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We have found a new method for dealing with phonon modes in path integrals. Using it
and an instanton calculation, we have developed a detailed theory of the tunneling event in
the presence of phonons. This theory generalizes the traditional methods (truncating the
energy spectrum of the defect, treating it as a discrete “spin’ system) which are valid only
in the weakly coupled low-mass regime. Most atomic tunneling will be described by an
“effective mass” for the defect due to coupled lattice motion; we use (KC1:Li*) as an ex-
ample of this “slow-flip” regime. A physical picture describing electrons which are strong-
ly coupled to phonon modes (i.e., self-trapped and polaronic electrons) is presented, but the
instanton machinery does not simplify in this regime and direct calculation is necessary.
We present a study of Anderson’s negative-U centers to elucidate this type of tunneling.
We also use a two-parameter model to distinguish the domains of validity for the trunca-

tion, self-trapped, and effective-mass regimes.

I. INTRODUCTION

Quantum tunneling in the presence of phonon
modes is ubiquitous in solid-state physics. Quantum
tunneling of atoms dominates the low-temperature
behavior of glasses.!"? It describes the behavior of
many well-studied defects in alkali halides, and
describes diffusion of light interstitials in metals.*
Quantum tunneling of electrons is important in
describing polaronic conduction in insulators,’ elec-
tron transport in biophysics, ¢ and possibly low-
temperature behavior of amorphous semiconduc-
tors.” In all these cases, the tunneling entity couples
to elastic deformations of the surrounding atoms.

In all cases but glasses, this coupling has been
shown to be crucial to a detailed understanding of
the systems’~%; in glasses no detailed microscopic
model exists.

When this is considered, it is surprising how little
attention has been spent on this problem. In most
theoretical treatments, a tunneling matrix element is
assumed and is measured experimentally; attempts
to calculate these have had mixed success. The
most common approach uses what I call the trunca-
tion approximation: the Hamiltonian for the tun-
neling entity is simplified to a matrix, truncating the
higher-energy states as “physically unimportant”.
The phonons are then coupled to the defect and act
to suppress tunneling by the overlap integral of their
initial and final ground states (variously termed the
Frank-Condon or Debye-Waller factor). This ap-
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proximation was developed to describe electronic
tunneling with weak phonon coupling, and it gives
poor answers out of this domain. Occasionally, oth-
er decriptions of tunneling are given without much
theoretical justification. One of these is a quasiclas-
sical description in which the surrounding atoms re-
lax adiabatically as the defect moves over the bar-
rier. We shall see that it is a good description for
most atomic tunneling, if it is corrected by the use
of an effective mass.

This paper contains a complete qualitative theory
of the zero-temperature tunneling process with pho-
non coupling, and sets up machinery which should
serve to quantitatively describe tunneling-center
— phonon interactions at finite temperatures. It
draws upon three theoretical sources. The concept
of tunneling in glasses as motion along a path in a
multidimensional-configuration space is described
nicely by Anderson.® Methods of locating this “in-
stanton” path have been used recently in studies of
the strong interaction’; Coleman'® presents a
pedagogical version. Finally, the method of in-
tegrating away the phonon modes, leaving a tract-
able one-dimensional problem, is due to Feyn-
man. 112

Section II of this paper will discuss the truncation
approximation and the nature of its failure. It
serves also to introduce notation and ideas in a fam-
iliar context. Section III sets up the path-integral
description of our system. It develops a new ver-
sion of the phonon propogator, which replaces ugly
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boundary terms and a time-retarded position-
position interaction with an effective relaxed poten-
tial and a time-retarded velocity-velocity interaction.
This formulation allows practical use of the path
integral in this problem. Section IV discusses the na-
ture of the instanton path in various physical re-
gimes. It formally develops the truncation approxi-
mation and the adiabatic or slow-flip approximation.
It discusses the self-trapped regime, where an attrac-
tive physical picture exists but no corresponding cal-
culational tools are found. It then provides a two-
parameter model which is numerically solved and
used to distinguish the domains of validity of these
three physical pictures. Section V develops the
slow-flip approximation further by applying it to
lithium substitutional defects in KC1 (whose local
potential and phonon coupling are at least roughly
known). Direct calculation of the tunneling matrix
element is not feasible with the available data; it
depends exponentially on barrier heights and widths
which are not known well. (This largely explains
the lack of theoretical attention spent on this
area—the truncation approximation can and has'?
failed by orders of magnitude without causing con-
cern about its validity. Also, any refined theory is
similarly unlikely to be convincingly supported by
experiment.) We concentrate on describing the iso-
tope effect in this system. Section VI describes self-
trapped tunneling in more detail, by studying
Anderson’s negative-U model for electronic states in
amorphous semiconductors. We study a paper of
Phillips'* in which he notes that lattice deformations
will strongly suppress tunneling in these centers.

He sets up a model in which the truncation approx-
imation is in some sense valid, and concludes that
tunneling is impossible for negative-U centers. We
find that his model is pathological and tunneling in
it is uncharacteristic of self-trapped tunneling. We
conclude that Phillips has overestimated this
suppression, and that negative-U centers may well
contribute to the low-temperature specific heat. Sec-
tion VII conclude with some general remarks.

II. TRUNCATION APPROXIMATION

In this paper, we analyze the nature of a single
tunneling event in a many-dimensional-configuration
space composed of a defect coordinate Q and a
number of phonon coordinates g;. The general sys-
tem (which we shall use in Secs. V and VI) has the
Hamiltonian,

X =H(P,Q)+ Hywprgr) + HinQ,qx)

P2
HP,Q)= — V ,
(P,Q) M + V(Q)
sz 1
H 1(proqr) = §—2M + smoggd

HinQ.q1) = 2 Ax(Qgy -
%

Note first, the index k is a formal one, labeling the
normal modes of the coordinates of the system
minus the defect coordinate. At best, these modes
will be plane waves only in the limit & — 0.
Secondly we shall see that V' (Q) need not be a dou-
ble well for the system to behave as one. V(Q) is
the potential with other atoms “nailed down”; al-
lowing them to relax will often form a “spontane-
ous” double well, i.e., self-trapping may be impor-
tant (see Fig. 1). V(Q) will, of course, be anhar-
monic.

The phonon-defect coupling above is quite gen-
eral. If one makes the natural restriction that the
phonon coordinates be harmonic for fixed Q, this
coupling only assumes further that the phonon fre-
quencies be independent of Q. A more traditional
coupling in the literature ignores “breathing” during
tunneling, and is linear in the defect coordinate:

HinQ.q1) = 3 MqiQ
P

Here Ay « k as k — O unless there is some special

Potential well ¥(Q,q) =
Q%+2q2-4qQ

Wave Function ¥.(Q,q)
localized in lower
left - hand well

FIG. 1. Potential for a single quartic well coupled to a
single phonon mode. Note that the double well is
formed through self-trapping.
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symmetry to the defect. For simplicity, in Secs.
II—IV we shall use this interaction.

The truncation approximation involves restricting
. the Q part of the wave function to certain “low-
energy” states ¢ - - - 9,,. The general pure state of
the truncated system has the form > " ¢:(Q);(q;)
where the ¢; are arbitrary phonon states. The
Hamiltonian becomes, if 4; = (¢; |4 |¢;),

‘] IJ + 2

1
+ smaoggl + Shan Qi -
k

This is a very substantial simplification of the prob-
lem. All the nonlinearity has been summarized into
Hj; and Qy;; we do not know the form of the poten-
tlals anyhow, so we are left with the tractable prob-
lem of experimentally measuring these parameters.
Nonetheless, let us pursue briefly the (pargmati-
cally pointless) question how ought we choose the
1;? We could choose the lowest eigenstates of
H =p*/2m + V(Q). V(Q), however, is the poten-

tial if the other atoms are nailed down; we expect at
least the high-frequency phonon modes will relax in
response to the motion of the defect. The potential

energy of our systems is

1
V=V + 3 rmoigi + MarQ
k
if we fix Q and allow the phonons to relax we get a
modified potential

V(Q)=V(Q) — 3 (A0 2mwy) .

These two potentials ¥ and ¥ will reappear later.
For light defects, V' (Q) will be the “saddle-point”
potential seen by the defect in the midst of the tun-
neling process; V(Q) describes the motion within
the two wells. We shall see to the extent the ¥ and
V differ, no one-dimensional potential adequately
models tunneling.

Since we are modeling a double well, we truncate
to two states. We change basis to diagonalize Q;
since our double well is symmetric we have

0 - —Q0/2 0
X = _A 0 'f-z + mwqu+2kqu 0 +0,/2
A
EPk N mwk e xQo 0
2 2
0 —A x 2m 2m wj,
= + 2 2
-4 0 DK MQo
0 — + 3 “mo +
%2”1 k 9k 2 Cl)]%

Q4 [1 o]
01

8m wi

The last term is the relaxation energy noted above, and here is unimportant. We assume A is small and com-

pute the matrix element connecting the phonon ground state at

AeQo 0
H¢I(c) 9k — mez ] —A
k k —-A 0 Hd’k 9x +
0
MQo MQo
- A 0 . 0 +
rkI b gk el } lp [Qk ol

The tunneling amplitude has been suppressed by the
phonon overlap integral, sometimes termed a Frank-
Condon or Debye-Waller factor. W is mwpQ3/h
up to a numerical factor, where wp is the Debye

Il

—Qo/2 with that at 4+ Qy/2:

Qo l

g 08

— Aex
P & 4tim o}

]: —Ae ¥,

L ]

frequency. It is roughly one-tenth the ratio of Q2 to

the mean-square zero-point fluctuation in the solid.
Why is this not a good description of tunneling?

Consider a simplified system: V(Q) = Q* coupled
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to a single oscillator (see Fig. 1); V(Q) is given by
the potential along the line connecting the two mini-
maat Q =¢q = + 1. Let us assume that our sys-
tem has been observed in the lower left-hand well
(Q =—1,g =—1). The wave function ¥V_ _(Q ,q)
is that linear combination of the symmetric ground
state and the antisymmetric first excited state which
minimizes the amplitude in the upper right-hand
well. The tunneling amplitude A gives the rate at
which probability flows into the upper right-hand
well, A=(V,  (Q,q) |3 |¥Y__(Q,9). Clearly
this will depend strongly on W(Q,q) near the saddle
pointatg = Q = 0.

Our truncated space of Q states has only one
function ¥_ which is localized mainly in Q < 0; we
are modeling ¥_ _(Q ,q) with a product 4_(Q)$(g)
(see Fig. 2 ). Consider the behavior of this model
wave function along ¢ = 0. Since ¥_(Q) must be
well localized around Q = — 1to model W near the
minimum, the product ¥_(Q)¢(g) will be very
small near Q = 0, while (absurdly) it has reasonably
large amplitude at Q = — 1, ¢ = 0, where the po-
tential energy is quite high. Similar behavior occurs
along Q@ = 0. The truncation approximation fails
precisely in the tunneling region at the saddle point;
only when the barrier to tunneling does not change

Q

D q

True Wave Function
V¥ (Q,q) Contour Lines

Truncated Wave Function: y_(Q) ¢ (q)
Contour Lines

Q

do
T~

FIG. 2. The truncated wave function describes the
state acceptably at the bottoms of the potential wells, but
fails badly at the saddle point Q = ¢ = 0.

with the phonon coupling (V =~ V) will it give good
answers.

Clearly, more Q-wave functions in which to ex-
pand the many-body wave function would help.
The effective Hamiltonian would then use these
“high-energy” states to move from well to well. 1
choose instead to avoid truncation—a choice which
leads us into the forest of path integrals and in-
stantons.

III. PATH INTEGRALS—INTEGRATING
OUT THE PHONONS

Feynman’s'! path-integral methods are a formula-
tion of quantum mechanics as a sum over classical
trajectories, where a trajectory Q (¢) with action
S(Q) contributes e'@”#% These paths allow a
direct visualization of tunneling as the motion of a
defect accompanied by motions of the nearby
atoms. One simply integrates over all routes
between the two equilibrium points. Path integrals
also mesh beautifully with phonons; all the integrals
are Gaussians. »

In this section we shall, for a fixed path Q(¢), in-
tegrate over all possible phonon paths g, (z). This
will lead to an effective Lagrangian with our adia-
batic potential V and with a time-retarded interac-
tion U (¢z). We then rotate to imaginary time,
which serves to make the contributions from various
paths real and small (rather then complex and oscil-
latory). The path with the largest contribution is
the wnstanton path.

Our Lagrangian is

£(0,G0) = MO —V(Q) + S+mgd
k

1
— smoigd — MQqr

We want to integrate the phonons out of the path
integral, to get an effective time-retarded interaction
in Q. To do this we must choose the initial and fi-
nal states for our phonon coordinates. The interest-
ing paths have Q(¢) —» Qg as t — — « and
Q(t)—>Q,ast — + «. Projecting the phonons
into their unperturbed (Q = 0) ground state at the
ends of our time interval introduces unnecessary
phonon overlap terms. The ground state of oscillator
k initially is a Gaussian about gy 0= MQo/m o},
and finally one about 9, = MQ1/map. 1 choose to

project the phonons into these states:
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{Q1,GS Gk )| QoGS (Gi)))o
on=0,

ﬁQ(O) QI,;I

qk(T)zxkl
fdxk1¢8(xkl - Qk,)fdxk0¢o(xko — 4k, quw,:xko Dgyexp

; T
1 —
- [, L.

Now, the phonon path integrals form a series of Gaussians, and like all forced harmonic oscillators, the in-
tegrations can be performed explicitly. Consider a fixed phonon mode. The contribution from coordinate g
will be,

1/4 1/4
3} —(mw/2#)(x,—q,)? mo —(m /2N xy—g)?
Co=Jax |5 | e R
g(N=x, i T .
xz LIS R U S
X ﬁ (0=, Dgexp P fo (7mgq Tmoq AQq)dt

This calculation is done in Feynman and Hibbs, p.234, Eq. 8— 141 (Ref. 11), which has a misprint. If we set

172
A mo
A VN B
T .
Bzwfo pltle ~'dt ,
then
c, = e~ 19T 2exp — [ (po+p1 — 2popre” 'mr)+l(Po/3+plﬂ* —ioT) 2f fP Ye ~iOt =g dy

1 have discovered that this can be simplified to an intuitively appealing form by expressing it in terms of p by
integrating 8 and the double integral by parts'

la)f dt p(t f dt fds p(t)pls)e ~He! ]
f 2, —iwl(t—s)
dt

ey— — | dt [ ds Q1) —_—
Flod Jyis owow= o
The phase and the first term in the exponential renormalize V into the adiabatic potential

C —e IwT/Zexp

—e —uoT/Zexp

_ P Fioo
V(Q)———V(Q)~22 50 +2—2~ .
k ~m oy k

The second term acts as an effective time-retarded self-interaction. It embodies the effect on Q(#) of the “ring-
ing” of the crystal induced by previous motion:

) =3

% 2m w;i

2
kk —iopt

Now, consider our path integral, extended to all time. It is a path integral over Q alone:

+w{(Q1,GS(dx)1Q0,GS(Gk)) -, = §f DQ

X exp [MQ— Q)+1f ds t)Q(s?zt—s)]dt

The action integral in the exponent is a complex quantity. Each conceivable path Q(¢) contributes substantial-
ly to the path integral—most of the additions cancel one another in a complicated way. Real time has another
disadvantage, the function U looks more complicated than it has to be. It is complex. In crystals, the edges
of Brillouin zones produce long-range oscillations in U that die off slowly. In glasses, localized phonons will
produce oscillations in U that never die away. This reflects the mixing of the localized phonon modes with the
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two-level system. Since these modes are high frequency and tunneling is very low frequency, the mixing
should be very small. The same should be true of resonances within the extended spectrum; unless they are
close to the (very low) tunneling frequency, they should behave no differently from more ordinary phonon
spectra. Rotation to imaginary time will eliminate these unnecessary complications:

dr

’

=1 ¢ (1, = 1 : :
§ 2Qexp _ﬁ"f_w{—Z-MQ2+V(Q)+7f_mdoQ(a)Q(T)U(T—o)
A2 o 2
U(p)=2——5—;e "Ipleo—U1|p§+U2—L‘lL~-.
k mek

U is real, positive, and if A; «< k as k — O it dies
away like 1/p” as p— o, despite defects, localized
modes, resonances, and Brillouin-zone boundaries.
We have seen the first two coefficients of its Taylor
series before:

(e =% is the phonon overlap integral)

:

2m a),f

V@ =V@—-UQ*=rQ) -3

The instanton path minimizes the Euclidean action
Se= [ |+m0? + 7@

+1f 4o Q@OMUG—o |dr

subject to the boundary conditions

Q(+ )= + Q¢/2, and given that the flip is at 7 = 0.

Among paths with exactly one flip located at the
origin, this path and those near it dominate the con-
tribution to the path integral. To get the full
behavior of the two-level system, we would look at
multiple flip paths and interactions between flips.
Here we concentrate on the nature of a single tun-
neling event. ‘

IV. THE INSTANTON PATH AND
APPROXIMATIONS

In this section, we study approximations to the
classical path Q; (the instanton) which minimizes
the Euclidean action Sg. To put this study in per-
spective, we first summarize the path-integral treat-
ment of the one-dimensional double well.'* We
then briefly outline the formal techniques for com-

0.

r

puting the classical path for a general (linearly cou-
pled, symmetric) tunneling system. We proceed to
develop the two natural app:oximations in this
theory, the slow- and fasi-flip approximation. (The
latter precisely corresponds to the truncation ap-
proximation discussed in Sec. II.) We also discuss
an approximation which is physically relevant, but
unnatural in this context: the self-trapped approxi-
mation. We conclude this section with a numerical
study of the domains of validity of these three ap-
proximations, for a quartic well coupled to a single
phonon mode.

The easiest of all instanton calculations is the
symmetric double well. The Euclidean action is

SQ) = [ $MQ*+ V(Qir ,

where V' (Q) has degenerate minima, say

V(+ Q¢/2) = 0. The instanton path starts at
—Q¢/2, ends at + Qy/2, and minimizes Sg subject
to-these constraints. It obeys the Euclidean Lagran-
gian equations of motion

MO, = V'(Q,) .

Since the system is invariant under time translations,
there is a conserved “energy” along the classical path

E =3MQ} —V(Q)=0,
0, = V(@) /M) .

Thus the Euclidean action for the classical instanton
path is

S, = [2MV(@)]/%dQ .

How does this fit into the path-integral calculations,
say, of the tunneling amplitude? Consider
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Qo Qo Q) =02 _StOVE
St =)= ff o0 e
| 2
= D0 exp| — S+ —| (© Q)+ -
g Do exp|—= IS 50 Q;Q 507 09" ”
—1 |8
= D —_— o ..
§ D0 exp |~ 507 102" ]”

X exp

If we restrict this integral to paths which cross

Q = 0 only within d 7 of 7= 0, it can be shown
that this transition amplitude gives the tunneling
matrix element Ad 7/# for the double well. The
first WKB approximation for this tunneling ampli-
tude is

A= AS/m Ve
S = [2MV(Q)]%dQ .

Thus the instanton action in the path integral contri-
butes the exponential term in the WKB expression.
The linear variation of S; vanishes because Q; is a
minimum; the quadratic variation can be shown'? to
give the prefactor in the WKB .expression for A.
Now, consider our effective Euclidean action

Sp(Q) = [ $MQ* + V(Q)
+ 1) do QU — o) .
If V(+ Qy/2) = 0, we again have equations of

—1
—%‘f[zMV(Q)]VZdQ} :

r
the problem of taking the determinant of a nonlocal
differential operator. It is likely that this can be
done in the slow- and fast-flip approximations, but
little physics is likely to result. The quadratic fluc-
tuations are qualitatively no different from those of
the single well, and accuracy is not as crucial as it is
for the instanton action, which is exponentiated.
We will discuss this prefactor again in Sec. V.

We now turn to the slow-flip approximation.
Consider the inequality

7 [dr[dolQe)— 0(NPU(G—0)
= [deQ.‘Z(T) fdp U(p)]
— fd‘rfdo 0(Q(NU(r—0)>0 .

This becomes an approximate equality if Q stays
nearly constant while U is large, i.e., if the path has
no sharp bumps. Specifically, if the flip time for

Qo/2
motion and a conserved energy: °
. _ © . Path Flipping From One
MO =V1Q)~ [ do QU -0, T troner
. ~ Event
E=0=3MQ*—V(Q)
T . o . -
[ _dr0u) [ doQoUr' o) . <
These may be solved for the instanton path. In pra- £ or
tice, we will find approximate paths by minimizing g
Sg(Q) directly. These equations can be useful in
finding general properties of the instanton path, and Asl
will be crucial in finding decay times (which we will Q-
not deal with in this paper).
Solving for the contributions of the paths nearby
to the classical path involves evaluating “Q0/2 BT
Qlw)=0 o —1 ZSE (Imaginary) Time
g Ol—2)=0 Q exp % 5Q2 QI(Q) FIG. 3. A sample instanton path; the exact form

The integrations are Gaussians, but we are left with

depends upon the phonon coupling (as this paper
discusses).
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the instanton path (see Fig. 3 ) is long compared to
the time scale on which U decays, we can use an
effective-mass approximation to put a good upper
bound on the instanton action.

Se(Q) < [[3M*Q* + V(Q)ldT
¥

M*=M+U_ =M+ — .
k Moy

This approximation will be good for the calculation
of the instanton action for heavy defects or shallow
barriers. It should describe fluctuations well for
heavy defects, however, light defects whose instan-
ton paths happen to be smooth will still fluctuate
about this path quickly, and probably a prefactor
based on the bare defect mass is more accurate.
This approximation will be discussed more fully in
Sec. V.

Now, consider the fast-flip approximation. Since
U (1) is a sum of expontials and Q is monotone we
know

Uo>Ulp) > Uy—Uylp| ,

U.02 . .
% >3 [dr[do Q1)U+ — o)
UoQd Q¢
>“—2—‘—U1fd7' T—Qz(T)

The first term gives precisely the phonon wave-
function overlap integral. The last term renormal-
izes ¥V back to V. Thus, if V' ( + Q¢/2) = 0 and
Vi(+Q,/2)=0 (Q,< Qo) then
o/ UoQs
1/2
f_Qo/z[ZMV(Q)dQ] +

72 UoQ¢

> 500 > [°) My ag + L
The actual instanton action is not well described ei-
ther by ¥ or by ¥ unless they are nearly the same.
The truncation approximation works only when
the phonon contribution to the potential is small,
i.e., for weak coupling. Not only does it fail to give
the right answer, but the physical picture of

J

transitions between two wave functions is wrong for
strongly coupled (self-trapped) electronic tunneling.

In the slow-flip approximation, the motion of the
defect across the barrier was slow on phonon times-
cales, and the atoms surrounding it followed adia-
batically. There is a converse approximation, where
the defect wave function relaxes adiabatically as the
phonons move; for electronic tunneling this is fami-
liar as the Born-Oppenheimer approximation. If
V(Q) (the saddle-point potential) has no barrier, the
defect is self-trapped in a “spontaneous” well. In
this case, tunneling proceeds via a polaronic motion
and the defect moves along as the phonons push it
over the barrier.

As helpful as this physical picture of self-trapping
is, it is not a useful computation aid. We may use
it to remove the defect coordinate from the prob-
lem, but we are left with 10** phonon modes now
with a nonlinear coupling. Computationally, the
full instanton methods are necessary. We shall
study this picture again in Sec. V1.

For the remainder of this section, we will analyze
the simplified problem of a single phonon mode
coupled to a quartic symmetric double well (see Fig.
1). Certain aspects of the problem (such as phonon
scattering and decay rates) are lost entirely with the
low-frequency modes, however, they are not the
subject of this paper. What we can get is a good
qualitative notion of the nature of a single tunneling
event by using a phonon mode with coupling and
frequency modeling the true spectrum. Similar sim-
plifications are used in Holstein’s molecular crystal
model.’

We now wish to study in detail the instanton path
for the following Euclidean Lagrangian:

20
Q

0

272

Sg=sMQ> + V|1 —

AZ
4m o

+ Sf_mdoQ(o)Q(T)e‘”I”“T
The instanton path will retain its form under scal-
ings of distance, time, and overall magnitude of the
Lagrangian (i.e., of #). Using these scalings, we
may reduce to two parameters, {} and A:

S = (MV)'2Q, [ dr I%Q'Z + 7= 0+ & [ do000(re=01o=7]

2 V
0= @ ,A= 7\' CL)DW:4 0

Opw mo*M wZDw

0

, V(Q) = Vo — s MohwQ? + 00,

A is a dimensionless coupling strength and € is a dimensionless phonon frequency. For this simplified sys-
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tem, we have minimized the action for fixed 2, A by a variational technique. Figure 4 shows, on the (,A
plane, the domains of validity of the slow-flip and truncation approximations, and the domain where the self-
trapped picture holds. Figure 5 shows the action along a line connecting the slow-flip and truncation domains.
Figure 8 shows the action along a self-trapped to slow-flip transition line. In the next two sections, we shall

try to give concrete applications of our formalism.

V. ANALYSIS OF A SLOW TUNNELING
EVENT-(KCIL:Li* )

Atomic tunneling centers appear to dominate the
low-temperature behavior of glasses.!> We believe
these centers tunnel slowly, since the tunneling mass
is at least as large as the phonon masses. There is
no detailed microscopic model of these tunneling
centers. We shall study lithium substitutional de-
fects in KC1 instead; they were studied in great de-
tail® at one time.

In (KC1:"Li*) one finds experimentally absorp-
tion at about 0.82 cm ™!, and again at 42 ecm™ .
Doping with lithiu..1-6 one finds the lower absorp-
tion region increases in frequency by 40 + 5 %. It
is generally agreed that Li™ substitutes for K+, that
because of its smaller atomic radius it can lower its
energy by sitting off center in a (111) direction,
and that the lower absorption band reflects the tun-
nel splitting between the Lit wave functions of vari-
ous symmetry properties.

I claim, despite that small lithium mass, the tun-

DOMAINS OF VALIDITY
(shaded regions accurate to 1%)

o O o o °
O UNPERTURBED TO o
o 1%ACCURACY o

O 59 o © o

FIG. 4. Domains of validity for the various approxi-
mations. A is a coupling strength and  is a phonon fre-
quency. The action for this figure and Figs. 5 and 8 was
computed by a variational calculation using piecewise ex-
ponentials for Q (7).

—

neling of this defect is slow. The relaxation of the
neighboring C1~ will proceed roughly at the Debye
frequency 3 X 10'3 sec™1.!'> We assume the poten-
tial well is fairly regular, so the curvature at the top
of the barrier can be roughly equated to the curva-
ture at the bottoms of the wells. If we further as-
sume the 42-cm ™! resonance is near the first excited
state of one of the wells, the double-well frequency
is roughly 1.26 X 102 sec™!, giving Q ~ 24, well
within the slow-flip regime.

To evaluate the effective mass we shall use the
results of a computer model.'® This model relied
upon effective interatomic potentials, and varied a
hardness parameter in the Li*-Cl~ potential in
order to fit the experimental data. They do allow
the lattice to relax adiabatically about various lithi-
um positions, but do not correct for the effective
mass of the chlorine motions. We will not use their
energies (which fit the data using a truncation ap-
proximation), but we shall use their ionic motions
(which should be qualitatively correct).

Note that two of the Cl~ ions (marked A, see
Fig. 6) move a very substantial distance. Each
moves a total of 0.139 lattice spacings, about a third
of the lithium motion of 0.426 lattice spacings.
Since they are so much more massive, the kinetic
energy of their average velocity would match that of
the lithium, drastically reducing the isotope effect.
This was pointed out by Narayanamurti and Pohl,?

TRANSITION FROM FAST-FLIP TO SLOW-FLIP REGIMES: A=

FAST FLIP,V
(TRUNCATION UPPER BOUND)

10

FIG. 5. Action and three approximations along a line
where the phonon wave-function overlap integral (A/Q)
is roughly equal to the unperturbed action (2v2/3).

Note that neither truncation approximation is accurate
until both are nearly equal; if the phonon significantly af-
fects the local potential seen by the tunneling entity, trun-
cation fails.
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who left it as an unresolved problem. We shall allowing nonlinear coupling is
resolve it. 1,52
Wilson et al. calculate the ionic positions at the Lo =M™+ V()
middle and two ends of of the tunneling process. + 2[%"@,3 + %m oig? — A(Q)gx] .
One is struck by the nonlinearity of the motion k
[Fig. 6(b)]; the assumption of an average velocity is Integrating over the phonon coordinates and rotating
clearly unjustified. The Euclidean Lagrangian to imaginary time, we obtain
J
. AQ) w : : N L
1 2 k k 1 e
Lp=5MQO + V(Q) — — |+ 3 do X A (Q(TNAL(Q (0)Q (T)Q (o)
£=3MQ Y gmwg 5 2f_w§kQ Q@M (@)=

In the slow-flip approximation, we get a position- dependent effective mass and the relaxed potential

|
’
2
AQT] . AXQ) #ieo
slow [ k 2 k k
k m oy k 2m ()% k
1y rx 2 >
=sM*(Q)Q" + V(Q) .
Ay (Q)=-Ay(-Q) vs Qy
10! Q<0.1065
q ¢, =0.009-0.1127Q
¢l Q>0.1065
(0.033) ag,=-7.4Q%1.460-0.075
(0\009) Q,
Li* Tunneling between Off —Center Positions -o213 o.213
B
() cI- (b) 1-01 (0.099)
@ Scales are properly mass-weighted
initial position (-0.213,0.213,0.213) A . -
intermediate (0.0,0.261,0.261) Ay(Q)=A,(Q)=A,(-Q)=A,(-Q)
final position(0.213,0.213,0.213) N y
Li* ol Q<0.1065
Q‘\\«\t ¢ q¢,=0.012+0.033Q
T “‘}A B 0>0.1065
Li* (0.035) 9¢=0-028-0.268Q
+1.41Q2
Cl- ci-
-0.213 0.213
:
Cl~
Y ~
A 1 B, (Q)=B,(Q)

0.5
ag (0.035)
cI- ‘ _ .
’ Q
C (-0.035)
ag, =0.16430Q

All measurements are fractions of the Interionic distance. Interionic
distance in KCI Is 3.147 &, (c)
Other motions are small;they have been
included In the calculations.

FIG. 6. (a) The lithium ion substitutes for a potassium in the KC1 lattice. Its smaller atomic radius and the lattice re-
laxation allow it to have a lower energy in an off-center position. (b) and (c) The motions of the ions as the lithium tun-
nels. The points at the ends and middle are from Wilson et al. (Ref. 16); the interpolation is ours.
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Here, as in the uncoupled problem, there is a con-
served energy along the instanton path, allowing its
action to be expressed neatly:

E=0=3M*Q)Q*-V(Q), Q0 =

— 172
2V (Q)
M*(Q)

© . [0} _
5= [ _MMQQ%r= [ [2M* Q7 (Q)]"dQ

Thus, even in the nonlinear case], the tunnel splitting
is easily computed. Note that +M*(Q)Q? is the
kinetic energy of the total system as the lithium

1

M*(Q)=My+M

Qualitatively, we expect the nonlinear chlorine
motions to increase the isotope effect. Their contri-
bution to the effective mass is concentrated near the
bottoms of the wells where ¥ (Q) is small. The
mass during the main part of the flip is nearly that
of the bare lithium ion; the chlorine ions of impor-
tance move before and after the flip. The increase
due to this nonlinear motion turns out to be not
very large. Assuming a quartic well, there is a

1 — (M¢/M,)"? = 7.429% shift in the Euclidean ac-
tion for the uncoupled well, the shift assuming
linear coupling is 3.08%, that for our choice of the
nonlinear motion is 3.75% (Fig. 7).

Isotope Effect in[KCI:Li‘]

o.2r- unperturbed

Nonlinear Coupling

v2m,(QVQ)-v2mg (QIV(Q)

Linear Coupling
0.04

in units of interionic distance

FIG. 7. The isotope effect for three assumptions about
the chlorine motion. The difference in actions for ’Li and
SLi is given by the areas under the curves.

moves. The effective mass can thus be computed
without first transforming to phonon coordinates:

.2
qc

M*(Q):MLi+ ZMCI“.—Z“ .
Cl Li

Now, we must interpolate motion between the three
points given by Wilson ez al. We expect the
motion of the A chlorines will be largest while the
Li* is nearby; we interpolate (rather arbitrarily) its
motion as shown [Fig. 6(b)] and other motions by
fitting parabolas. In units of the interatomic spacing,

0.9012Q2 = 0.826, (|Q | < 0.1065)
1228256807 — 44.9034|Q | + 2286, (0213 > Q| > 0.1065) -

—
To actually estimate the isotope effect, we must

investigate the mass dependence of the Gaussian

fluctuation “prefactor”: prefactor = A4 (#S;/

)"/? (one dimension) = 2V 3wpw(#S,/m)"/? (quartic

well'”) which equals

ﬁg(—w>=gfw)=oDQ
=1 |8
8Q*?

X exp P

For the uncoupled quartic well,

(Q)” (general) .
2

2Q 2]2'

L
Lp=7MQO*+V, 0.

1_

12
Vo

M

4
Qo
S; = =2mV,Q3)V? .

@pw

’

Leaving Q| fixed at 1.34 A , and varying V, to
match A, = 0.82 cm™!, we obtain , for the uncou-
pled well,
Am,Q3VT _s7
7 27Qo (ST e
#6V'6

=3.69x 1072 ,
S/ = #(5.98) ,

SP=58/[(me/m4)?]=5.536 ,

1/4
(S, —S¢)
el TV =162 .

This uncoupled calculation roughly agrees with oth-
er similar calculations.!®
How many we estimate the quadratic fluctuations
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in the coupled case? We have integrated the pho-
non modes out, and the remaining problem in-
tegrates over only one variable Q, so at least the
fluctuations will be dimensionally the same as that
of the uncoupled case. Furthermore, most of the
contributions to the quadratic fluctuations are likely
to come from paths “wiggling” quickly, since the
lithium is light. In fact, only those Fourier com-
ponents of the fluctuation which are slow compared
to the phonon time will contain chlorine masses;
most of the components represent the lithium ion
wiggling in its cage. Thus, it is reasonable to use
the uncoupled prefactor for the coupled case, using
the bare lithium mass. (Actually, the isotope effect
is quite insensitive to this prefactor, and our
numbers would be virtually unchanged by another
choice.) By this choice the actions for ’Li tunneling
are the same for all three cases, and we find

172 S, _ S,
Sy

A() my

S5

ex
A, meg P

(1.04)e>93(0.0308) — 1 25 (linear)

I

= (1.04)e398(00375) — 1 30 (nonlinear) .

Thus a careful treatment of lithium tunneling in
KC1 gives a 30% isotope effect, even when large
chlorine motions are included. This compares
reasonably well with the experimental 40 + 5% en-
ergy shift.

VI. SELF-TRAPPED TUNNELING
(Phillips’s analysis of Anderson’s
Negative-U Model)

The slow-flip approximation adequately describes
single tunneling events for phonon relaxation times
> the timelength of the tunneling event (Q > 1).
The fast-flip or truncation approximation describes
slow phonons coupled weakly (0 < 1, A small). .
The strong-coupling, slow-phonon region
(Q < 1, A~1) is more complex. In this region, the
barrier in the adiabatic potential ¥(Q) is largely or
entirely due to the phonon coupling; the fast or
saddle-point potential ¥ (Q) has little or no barrier.
We call this the self-trapped regime (see Fig. 1 ).

In this section, we shall attempt to find the quali-
tative factors which determine the behavior of self-
trapped tunneling. We shall first consider possibly
the simplest case of self-trapped tunnneling—our in-

terpretation of Phillips’s'* model of Anderson’s’

negative-U center. Phillips uses a truncation ap-
proximation in his model, estimates the phonon
wave-function overlap integral, and finds that it
suppresses tunneling to a point where it becomes ex-
perimentally unobservable. We will first find that
his use of the truncation approximation in his model
is valid. We then contrast this with our quartic
double well (for which the truncation approximation
is not adequate for A = 1, see Fig. 8). We find the
saddle-point potential, despite its lack of a barrier,
remains an important factor in determining the flip
time. Phillips’s model is singular in that its saddle-
point potential is zero. We conclude with an at-
tempt at verbally generalizing this effect, and with a
discussion of the likelihood of frequent tunneling
events in this system.

Anderson’s negative-U model describes the elec-
tronic ground state of amorphous semiconductors in
terms of bound pairs of electrons. The binding
force is given by the phonon relaxation—the second
electron sees the potential hole sunk by the first,
and together they make an even deeper hole, using a
rubber-sheet analogy. Many physical properties of
glassy semiconductors are explained using this
model. Phillips uses some of these predictions to
put a lower bound on the phonon wave-function
overlap integral and claims that these centers must
take a macroscopic time to tunnel. This is unfor-
tunate, as one would like to use these centers to ex-
plain a linear term in the specific heat near T = 0;
however, the use of a phonon wave-function overlap
integral in the self-trapped regime is highly suspect.
We interpret Phillips’s model very freely to allow
use of path integrals and we believe we have not

100~

TRANSITION FROM SELF-TRAPPED TO SLOW-FLIP REGIMES

TRUNCATION V

B
- 1o SELF-TRAPPED SLOW FLIP \1
° i L . L n

FIG. 8. Along A = 1, the entire potential well for the
defect is due to its phonon coupling. The truncation ap-
proximation is not an acceptable approximation for the
action.
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Co.upling of n?efect to |occl'site phonon £y = %MQz + %qu + %m wzqz + AQ)q
in Phillips' model is of this form. .

where A(Q) is large only when Q is near the defect
position (see Fig. 9). Tunneling between centers in
this. model involves separately escaping from one
and falling into the other. Thus we are interested in
calculating the minimum action for paths con-
strained to escape from the well.

We may integrate out thesphonon mode as be-
fore, :

AQ)

AXQ)

1 52
Qpefect ‘CE: 7MQ - m 2
(4}

FIG. 9. A nonlinear coupling; the coupling of the pair L , ,
of electrons to the phonon mode depends on their prox- + 73 f__ de AQ(THAN(Q (o))
imity to the mode’s “location”.
e~ @ lo—7]

X Q(1)Q ()
Qo 2m o’

We expand the exponential, and drop terms

done violence to his central ideas. O(|o— 7]|°) (we will see that the flip time is fast,
Phillips’s model of a single center involves one so this is justified). Again, the constant term contri-
phonon mode ¢ interacting linearly with the pair of butes the phonon wave-function overlap integral 9p(
electrons as long as they are in the vicinity of the and the linear term cancels the potential due to pho-
center. If we call the coordinate of the electron pair non relaxation. We minimize the resulting action
Q we may write the Lagrangian . by varying Q (¢):
J

[ar

By varying the time scale, we find the minimum action path satisfies the equation

S] 21])0 + min
Qf1)

MO+ o [doNQINAQNYNQ()c — 77 } ]

[ M@ r=2 | [dr[doAQAQ@Q (O ()0 — )2
8mw

Let us choose A a characteristic coupling constant— some mean value of A'(Q) (Fig. 9). Then,

[ [00 (o - AQINQ0)/A dod
- fQZdT

The right-hand side has units of (time)®; it can be thought of as a cube of a characteristic flip time. The left-
hand side is (2Q? /A)/w%; since A = 1, this indicates that the flip time (2Q2/A)"3/w becomes much shorter
than the phonon relaxation time (1/w) as  — 0. Since electrons are very light, their natural frequencies are
high and Q will be small. The truncation approximation should be good for small ; the action will be at
least the phonon overlap integral term.

Thus the phonon wave-function overlap integral does fully suppress tunneling in Phillips’s model. We now
must investigate why this result does not hold for the quartic double well.

We return to our quartic model Lagrangian with A = 1 (self-trapped), and expand the exponential (the
time-retarded interaction):

2Mm o
}\,2

£p=50"+7(1-0)+ Z—ld*fQ(a)Q(T)e_Q’”'T'

The instanton action is found by minimizing the action with respect to Q:
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I mi - 1 0
Si=4 0| [ 107+ s0 -0+ 0P - TF
+ 25 J 0@ 11 alo—7]) | .
1 min 129 Q 1 1 . :
=‘6+ 17} f;Q +—4——7+E—fQ(a)Q(‘r)G(Qla-—T|) ,

where G is quadratic for small Q |0 — 7|, and
linear for large Q|0 — 7|. The saddle-point
potential here is negative near Q = 0; it will tend to
slow the flip down. The time-retarded interaction in
this formulation is what pulls the electron across; it
reflects the atomic motion through the saddle point.
If we look only at the quadratic region of G and ig-
nore the electronic kinetic energy, varying the time
scale again leads to the equation:

4
f 1 — Q- dr

4 4

.. 2 2
=L [ [owomnEle=Tg5ar
. 2 2
[ [ewom®le=1l 45 47

2J

1 _
Q" ’

10
4—4d7‘

leading to a characteristic time for the flip compar-
able to the phonon relaxation time 1/Q). Physically,
since the saddle-point potential is repulsive at the
endpoints of the electron’s motion, the electron
must wait for the atoms to move for it to continue
(see Fig. 10). By assuming the saddle-point poten-
tial to be zero, Phillips avoided this complication,
but also reduced himself to an anomalous special
case.

Let us try to gain a general physical picture of
self-trapped tunneling in the {0 — 0 (low-frequency-
phonon) limit. The atomic (phonon) motion are
very slow compared to the electronic (tunneling) re-’
laxation time; thus the electronic wave function will
relax adiabatically as the atoms move. In the trun-
cation limit, the saddle-point potential still has a
barrier, and the electron will tunnel over this barrier
very quickly. In the self-trapped limit, this barrier
disappears at the saddle point; the barrier penetra-
tion is accomplished by phonon motion and phonon
timescales apply to the fliptime. The motion of the
minimum in the instantaneous electronic potential

r .
as the ions move describes qualitatively the electron
ic motion. In Phillips’s model, this minimum does
not move. :

Is it reasonable to expect such effects to allow
tunneling for negative-U centers? Phillips calcu-
lates the phonon suppression of the rate to be 1017
(this is the square of the phonon wave-function over-
lap). His basic rate is of 10'®/sec, giving a time of
around 10 sec between tunneling events. To contri-
bute to the specific heat, the time between tunneling
should be shorter than the time scale of the experi-
ment, thus, a reduction of 10 or 20% in the ex-
ponent would suffice. Our model quartic well has
an action ~ 30% lower than its phonon wave-

lonic motion during tunneling produces a potentlal
for electrons which varies slowly with time.

Phillips* Model
(a)
T=0
T=-0 T=00
Quartic Well
(b)
T=0
T=-0 T=0

FIG. 10. Phillips’s model is pathological; the motion
of the electron pair is fast in his model because the pho-
non modes do not relax along its path.
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function overlap (see Fig. 8.). It seems reasonable
to suppose that the electron pair remains localized
during tunneling, and that it will deform the lattice
as it passes. This will act both to lower the barrier
to tunneling and to stretch out the fliptime. We
conclude that Phillips’s calculation is not compel-
ling.

VII. SPECULATIONS

We will refrain from itemizing the future applica-
tions and developments we forsee for the theory
presented here. We will conclude with some specu-
lations about broader implications we can draw
from the two physical systems.

It is interesting to note that the motion of the
lithium ion during tunneling is slow compared to
the naturel frequencies of the KC1 lattice. Lithium
is light, and one expects its frequencies to be higher,
rather than an order of magnitude lower. However,
if it is to tunnel at all, the barrier cannot be too
large; if its width Q) is on the order of a lattice
spacing, the height ¥ must be low, and the natural
frequency will be thus bounded.
wpw=(V/M)?Q~1S = Q,VMV = (barrier size)
is bounded by human time scales, so
opw < Smax/M Q4. One can draw a very strong im-
plication from this: virtually all atomic tunneling
must be slow. (Exceptions might occur for light
atoms which tunnel infrequently.) Thus the
effective-mass approximation to the phonon cou-
pling for slow flips should be very useful.

Another thing to note is the form of the potential
which allowed the lithium ion to tunnel. The lithi-
um ionic radius is small compared to the potassium
which it replaces; it has a box in which it can rattle
around. This hints that the key factor may be
space, leading into “free volume” theories. More
modestly, one certainly must have a weak quadratic

binding to allow sufficient motion for the defect to
*“see” anharmonicities. It can then use these anhar-
monicities to form a second equilibrium site (impos-
sible in the harmonic theory). Thus we expect for-
mation of tunneling defects only when there is a
“weak spring” for motion in some direction. Surely
this must connect with the low coordination
numbers for bonding in covalent glasses.

In our study of Anderson’s negative-U model we
found that in self-trapped tunneling, the phonon re-
laxation in the intermediate state led to an increased
transition rate. The hopping process takes on attri-
butes of polaronic motion here; the motion is partly
electronic and partly atomic, and proceeds at pho-
non velocities. This picture is very different from
that of an electron wandering through a complicat-
ed but fixed potential.

In conclusion, we have shown that quantum tun-
neling in the solid state is more complicated and
contains more physics than has previously been
suspected. We believe path integrals are the ap-
propriate vehicle for thinking about tunneling, both
from a theoretical point of view and for purposes of
visualizing concrete physical situations. Finally, we
again emphasize the physical appeal, simplicity, and
accuracy of the approximations we have found,
especially the slow-flip, effective-mass approxima-
tion which should describe almost all cases of atom-
ic tunneling.
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