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In this paper, we continue our study of defect tunneling in the presence of phonon
modes. We compute the zero-temperature decay rate of the excited state of an asym-
metric double well coupled to phonons. We compare the instanton decay rate with that
of the traditional models of atomic tunneling (which either treat the defect as a two-level
"spin" system or which work in the Condon approximation). We conclude that the tradi-
tional models are usually accurate only in a renormalized sense; any attempts to use bare
tunneling matrix elements must apply the more sophisticated techniques proposed here.
To illustrate this point we use instanton methods to study QH defect tunneling in alkali

halides.

INTRODUCTION

This paper is the second by this author on the
application of instantons to defect tunneling in
solid-state physics. The first paper' dealt with the
precise nature of the tunneling event. As a model

system, it used a symmetric double well coupled to
phonons. It computed the tunnel splitting between
the symmetric ground state and the antisymmetric
first excited state of the system. In this paper we

turn to the interaction between tunneling events.
We use an asymmetric double well coupled to pho-
nons, and we will consider the decay rate of the
first excited state.

The methods used here in treating many-body

tunneling problems are phrased in terms of single-

particle wave function evolving in a many-dimen-

sional space. If one can ignore the effects of spin

and indistinguishability of particles, the
Schrodinger equation of a many-body system is

—ih'

If one scales each coordinate by the square root of
the associated mass, the time evolution of the wave
function is that of a single particle under a many-
dimensional configuration-space potential &,

Tunneling can be thought of as motion of this par-
ticle through classically inaccessible regions of con-
figuration space. If only one coordinate is in-

volved, tunneling can be understood asymptotically
in powers of A' using WKB techniques (Fig. I).
The methods used here are generalizations of
%KB to systems with many degrees of freedom.

There are two ways in which the many-
coordinate tunneling formalism presented in these
two papers should be useful. First, the instanton
methods provide a qualitative insight into the na-
ture of the tunneling process. The instanton path
can be thought of as the actual time-dependent col-
lective motion during the tunneling process. Treat-
ments which start with energy eigenstates hide this
information; approximations based on these treat-
ments will often be unphysical. For example, Hop-
field is developing a model of electron transport in

photosynthesis, in which estimates of the decay
rates (transfer rates) are used to explain the reac-
tion mechanisms. Very little is known about these
systems, and it is crucial to know what to ignore
as unimportant; the direct physical nature of the
path integral formalism should be useful.

In the other extreme, there are many tunneling
defects in crystals which are already reasonably
well understood, where the formalism can provide
a first-principles, detailed microscopic picture of
the phonon coupling. The coupling of these
centers to electromagnetic radiation can be expand-
ed in the number of photons involved, because the
fine-structure constant a=e /irtc describing the
coupling is small (- », ). On the other hand, the

coupling to elastic radiation in general is not weak,
and multiple-phonon effects dominate the
behavior. For there to be a well-defined excited
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FIG. 1. (a) rVKS resonance. The WK.S approxima-
tion to the one-dimensional decay rate is given by
matching solutions in regions I and II with a solution in

region III of outgoing boundary conditions. (b) Instan-
ton bounce in one dimension. The instanton-bounce

path is a stationary point of the Euclidean action; thus
it obeys a classica1 equation of motion in a potential
—V. It starts at the top of the upper-well hill at
'7= —(x), bounces off the slope at f'='pg, and 810%1y

works its very up again by w= ao. Note that it never ex-

p)ores the region where V(Q) is less than the initial po-
tential energy.

state, the decay time must be long. The stability
of the excited state of these tunneling centers is
maintained not by weak coupling, but by a small

tunneling amplitude.
Pire and Gosar and Sander and Shore were

early in the study of phonon effects on these tun-

neling defects. They pioneered the procedure of
perturbing in the tunneling matrix element 5 to
study multiphonon processes. They bypass the
problem of many-coordinate tunneling by simplify-

ing the system, keeping only a few defect states
(one for each local minimum in the potential).
Only then do they couple to phonons. In the pre-
vious paper, this truncation approximation was
shown to be invalid. The decay is normally medi-
ated by the high-energy defect states, and is best
studied in configuration space, rather than energy
space. Nevertheless, the theories of these authors
and their successors have been quite successful in
describing decay processes in these centeis.

Thus the second way in which this formalism
will prove useful is in studying these better-under-
stood defects. In this paper, we wi11 concentrate
on explaining the successes and failures of the ex-

isting applications of the truncation approximation.
This approximation is analogous to that of Drude
and Sommerfdd's noninteracting electron gas,
which reproduces many of the results of the quasi-
particle description of Fermi liquids. In some
cases, the high-frequency modes dress the defect,
and the low-frequency decay modes see a renor-
ma11zcd dcfcct which docs Ilavc only two lnlpor-
tant energy states. The instanton method automat-
ically performs both the renormalization and the
truncation when these approximations are ap-
propriate.

Despite the importance of tunneling in systems
with more than one degree of freedom, the general-
izations of WKB used here have developed only re-
cently. Banks, Bender, and %u ' pointed out that
tunneling in many dimensions remains essentially a
one-dimensional process. Since the tunneling am-

plitude decreases exponentially with the barrier
height, tunneling will occur in a small tube about
the path of 1east resistance, with corrections ex-

ponentially small. Coleman noted that this path
satlsfltcs thc equations of lllotloll of all analogous
classical system with the sign of the potential re-
versed. Callan and Coleman then developed a
path-integral formulation of the theory. By rotat-
ing to imaginary time, the complex integrand
reduces to a real positive one. CaHan and Coleman
observed that certain stationary points of this in-
tegrand (the instanton-bounce paths) follow the
most probable escape path of Banks, Bender, and
Wu. Quadratic fluctuations about the instanton
bounce provide the decay rate. (Coleman and Cal-
lan draw heavily on I.anger's classical nucleation
theory. }

So far, most of the applications of this theory
have been in high-energy physics and cosmology.
Coleman and Callan discuss the fate of the false
vacuum. Callan, Dashen, and Gross' have used
instantons to argue that quantum chromodynamics
confines quarks. There have been attempts to treat
supercurrent decay in Josephson junctions, " nu-
cleation rates in liquid-helium phase transitions, '

and soliton-pair creation' using these methods.
The version of the theory presented here was in-

spired by the configuration-space picture of tunnel-

ing centers in glasses described by Anderson,
Halperin, and Varma. ' lt also draws upon the
path-integral treatments of the Kondo effect due to
Yuval and Anderson. '

The bulk of this paper is devoted to studying the
links between the truncation approximation, the
instanton-bounce calculation, and the true decay
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rate. Section II discusses the rival schools of
thought on tunneling-center —phonon interactions.
Section III reviews the traditional decay-rate calcu-
lations of these schools, and discussed the unphysi-
cal consequences of the truncation approximation.
Section IV Inotivates the instanton-bounce calcula-
tion by linking it with %KB methods. Section V
uses the instanton techniques on the truncated
problem —where they reduce to the method of
steepest descents. Finally Sec. VI derives a renor-
malized truncation approximation as a limiting
case of the instanton-bounce methods. This
method essentially allows accurate computation of
the screening of the defect by high-frequency pho-
nons.

There are two main conclusions of this work.
First, the truncation approximation has often been

blindly applied in situations where there was no
formal justification for believing it. The separate
treatment of defect and phonon coordinates is usu-

ally artificial; the physical picture of the tunneling
process painted by the truncation approximation is
wrong. Second, in contrast, the workers in the
field were largely correct in presuming the trunca-
tion approximation would work. Decay rates cal-
culated in the truncation approximation will be
valid outside it; approximations necessary to do
calculations do not affect the validity of the
answer. The Condon approximation, for example,
is often made when it cannot be justified; the
answers will nevertheless come out correct. So
long as discussion of bare matrix elements is avoid
ed, this approximation is far more useful than it
first appears.

To illustrate these two points, I conclude in Sec.
VII with a discussion of OH defects in alkah
halides. Shore and Sander, ' working within the
truncation approximation, have made a very care-
ful study of the bare tunneling matrix elements in

these systems. The dynamics of these centers are
well described by the truncation approximation, so
they were surprised to find that the implied bare
tunneling elements were unreasonably large
(14)&106K for Rbl:OH ). Using a crude model,
I demonstrate that this problem is rectified by us-

ing the renormalized version of the theory. By
treating the defect more realistically these problems

disappear, while the predicted dynamics re~ain
unaltered.

II. THE TRUNCATION APPROXIMATION:
OVERVIEW

Most calculations of tunneling rates begin by
truncating the energy spectrum of the defect. Only

—e —5 —1 0
+8$0 1

e

L

(2.1)

Computation of decay rates and phonon-scattering
cross sections proceeds without ever introducing
the phonon modes. Anderson, Halperin, and Var-
ma' and Phillips'~ used this approach to study
tunneling centers in glasses. This method essen-

tially treats high- and low-frequency phonons
separately. The response of the high-frequency
phonons acts largely to renormalize the tunneling
matrix element b„' the motion of nearby atoms
suppresses the tunneling. Since the local atomic
structure around the tunneling center is not known

FIG. 2. Double-well defect potential. A defect in a
double-well potential usually is modeled with a 2&2
Hamiltonian ( ~, ). The bare tunneling matrix ele-

ment b is assumed very small; it is exponentially
suppressed by the barrier size V MVOQO.

one state is retained for each local minimum in the
potential energy. For example, the Hamiltonian
for a particle in a double well V(Q) (Fig. 2) is
modeled as a 2&2 matrix. The diagonal elements
(+e) represent the asymmetry between the two
wells; the off-diagonal elements ( —b) are due to
tunnehng through the barrier.

This vastly simplifies the problem. b, is very
small. Calculating to second order in 4 gives a
complete description to all orders in the phonon
coupling. The nature of the truncation approxima-
tion, however, becomes mysterious in the presence
of phonons. For example, there are at least three
different methods of introducing the phonons into
the truncated Hamiltonian.

One school summarizes the effects of the pho-
nons into a local strain field s. The strain field
couples to the defect by changing the relative ener-

gies in the two well (diagonal coupling),
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—Qo/2 0

0 Qo~2
(2 2)

in glasses, the renormalized b, is used from the
start, and the high-frequency phonons are ignored.
The low-frequency phonons mediate decays, and
the strain-field coupling leads to the correct one-
phonon decay rate.

The other two schools explicitly introduce pho-
non modes. Both end up with essentially the same
Hamiltonian,

—e Pk
2

+g 2
+ ~rn~kCk

2ltl

physical picture of this last school may be better,
but the approximation is equivalent.

III. THE DECAY RATE:
TRUNCATION APPROXIMATION

The total potential energy of a double well cou-
pled to phonons does have two local minima (Fig.
3). It seems clear that such a double-well defect
should be described by an effective Hamiltonian
with two levels, at least if V(Q) is not too asym-
metric:

The phonon modes are not plane waves; they are
the normal modes of the lattice with the defect
coordinate removed. The coupling again is diago-
nal. The two schools differ in the way they
describe the defect. Sander and Shore and Pire
and Gosar model tunneling defects in crystals;
they treat the two defect states as fixed local
ground states, independent of the phonon positions.
Theories of electron tunneling and tunneling of
light atoms are usually more careful; they picture
the two defect states as adiabatically changing with
the phonon motion. Theories in this school in-
clude Holstein's' small polaron tunneling,
Hopfleld's and Jortner's' electron tunneling in
biophysics, Flynn and Stoneham's 0 quantum dif-
fusion of light interstitials in metals, and
Phillips's ' electron-pair tunneling in amorphous
semiconductors. Unfortunately, all of these latter
theories found it necessary to make the "Condon
approximation" that the tunneling matrix element
d is independent of the phonon positions. The

(3.1)

where 6 will represent the matrix element between
the two local ground states of the many-body wave
function. ez will have an imaginary part, reflect-
ing the mixing of the upper-well ground state with
low-frequency excitations of the lower-well ground
state.

The difflculty with the truncation approximation
is not that it concentrates on two states; it is the
separation it makes between defect and phonon
coordinates. Especially in atomic tunneling prob-
lems, this separation is artificial. The tunneling
process is a collective motion through configur-
atio space; the wave function strongly mixes defect
and phonon coordinates.

In this section, we discuss the form of A found
in the truncation approximation (2.2). Eventually,
we will compare this calculation with the path-
integral methods of the next section. For the time

Bounce

FIG. 3. Example of the truncated and untruncated instanton-bounce paths for a two-dimensional potential. The
instanton-bump path moves from the upper well to a point of equal potential energy and back, retracing its path. Note
that the flip of the truncated path takes place when the two defect-state energies are equal.
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being, think of a path integral in the discrete de-

fect coordinate; a representative path will flip be-
tween +-Qo/2 at irregular intervals (Fig. 4). The
effect of the phonons is to provide nonlocal time-
retarded interactions between flips.

We begin with the renormalized tunneling ma-
trix element b, . It is given by the self-interaction
of a flip. In the truncation approximation, the
wave function in each well is forced to factor into
a defect part and a phonon part. In turn, 6 fac-
tors into 6 times the overlap of the phonon ground
states,

5=he ~=hexp —g(A, I, Q0)l(4hmcok)
L k

(3.2)
This phonon overlap is known as the Frank-
Condon factor in some groups, and as the Debye-
Waller factor in others. It is dominated by high
frequencies, it represents the rearrangement of the
nearby atoms in response to the defect motion.
The validity of this form for b, is very dependent
upon the Condon approximation that b, is indepen-
dent of the phonon positions. b will be most sens-
itive to the positions of nearby atoms; if the Con-
don approximation is at all weak, the exponent in
(3.2} can be too large by 30%.' The problem is,
the truncation approximation forces the defect to
flip abruptly from one well to the other; intermedi-
ate defect positions correspond to higher energy
states which are ignored. In practice the transition
will often be slow enough to allow adiabatic relaxa-
tion of the high-frequency modes (i.e., the nearby
atoms) during tunneling. This reduces the phonon
suppression of the rate.

We now turn to ez, the renormalized upper-well

energy. It is renormalized to zeroth order by the
phonon relaxation, and to second order in 6 by the
time-retarded interactions between flips:

4Qo
82 =6-

8mNk

I d 2i osis( 0 1 ) (3 3)0

A2

k(s}=g 3 e
2P?l Nk

(3.4)

ao—Im(ez)= ds e '"~"
2A

Qo+(&) 1 Qo+(&)
+2 + 0 ~ 4

(3.5)

3 5(2e—ficok}+O(A, ),3

(3.6)

we get the width of the upper energy level as a
sum over multipole-phonon decays. The decay
rate in this form clearly depends only upon pho-
nons whose energies are less than the energy split-

The zeroth-order term is the energy shift due to
the relaxation of the nearby lattice. Although it
involves high-frequency phonons, it does not in-
volve tunneling and the truncation approximation
is adequate.

The second-order term comes from the time-
retarded interaction between flips. 4 (s) dies away
with a power law for large s (Appendix A), so only
nearby flips interact. Consider a path with an iso-
lated bump of length s into the lower state (Fig. 5).
It has two flips, so compared to the path which
stays in the upper state it is suppressed by a factor
of [(ddt)/A] . In addition, it spends a time s in the
lower state, and thus picks up a relative phase
2ies/A'. Finally, the time-retarded interaction be-
twmn two flips of +Qo a time s apart is Qo+(s).
Integrating the phonon part of the contribution of
this bump path over fiip lengths s gives the
second-order term in (3.3).

This flip-flip interaction gives ez an imaginary
part, which is the decay width of the first-excited
state. If we expand the last exponential in the
second-order term,

+ Qo/2

Qo/2

Qo/2

-Q /2

t=o

FIG. 4. Typical path in the discrete path integral. A
typical path; this path would contribute to (e ' ")»,
as it begins and ends in position state 2.

FIG. 5, An isolated bump. Phonon-mediated interac-
tions between the two sides of the bump give the renor-
malized upper energy to second order in h. Interactions
between three flips will renormalize 6; groups of four
will again renormalize the e;, and so on.
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ting. Nearby atoms are not important (except in
determining b} and this form is valid beyond the
truncation approximation. The energy e i of the
lower well is given by (3.3) with e negative; it
clearly gains no imaginary part to order 52. Final-
ly, (3.6) provides the hnk to the strain-field cou-
pling methods of the glass-defect school. If one
uses the Debye approximation cok ——ck and the
elastic monopole contribution A,k cx: k (Appendix A)
the one-phonon decay rate reproduces their results.

IV. THE INSTANTON BOUNCE

The path-integral and instanton-bounce
machinery may be somewhat forbidding to those
unused to formalism (see Appendix 8). Its success
is based on a very simple idea. In the classically
forbidden region W(QO) —E p0, the wave function
is exponentially damped. If configuration space
(Q) is one dimensional, this damping is given by
the %KB exponent

p2 2

+ V(Q}+g +—inkqk+4ekQ .
27tl

(4.2)

Let us consider the classical equations of motion
for the phonons, with the potential energy inverted:

iii4k =iii~k9k+4Q . (4.3)

+— 0 0 DUO' —v

(4.4)

A derivation of (4.4) from more standard formulas
is given in a previous paper. ' The potential V(Q)
is the defect potential assuming adiabatic phonon
relaxation,

Harmonic oscillators are easy. Given Q(r) and
boundary conditions, one can solve (4.3) explicitly
for qk(~}, and for the phonon contribution to the
action. The path Q(~) must then minimize the to-
tal action:

S(Q)= I dr —,MQ +V(Q}

g(QO) ~ exp ——J v'2M [V(Q) —E]dQ
o

V(Q) =V(Q) —g
~kQ'

2@iNk
(4.5)

In many-body systems, there are many paths lead-
ing to a given point Qo in the forbidden region.
The exponential damping of the wave function is
determjned by the easiest such path.

Let Q(r) be a path leading from the classically
allowed region to Qo, parametrized in some arbi-
trary way by r Let the c.omponents of Q be res-
caled to the same mass M (see the Introduction).
The damping is then given by minimizing the ac-
tion in the exponent of (3.1) over all paths Q(r).
This action,

f I 2M[1 (Q) —E] J'~ dQ,

is in turn the minimum of

2+~ E
2

under all reparametrizations of Q(r). Thus we are
led by a simple WKB procedure to look at paths
which minimize the action in the potential
—~(Q).

Consider now a defect in a double well, coupled
to phonons,

The time-retarded velocity-velocity interaction is
the flip-flip interaction (3A) continued to ima-

ginary time:

~k III

2' QPk

(4.6)

It embodies the effects of the ringing of the lattice
on the motion of the defect. It is not normally
negligible. The WKB methods cannot be applied
directly either to V or to V. In some limits, there
are simple approximations for the effects of this
time retarded interaction, which I have treated in
detail in Ref. 1.

%e want to calculate a decay rate. Decay rates
are probability flows, and probability is an absolute
square of a wave function. The exponent of the
damping of the decay rate will be twice that of the
wave function in (3.1). We are interested in the
classical path which crosses the barrier tmce.

Consider the form of the inverted potential. The
upper well forms a hill, which is overshadowed on
one side by the hill from the lower we11. The path
of interest starts at ~= co at the top—of the
upper-well hill, and slowly rolls down (Fig. 6). At
some finite time it rolls up the side of the lower-
vrell hill, and bounces back exactly as it came. As
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ignore the last ( —1); it contributes only to the real
part of the energy shift,

T

Im(e2)=Im dsexpI [2ies+Qc@(s)]/R I

--ih
~ 2

(5.1)

FIG. 6. Instanton bounce in inverted potential. The
instanton-bounce path obeys the classical equations of
motion for the system with the potential energy invert-
ed. This path dominates the decay rate; it is the most
probable escape path.

r~ ac, it rolls back to the peak of the upper well.
This is the instanton-bounce path.

The instanton-bounce path obeys the equations
of motion, so the action is stationary near it.
However, it is saddle point, not a minimum of the
action. Paths like it which spend either more or
less time in the lower well will have lower action.
In some important sense, paths spending more time
in the lower well correspond to successful decays,
while paths spending less time are unsuccessful as-
saults on the barrier. The detailed theory makes
use of quadratic fluctuations about the instanton
path to give the WKB prefactor. For our saddle-
point path the fluctuations which decrease the ac-
tion contribute a negative eigenvalue, which gives
the ground-state energy an imaginary part. This
gives the decay rate (see Appendix 8).

Although these quadratic fluctuations are for-
mally very interesting, we shall not spend much
time on them. The instanton path gives the ex-
ponential suppression of the rate; the fluctuations
set the scale. Normally the scale up to a numerical
factor can be guessed on physical grounds; this will
suffice for our purposes.

F'(sr ) =2ie+Qo@''(sl ) =0 . (5.2)

The first leg of our path contributes only to the
real part of the energy shift. Along the second leg
the magnitude of the integrand decreases very

quickly if A is small. %e therefore expand F about

SI '.

Q2 00

Im(e2) = — Re ds exp F(sI)
'r

(s —sr )
+ F"(sr )

' 1/2
I:(s,)t

2I'"

O
O

(/)

IO
CL

0~ }O

I
U
C:

O

The remaining integral is now somewhat ill de-

fined; however, it is now possible to apply the
method of steepest descents.

%e begin by deforming our integration contour
(Fig. 7) to pass through the (pure imaginary) point
sr where the exponent F(s) in (5.1) is stationary:

V. STEEPEST DESCENTS
AND THE TRUNCATED BOUNCE

The use of quadratic fluctuations about an in-
stanton bounce to calculate the decay rate has been
interpreted as a multidimensional generalization of
the method of steepest descents. It behooves us to
apply the method of steepest descents to our trun-
cated problem. In this section we show that it
does indeed agree with the corresponding
instanton-bounce calculation.

The decay rate in the truncation approximation
is given by the imaginary part of (3.3). We may

FIG. 7. Steepest descents path. Original integration
path is deformed in order for the magnitude of the in-
tegrand to decrease as fast as possible. I' (s) on the
second leg is approximated by F( i or }+ [(s +iar }2/2]—
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This is the steepest descent form of the truncated
decay rate.

%C now look at the corrcspondiQg instanton-
bouncc calculat1on, Rccol ding to the prcscript1OQ
given by Callan and Coleman. Once again, con-
sider a patll [Q(r),q(1 )] 111 imaginary tlnlc, fol
wlllcll Q (1 ) llas R blllnp of lcllgtll 0' lllto tllc lowcl'

state from the upper. Such a path contributes
2

The instanton-bounce path is a saddle point of the
action in the space of all paths. It is of minimum
Euc11dcan Rct1OIl with respect to variations 1Q thc
phonon paths, and of maximum action (minimum
contribution) with respect to variations about the
lllstalltoll bounce lcllg'th 0'I ~

Clearly, the saddle point si of the steepest des-
cent calculation ought to equal —iol. As noted in
the last section, the Euclidean action contributed

by the phonon modes is given by the time-retarded
lntclact1on k cont1nucd to the 1IDaginary ax1s.
Thus steepest descents and instanton bounce find
saddle points of the same action functional, and o'I

is indeed isl. The quadratic expansion about the
instanton bounce also agrees with the expansion of
E about sz in (5.3), so the decay rates agree. The
1nstanton bounce 1s R path 1Q phonoIl space Rs well
(Fig. 3). It obeys the classical equations of motion

IItqk =IBrokqk+AkQ,
r

q, (~,/2)+qk( —~, /2)
2c= &~kQo

k 2

This path is interesting in its own right. This is
the "escape path" through the classically forbidden
region. One can check, for example, that the
upper-state energy equals the energy at o =0; the
turning point occurs on the boundary of the classi-
cally allowed region. More interesting is the posi-
tion of the fhp. Since the phonons will respond
symmetrically about o =0, we find at the time
+0&/2 of the flips the bare-energy splitting is ex-
actly cancelled by the phonon coupling:

C+ g Akqk(+o'I/2)QO/2

=—c+ g Akql, (+o'I/2)( —Qc/2) . (5.6)

The phonon deformation at r= —00 lowers the
upper state below the lower state, As r increases,
the phonons deform and raise the upper-state ener-

gy. As the two energy levels cross, the transition
takes place. This phenomenon, in weakly coupled
electronic systems where thc tnHlcation approxlIQR-
tion is good, is well known at higher temperatures.
It was noted SOIDC time ago by I.andau.

This picture breaks down if the phonon coupling
is Qot strong enough to lower the upper-state ener-

gy below the lower state. The steepest descent
method still can be used on (3.3), but the
1nstanton-bounce length 1s Qcgatlvc. Concern 1s de-
finitely warranted; the flip and antiflip in this limit
merge fFig. 8(b)]. We shall discuss this in the next
section.

Thc tfuncat1OH RppI'oxlIIlatlon has bccn very suc-
cessful in describing a wide variety of low-
frequency properties of tunneling systems. In
many of these systems this approximation misses
essential features of the tunneling process. Section
III explained, qualitatively, why truncation is so
successful. EssentiaHy, low-frequency modes "see"
the defect as a two-level system; only high-
frequency phonons probe the details of the tunnel-
ing process. In this section we make this explana-
tion precise, by deriving a renoImalizcd truncation
RpproxllIlatloll Rs. R lllllltlllg case of tllc lllstalltoll-
bounce calculation.

-Qo/2

Qo/2 ——-

FIG. 8. (a) Truncated and untruncated instanton
bounce: smaB asymmetry. For small asymmetry, the
Aip and antiflip are AH separated, and the truncation
approximation can be applied to a renormalized defect.
(b) Truncated and untruncated instanton bounce: Large
asymmetry. For larger asymmetry, the Aip and antiflip
mill have large interactions, and the truncation picture
disagrees with the instanton calculation.
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Before using estimates, let us gain a qualitative
idea of what this approximation does. For small

asymmetries, the time spent in the lower vrell by.

the important paths is long compared to the flip
time (the time spent crossing the barrier), as shown
in Fig. 8(a). We want to approximate the contribu-
tion of this path with that of the truncated path
sho%vn, and 11th a suitably chosen truncated 2+2
Hamiltonian for the defect.

The most obvious qualitative difference between

the two paths in Fig. 8(a) is the nature of each of
the two transitions. The truncated transitions are
abrupt giving the high-frequency phonon modes no
time to relax with the defect as it tunnels. All
phonon modes in the truncation approximation
suppress tunneling by their Frank-Condon overlap
integral. The corresponding self-interaction of a
Qip in the untruncatcd system %111 suppress tunnel-

ing less. The high-frequency modes in atomic tun-

neling eall generally adiabatically relax anth the
defect motion, and contribute an effective mass-
not a phonon wave-function overlap integral. The

self-interaction of a flip has been treated with some
care in the first paper. Here, it can be absorbed
into a redefinition of the truncated tunneling ma-
trix element. It must be remembered that the bare
matrix element in the truncation approximation
has no physical IQeaning' in some sense lt 18 too
large by the ratio of the true phonon suppression
to the phonon-overlap integral.

There remain two important differences between
the two paths in Fig. 8(a), which cannot be embed-
ded in a renormalized defect Hamiltonian. First,
the nonzero flip time will affect the flip-flip in-
teraction; this is the dominant correction as the
time between flips gets large. Second, the defect
approaches the bottom of the lower well only
asymptotically, and there vali be corrections due to
Q (0) + Qo/2+0. We shall estimate the impor-
tance of these two corrections, and show that they
become unimportant as the time between flips gets
large.

The Euclidean action me use in this section was
introduced in Sec. IV:

(6.1)

S,(Q)= f d~ , MQ-'+ V(Q)+ , f d-~Q(~)Q(~)U(~ ~), —

A,
2 2

A,
2

V(Q) =V(Q) —g 2, U(p) = g2' Nk k 2' Q)k

Consider now a typical path probing the well at ~=0. We may split the action into three pa~8, one for
each of the two flips and one part giving the flip-flip interaction.

SE(Q)= f d~ —,MQ'+V(Q)+ —,
' f daQ(0)Q(r)U(w —o)

+ v' —,M +V +—, g g g U'g —g

+ f « f do Q(r)Q(o)U(~+cr) (6.2)

The first two parts in this equation describe the self-interaction of the two fhps. For the instanton path
they are equal to each other; they give the exponential part of h. Their value is slightly distorted by the
presence of the other flip, but this effect is of higher order than the two discussed below.

The third part gives the flip-flip interactions. If the fiips were abrupt, this term would be the truncated
flip-flip interactions —QOU(00). Q(cr) for this path will be reasonably well localized around the times of the
flip and antiflip. We define the time between these flips as

(6.3)

and expand U(~+a) about pro

U(~+o)=U(oo)+(~+~ —~0)U'(~c)+(~+~ —~0)'U"(~0)/2 .

The third part of (6.2) now becomes

f dr f do Q(r)Q(o ) U(r —o )—[Qo/2 —Q(0)] U(oo)

[U"(oo)/—2]fdic f , do Q(r)Q(cr)(r+n 00)—

(6.4)
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The second term in (6.5) is U"(oo) times the squar~ of a characteristic fliptime oF.
power law (see Appendix B) this term will be smaller than the flip-flip interaction by a fact«of (os/oo) ~

The first, term of (6.5) would equal the truncated flip-flip interaction if Q(0)=—Qo/2. We now need to
estimate Q(0) as op~DO. We specialize to the instanton-bounce path: "Typical" paths will have a spread
of values at r=0 about Qr(0). Qr(r) obeys the equations of motion

MQ= V'(Q) —J do Q(o)U'(r o)—,
MQ(0) =ma)'[Q(0)+Qo/2] —Qo(U'( —or/2) —U'( or/ 2))

~ 0

Now Q dies away faster than Q by two powers of
If U(p) ~ 1/p' as p-+ ao,

2QO U'( —or /2)
Q(0)+Q,/2-, =0(1/o,"+')

Ptl 6)

For point defects, n )2 (see the Appendix) so the
corrections to the first term will be even smaller
than those of the flip time (the second term).

Thus, if the time oi spent in the lower well is
large compared to the time o.F spent crossing the
barrier, the system will decay as would a corre-
sponding two-level system —with no mention of
truncation or the Condon approximation. The
correct two-level system, however, involves both
defect coordinates and high-frequency phonon
coordinates; this complication affects only the cal-
culation of the renormalized tunneling matrix ele-

ment h.
In many situations even this condition is not

necessary for the validity of the renormalized trun-
cation approximation. If the intrinsic asymmetry
between the two wells is larger than the phonon
coupling [Fig. 8(b)] the instanton-bounce calcula-
tion will disagree with a renormalized truncation
approximation. On the ooe hand, the arguments
of Sec. III still apply, so long as the asymmetry is
oot so large as to involve excited states in the
lower well. On thc other hand, the instanton pic-
ture certainly applies to large asymmetry —it was
developed for quantum nucleation problems, where
the asymmetry is in some sense infinite. In truth,
the appropriate picture depends upon the widths of
the lower-well excited states. If their widths are
large compared to their spacing, the instantoo
methods apply. If the widths are small, coherent
backscattering from the lower well becomes impor-
tant, and truncation approximations describe the
physics.

VII. OH IN ALKALI HALIDES

I conclude. this paper with a discussion of OH
tunneling defects in several alkali halides. The

OH ion sits on a halide lattice site; the dipole has
six (100) equilibrium orientations. The major tun-

neling events are 90' shifts of the dipole. There is
a reasonably large lattice deformation associated
with each relaxed equilibrium. Thus there is a
substantial phonon motion associated with tunnel-

ing, which suppresses the rate.
The OH defect in alkali halides has been ex-

haustively studied both experimentally aod
theoretically. OH tunneling centers are also of
current interest; they play a major role in the
low-temperature behavior of glasses. The trunca-
tion approximation is clearly successful in describ-
ing decay rates of these defects. It has clearly
failed in predicting tunneling rates from sensible
bare tunneling matrix elements.

Shore and Sander' made a very careful study of
the phonon suppression of the decay rate, working
within the truncation approximation. They studied
both electromagnetic and elastic coupling of the di-

pole to the lattice. The electromagnetic coupling
was estimated by correcting the experimental
electric-dipole moment for screening effects. The
elastic coupling to the various group-theoretic
modes was estimated from the experimental
stress-splitting factors. The phonon modes were
integrated numerically over the Brillouio zone, us-

ing published shell-model fits to neutron-
diffraction data. Using this information, they
computed the phonon wave-function overlap in-
tegral e between two defect orientations 90'
apart.

They then use experimental decay rates mea-
sured by Kapphan. Using a one-phonon decay-
rate expression, they extract reoormalizcd tunnel-
ing matrix elements for the various alkali halides.
They then make the mistake of dividing these by
the overlap integrals to get "bare" tunneling matrix
elements. As one can see from Table I, this results
io unphysically large values of 60.

Shor and Sander reahzed, of course, that some-
thing was wrong. They correctly pointed out that
the magnitudes of the overlap exponents 8' seem
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TABI.E I. OH defects in all(:aH halides.

Bare tunneling
matrix element

h (K)

Typical optical
&equency
u (sec ')

Dimensionless
coupling

A

'Reference 25.
Reference 16.

'SheH and model fits referenced in 16.
~I.ow barrier for KBr mmes fmm lo~ sheH-model optical frequency, the physics of which is unclear to the author.

uniformly too high. This is now, of course, ex-

pected; the nearby atoms will tunnel with the de-

fect, and suppress the tunneling less than anticipat-
ed. I will use a very crude model (discussed at
length in a previous paper' by this author) to show

that this effect is in fact important and fixes the
problem. I will use Shore and Sander's calcula-
tions of Z and 8', although I certainly abuse their
careful estimates in my rough analysis.

Tllc IIlodcl I usc colls1sts of a slllglc-pllonon

motte coUpI xi 11DcRT'Ip to 8 symmetrac„qURftic doU-

ble well. A single-phonon mode of course cannot
describe decays, but it can represent the high-

frequency modes. I choose the phonon frequency
ro to roughly match optical frequencies in the salts.
I use the hydrogen mass M for the defect. The
OH bood length is aIways very close to 1 A; the
tunneling distance Qo is therefore m/2 A. Finally,
I choose not to compute quadratic fluctuations,

sHMc they are tGc40gs RQ6 BMII;c smsH coffcctioM.
I choose to use a prefactor for Z of 138 K; this is
a prefactor for an uncoupled well of characteristic
frequency 4A/MQO.

The model can be reduced to a relationship be-
tween three dimensionless quantities. Q= el/zona
is a phonon frequency, where the double-well fre-
qUCBCy

anna ——4( Ve/MQC ) '/

ls the curvature at the top of the barrier.
A=~ /III Mains ls a dnnells1OIllcss coupliIlg.
Finally, the action for the instanton path divided

by QM&gQC is S. The dimensionless action NI is
estimated with a variational technique. "

U»ng &, one can find

S/&= —4A'/McoQ&ln(g/13g K.) .
Using K one knows A/Q2=(4$/MCIQSI) P".
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Knowing these two quantities, we solve f«A, +,
and finally po, the barrier height of the relaxed po-
tential. The results are shown in Table I. The
barrier heights should not be trusted beyond a fac-
tor of 2 or 3 due to the rough approximations and
the simple model.

The barrier heights shown are physi. cally reason-
able; they fall in a fairly narrow range and have
realistic values. Corresponding bare tunneling ma-
trix elements (physically meaningless) would range
from 1 —10 K; Shore and Sander chose 3 K as a
reasonable value. Thus, even a crude model which
allows the phonon to participate in the tunneling
process gives a sensible microscopic picture.

To put the OH systems in a broader perspec-
tive, we can plot them on the AQ plane (Fig. 9).
The characteristic frequency of the dipole, despite
the small hydrogen mass, is coll1pafable to the
phonon frequencies. This was foreshadowed by
our analysis of lithium substitutional defects in

KCl, ' where the lithium motion was very slow. In

both cases, the barrier heights must be low to allow
tunneling, which leads to low defect frequencies.
The coupling of the dipole to the lattice is quite
strong, ' as in KCl:I.i+ it is roughly comparaMe to
the lattice spring constants. This coupling would
have to be much smaller for the truncation approx-
imation {or the Condon approximation) to be valid.

The moral of this story is simple. Tunneling de-
fects do act as "spin" systems, but the low-energy
states mix up defect and high-frequency phonon
coordinates in a nontrivial way. The truncation
approximation captures the spin structure; it will
describe well physical behavior depending only
upon low-frequency phonons and renormalized ma-
trix elements. %ithin these limits, the truncation
approximation is more widely useful than generally
believed. Physical behavior outside these limits
must study the tunneling event in more detail. In-
stantons and path integrals provide workable tools
for this study.
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FIG. 9. Coupling and frequencies. Note the posi-
tions of various tunneling defects. (KC1:Li+) is well
within the effective-mass regime, where the phonons re-
lax adiabatically as the defect tunnels. Anderson
negative-U centers in amorphous semiconductors are
self-trapped; their attractive potential is entirely due to
phonon deformation. Tunneling can be viewed entirely
in terms of phonon motion with adiabatic electron relax-
ation. OH defects lie in an intermediate region; they
cannot, however, be described by the truncation approxi-
mation.

In general, unless some special symmetry exists,
the equilibrium states of a tunneling defect will oc-
cupy different volumes. The resulting shift in the
far strain field for a local difference in volumes
AVis

hV x

The remarkable fact that this volume is not shield-
ed by compression is easy to derive. It follows
from the assumption that there is no local rotation
(2coj =8;qJ —Bjq; =0). This follows, for example,
from spherical symmetry. The strain field will
mjmm&ze the energy
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18'= J d x p[e~e; ,—(e—kk)z]+-,Ã(ekk)2,

where p is the shear modulus, E is the bulk
modulus, and e,j is the strain tensor ();qj. If
Q)gj =0~ then

2=e])elj' kk =~I'Qy ~t QJ

= ()( (qj. ()/q( —
q( ()Jqj ),

is a perfect divergence, so

IV= I d x( —,(M+ —,E)(ekk} +const,

and the strain field will minimize the compression-
al energy by propagating 6V out to infinity.

%e can use this far-field shiA to calculate the
coupling to low-frequency longitudinal modes of
odd parity at the defect; these in turn will dom-

inate the long-time asymptotic behavior of the
time-retarded interaction. The displacement for a
longitudinal mode in the z direction is

qk(k, )= +sin(kz;)q(x() z= I dr J (2nr)dzsin(kz) r z
a r b, V

N (
' Nai 0 err

1 6V "+ siqp cosp 1 6V
k vXa' 0 ~ q' p k ~isa' '

as R ~ ao for N atoms in a sphere of radius R and
interatomic spacing a. %e know the equilibrium
displacement q(k) =AkQo/meek. Since cok =ck as
k~0 (where c is the speed of sound), the coupling
constant kk ~ k as k —+0 is

h

mc bV
vNQoa

This in turn implies

U( ) g k ~k IPI

2' cok

the continuum by analytic continuation. Once
they mix with the continuum they leave the spec-
trum of the Hamiltonian, gain an imaginary part,
and become rcsonanccs.

In our problem of an asymmetric double well

coupled to phonons, we can define the resonance as
the analytic continuation of the ground state as we

change the asymmetry from negative to positive.
To see how this works, consider the ground-state
energy E of a two-level (truncated) system,

(hV) m 1 1

4mQO(i c p p

2 4
E=—(e +5 ) =e+2 2 1/2

2e 8p3

E(n)+O(gn 1}+

APPENDIX 8: DECAY RATES
AND THE INSTANTON BOUNCE

%e are interested in the phonon decay time of
excited states of defects. The excited state is not
an energy eigenstate, of course. It is a
resonance —a superposition of a continuum of true
energy eigenstates which behaves as if it had a
complex energy

E=E—
2

giving it a decay rate y/h. It is not clear, given a
specific Hamiltonian, how to define a resonance.
It is necessary to start with a family of Hamiltoni-

ans, analytically dependent upon a parameter. The
true energy eigenvalues then can be followed into

If we analytically continue E to positive asym-

nletry (e)0), we stay in tile glolllld state Howev-

er, if we first expand E as a power series in 5,
then to any finite order n the analytic continuation
of E'"' leads us into the first excited state. Here
the continuation is independent of the route around
the singularity at a=0 and leads to another real
eigcnstate. %hen we coupled this system to pho-
nons (Sec. III) we were able to explicitly perform
this continuation. There for e~ 0 the energy E' '

picks up an imaginary part, and the first excited
state is a resonance.

The instanton-bounce method of Coleman and
Callan ' does this analytic continuation (for the
untruncated problem} to order b, . (More precisely,
it gives the term of order 6 asymptotically as
iri~0. ) The terms of higher order in b, correspond
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to bounce-bounce interactions which are neglected
in the dilute gas approximation. A brief discussion
of the limits of this approximation seem. s neces-
sary.

For very small asymmetries this expansion
breaks down. If the tunneling matrix element is
larger than the asymmetry, the first excited state is
qualitatively an antisymmetric superposition of a
Gaussian in each well. Analytically continuing
from a state of large negative asymmetry where the
ground state is qualitatively localized in the right-
hand well is not sensible, and does not work. One
can define a resonance for nearly symmetric wells

by analytically continuing the first excited state
from zero coupling. One can compute both the
weak coupling and the large asymmetry decay
times in the truncation approximation; it is reas-
suring to note that they agree where they overlap
(double wells with large asymmetry coupled weakly
to phonons).

This breakdown at small asymmetry is a special
case of a more general problem. Bamer penetra-
tion in one variable can be treated using the %KB
method; a careful calculation of the %'KB decay
time agrees with that of the instanton bump (see

Fig. 1). Both decay times are independent of the
potential after the second turning point (region

III). The WKB solution assumes at this point that
the wave function in the classically forbidden re-

gion II matches onto a solution in region III with

outgoing boundary conditions. For a double well

(Fig. 2) there are no decays —the wave function in

region III is not outgoing. The instanton-bump

path never actually probes the bottom of the lower

well; the calculation assumes that the decays are ir-
reversible. Constructive or destructive interference
of the wave function after it leaks into the lower
well will not be adequately dealt with by the in-

stanton approximation. Sec. VI discussed this
question.
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