disorderR, for different sizes and dimensions. In four an
five dimensions, the spanning avalanche curves bec
more narrow as the system size is increased. Also, the p
shift toward the critical value of the disorder (4.1 and 5.9
respectively!, and the number of spanning avalanches atRc
increases. This suggests that in four and five dimensions
L→`, there will be one infinite avalanche belowRc , none
above, and an infinite number of infinite, spanning av
lanches at the critical disorderRc . In three dimensions, the
results are not conclusive, as noted both from Fig. 10~a! and
from the value of the spanning avalanche exponentu50.15
60.15 defined below: a value ofu50 is consistent with one
infinite or spanning avalanche atRc asL→`. It is clear that
u50 in two dimensions, since spanning avalanches ca
interpenetrate: it’s thus plausible thatu is near zero in three
dimensions because it must vanish one dimension lower

In percolation, a similar multiplicity of infinite
clusters33,34 as the system size is increased is found for
mensions above six which is the upper critical dimens
~UCD!. The UCD is the dimension at and above which t
mean-field exponents are valid. Below six dimensions, th
is only one such infinite cluster in percolation. The existen
of a diverging number of infinite clusters in percolation
associated with the breakdown of the hyperscaling rela
above six dimensions. Since a hyperscaling relation is a
lation between critical exponents that includes the dimens
d of the system, it is always only satisfied up to and inclu
ing the upper critical dimension. In our system, the upp
critical dimension is also 6, but we find spanning avalanc
in dimensions even below that. In a comment by Marit

n

-

FIG. 9. Anisotropies in the avalanche correlation function. T
curves are for a system of 3203 spins atR52.35. Four curves are
shown on the graph: one is the avalanche correlation function i
grated over the fieldH ~as in Fig. 7!, while the other three are
measurements of the correlation along the three axis, the six
diagonals, and the four-body diagonals. Avalanches involving m
than four spins show no noticeable anisotropy: the critical po
appears to have spherical symmetry. The same result is foun
two dimensions.
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FIG. 10. Spanning avalanches in three, four, and five dim
sions.~a! Number of spanning avalanchesN in three dimensions,
occurring in the system betweenH52` to H5`, as a function of
the disorderR, for linear sizesL: 20 ~dot-dashed!, 40 ~long
dashed!, 80 ~dashed!, 160 ~dotted!, and 320~solid!. The critical
disorderRc is at 2.16. The error bars for each curve tend to
smaller than the error bar shown at the peak for disorders abov
peak and larger for disorders below the peak. They are not g
here for clarity. Note that the number of avalanches increases
slightly as the size is increased.~b! Number of spanning avalanche
in four dimensions. The critical disorder is 4.1.~c! Number of span-
ning avalanches in five dimensions. The critical disorder is 5.
Both in four and five dimensions, the peaks grow and shift towa
Rc as the size of the system is increased.~d! Collapse of the span
ning avalanche curves in four dimensions for linear sizesL
520, 40, and 80. The exponents areu50.32 andn50.89, and the
critical disorder isRc54.10. The collapse is done usingr 5(Rc

2R)/R.
et al.,32 it was suggested that our system should satisfy
hyperscaling relationdn2b51/s found in percolation.34

But since our system has spanning avalanches below
upper critical dimension, this hyperscaling relation brea
down below six dimensions. Due to the existence of ma
spanning avalanches nearRc , the new ‘‘violation of hyper-
scaling’’ relation for dimensions three and above become14

~d2u!n2b51/s, ~20!

where u is the ‘‘breakdown of hyperscaling’’ or spannin
avalanches exponent defined below. One can check tha
exponents in three, four, and five dimensions and mean fi
satisfy this equation~see Tables I and III!.

For the simulation, we define a spanning avalanche to
an avalanche that spans the system in a particular direc
We average over all the directions to obtain better statist
Depending on the size and dimension of the system and
distance from the critical disorder, the number of spann
avalanches for a particular value of disorderR is obtained by
averaging over as few as 5 to as many as 2000 diffe
random-field configurations. We define the exponentu such
that the numberN of spanning avalanches, at the critic
disorder Rc , increases with the linear system size as:N
;Lu (u.0). The finite-size scaling form35 for the number
of spanning avalanches close to the critical disorder is

N~L,R!;LuN6~L1/nur u!, ~21!

where n is the correlation length exponent andN6 is the
corresponding scaling function (6 indicates the sign ofr ).
The collapse is shown in Fig. 10~d!. ~We show the collapses
in four dimensions here since the existence of spanning a
lanches in three dimensions is not conclusive.! These values
are used along with the results from other collapses to ob
Table I. In the analysis of the avalanche size distributi
magnetization, and correlation functions forR.Rc , how
close we chose to come to the critical disorderRc was deter-
mined by the spanning avalanches: we include no valueR
below the first value which exhibited a spanning avalanc

E. Magnetization discontinuity

We have mentioned earlier that in the thermodynam
limit, at and below the critical disorderRc , there is a critical
field Hc(R).Hc(Rc) at which the infinite avalanche occur
Close to the critical transition, for smallr ,0, the change in
the magnetization due to the infinite avalanche scales as@Eq.
~4!#

DM ~R!;r b, ~22!

wherer 5(Rc2R)/R, while above the transition, there is n
infinite avalanche.

In finite-size systems, the transition is not as sharp:
have spanning avalanches above the critical disorder. If
measure the change in the magnetization due to all the s
ning avalanches as a function of disorderR at various system
sizesL, we expect it will obey finite-size scaling~as did the
number of spanning avalanches!:

DM ~L,R!;ur ubDM6~L1/nur u!, ~23!
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whereDM6 is a universal scaling function.@The parameter
B here, Eq.~5!, is unimportant22 becauseDM is measured a
h850.] Defining a new universal scaling functionDM̃6 ,

DM6~L1/nur u![~L1/nur u!2bDM̃6~L1/nur u!, ~24!

we obtain the scaling form

DM ~L,R!;L2b/nDM̃6~L1/nur u!. ~25!

Figures 11~a! and 11~b! show the change in the magne
zation due to the spanning avalanches in four dimensio
and a scaling collapse of that data~similar results exist in
three and five dimensions!. Notice that as the system siz
increases, the curves approach theur ub behavior. The expo-
nents 1/n andb/n are extracted from scaling collapses@Fig.
11~b!# and extrapolated toRc .22 The value ofb is calculated
from b/n and the knowledge ofn, and is the value used fo
collapses of the magnetization curves~discussed earlier!.

F. Moments of the avalanche size distribution

The second moment of the integrated avalanche size
tribution has a finite-size scaling form

^S2& int;L2~t1sbd23!/snS̃6
~2!~L1/nur u!, ~26!

where L is the linear size of the system,r is the reduced
disorder,S̃6

(2) is the scaling function, andn is the correlation

FIG. 11. Jump in the magnetization, in four dimensions.~a!
Change in the magnetization due to the spanning avalanches in
dimensions, for several linear sizesL, as a function of the disorde
R. ~b! Scaling collapse of the curves in~a! using r 5(Rc2R)/R.
The exponents are 1/n51.12 andb/n50.19, and the critical disor-
der isRc54.1.
s,

is-

length exponent. We can similarly define the third and fou
moment, with the exponent2(t1sbd23)/sn replaced by
2(t1sbd24)/sn and 2(t1sbd25)/sn, respectively.
Figures 12~a! and 12~b! show the second moments data
five dimensions for sizesL55, 10, 20, and 30, and a collaps
~again, results in three and four dimensions are similar
we have chosen to show the curves in five dimensions
variety!. The curves are normalized by the avera
avalanche size integrated over all field
H: *2`

1`*1
`SD(S,R,H,L)dS dH. The spanning avalanche

are not included in the calculation of the moments. We o
theL55 curve from the collapse; it doesn’t collapse with t
others well, presumably because of subdominant finite s
effects. The exponents for the third and fourth moment c
be calculated from those of the second moment, and we
that they agree with the values obtained from their respec
collapses.

G. Avalanche time measurement

The exponents we have measured so far are static sc
exponents: they do not depend on the dynamics of the mo
If we measure the time an avalanche takes to occur, we
making a dynamical measurement. The time measureme
the numerical simulation is done by increasing the time clo
by one for each shell of spins in the avalanche. That is,

ur

FIG. 12. Second moments.~a! Second moments of the ava
lanche size distribution integrated over the fieldH, in five dimen-
sions. Error bars are largest for smaller disorders~shown on the
curves!. The curves have between 24 and 50 points, and the v
of the second moment for each disorder is averaged over 3 to
different random field configurations.~b! Scaling collapse of the
L510, 20, and 30 curves from~a! usingr 5(Rc2R)/R. The expo-
nents are 1/n51.47 andr52(t1sbd23)/sn52.95, and the
critical disorder isRc55.96.
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6116 PRB 59PERKOVIĆ, DAHMEN, AND SETHNA
implement time as a synchronous dynamics, where in e
time step all unstable spins from the previous step
flipped. The scaling relation between the timet it takes an
avalanche to occur and the linear sizej of the avalanche
defines the critical exponentz:36,37

t;jz. ~27!

The exponentz is known as the dynamical critical exponen
Equation~27! gives the scaling for the time it takes for a sp
to ‘‘feel’’ the effect of another a distancej away. Since the
correlation lengthj scales liker 2n close to the critical dis-
order, and the characteristic sizeS as r 21/s, the timet then
scales with avalanche size as

t;Ssnz. ~28!

In our simulation, we measure the distribution of times
each avalanche sizeS. The distribution of timesDt(S,R,H,t)
for an avalanche of sizeS close to the critical fieldHc and
critical disorderRc is

Dt~S,R,H,t !;S2qD̄6
~ t !~Ssur u,h/ur ubd,t/Ssnz!, ~29!

whereq5t1snz, and is defined such that

E
2`

1`E
1

`

Dt~S,R,H,t !dH dt5S2~t1sbd!D̄6
~ int !~Ssur u!,

~30!

where D̄6
( int) was defined in the integrated avalanche s

distribution section. The avalanche time distribution in
grated over the fieldH, at the critical disorder (r 50) is

Dt
~ int !~S,t !;t2~t1sbd1snz!/snzD t

~ int !~ t/Ssnz!, ~31!

which is obtained from Eq.~29! ~Ref. 22!.
Figures 13~a! and 13~b! show the avalanche time distribu

tion integrated over the fieldH for different avalanche sizes
and a collapse of these curves using the above scaling f
for a 8003 system atR52.260 ~just above the range wher
spanning avalanches occur!. The data are saved in logarith
mic size bins, each about 1.2 times larger than the prev
one. The time is also measured logarithmically~next bin is
1.1 times larger than the previous one!. The extracted value
for z in three dimensions is 1.6860.07. The results for othe
dimensions are listed in Table I.

V. COMPARISON WITH THE ANALYTICAL RESULTS

Here we compare the simulation results with t
renormalization-group analysis of the same system.14,15 Ac-
cording to the renormalization group the upper critical
mension~UCD!, at and above which the critical exponen
are equal to the mean-field values, is 6. Close to the UCD
is possible to do a 62e expansion, and obtain estimates f
the critical exponents and the magnetization scaling funct
which can then be compared with our numerical results.

The study of the 62e expansion for the equilibrium, ther
mal random-field Ising model has a contentious history a
remains controversial. Much of this controversy is relev
also to our model, and a brief summary would seem nec
sary despite the numerical focus of this paper. Details
references can be found in Ref. 14. Thee expansion for our
ch
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hysteresis model and the thermal random-field model in
2e can be mapped to all orders onto thee expansion of the
pure, thermal Ising model in 42e. The critical exponents in
lower dimensions, and in particular the lower critical dime
sion, do not map onto one another. Either there is a nona
lytic correction with a zero power series like exp(21/e), or
perhaps the derivation of thee expansion is flawed. Since th
e expansion works rather well for our model~details below!,
and since the argued flaws in the calculational approach
the thermal model did not appear to apply to our method
calculation, we suggested14,15 that the discrepancy betwee
pure and disordered exponents~lack of dimensional reduc-
tion! was possibly due to a nonanalytic term, leaving thee
expansion valid, but incomplete.~This conclusion was com
patible with the observation of replica symmetry breaking
the 1/N expansions for these models: the bounds in Ref.
when examined near six dimensions are compatible wit
nonanalytic correction.! Recent work39 has suggested a fa
more tangible cause for the failure of the theory for the th
mal random-field Ising model: a divergence in certain n
ively irrelevant diagrams which occur both in replica theo
and in an unconventional limit of the dynamical theory. W
are corresponding with these authors discussing detail
their calculations. Pending resolution of these knotty anal
cal questions, we compare our results to this controver
expansion in 62e dimensions.

Figure 14 shows the numerical and analytical results
five of the critical exponents obtained in dimensions 2 to
~in six dimensions, the values are the mean-field ones!. The

FIG. 13. ~a! Avalanche time distribution curves in three dime
sions, for avalanche size bins from about 2000 to 40 000 sp
~from upper left to lower right corner!. The system size is 8003 at
R52.26. The curves are from only one random-field configurati
~b! Scaling collapse of curves in~a!. The values of the exponent
aresnz50.57 and (t1sbd1snz)/snz54.0.
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other exponents can be obtained from scaling relation14

The exponent values in Fig. 14 are obtained by extrapola
the results of scaling collapses to eitherR→Rc or 1/L→0
~see Ref. 22!. The long-dashed lines are thee expansions to
first order fort1sbd, t, snz, andsn. The three short-
dashed lines14 are Borel sums40 for 1/n. Notice that the nu-
merical values converge nicely to the mean-field predictio
as the dimension approaches 6, and that the agreemen
tween the numerical values and thee expansion is quite im-
pressive.

The e expansion can be an even more powerful tool i
can predict the scaling functions. This has been done for
magnetization scaling function of the pure Ising model in
2e dimensions.42,41 Since, as discussed above, thee expan-
sion for our model is the same as the one for theequilibrium
RFIM,14 and the latter has been mapped to all orders ine to
the corresponding expansion of the regular Ising mode
two lower dimensions,14,43,44we can use the results obtaine
in Refs. 42 and 41. This is done in Fig. 15, which shows
comparison between thedM/dH curves obtained in five di-
mensions and the predicted scaling function fordM/dH, to
third order ine, wheree51 in five dimensions~see Ref. 41!.
As we see, the agreement is very good in the scaling reg
~close to the peaks!.

VI. SUMMARY

We have used the zero-temperature random-field Is
model, with a Gaussian distribution of random fields,

FIG. 14. Comparison between the critical exponents from
simulation and thee expansion. Numerical values~filled symbols!
of the exponentst1sbd, t, 1/n, snz, and sn ~circles, dia-
mond, triangles up, squares, and triangle left! in two, three, four,
and five dimensions. The empty symbols are values for these e
nents in mean field~dimension 6!. Exponents in two dimensions ar
discussed elsewhere.12,22,23 Note that the value oft is two-
dimensional conjectured value.12 We have simulated sizes up t
30 0002, 10003, 804, and 505, where for 3203, for example, more
than 700 different random-field configurations were measured.
long-dashed lines are thee expansions to first order for the expo
nentst1sbd, t, snz, andsn. The short-dashed lines are Bor
sums40 for 1/n, as discussed in Ref. 12. The lowest is the variab
pole Borel sum from LeGuillouet al.,40 the middle uses the metho
of Vladimirov et al. to fifth order, and the upper uses the method
LeGuillou et al., but without the pole and with the correct fifth
order term. The error bars denote systematic errors in finding
exponents from extrapolation of the values obtained from collap
of curves at different disordersR. Statistical errors are smaller.
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model a random system that exhibits hysteresis. We fo
that the model has a transition in the shape of the hyster
loop, and that the transition is critical. The tunable para
eters are the amount of disorderR and the external magneti
field H. The transition is marked by the appearance of
infinite avalanche in the thermodynamic system. Near
critical point, (RC ,HC), the scaling region is quite large: th
system can exhibit power-law behavior for several decad
and still not be near the critical transition. This is importa
to keep in mind whenever experimental data are analyz
decades of scaling need not imply self-organized criticali

We have extracted critical exponents for the magneti
tion, the avalanche size distribution~integrated over the field
and binned in the field!, the moments of the avalanche siz
distribution, the avalanche correlation, the number of sp
ning avalanches, and the distribution of times for differe
avalanche sizes. These values are listed in Table I, and w
obtained as an average of the extrapolation results~to R
→Rc or L→`) from several measurements.22 As shown ear-
lier, the numerical results compare well with thee
expansion.14,15 Comparisons to experimental Barkhaus
noise measurements12 are very encouraging.
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FIG. 15. Comparison between simulateddM/dH curves in five
dimensions, and thedM/dH curve obtained from thee expansion.
The thick dashed line shows the prediction of thee expansion to
third order ine for the slope of the magnetization curvedM/dH in
five dimensions. The theoretical curve is a parametric form41 taken
from the analysis of the ordinary, pure, thermal Ising model in th
dimensions.15 The six simulation curves~thin lines! are for a system
of 305 spins at disorders 7.0, 7.3, and 7.5 (Rc55.96 in five dimen-
sions!, and for a system of 505 spins at disorders 6.3, 6.4, and 6.
The latter curves are closer to the theoretical dashed line. All
curves have been stretched/shrunk in the horizontal and ver
direction and shifted horizontally to lie on each other.
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