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We study the effect of dilute pinning on the jamming transition. Pinning reduces the average contact
number needed to jam unpinned particles and shifts the jamming threshold to lower densities, leading to a
pinning susceptibility, χp. Our main results are that this susceptibility obeys scaling form and diverges in
the thermodynamic limit as χp ∝ jϕ − ϕ∞

c j−γp where ϕ∞
c is the jamming threshold in the absence of pins.

Finite-size scaling arguments yield these values with associated statistical (systematic) errors γp ¼
1.018� 0.026ð0.291Þ in d ¼ 2 and γp ¼ 1.534� 0.120ð0.822Þ in d ¼ 3. Logarithmic corrections raise the
exponent in d ¼ 2 to close to the d ¼ 3 value, although the systematic errors are very large.
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In jammed packings of ideal spheres, particles are locked
into position by their repulsive interactions with their
neighbors, which in turn are locked into position by their
neighbors, and so on, so that the entire system is mechan-
ically stable. Pinning is an alternate way of locking a
particle into place, so the interplay of pinning and jamming
can potentially lead to interesting new behavior. Pinning is
known to have a rich interplay with glassiness; pinning
raises the glass transition [1] and can be used to probe its
nature [2,3] and associated length scales [3,4]. In jammed
systems, pinning lowers the jamming density [5,6] and
allows access to length scales [7]. Here we show that the
addition of quenched disorder in the form of random
pinning has a singular effect on jamming. In the dilute
pinning limit, jamming is highly susceptible to pinning,
with a “pinning susceptibility” that diverges at the jamming
transition as a power law in the thermodynamic limit.
In spin systems such as the Ising model, the magnetic

susceptibility can be calculated by considering the response
to “ghost spins” or especially designated spins [8] in the
limit that their density vanishes; similarly, in percolation or
correlated percolation one can calculate susceptibilities to
“ghost” sites or bonds [9,10] that are vanishingly probable.
Here, we consider the response to “ghost pins.” Systems of
N particles, of which a fraction nf are pinned, are prepared
by quenching infinitely rapidly from infinite temperature,
T ¼ ∞, to T ¼ 0 at a volume fraction ϕ. We calculate the
fraction of such systems that are jammed, or equivalently,
the probability that a state prepared in such a way is
jammed, pjðϕ; N; nfÞ. We then define the pinning suscep-
tibility in the limit of vanishing pinning:

χp ¼ lim
nf→0

∂pjðϕ; N; nfÞ
∂nf : ð1Þ

We find that χpðϕ; NÞ and the probability of being jammed,
pjðϕ; N; nfÞ obey scaling form and that χp diverges in the
infinite size limit.
There have been two distinct approaches to studying

scaling near the jamming transition: in terms of a configu-
ration-dependent or infinite-system critical point. Each
finite jammed configuration of particles, Λ, has its own
critical volume fraction ϕΛ

c , which converges to a single
value ϕ∞

c only for infinite system sizes [11–13]. For many
purposes, scaling behavior near jamming is best done by
measuring the deviation from the configuration-dependent
critical density (as suggested by Refs. [11,14]). Here, since
we are studying the convergence of the distribution of the
configuration-dependent critical densities to the infinite-
system critical density, we naturally make use of the other
approach, scaling in terms of deviation from ϕ∞

c . The
existence of two distinct scaling pictures is seen in many
other systems with sharp, global transitions in behavior, as
originally discovered in the depinning of charge-density
waves [15–17]. Such systems may not obey the inequality
between the correlation length and dimension ν ≥ 2=d
derived for equilibrium systems, unless analyzed using
deviations from the infinite-system critical point [18,19].
To study the pinning susceptibility, we conducted numeri-

cal simulations on packings of N repulsive soft spheres in d
dimensions [11,14] at fixed area (two dimensions, d ¼ 2) or
volume (d ¼ 3) in a square (d ¼ 2) or cubic (d ¼ 3) box
with periodic boundary conditions. We considered 50∶50
mixtures of disks (d ¼ 2) or spheres (d ¼ 3) with a diameter
ratio of 1.0∶1.4. Particles i and jwith radiiRi andRj interact
with pairwise repulsions

UðrijÞ ¼
ε

α

�
1 −

rij
Ri þ Rj

�
α

Θ
�
1 −

rij
Ri þ Rj

�
ð2Þ

with α ¼ 2 (harmonic) or 5
2
(Hertzian).
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The initial position of each particle was generated
randomly, and the positions of Nf ¼ nfN particles (chosen
at random) were fixed. Configurations in which fixed
particles overlap were excluded. We then minimized the
energy of the system to obtain jammed packings. The upper
inset of Fig. 2 contains a sample configuration for
N ¼ 256, Nf ¼ 2.
We calculated the jamming probability pjðϕ; N; nfÞ at

T ¼ 0 for systems of size N ¼ 600, 1000, 2000, and 4000
in d ¼ 2, andN ¼ 800, 1600, 2400, and 3200 in d ¼ 3. For
the small fractions of fixed particles studied here, the
criterion for judging a system to be jammed is the same
as in previous studies [20]: jammed systems have positive
bulk moduli, energies, and pressures.
As for systems with no pinned particles, we find that

systems with dilute random pinning are isostatic at the
onset of jamming. In agreement with earlier studies on
jammed hard sphere systems with dilute pinning [6], we
find that dilute pinning can result in a generalized isostatic
condition. One must distinguish between two types of
contacts: the number Nmm between two particles which are
mobile during equilibration, and the number Nmf between
one mobile and one fixed particle. Each of the Nf fixed
particles requires no contacts to be stable, while each of the
Nm ¼ N − Nf mobile particles require, on average, a
minimum of Ziso contacts. When Nf ¼ 0, Nm ¼ N, and
Ziso ¼ 2d − ð2d=NmÞ þ ð2=NmÞ, where the second term
arises from d zero modes associated with global trans-
lations allowed by translational invariance, and the third
term is needed to ensure a nonzero bulk modulus [20]. Our
equilibration protocol breaks translational invariance when
Nf ≥ 1; thus in this case Ziso ¼ 2dþ ð2=NmÞ. Since the
average number of contacts for a mobile particle is
Zm ¼ ð2Nmm þ NmfÞ=Nm, the number of excess contacts
that constrain mobile particles is Nexcess ¼ NmðZm − ZisoÞ,
or

Nexcess ¼ Nmm þ Nmf − dNm þ dq − 1 ð3Þ

where q ¼ 1 forNf ¼ 0, and q ¼ 0 forNf > 0. Figure 1(a)
shows that this relationship is upheld: isostaticity means
that the excess number of contacts approaches zero as
p → 0. Additionally, Fig. 1(a) shows scaling collapse onto
universal curves as a function of rescaled pressure, p1=2N.
This is exactly the same as what is observed for systems
without pins [20]. Note that Fig. 1(a) is analogous to
Fig. 2(c) of Ref. [20] in the absence of pins, which shows
not only the region of slope 1, but crossover to a slope of 2
at very low pressures, arising from a Taylor expansion of
ðZ − ZisoÞ in p for finite systems. In Fig. 1(a) there is
perhaps the hint of a crossover to a higher slope at
p1=2N ≲ 1, but the data are quite noisy at such low
pressures.
One might expect that since pinned particles support

mobile ones, the number of mobile contacts will decrease

with increasing pin density. Indeed, for all pressures
studied, increasing nf decreases the average number of
mobile contacts, Zm. (The only exception is a slight,
but nevertheless reproducible, uptick between Nf ¼ 0,
1, related to the loss of translational invariance.)
Figure 1(b) shows Zm broken down into Zmm arising from
mobile-mobile contacts, Zmm ≡ 2Nmm=Nm, and Zmf from
mobile-fixed contacts. At a pressure low enough to
approximate the jamming threshold (circles), the average
contact number ZmðnfÞ (filled circles) is well fit by the
dashed line shown. Interestingly, raising the pressure by a
couple of orders of magnitude does not result in significant
changes in ZmfðnfÞ (red symbols). In Fig. 1(b), Zmm − 4.0
is contrasted with Zmf to show that mobile-mobile contacts
disappear more rapidly than mobile-fixed contacts replace
them. Thus, jamming in the presence of pinned particles is
an unexpectedly “frugal” process, in terms of its use of
mobile particles to produce global mechanical stability.
Increasing nf raises the probability of jamming at any

given value of ϕ, in accordance with previous work on
jamming in the presence of fixed particles [5,6]. Increasing

FIG. 1. (a) Excess contacts as a function of rescaled pressure.
d ¼ 2 and d ¼ 3 systems are as marked. N ¼ 600, 1000, 2000,
4000 colors are red, green, blue, black. N ¼ 800, 1600, 2400,
3200 colors are red, green, blue, black. Symbols for Nf ¼ 1, 2, 3,
4 are square, circle, triangle, and diamond. (b) Contributions to
contact number for mobile particles. Zmm − 4.0 are shown as
blue, Zmf as red. Symbols for log10p ¼ −6;−5;−4 are circles,
triangles, squares. Filled black circles fit by dashed line are
Zm − 4.0 for log10p ¼ −6 .
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N steepens the jamming probability, as in the absence of
pinning [11]. These features are illustrated in Fig. 2, which
shows the jamming probability pjðϕ; N; nfÞ averaged over
10 000–30 000 d ¼ 2 systems of size N ¼ 600 and 2000,
with harmonic repulsions and Nf ¼ 1, 2, 3 and 4 fixed
particles. The dashed lines in Fig. 2 are fits to a two-
parameter logistic sigmoidal form,

pjðϕ; N; nfÞ≡ 1

ð1þ eað−ϕþbÞÞ ; ð4Þ

where aðN; nfÞ is the “width” of pj, in that it spans
probabilities from 1

4
to 3

4
, while bðN; nfÞ is the value of

volume fraction at which pj ¼ 1
2
. For all N and nf studied,

logistic sigmoid fits to 13–21 independent ϕ values result in
χ2 values less than 0.10. A slightly more flexible three-
parameter fit, to “Richard’s curve,” does not yield signifi-
cantly better measures of goodness of fit.

We now propose a scaling ansatz for pj. Since the
fraction of pinned sites, nf, is an independent control
parameter with which to approach ϕ∞

c , a two-variable
scaling function can be constructed for the jamming
probability. There is significant evidence that the upper
critical dimension of the jamming transition is dc ¼ 2
[20–23]. For d ≥ 2, we therefore expect that finite scaling
depends not on linear system size, L, but on particle
number N [24]. We therefore propose

pj ¼ FðΔϕNυ; nfNγpυÞ ð5Þ

where Δϕ is the distance from the jamming transition for
the unpinned, infinite system: Δϕ ¼ ϕ − ϕ∞

c .
We can rewrite Eq. (4) in terms of the scaling variable

x≡ ΔϕNυ as

pj ¼
1

ð1þ e− ~axN−υ− ~bÞ
ð6Þ

with ~a ¼ a and ~b ¼ ϕ∞
c − ab. From the logistic sigmoid

fits we can obtain functions ~aðyÞ, ~bðyÞ, critical exponents
γp, υ, and the jamming threshold ϕ∞

c , where y≡ nfNγpυ.
Because the pinning susceptibility is defined in the dilute
pinning limit, we are interested in the limit nf → 0, or
y → 0. (We note that in fitting these quantities to our
numerical data on pj vs ϕ, the limit nf → 0 is taken as the
limit Nf → 1 and not Nf → 0 since one pin destroys
translational invariance. The distinction between Nf ¼ 0
and Nf ¼ 1 is irrelevant in the limit N → ∞.) We seek the
behavior of ~aðyÞ and ~bðyÞ near y ¼ 0,

~a ¼ a0 þ a1y; ~b ¼ b0 þ b1y ð7Þ

with higher-order terms in y neglected. Table I shows the
parameters in pj from nonlinear least square fitting in
d ¼ 2 (four system sizes, four pinning densities) and d ¼ 3
(four system sizes, two pinning densities).
The parameter a1 is sufficiently close to zero that it is not

listed in Table I. The widths of the sigmoids do not vary
significantly with Nf; the principal result of increasing Nf

FIG. 2. Probability pj of jamming as a function of packing
fraction, ϕ, in d ¼ 2 systems for N ¼ 600 (red) and N ¼ 2000
(blue). Nf ¼ 1, 2, 3, 4 are represented by square, circle, triangle,
and diamond symbols, respectively. Dashed curves through data
are fits to a logistic sigmoid function. Upper inset: An equili-
brated configuration in d ¼ 2 with Nf ¼ 2. Lower inset: Value of
ϕ such that pj ¼ 1=2 for N ¼ 600 (red) and 2000 (blue) versus
Nf , the number of pinned particles.

TABLE I. Best fit parameters for Eqs. (6) and (7).

d ¼ 2 value errora errorb d ¼ 3 value errora errorb

υ 0.491 0.004 0.045 0.439 0.007 0.051
γp 1.018 0.026 0.291 1.534 0.120 0.822
ϕ∞
c 0.8419 < 0.0001 0.0001 0.6472 0.0001 0.0004

a0 38.555 1.088 12.329 46.177 2.558 17.521
b0 1.648 0.017 0.193 3.370 0.065 0.442
b1 9.646 0.879 9.958 2.970 1.145 7.844
aTraditional statistical errors.
bBounds roughly incorporating systematic errors. Estimated from deviations between model and data [25],
systematic variance is approximated as twice the best-fit χ2 divided by the number of parameters.
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is to move the sigmoid to the left, leading to jamming at
lower values of ϕ (as in lower inset of Fig. 2).
The scaling ansatz for the jamming probability, Eq. (5),

suggests a one-variable scaling ansatz for the pinning
susceptibility,

χpðΔϕ; NÞ ¼ jΔϕj−γpgdðΔϕNυÞ: ð8Þ

Note that we have an explicit form for the function gd,
where d ≥ 2 is the dimensionality, via Eqs. (1), (6), and (7):

gdðxÞ ¼
b1eb0þa0x

ð1þ eb0þa0xÞ2 : ð9Þ

We also calculate χp for each value of d and N using a
finite-difference version of Eq. (1): χp ≈ Nf½pjðN0

fÞ −
pjðNfÞ�=½N0

f − Nf�g for limitingly small values of
N0

f; Nf. Using N0
f ¼ 2, Nf ¼ 1 in the finite difference

yields smooth curves forN ¼ 600, 1000, 2000, and 4000 in
d ¼ 2 in Fig. 3(a), and for N ¼ 800, 1600, 2400, and 3200
in d ¼ 3 in Fig. 3(b). We have additionally calculated χp
using pairs of Nf values other than f2; 1g (not shown). We
find that the finite-difference approximation to χp develops
a progressively higher peak as N0

f → Nf. Uncertainty in
χpðϕÞ arises from error in the parameter a (error in b
contributes much less) which is fit independently for
pjðϕ; 2Þ and pjðϕ; 1Þ before the difference is calculated.
This uncertainty is shown as an “envelope” about each
curve in Figs. 3(a) and 3(b). Note that Fig. 3(a) contains
data for both harmonic (solid line) and Hertzian (dashed
line) potentials forN ¼ 600. The disagreement between the
two curves is significantly smaller than the error for either
curve, supporting the expectation that the pinning suscep-
tibility near criticality is independent of the details of the
repulsive potential.
Equations (8) and (9) arise from differentiating the

scaling form for pj in Eq. (5) with respect to its second
argument. In Fig. 3(c), we show the universal functions gd
as curves for d ¼ 2, 3. Finite-difference results for different
N are shown as points for selected values ofΔϕNυ. There is
excellent agreement between the points and the curves,
indicating that the data at each N are in good agreement
with the fitted parameter values in Table I obtained by
fitting to data at all N and Nf. The universal function gd
peaks at x ¼ −0.043;−0.078 for d ¼ 2, 3, respectively.
The scaling form of Eq. (8) implies that in the thermody-
namic limit, we obtain a power-law divergence of
χp ∼ jΔϕj−γp .
Note from Table I that the values of ϕ∞

c are in excellent
agreement with previous work on bidisperse soft spheres
[13,14]. The finite-size exponent υ for d ¼ 2 and d ¼ 3 is
consistent within uncertainty, as expected for systems at or
above the upper critical dimension. It is also consistent with
the central-limit-theorem value of υ ¼ 1=2, identified
earlier in the absence of pinning in Ref. [11], and with

υ ¼ 0.46� 0.01 obtained for d ¼ 2 systems by Vågberg
et al. [13], who included power-law corrections to scaling
in their analysis.
The pinning susceptibility exponent γp in d ¼ 2 and

d ¼ 3 is significantly different when we consider only
statistical errors—in contrast to the dimension-independent
values expected above the upper critical dimension of two.
However, these do not include systematic errors due, say, to
choice of theoretical analyses. For example, one way of

FIG. 3. (a) Susceptibility calculated as finite difference for
d ¼ 2. N ¼ 600, 1000, 2000, 4000 with errors as areas around
curves in red, green, blue, grey. For N ¼ 600, solid line harmonic
repulsion and dashed line Hertzian repulsion; all other values of
N show harmonic repulsion. (b) Susceptibility calculated as finite
difference for d ¼ 3. N ¼ 800, 1600, 2400, 3200 in red, green,
blue, grey. (c) Universal scaling function [curves, Eq. (9)] and
finite-difference approximation (points) for nonsingular part of
pinning susceptibility, gdðxÞ, for d ¼ 2, 3.
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including logarithmic corrections in d ¼ 2, the expected
upper critical dimension, leads to a considerably higher
value of γp ¼ 1.50� 0.95 (statistical errors). This agrees
well with γp ≈ 1.53 in d ¼ 3, but one must recognize that
the estimated range of systematic errors is enormous. As a
proxy for exploring different theoretical models, Ref. [25]
proposed a method which explores the range of fits that is
comparable in residual to the best fit. Following their
prescription, we find much larger systematic uncertainties
in our estimates of γp (Table I). Therefore, our numerical
results cannot resolve whether γp is the same in d ¼ 2, 3.
Indeed, one can argue that γp may depend on d as well as

a d-independent exponent, ν. Conceptually, the narrowing
of the jamming transition with increasing system size [11]
and the shift in the average transition [5,6], imply a
derivative of the jamming probability which depends
singularly on the density of frozen particles. For attractive
pins in d ¼ 2 [5], it was noted that average distance
between pins, lf could be equated with a correlation length
ξ ∝ Δϕ−ν at the jamming threshold. Since lf ∝ n−1=df , this
argument suggests Δϕ ∝ n1=dνf as a scaling relation. Our
Eq. (5) would thus be written pj ¼ FðΔϕNυ; nfNυdνÞ,
implying γp ≡ dν. With ν ¼ 1=2 in d ¼ 2, 3, this d-
dependent prediction for γp is consistent with numerical
results of Table I.
In summary, we have found that jamming is infinitely

susceptible to pinning at the jamming transition in the
thermodynamic limit. We have identified a new exponent
associated with power-law divergence of this pinning
susceptibility. The divergent response to pinning, even in
the limit of infinitely dilute pinning, suggests that it should
be fruitful to study the interplay of jamming and pinning at
higher pinning fractions.
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