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Nucleation at the DNA supercoiling transition
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Twisting DNA under a constant applied force reveals a thermally activated transition into a state with a
supercoiled structure known as a plectoneme. Using transition-state theory, we predict the rate of this plectoneme
nucleation to be of order 10* Hz. We reconcile this with experiments that have measured hopping rates of order
10 Hz by noting that the viscous drag on the bead used to manipulate the DNA limits the measured rate. We
find that the intrinsic bending caused by disorder in the base-pair sequence is important for understanding the
free-energy barrier that governs the transition. Both analytic and numerical methods are used in the calculations.
We provide extensive details on the numerical methods for simulating the elastic rod model with and without

disorder.
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I. INTRODUCTION

When overtwisted, DNA forms supercoiled structures
known as plectonemes (as seen on the right in Fig. 1),
familiar from phone cords and water hoses. Single-molecule
experiments commonly hold a molecule of DNA under
constant tension and twist one end; the appearance of a growing
plectoneme can be thought of as the nucleation of a new phase
that can store some of the added twists as writhe. Recent
experiments that hold DNA near this supercoiling transition
have shown that it is not initiated by a linear instability (as it is
in macroscopic objects) but is rather an equilibrium transition
between two metastable states, with and without a plectoneme.
These states are separated by a free-energy barrier that is
low enough to allow thermal fluctuations to populate the two
states but high enough that the characteristic rate of hopping
is only about 10 Hz. Two experimental groups, using different
methods to manipulate the DNA (one an optical trap [1] and the
other magnetic tweezers [2]), have observed this nucleation at
the transition and reported similar qualitative and quantitative
results.

Understanding the rate of plectoneme nucleation at the
supercoiling transition is a useful goal for both biology and
physics. First, the biological function of DNA is tied to its
microscopic physical characteristics, and plectoneme nucle-
ation is sensitive to many of these. The microscopic dynamics
of DNA in water is one such factor: while often theorized as
a cylindrical rod in a viscous liquid, these dynamics have
not been well studied experimentally. The nucleation rate
is also sensitive to the intrinsic bend disorder present in a
given DNA sequence, potentially providing information to
clarify the degree of bend disorder, which is debated in current
literature [3—6]. Popular elastic rod models for DNA can also
be tested. Second, DNA supercoiling provides to physics a
unique testing ground for theories of thermal nucleation. The
theory of thermal nucleation in spatially extended systems
(critical droplet theory) was essentially proposed in its current
form by Langer in the 1960s [7,8] (see Hanggi [9], section IV.F]
and Coleman [10] for the corresponding “instanton” quantum
tunneling analog). Experimental validation of these theories
has been difficult in bulk systems, however, for reasons that
DNA nucleation neatly bypasses. (a) The nucleation rate in
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most systems is partly determined by the atomic-scale surface
tension; in DNA the continuum theory describes the entire
nucleation process. (b) Nucleation in bulk phases is rare (one
event per macroscopic region per quench) and hence typically
has a high energy barrier. Small estimation errors for this
barrier height typically hinder quantitative verification of the
(theoretically interesting) prefactor. In single-molecule DNA
experiments, the plectoneme nucleation barrier is only a few
kT, and indeed rather short segments of DNA exhibit multiple
hops over the barrier—allowing direct measurements of the
transition rate in equilibrium. (c) Nucleation in bulk phases is
normally dominated by disorder (raindrops nucleate on dust
and salt particles); in DNA the likely dominant source of
disorder (sequence dependence) is under the experimentalist’s
control.

As an illustrative example, consider the classic early
study of supercurrent decay in thin wires [11,12]. Here
(a) the superconductor (like DNA) is well described by
a continuum theory (Ginzburg-Landau theory) because the
coherence length is large compared to the atomic scale, but
(c) the rate for areal, inhomogeneous wire will strongly depend
on, for example, local width fluctuations. Finally, (b) the rate of
nucleation is so strongly dependent on experimental conditions
that an early calculation [11] had an error in the prefactor of a
factor of 10'° [12] but nonetheless still provided an acceptable
agreement with experiment.

Reaction-rate theory predicts a rate of plectoneme nucle-
ation related to the energy barrier between the two states.
We perform a full calculation of this energy barrier and of
the rate prefactor, including hydrodynamics, entropic factors,
and sequence-dependent intrinsic bend disorder, to determine
which effects contribute to this slow rate. We calculate a rate
of order 10* Hz, about 1000 times faster than measured experi-
mentally. The discrepancy can be attributed to a slow time scale
governing the dynamics of the measurement apparatus. The
experiments measure the extension by monitoring the position
of a large bead connected to one end of the DNA, and its
dynamics are much slower than those of the DNA strand—thus
the bead hopping rate that the experiments measure is much
slower than the plectoneme nucleation hopping rate that
we calculate. Future experiments may be able to slow the
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FIG. 1. (Color online) The free energy double-well: A schematic
one-dimensional representation of the two metastable states and the
saddle point that separates them.

plectoneme nucleation rate enough that the bead dynamics
are unimportant such that the bead motion would reveal the
dynamic characteristics of the DNA itself.

We begin in Sec. II with the nucleation rate calculation
in the absence of disorder: Sec. II A gives the saddle-point
energy, Sec. IIB gives the technique for calculating the
prefactor, Sec. I C overviews the dynamics of DNA in water,
and Sec. IID gives the transition-state theory calculation
in full. Section III presents the results of the undisordered
calculation, with qualitative explanations of the magnitudes of
the various terms and shows that the results are incompatible
with the experiments. This motivates our discussion of base-
pair disorder in Sec. IV, where we estimate the disorder
renormalization of the elastic constants in Sec. IVB and
formulate and calculate the rates in Secs. [V C and IV D. We
conclude in Sec. V.

We draw the reader’s attention in particular to the ap-
pendices, where substantive, general-purpose results are pre-
sented for numerical discretization and calculations with the
elastic rod model. Appendix B reformulates the Euler-angle
description in terms of more geometrically natural rotation
matrices. Appendix C explains how to transform a DNA
with N segments from the 3N-dimensional Euler-angle or
rotation-matrix space to the 4 N-dimensional (x,y,z,¢) space
of the natural dynamics, and the Jacobians needed to transform
path integrals over the latter into path integrals over the former.
Appendix D discusses the discretization and the rotation-
invariant forms for bend and twist in terms of rotation matrices.
Finally, Appendix E provides our numerical implementation
of randomly bent DNA, mimicking the effects of a random
base-pair sequence.

II. NUCLEATION RATE CALCULATION

A. Saddle-point energetics

To understand the dynamics of nucleation, we must first
find the saddle-point DNA configuration that serves as the
barrier between the stretched state and the plectonemic state.
We model the DNA as an inextensible elastic rod, with total
elastic energy

L
Eelasic = / ds[ﬁﬁm%gm)z}, (1)
0 2 2

where s is arclength along the rod, B and I' are the local
bend and twist deformation angles, respectively, and L is the
contour length of the rod (for more details, see Appendix A; the
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dynamical equations of motion will be discussed in Sec. II C).
Fain and coworkers used variational techniques to characterize
the extrema of this elastic energy functional'; this revealed a
“soliton-like excitation” as the lowest-energy solution with
nonzero writhe [13]. They found that the soliton’s energy
differed from that of the straight state by a finite amount in
the infinite-length limit. This soliton state, depicted at the top
of the barrier in Fig. 1, is the one we identify as the saddle
configuration.

The shape of the saddle configuration is controlled by the
bend and twist elastic constants B and C, as well as the torque ©
and force F applied as boundary conditions. Defining the
lengths

B
a= \/; )

2B
t=(@?=b2)"12 4

we can write the Euler angles characterizing the saddle
configuration as [13]?

2
cosf(s)=1— 2(&) |:1 — tanh? (f)]
14 14

5() = +° +tan- | Zeann (S (5)
b ¢ )

()= — — > 4t ‘[l—’t h(fﬂ
V) =Gy Tt g g )

where s is arclength along the DNA backbone.

For the experiments in which we are interested, L/ > 1
(the soliton “bump” is much smaller than the length of the
DNA) such that we can safely remove the soliton from the
infinite length solution and still have the correct boundary
conditions [6(ZL/2) = 0, such that the tangent vector f points
along the z axis at the ends of the DNA]. In this case, the linking
number in the saddle state is given by [13]

K

1
5, 8L/D) = (=L/2) +¥(L/2) = y(~L/2)]

i W,(1) 6
271C+ 5(T), )

where we have used Eq. (5) and separated the linking number
into twist (the first term) and writhe:

Ws(t):ztan_l étanh L . 7
T ¢ 20

I'They take the infinite length limit, using fixed linking number and
force boundary conditions.

>We find that the analytical saddle configurations from Egs. (5)
do not produce states with precisely zero forces in our numerical
calculations—we attribute this to the effects of discretization. We,
therefore, first minimize the forces using the same procedure used
to find saddle states with intrinsic bending disorder, described in
Appendix E 3.
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To find the saddle configuration’s torque at the supercoiling
transition,” we numerically solve Eq. (6) for t using the
experimentally observed critical linking number K*.*

The energy barrier AE is the difference in elastic energy
between the saddle and straight states at the same linking
number K,.> We find®

8B L nC
AE=—tanh| — | — 27 W |t + — W, |. (®)
l 20 L

Inserting the experimental values listed in Table I into Eq. (8),
we calculate an energy barrier

AE = 5.5kT. 9)

This barrier would seem surprisingly small considering that
typical atomic rates are on the order of 10'* Hz: Using this
for the attempt frequency in an activated rate would give
10373 = 10'! Hz for the hopping rate. The next sections
present a more careful calculation, which shows that the time
scale for motion over the barrier is in fact many orders of
magnitude smaller than 10'3 Hz due to the larger length
scales involved (and even smaller when we calculate the bead

3Note that this is not the same as the torque before or after the
transition.

“We could alternatively use K* = 8.1 from the theory in Ref. [14]
but finding the transition involves the complications of the full
plectonemic state, including entropic repulsion, that are less well
understood than the elastic properties. Using this alternative K}
increases AE by about 1kT', which does not significantly alter our
conclusions.

SWhat about the barrier from the plectoneme to the saddle point?
Since the plectoneme is stabilized by self-repulsion (electrostatic and
entropic), analytic calculations are more difficult. But at forces and
torques where the plectoneme is in coexistence with the straight state,
the total plectoneme free energy is equal to that of the straight state,
and hence the free energy barriers are the same.

6Taking L — oo, this agrees with Eq. (19) of Ref. [13] if their F/L
is replaced with ~/2F B.
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hopping rate) but also that the entropy from multiple available
nucleation sites significantly lowers the barrier.

B. Transition-state theory: The basic idea

When, as in our case, the energy barrier is much larger than
the thermal energy kT, the rate of nucleation is suppressed
by the Arrhenius factor exp (—AE/kT). Going beyond this
temperature dependence to an estimate of the full rate,
however, requires a more detailed calculation. We will fol-
low the prescription from Kramers’ spatial-diffusion-limited
reaction-rate theory [9] to calculate the rate of hopping. The
requirements are that (i) the time scales involved in motion
within the two metastable wells are much faster than the time
scale of hopping, and (ii) (for Kramers’ ‘“spatial-diffusion-
limited” theory) the system is overdamped, in the sense that the
ratio of damping strength to the rate of undamped motion over
the barrier top is large. We check that these requirements are
met for the intrinsic DNA nucleation rate after the calculation
in Sec. II D.

Under these two conditions, Kramers’ reaction-rate theory
tells us that the rate of hopping over the barrier is controlled
only by the rate of motion through the “narrow pass” at the top
of the barrier, since it is much slower than any other time scale
in the system. This means that the hopping rate should be the
characteristic rate of motion across the barrier top times the
probability of finding the system near the barrier top, which,
in terms of the curvature in the unstable direction away from
the saddle point, we can write schematically as

knopping = (Characteristic rate of motion at barrier top)
x (Prob. of being at top) (10)

Energy curvature .
= | ——————— ) (Prob. of being at top). (11)
Damping
It is important to note that, in current experiments, the
measuring apparatus violates condition (1) above. The mea-
surement of the extension is only an indirect readout of the
configurational state of the DNA—it is a measure of the

TABLE 1. Parameter values for nucleation rate calculation.

Symbol Description Value

B Bend elastic constant (43 nm) kT [1]

C Twist elastic constant (89 nm) kT [1]

F Applied force 1.96 pN [1]

kT Thermal energy at 23.5°C 4.09 pN nm

L Base-pair length of DNA strand 740 nm [1]

Ky Critical linking number 8.7[1]

T Saddle-point torque [Eq. (6)]* 25 pN nm

£ Soliton length scale [Eq. (4)]* 13 nm

R Bead radius 250 nm

n Viscosity of water at 23.5°C 9.22 x 107'° pN s/nm?
N Number of segments 740

d Length of segment 1 nm

D DNA hydrodynamic radius 1.2 nm

¢ Translation viscosity coeff. [Eq. (14)] 1.54 x 107° pN s/nm?
A Rotation viscosity coeff. [Eq. (15)] 1.67 x 1078 pN s

“These values were calculated using B,, = B, that is, for disorder D = 0. See Eq. (30).
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position of a large bead connected to one end of the DNA
strand. If the bead has much slower dynamics than the DNA,
then it will set the characteristic rate of motion in Eq. (10). In
Sec. III D, we will find that this is the case for the experimental
numbers we use. Therefore, the rate we will calculate is
a plectoneme nucleation hopping rate that is not the same
as the (slower) bead hopping rate. We will find also that
future experiments may be able to measure the underlying
plectoneme nucleation hopping rate by testing regimes where
the bead hopping rate is not limited by the bead dynamics.

C. Dynamics of DNA in water: The diffusion tensor

To find the rate of motion over the barrier top, we need
to know the microscopic dynamics. We will be treating the
DNA strand as a series of cylindrical segments, parametrized
by the Cartesian coordinates (x,,y,,z,) of one end of each
segment plus the Euler angle v, that controls local twist (see
Sec. C1 for a discussion about the choice of coordinates).
Assuming overdamped motion such that we can neglect inertial
terms, we will write the equations of motion in the form [with
Fu = (Xn,Yu,Zn,¥n), i, j labeling coordinates, and m,n labeling
segments] [9]

dr, mi dE
dt - Mmt,nj drnj s (12)
M is the diffusion tensor, which transforms forces to velocities.

The simplest diffusion tensor produces motion proportional
to the local forces, making it diagonal in segment number n
and coordinate i:

13)

mi,nj

Mdiagonal _ i Smn 8ij fori,j € {x,y,z}
£y fori=j=1
The viscous diffusion constants are set so they reproduce the
known diffusion constant for a straight cylinder of length
B/kT (the bending persistence length) and radius rp =
1.2 nm: [15,16]

_ 27
¢= In[B/(T rp)] (14)
A =2mnry, (15)

swhere the viscosity of water 7 = 9.22 x 107!° pN s/nm? at
the experimental temperature of 23.5°C.

It is important to note that the DNA in this experiment is
attached to a large bead (with radius R &~ 250 nm) that must
also be pulled through the water during the transition.” We take
this into account by setting the translational diffusion constant
for the final segment in the chain according to Stokes’ Law:

MN[,Nj = 8,’j/(67TT]R)fOI'i,j € {x,y,z}. (16)

"It is also known that the presence of a surface (the glass plate
to which the DNA is attached) leads to an enhanced hydrodynamic
diffusion on the bead that depends on the distance z from the surface;
for motion perpendicular to the surface [18], ¢ = ¢[1 + R/z +
R /(2R + 6z)]. For our typical z and R, this increases ¢ for the bead
by a factor of about 1.6, which does not significantly change our
conclusions, so we choose not to include this correction.
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Hydrodynamic effects may also be important, which intro-
duce interactions between segments: as segments move, they
change the velocity of the water around them, and this change
propagates to change the viscous force felt by other nearby
segments. Following Ref. [17], we incorporate hydrodynamic
effects by using a Rotne-Prager tensor for the translational
diffusion, modeling the strand as a string of beads®:

Rotne—Prager
M mi,nj

3 Tmn,iTmn, j 24> Fmn,iFmn, j
Do gy (817 e 4 5 (8 — 3774
for rp, >2a, m#n
= — 9 tn\§.. 4 3 Tmnilmnj 17
Do[ (1 — 55722) 81 + 5552 ] (17)
for Tmn < 261, m # n
Dyéjjfor m=n

fori,j e {x,y,z}, where Dy = (6wna)~" and a is an effective
bead radius chosen such that a straight configuration of Kuhn
length Lx = 2B/kT (with a number of beads L/L k) has the
same total diffusion constant as a cylinder of length L and
radius rp (see Ref. [17]). With the parameters in Table I, we
use a = 0.98 nm.

D. Transition-state theory: Full calculation

In the full multidimensional space inhabited by our model,
the saddle configuration will have a single unstable direction
that locally defines the “reaction coordinate” depicted in Fig. 1.
The direction of the unstable mode can be found numerically
by locally solving the equations of motion Eq. (12). First, the
local quadratic approximation to the energy is provided by the
Hessian

d*E

_—, 18
drm,-drnj ( )

Hmi,nj =
where the derivatives are taken with respect to the unitless
variables ¥ = x/£y,y/lo,z/€o, ¥ (where £y is an arbitrary
length scale’; see also Sec. C 1). Inserting the quadratic form
defined by H at the saddle point into Eq. (12), we then
diagonalize the matrix M Hg,qqe to find the dynamical normal
modes of the system; the single mode u with a negative
eigenvalue —A,, is the unstable mode at the top of the barrier:

Mzi,ijsa}‘fSl;f Upk = —Ap Ujj, (19)

m,

and A, defines the characteristic rate of Eq. (11). We have
checked that we find the correct saddle configuration and
unstable mode u by perturbing forward and backward along u
and numerically integrating the dynamics of Eq. (12)—one

8The Rotne-Prager tensor (also known as the Rotne-Prager-
Yamakawa tensor [19]) is a regularized version of the Kirkwood-
Riseman diffusion tensor (also known as the Oseen-Burgers tensor
[19]) that is modified at short distances such that it becomes positive
definite, producing stable dynamics [20].

°Choosing these units for our variables makes the path-integral
partition function unitless: Z = [ [], Wwe‘m*”"/’w”.

0
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FIG. 2. (Color online) Snapshots along the transition path. After
perturbing the saddle state along the unstable direction u# (bottom
left and top right snapshots), we integrate the equations of motion
in Eq. (12) to follow the unstable dynamics into the two metastable
wells. Here, we use Rotne-Prager dynamics with D = 0, the time step
between frames is 1.5 x 1076 s, and other parameters are as given in
Table 1.

case ends in the straight state well and the other in the
plectonemic state well. This generates the transition path
connecting the two wells, as illustrated in Fig. 2.

To find the probability of being near the top of the barrier
in the multidimensional case, we need to know not only
the energy barrier AE but also the entropic factors coming
from the amount of narrowing in directions transverse to the
transition path,'? which are controlled by the remaining eigen-
values of Hgqqle and the Hessian Hgyaigne Of the straight state.
The full result from spatial-diffusion limited multidimensional
transition-state theory is (to lowest order in kT') [9]

A det Hya 2nkT
Knopping = 2 s OTED) -serir; (ap)
2 | det Hsaddle/(ZT[kTN
or, in terms of the eigenvalues of each Hessian,
4(N—-2) , straight
Ab i A /QRrkT) _
khopping = 2_ H ! e AE/kT. (21)

T | 1_[?(:1\1’*2) )L?addle/(ZJTkTN

19The rate will be slower if the system must traverse a more narrow
“pass” at the saddle point.
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These are correct if each eigenvalue is sufficiently large such
that the local quadratic form is a good approximation where
E < kT.

In our case, we must deal separately with the two zero
modes due to invariance with respect to location s, and rotation
angle p, of the saddle configuration’s bump. Extracting these
directions from the saddle integral, we have

1—14(N—2) A?traigh[/(ZTKkT)

i=1

Ab / ds; >
k = —— Js J _d S
hopping = 5 < "t P | l-[?(zz\;—z) )L?addle /Q2kT)|

> efAE/kT
_ )\_b 27‘[£J J 1 detHstraight e,AE/kT
27 0 " ) 2wkT \ | det’ Hygare ’

(22)

where the Jacobians J; = |d¥;/dss| and J, = |d¥s/dps|, and
det’ represents the determinant without the two zero modes
(but including the unstable mode). Numerically, J; and J,
are calculated using the known forms for derivatives of the
saddle point’s Euler angles o [Eqgs. (5)] with respect to s, and
ps: Js = [[JT ()]~ dai /dsy| and J, = |[J T (F)] ™" das /dps|,
where J is defined in Eq. (C5).

We can now check that we meet the requirements for using
Kramers’ theory set out in Sec. II B. First, we check condition
(1) by looking at the smallest non-negative eigenvalues of
M H. The slowest mode is transverse motion with wavelength
2L, and since the bead has much larger viscous drag than the
rest of the DNA chain, it sets the damping for this motion;
this produces a frequency F/(6xnRL) =~ 600 Hz. The other
modes all have frequencies of order 10* Hz or faster. We
will find that the calculated Kramers rate of hopping lies
between these two time scales—this means that, while the bead
motion is too slow to follow the fast hopping, Kramers’ theory
should correctly give the plectoneme nucleation hopping rate
for a fixed bead position. We can check (2) by comparing
the characteristic rate for undamped barrier motion to the
characteristic damping rate. In the spirit of Sec. III B, we
are dealing with a portion of DNA of length ¢, such that
it has a mass fp, where i = 3.3 x 1072! g/nm is the linear
mass density of DNA [21], and the energy curvature at the
barrier top is on the order of 7*B/¢3. Then the damping
coefficient is ¢ /it = 5 x 10" s~!, and the rate for undamped

V@A B /) /() = 4 x 108 s~1. Since
the ratio of these values is much greater than 1, we are

firmly in the overdamped regime, and Kramers’ rate theory
applies [9].

barrier motion is

III. INITIAL RESULTS AND ORDER-OF-MAGNITUDE
CHECKS

A. Initial results

We calculate the rate in Eq. (22) using numerical methods
described in the Appendices. We will quote the results of
the calculation by looking individually at the factors that
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contribute to the rate. Writing the rate in various simple
forms,

Ao _
khopping — 2_6 AE/kT+S/k (23)
A
— _be—A_'F/kT; (24)
2

S encapsulates the entropic factors coming from fluctuations
in the straight and saddle configurations, and the effective
free-energy barrier AF = AE — TS provides the relative
probability of being near the top of the saddle [9].

For the experimental parameters in Table I, using
Rotne-Prager dynamics,!" we find A,/2m = 4.0 x 10* Hz,
AE/kT =5.5, and S/k =5.8 such that AF/kT = —0.3.
There are two surprises here: (i) the characteristic rate of
motion over the barrier is very slow compared to typical atomic
time scales and (ii) the entropic factors are so large that they
completely erase the energy barrier. We consider these issues
in more detail in the next three sections. We will find that the
slow characteristic rate comes from the larger length scales
involved in the transition and that entropy wins over energy
due to the length of the DNA. (Roughly speaking, since we
calculate a probability per unit length of a plectoneme critical
nucleus, for long-enough DNA there will always be such a
nucleus.)

These rate factors and the corresponding rate per unit length
of DNA are plotted as a function of external force for the two
experimentally measured lengths in Fig. 3.' This rate per unit
length itself depends on the length because (1) the saddle-state
torque T changes with L and (2) the twisting component of
the unstable mode dv is length-dependent at the lengths of
interest.'?

B. Order-of-magnitude estimates of the dynamical prefactor

Typically, rates for atomic scale systems have prefactors on
the order of 10" Hz. Indeed, inserting typical atomic length
scales (A) and energy scales (eV) into the simple rate equation
Eq. (11), and using Stokes’ law for an angstrom sized sphere
in water, the energy curvature is 1 eV/A?, and the damping is
6mnr, = 10713 eV s/A?, producing a dynamical prefactor of
103 Hz.

Why, then, is our dynamical prefactor of order 10*~10° Hz?
It turns out that the relevant length and energy scales for the
DNA supercoiling transition are not atomic. For the saddle
state, we are dealing with length scales on the order of tens of

Using Mdi2zonal [Eq. (13)] produces a comparable unstable mode
rate of A, /27 = 5.6 x 10* Hz. We use the more physical M Rotne—Prager
[Eq. (17)] here and in all further calculations.

12The fact that the entropy erases the energy barrier means that we
are not really allowed to calculate a rate in transition-state theory.
We will later find, however, that the addition of intrinsic bending
disorder increases the free-energy barrier to more reasonable values
and that it does not significantly change the rate. We thus provide the
zero-disorder rate as a function of force as an indication of the likely
force dependence of the final plectoneme nucleation hopping rate.

13We predict that, in an infinite system, dv should die away with a
characteristic length of about 3 x 10° nm, but our longest system is
shorter than this (about 1.4 x 10° nm).
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FIG. 3. (Color online) Transition-state theory plectoneme nu-
cleation hopping rate (bottom) and the factors that contribute to
that rate (top) versus external force. (Blue, lower) Energetic factor
exp(—AE/kT); (red, middle) entropic factor exp(S/k); (green,
upper) dynamic factor A,/2m, in Hz; (black) the final hopping rate
per unit length from Eq. (22). The calculation is performed for the
experimental conditions in Ref. [1], with L = 2.2 kbp (squares)
and L = 4.2 kbp (diamonds). On this log scale, adding the three
distances from the horizontal line at 10° in the top plot produces
the final rate. Note that the entropic factor cancels the slowing from
the energy barrier factor. (Here the calculation is performed without
intrinsic bend disorder, producing small or even negative free-energy
barriers—see Sec. IV.)

nanometers (much larger than single atoms) and energy scales
related to the elastic constants (B/¢ ~ 10 pN nm < 0.1 eV).
To arrive at a better estimate, we can approximate the saddle
energetics from bending energies only. Consider approximat-
ing the saddle state as a straight configuration with a single
planar sinusoidal bump of length ¢z and amplitude A. Since
the elastic bending energy is Ep = % i (%)zds, where the
relevant component of the tangent vector is in this case t =
Ak, cos (k,;s) for wave number k, = /£, the total bending

energy for the bump is Ep = Bzﬁk;‘A2 = ”ZTB %2; this leads to
B

an energy curvature with respect to amplitude of d?Eg /d A> =
”Z;. The viscous damping coefficient corresponding to a
rod of radius rp and length £z moving sideways through
water is £p¢, with ¢ given by Eq. (14). Putting this together,
our back-of-the-envelope estimate for the prefactor is [see

Eq. (11)]

Energy curvature ~ 7*B

p¢
We see that the prefactor is strongly dependent on the length
scale £ g of the bending of DNA in the unstable mode motion.

This length scale should be related to the length ¢ ~ 10 nm,
defined in Eq. (4), characterizing the shape of the saddle

p (25)
Damping
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FIG. 4. (Color online) Unstable mode at top of barrier. (Top)
The four components of the unstable mode eigenvector as a
function of arclength s along the DNA strand. (Bottom) Plot of
dr = \/dx? + dy?* + dz?; the peaks show the locations where the
(Cartesian) motion of the DNA is greatest when traversing the barrier.
Note that the width of the peak is about 75 nm—inserting this length
scale into Eq. (25) produces a prefactor ~10° Hz.

configuration. As shown in Fig. 4, we can check the amount of
DNA involved in the unstable mode motion by looking at the
unstable mode eigenvector. This reveals that a better estimate
for £p is in fact 75 nm; inserting this into Eq. (25) gives
a prefactor ~10° Hz, agreeing with the order of magnitude
found in the full calculation. This simple calculation shows,
then, how the eight orders of magnitude separating the atomic
scale rates from that of our full DNA calculation arise from
the smaller energy scales and larger length scales involved.

C. Understanding the entropic factor

We calculate an entropy S that entirely cancels the energy
barrier A E. What sets the size of S? Comparing Eq. (22) and
Eq. (23), we see that the entropic factor

L 1
S0 = 2 —JJ
¢ <”zo s ”) kT

det H, straight
| det’ H, saddlel

(26)

This factor comes from comparing the size of fluctuations in
the normal modes of the straight and saddle states. We expect
that most of the modes will be similarly constrained in the two
states, except for the two zero modes that appear in the saddle
state. These zero modes create a family of equivalent saddle
points at different locations and rotations along the DNA, each
of which contributes to the final rate. Imagining counting the
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number of equivalent saddle points along 27 radians in p and
L nanometers in s, we can write the entropic factor in the form

2w L

S0 — ’
Lo So

27)

where pp and sy define how far one must move the soliton
bump along p and s to get to an independent saddle point.'*
We expect that py should be about 7 radians (giving two
independent saddle points at each s), and sy should be of the
order of the length scale of the soliton, ¢ & 10 nm, producing
poso ~ 30 nm. And indeed, using S/k = 5.8 found in the full
calculation, Eq. (27) gives poso = 14 nm.'> Thus the size of the
entropic factor makes sense: it is large because there are many
equivalent locations along the DNA where the plectoneme can
form.

D. Estimates of the free-energy barrier and bead dynamics

The effective free-energy barrier in our calculation is
reduced to near zero. This is due to the entropic factor, which
favors the saddle state due to the location and rotation zero
modes.'® With a free-energy barrier this small, though, plec-
tonemes would form spontaneously even at zero temperature,
and with no barrier to nucleation, no bistability would be
observed—indeed, this would violate our original assumptions
necessary for the use of transition-state theory itself. However,
the fact that bistability is observed in experiment [1,2] assures
us that the effective free-energy barrier is in reality nonzero;
furthermore, the degree of bistability can give us a reasonable
bound on the size of the barrier.

Two separate experimental groups have directly measured
the distribution of extensions observed for many seconds near
the supercoiling transition; one such histogram [1,14] is shown
in the top of Fig. 5, and the distributions measured by the
other group [2] appear remarkably similar. Taking the natural
logarithm of this probability density produces an effective
free-energy landscape in units of k7', shown in the bottom of
Fig. 5.

To compare the free-energy barrier apparent from the
extension data to the one from our calculation [defined in
Eq. (23)], there are two subtleties to consider. First, the
measurements with extension near the middle, between the
two peaks, are not guaranteed to correspond to configurations
that are traversing the saddle between the two wells (that is to
say, extension is not the true reaction coordinate). Since adding
extra probability density unrelated to the transition near the
saddle point would lower the measured effective free energy
barrier, we will only be able to put a lower bound on the true

“Planck’s constant plays an analogous role in quantum statistical
mechanics. Also, similar quantities L, and K, are defined in the
supplementary material of Ref. [14].

15 Although this argument explains the order of magnitude of the
entropic factor, it does not simply explain the force dependence: we
find that pyso has a stronger dependence on F than predicted by the
dependence of £ on F'.

1%1n the infinite length limit, entropy will always win, smearing out
the transition.
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FIG. 5. (Color online) Bound on free-energy barrier from exper-
imental extension distribution. (Top) A histogram of measured ex-
tensions near the supercoiling transition, for ' = 2 pN, L = 2.2 kbp
[1,14], clearly demonstrating bistability. (Bottom) Fitting the negative
natural logarithm of the probability density to three quadratic
functions indicates that there is a free-energy barrier separating the
straight state (longer extensions) from the supercoiled state (shorter
extensions) of at least 2 k7.

AF. Second, looking at the transition-state rate equation for
one-dimensional dynamics [9],

A A
_b well e—AE/kT’ (28)

ID =
27 \| Asaadie

we see the entropic factor coming from the ratio of energy
curvatures in the saddle and well states.!” Comparing this to
Eq. (24), we see that the comparable effective free-energy
barrier should be corrected by this entropic ratio such that

AF/kT = AE/kT — 1 Dwet 29)
2 saddle

where the As are the curvatures in the well and saddle states.
As shown in the bottom of Fig. 5, we can use fit parabolas
to estimate this entropic correction, finding 0.5 k7. Using the
heights of the parabolic fits, we find that AE = 2.5 kT such
that our lower bound on the effective free-energy barrier is
about 2 kT.

Finally, we can now check whether the bead dynamics
slow the hopping measured in experiments. The curvature
of the parabola at the top of the barrier in Fig. 5 gives
Asaddle/27 = 3 X 103 pN/nm; this matches with the energy
curvature F'/L that controls the bead’s motion in Sec. IID.

17If the wells become much narrower than the barrier, they are
entropically disfavored, and the barrier-crossing rate increases.
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Thus, as in Sec. II D, the characteristic rate of bead motion
is about 600 Hz—using the lower bound of 2 kT for the
free-energy barrier then gives a bead hopping rate of 80 Hz,
near the observed hopping rate. This provides an explanation
for the discrepancy between the fast rate we calculate and the
slow measured rate: the experimental rate is limited by the
dynamics of the bead.

IV. INCLUDING INTRINSIC BENDS

DNA with a random base-pair sequence is not perfectly
straight but has intrinsic bends coming from the slightly
different preferred bond angles for each base pair. This can
profoundly affect our calculation by both providing pinning
sites for plectonemes and changing the relevant effective
viscosity.

A. History of intrinsic bend measurements

Since thermal fluctuations also bend DNA, the degree
of intrinsic bend disorder is difficult to measure but can
be estimated using specific DNA sequences that are in-
trinsically nearly straight. The contribution to the bend
persistence length from quenched disorder alone (P) can
be found using the relation [3] (B/kT)™' = P! = P! +
P~!': P, is found using an intrinsically straight sequence
(such that P~' = 0) and compared to Py from a random
sequence.

Using estimates of wedge angles along with sequence
information, Trifonov et al. estimated P =216 nm [4,5].
An experiment using cryoelectron microscopy [3] found
P, ~ 80 nm and P ~ 45 nm, giving an intrinsic bend
persistence length of P ~ 130 nm. More recently, a group
using cyclization efficiency measurements found P,, = 49.5 &+
1 nm and P = 48 = 1 nm, from which they conclude that
P > 1000 nm [6], in striking contrast with the previous
estimates.

We include intrinsic bend disorder in our simulations by
shifting the zero of bending energy for each segment by a
random amount, parameterizing the disorder strength by D =
P72 (see Appendix E1 for a detailed description). We are able
to locate the new saddle point including disorder, as illustrated
in Fig. 6, using numerical methods described in Appendix E1.
Due to the disagreement in the literature about the correct value
of P, we treat it as an adjustable parameter and examine the ef-
fects of disorder in a range from P = 1000 nm to P = 130 nm
(D =0.03nm™"/? to D = 0.09 nm~'/?).

B. Renormalization of DNA elastic parameters

It is important to note that the measured elastic con-
stants B and C are effective parameters that have been
renormalized by both thermal fluctuations and intrinsic bend
disorder. Our simulations do not explicitly include ther-
mal fluctuations but incorporate them by using the mea-
sured effective elastic constants. When we explicitly include
bend disorder, however, we must use microscopic constants
B,, and C, adjusted so they create the same large-scale
(measured) effective constants. Nelson has characterized
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FIG. 6. (Color

online) The saddle state with increas-
ing intrinsic bend disorder. From top to bottom, D =
(0,0.02,0.04,0.06,0.088) nm~'/2, corresponding to persistence
lengths P = (00,2500,625,278,130) nm, respectively. The saddle
state is located numerically by searching locally for zero-force
solutions.

the first-order effect of disorder on the elastic constants
[5]; correspondingly, we use microscopic elastic parame-
ters

B

By=——"——-, (30)
1 — B/(kTP)
C, =C. 31)

C. Rate equation with disorder

If the disorder is large enough, plectoneme formation will
be strongly pinned to one or more locations along the DNA.
In this case, the zero modes have vanished, and we find the
total rate by adding the contributions from each saddle point
at each location s;. Using Eq. (20),

- zzﬂ et Htsaight (£ gy~ Evvun/ T
pine I 2n |det Hsaddlel

(32)

We can determine when this approximation will be valid by
checking that fluctuations in the saddle-point position s; are
small compared to the spacing between locations. The size of
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fluctuations in s; can be found in the quadratic approximation

as
d?
As; = [kT [ —E ;
S /dsjz saddle(sj)

d2 dEsaddle(s )
N\/kT/ﬁ[Dd—D’ , (33)
J

where we have replaced Eyqqie by its first-order approximation
at low disorder D (see Appendix E 2). Calculating the second
derivative numerically at the pinning sites using Eq. (ES), we

find %% ~ 0.5 pN/nm. We can thus avoid special
j

treatment of the translation modes when the fluctuations in s;
are much smaller than the average distance between pinning
sites, about 75 nm (see Fig. 14 in Appendix E). Setting As; <
75 nm in Eq. (33) then produces a lower bound on the disorder
strength D (or, equivalently, an upper bound on the intrinsic
bend disorder persistence length P):

D > 103 nm™"?orP < 10°nm. (34)

The experimental estimates for the disorder persistence length
P are typically much smaller than this bound (hundreds to
thousands of nanometers), so the large disorder limit [Eq. (32)]
should be valid for our calculation.

D. Results with disorder

Figure 7 displays our results for the hopping rate and
effective free-energy barrier as a function of the intrinsic
bend disorder strength D, for D in the range corresponding
to experimental estimates of the persistence length P. The
hopping rate is calculated using Eq. (22) at zero disorder and
Eq. (32) with disorder (in this case summing over 10 saddle
points; see Appendix E 3 for details). The effective free-energy
barrier is calculated using Eq. (24) (using the average A, over
the 10 saddle locations). We see first that the nucleation rate is
not significantly altered by the intrinsic disorder, remaining be-
tween 10* and 10° Hz (too fast to measure with current experi-
ments). The effective free-energy barrier, however, rises above
zero with increasing disorder, making our calculation more
physically plausible. Furthermore, note that only the larger
experimental estimate for intrinsic disorder (P = 130 nm;
green dashed line) is consistent with our lower bound on AF
of 2kT.

In Fig. 8, we plot the components that contribute to the rate,
defined in Eq. (23): the dynamic factor A, (green), the entropic
factor exp (S/ k) (red), and the energetic factorexp (—AE/kT)
(blue). To explore the variance caused by sequence depen-
dence, we calculate these factors for five different random
intrinsic bend sequences for a single plectoneme location s
(here, the location s* predicted to have the lowest energy
barrier by first-order perturbation theory; see Appendix E 2).
Depending on the actual degree of disorder, sequence depen-
dence creates a spread in the hopping rate of around one order
of magnitude.

Since the hopping rate is exponentially sensitive to energy
scales at the transition, it will also be important to carefully
consider our knowledge of the true elastic constants B and C.
Our values [B=(43 £ 3 nm)kT and C =(89 &+ 3 nm)kT]
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FIG. 7. (Color online) Hopping rate and effective free-energy
barrier versus disorder magnitude, for conditions in Table I. The green
dashed line corresponds to one experimental estimate of the bending
order persistence length, P = 130 nm [3], and the blue hatched
region corresponds to another, P > 1000 nm [6]. The hopping rate
khopping (top) does not change significantly with the addition of
intrinsic bend disorder. The effective free-energy barrier AF (bottom)
increases with disorder such that only the smaller P is consistent
with the lower bound of 2 k7T found using the distribution in Fig. 5.
The points show results from a single random DNA sequence, and
the error bars are estimates that include uncertainty in DNA sequence
and elastic constants, corresponding to the range of values found in
Fig. 8.

were obtained directly from the same experimental setup
that produced the hopping data [1] and come from fitting
force-extension data to the wormlike chain model [22]. The
uncertainties in parameters correspond to ranges of rate
predictions—we numerically check these ranges by perform-
ing the rate calculation using both the upper and lower limits of
the ranges for the quoted value of the two elastic constants. We
find that changes in the elastic constants mainly affect the rate
through the energy barrier AE [Eq. (8)], which is much more
sensitive to B than to C. The horizontal bars in Fig. 8 show the
results of changing B from its lower to its upper limit; we see
that the uncertainty in the bending elastic constant produces
variations on the same scale as the sequence dependence.

V. DISCUSSION AND CONCLUSIONS

To calculate the rate for plectoneme nucleation at the
supercoiling transition, we first use an elastic rod theory to
characterize the saddle state corresponding to the barrier to
hopping. Using reaction rate theory, we then calculate the
rate prefactor, including entropic factors and hydrodynamic
effects. We also analyze the effect of intrinsic bend disorder,
which simultaneously lowers the energy barrier and increases
the entropic barrier. We find that the experimental rate is in
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FIG. 8. (Color online) Hopping rate factors versus disorder
magnitude for different sequences (for the one best plectoneme
location s* when D > 0 and with F =2 pN, L = 2.2 kbp). Colors
are the same as in Fig. 3. Different solid markers correspond to
five different random seeds (five different base-pair sequences).
Horizontal bars correspond to varying the bend elastic constant B for
one of the sequences by adding and subtracting the uncertainty in its
measurement, (3 nm)k7 . On this log scale, adding the three distances
from the horizontal line at 10° produces the final contribution to
the rate from location s*. (Including multiple plectoneme locations
further increases the entropic factor.) Both sequence dependence and
parameter uncertainty increase the spread of possible rates by about
an order of magnitude.

fact set by the slow time scale provided by the bead used to
manipulate the DNA, with an intrinsic plectoneme nucleation
hopping rate about 1000 times faster than the measured bead
hopping rate.

Further insight is gained by studying the factors that
contribute to the plectoneme nucleation rate. First, the energy
barrier is calculated analytically using elastic theory [Eq. (8)].
Second, the rate of motion at the barrier top can be obtained
in the full calculation, and the order of magnitude (10° Hz)
agrees with the expected rate of motion of a rod in a viscous
fluid when inserting the appropriate length and energy scales.
Third, the entropic contribution to the prefactor significantly
lowers the free-energy barrier in a way directly related to the
saddle configuration’s translational zero mode. Finally, from
the experimental observations of bistability, we know that the
size of the barrier should be at least 2k7T" (Fig. 5).

Exploring possible corrections to the calculation, we
developed a method to include disorder due to the randomness
in the base-pair sequence. This disorder introduces a random
intrinsic bend to the DNA, which we are able to incorporate by
numerically locating the saddle-point configurations. Intrinsic
bends do not significantly change the hopping rate, although
they do increase the effective free-energy barrier (Fig. 7).
Both sequence dependence and uncertainties in the elastic
parameters produce variations in the rate, but they are not large
enough to slow the hopping rate by three orders of magnitude
to the experimental time scale.

We instead attribute the slowness of the hopping to the
large bead used to manipulate the DNA, since the time scale
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FIG. 9. (Color online) Schematic of the double well in extension
and plectoneme length coordinates. Integrating over the “plectoneme
length” dimension would produce the observed bistable free energy
as a function of extension shown in Fig. 5. Note that fixing the
bead position at the saddle extension produces stable states with and
without a plectoneme, with a (smaller) free-energy barrier between
them, producing the fast-time-scale hopping behavior illustrated in
Fig. 10.

controlling the bead’s motion (w, ~ 5 x 10 Hz) is two orders
of magnitude slower than the plectoneme nucleation rate
(khopping ~ 5 X 10* Hz). This separation of time scales means
that the bead moves through an effective free energy potential
that is set by all possible DNA configurations at a given bead
position.'® When the bead is near the saddle extension, the
energy barrier is lower between states with and without a
plectoneme (see Fig. 9), and the microscopic configuration
of the DNA hops quickly between states with and without a
plectoneme at a rate faster than kyopping. But since experiments
measure the bead position, this hopping is invisible, and we see
only the slower hopping of the bead (of order 10 Hz), which
is set by its own viscous drag. The situation is illustrated in
Fig. 10.

If the characteristic rate controlling the bead motion were
instead made faster than the hopping rate, similar experiments
could directly measure the plectoneme nucleation hopping
rate. Some modifications would be relatively easy: we estimate
that increasing the external force F to 5.5 pN (the highest force
at which plectonemes are observed in the current experiments
[23]) would decrease knopping by a factor of 3; decreasing
the length of the DNA to 1 kbp would decrease knopping by
a factor of about 2; reducing the bead’s size to 100 nm would
increase w;, by a factor of 2. These modifications would bring
the two rates closer by about one order of magnitude. We do
not see an obvious way to overcome the remaining factor
of 10 but leave the challenge open to experimentalists. If
this challenge can be met, future experiments may be able
to directly measure the plectoneme nucleation hopping rate,
giving useful information about the microscopic dynamics
of DNA in water and providing a novel testing ground for
transition-state theory.

80ne could imagine explicitly calculating this free energy. Since
this is both complicated and not biologically relevant, we choose not
to do so. Note also that the bead’s free-energy potential differs from
the one depicted in Fig. 1.
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APPENDIX A: THE ELASTIC ROD MODEL

The physical properties of long DNA molecules have been
found to be well-described by linear elastic theory (often
referred to as the “wormlike chain” model, especially in a
statistical mechanics context; see, e.g., Refs. [24,25]). In this
formulation, the DNA is modeled as a thin elastic rod, and the
energy associated with deforming it from its natural relaxed
state is the sum of local elastic bending, twisting, and stretching
energies. The corresponding elastic constants are sensitive to
experimental conditions such as the ionic concentration of
the surroundings; in our experimental setup, the bend and
stretch elastic constants B and S can be measured by fitting
force-extension curves, and the (renormalized) twist elastic
constant C can be measured from the slope of the torque
as a function of linking number. These values are listed in
Table I [1]. For the low forces in the current experiment
(which are in a biologically relevant range [1]), the stretch
elasticity can be safely ignored!’; we thus treat our DNA as
an inextensible elastic rod, with energy as given in Eq. (1).
Furthermore, since all parts of the DNA stay sufficiently far
from touching each other in the saddle state, we also neglect
nonlocal repulsive interactions (which would be required to
stabilize plectonemes), allowing an analytical description of
the saddle state [13].

19At the highest force of 3.5 pN and a stretch elastic constant of
1200 pN [22], we expect a strain of 0.3%, corresponding to an energy
density of 0.005 pN nm/nm. This is much smaller than the typical
bending and twisting energy densities.
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FIG. 10. (Color online) Schematic illustrating relevant time
scales. Since the time scale governing the bead’s motion through
water (2 ms) is much slower than the plectoneme nucleation time
scale (20 us), the bead sets the experimentally measured hopping
time scale (100 ms). When the bead is located at the saddle point, the
free-energy barrier to plectoneme formation is lowered (see Fig. 9)
such that plectonemes nucleate at a rate faster than our calculated
Kknopping- Plectonemes have time to form and disappear many times
(inset) as the bead moves slowly between the two free-energy wells.
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i
FIG. 11. (Color online) Local basis vectors.

APPENDIX B: CALCULATING THE ENERGY OF A DNA
CONFIGURATION

In our numerical calculations, we approximate the contin-
uous elastic rod as a discretized chain of segments, each with
fixed length d. The orientation of each segment is described by
the rotations necessary to transform the global Cartesian axes
onto the local axes of the segment. When minimizing the (free)
energy, we find it convenient to use Euler anglesm(b, 0, and ¥,
since any set of Euler angles specifies a valid configuration.?!
However, writing the energy in terms of differences of Euler
angles can lead to numerical problems near the singularities at
the poles. When calculating energies and forces, we therefore
instead use the full rotation matrix R. R rotates a segment
lying along the z axis to its final orientation; R’s columns are
thus the two normal unit vectors followed by the tangent unit
vector (see Fig. 11):

R™ =T[a]" a3 ] (B1)

iy = (cos ¢ cos Y — cos O sin ¢ sin Y,
— cos Y sin¢ — cos 8 cos ¢ sin Y, sin 6 sin ),
i, = (cos @ cos ¥ sing + cos ¢ siny, (B2)
cos 6 cos ¢ cos Y — sin¢ sin i, — cos ¥ sinf),
f = (sin@sin¢, — cos ¥ siné, cos ).

There are three degrees of freedom in the “hinge” between
each segment that determine the local elastic energy: the
two components of bending B, and B, (along 7i; and 7y,
respectively) and the twist I". In terms of the rotation matrix

A™W = [RM]TRHD, (B3)

which measures the rotation between adjacent segments,
mapping the nth segment’s axes onto those of the (n +
1)th, the bends and twist can be written in an explicitly
rotation-invariant form: to lowest order in the angles (see
Appendix D 2),

B =B = (A — Az)/2 (B4)
B iy =P = (031 —Ai3)/2 (BS)
T = (A — Agp)/2, (B6)

20We use the “z-x-z” convention: v rotates about the original z axis,

0 rotates about the original x axis, and ¢ rotates about the new z axis.
2!Other parametrizations with more degrees of freedom (such as
rotation matrices or Cartesian coordinates paired with a local twist)
would require constraints to ensure a valid configuration with no
stretching.
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where the (n) superscripts have been omitted. The above forms
are useful when the sign of a given component is necessary.??
Otherwise, the following squared forms may be used, which
have the advantage of a larger range of validity away from zero
(see Appendix D 2):

B> =Bl + 85 =2(1 - Ax) (B7)

I2=1-=A; — An + Ass. (B8)

Our energy function is then the discretized version of Eq. (1):
1 .

Eelastic = g ; Bﬂi + Cri, (B9)

or, separating the bend into its two components,
1 = ()72 = )72
Eelastic = ﬂ ; B[ﬁm . n(lm)] + B[,Bm . n(zm)] + CF,E,

(B10)

APPENDIX C: TRANSITION-STATE CALCULATION
DETAILS

1. Changing to the correct coordinates

So far, we have used Euler angles (¢,0,v) to parametrize
the DNA configuration. We can easily calculate energy
derivatives with respect to these coordinates. However, the
hopping rate calculation requires that we do our path integral
in the same coordinates as the dynamics, given in Sec. IIC,
which are defined in Cartesian space with a local twist
[F = (x,y,z,%)]. To efficiently calculate the correct Hessian,
then, we need to convert energy derivatives to 7 space.

First, we note that there is one less coordinate in Euler angle
space: This comes from the inextensibility constraint, which 7
space does not have. Thus we add a coordinate A to the Euler
angles specifying the length of each segment (which will usu-
ally be set to a constant d); we will call this set of coordinates
a = (¢,0,%,A). Also, 7 has N + 1 elements, each defining the
location of one end of a segment, while & has N elements, each
defining the Euler angles and length of each segment. To match
the number of degrees of freedom, we remove center-of-mass
motion and set constant orientation boundary conditions by
fixing the location of the first segment’s two ends and fixing
the last segment’s orientation along %: 7(0) = 6, r(H)=4dz,
F(N + 1) = F(N) + d 2. This gives a total of 4(N — 2) degrees
of freedom.

The Jacobian we would like to calculate is

Ay

S
drnj

-,mi,nj - (Cl)
where m and n label segments and i and j label components.
First writing the Euler angles for a given segment n in terms
of = (x,y,z),,ﬂ - (-xvysz)m

¢ = arctan (—1,/t,) (C2)

22We will use this, for example, when we break the symmetry
between positive and negative bends with the introduction of intrinsic
bend disorder.
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6 = arccos (t./\/12 4 12 +12) (C3)

A= [t2+1+12 (C4)

We then take derivatives with respect to Cartesian coordinates
to produce the ¢, 6, and A rows in the Jacobian. A subtlety
arises in finding expressions for derivatives of the Euler angle
Y with respect to Cartesian coordinates. We would like the
derivative to correspond to rotating the adjacent segments to
accommodate the change in the location of their connecting
ends. Due to the way in which Euler angles are defined,
this rotation does not in general leave i unchanged, as one
might naively expect. We therefore obtain the derivatives
of ¢ by first writing the rotation matrix corresponding to
infinitesimal motion in Cartesian space and then calculating
the corresponding change in . This produces the nonzero
terms in the 1 row of J; below.
In the end, we have

Jmn = Smn[Jl (m) + J2] - (Sm,n-‘rl Jl (m), (CS)

where (including the names of the components for clarity)

X y Z )

¢ [—4/p ty/p 0 0

Jm=" Lt/ pA* nr/pA* —p/A* 0
W=y e /pPA —ta/p*A 0 0

A Lt /A ty/A t./A 0

(C6)

p=/A>—12 J, =8y, and all the components are eval-
uated at location n. We use this Jacobian to transform forces
with respect to angles @& to forces with respect to 7, which are
then used to assemble the Hessian for use in calculating the
unstable mode and the entropic factors for the transition-state
calculation in Sec. II D.

2. Other subtleties

Since derivatives in 7 space will in general couple to A
(changing the lengths of segments), we also include an extra
stretching energy:

S
Estretching = 5 Z(An - d)2 (C7)

This avoids problems with extra zero modes corresponding to
changing A. We may choose the stretch elastic constant S to
match DNA (in which case it should be about 1000 pN [22]);
but since S is so large compared to the other elastic constants,
the stretching modes have much higher energy and are the
same for the straight and saddle configurations, canceling in
the rate equation [e.g., Eq. (21)]. Thus we find that our results
are insensitive to the exact value of §, as expected.

As can be seen by inserting 7 =(0,0,1) into Eq. (C6),
there are singularities in the Jacobian when 7 points along
the z axis. This corresponds to the singularity in the Euler
angle representation at the poles (when 6 = 0, ¢ and V are
degenerate). This is a problem for our formulation because
our usual boundary conditions hold the ends in the Z direction.
As pointed out in Ref. [26], a simple way to avoid this
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problem is to rotate the system away from the singularity
(rotating the direction of the force as well). When performing
calculations that require the Jacobian, we therefore rotate the
system about the y axis by an angle 8 and modify the external
force term in the energy from —F cos6 to —F(cos B cos6 +
sin B sin @ sin ¢). This more general formulation also permits
an explicit check that our energies and derivatives are rotation
invariant.

The Hessian is constructed by taking numerical derivatives
of forces, which can be calculated analytically. This gives
the Hessian as a 4(N —2) x 4(N — 2) matrix, which is
diagonalized to find eigenvalues for the entropic calculation
[Eq. (21)]. At zero disorder, the zero modes must first be
removed; numerically, we find that the zero modes show up
conveniently as the two modes with smallest eigenvalues, a
few orders of magnitude smaller than any others.

APPENDIX D: NUMERICAL DETAILS
1. Choosing d

As shown in Fig. 12, we must be careful to choose our
discretization length (the length d of each segment) such
that our energy calculations are sufficiently accurate. We
can check the accuracy of the discretized energy calculation
by comparing with the analytical energy barrier in Eq. (8).
Choosing d = 1 nm (about 3 DNA base pairs) produces energy
barriers within 0.2 kT of the continuum limit (corresponding
to 20% changes in the hopping rate) with reasonable memory
and time expenditure.

2. Deriving rotation-invariant forms for bend and twist

The amount of local bend and twist can be measured by
differences in the rotation matrices of adjacent segments. We
would like expressions in terms of the rotation matrices that

—_
i~

—_
[N
—_
=
T

N

—_

Error/kT
=

H
9
18

1073

10! 102 10° 104
N

=
=)

=

(Error in energy barrier) /kT'
o
co

200 300 400 500 600 700 800 900 1000
N

FIG. 12. (Color online) Choosing d. Error in the discretized
energy barrier [comparing to the exact result in Eq. (8)] as a function
of the number of discrete segments N (for L = 740 nm and other
parameters as in Table I). (Inset) The same data on a log-log plot.
The green (upper) line has a slope of —2, showing convergence
proportional to 1/N2. We choose N = 740 (d = 1 nm) as a good
trade-oft between accuracy and required computational resources.
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are correct to lowest order in the bend or twist angle and that
are explicitly rotation invariant. Our procedure will be to form
rotation invariant terms and, writing them in terms of Euler
angles and their derivatives, check what they measure in terms
of bend and twist.

We can first write the bend and twist in terms of derivatives
of the local basis vectors (see Fig. 11) or Euler angles [13]:

B2 =[1* = ¢*sin0 + 6> (D1)

T2 =[x n)-71* = ($cosf + ). (D2)

We then form rotation-invariant terms from rotation matri-
ces and compare their Taylor series expansions with respect to

bend and twist angles to Eq. (D1) and Eq. (D2). First checking
Tr{[R"D — RWIT[R™+D — R}, we find that

2 2 _ 1 (n) (n+1) (n) (n+1)
p+I" = E[Raﬁ - Rutﬁ ][Rotﬁ - Raﬂ ]
=3—-Ai— Ay — Az, (D3)

Next we check the dot product of the difference in the tangent
unit vector £:

B = st -5t = [RY — R%GTVI[RY — RU™]
=2(1 — As3). (D4)

Equation (D3) and Eq. (D4) produce Eq. (B7) and Eq. (BS).

To find expressions for signed 8 and I', we notice that
the above use only the diagonal elements of A; we can also
form rotation invariant terms using the off-diagonal elements,
producing (with the Levi-Civita symbol ¢)

B = €1y50,5/2 = (A3 — A3)/2, (D3)
B2 = €2y5Ay5/2 = (A31 — A13)/2, (D6)
['=e3,50)5/2 = (A1 — A21)/2. (D7)

We can see the benefit of using the squared forms [Eq. (B7)
and Eq. (B8)] by checking their dependence on pure bending
or twisting rotations. For example, with two segments differing
only in twist, such that ¥"*D = ¢ 4+ we find that
Eq. (B6) and Eq. (B8) produce, respectively,”’I" = sina and
' = 2(1 — cosa). Plotting I'? for the two cases (Fig. 13)
demonstrates that they have the same curvature near « = 0 (by
design), but using the nonsquared version in Eq. (B6) leads to
a second minimum at o = : we find that, especially when
including intrinsic bend disorder, this can cause the numerical
minimizer to allow ¥ to slip by 7 to the next minimum,
unphysically removing linking number. For this reason, we
use the squared forms unless otherwise necessary.

APPENDIX E: INCLUDING INTRINSIC BEND DISORDER

A. Setting the disorder size

As discussed in Sec. IV, we need to include DNA’s intrinsic
bend disorder to understand the energetics of the saddle-point

ZThese are straightforwardly evaluated by noting that, e.g., A}, =
A()  A(ntl)
iy
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FIG. 13. (Color online) Checking bend and twist expressions.
(Top) Two different rotation-invariant approximations to the bend
or twist angle squared (green dash-dotted line and red dotted line)
compared to the actual angle squared (blue, solid). Using the
nonsquared version (green dash-dotted line) leads to a smaller range
of validity. (Bottom) Typical magnitude of bend and twist angles for
aplectoneme (for /' = 2 pN, d = 1 nm). Note that the bend and twist
angles stay within the region where either approximation should be
valid.

barrier crossing. To accomplish this, we shift the zero of the
elastic bend energy for each hinge; generalizing Eq. (B10),

B
Epend = —

2d [(Bm - Ubgm) : ﬁ(]m)]z

+ [(,ém - O‘bgm) : ﬁ(zm)]2~
(EL)

For each i, we choose each of the two components of £ from a
normal distribution with unit standard deviation. We then need
to relate oy, to the resulting intrinsic bend persistence length P.
The persistence length is defined by the decay of orientation
correlations:

(£(0) - (s5)) = (cosO(s)) = e~*/P, (E2)

where 6(s) is the angle between segments separated by
arclength s [3]. For small s [and thus small 6(s)], Eq. (E2)
becomes

-ty =1-2 (E3)
—=(0@s))=1——.
2 P

At zero temperature and zero force, the size of (9(s)?) is set
by the intrinsic bends &,, only; we are doing a random walk in
two dimensions with one step of root-mean-square size /20y,
taken for every segment of length d. Thus (6(s)%) = 2%0172,
which when inserted into Eq. (E3) gives the desired relation

041924-14



NUCLEATION AT THE DNA SUPERCOILING TRANSITION

between persistence length P and the size of individual random
bends oy,:

P=—. (E4)
%

We will also define a convenient parameter D controlling

disorder strength that is independent of the segment length

d:

op
D=— E5)
Va (
such that
P=D72 (E6)

B. First-order changes in the energy barrier due to disorder
How does disorder change the energy of the saddle point?
Since the disorder changes only the bending energy, we can
find the lowest-order change from the zero disorder energy
by taking the derivative of Eq. (E1) with respect to disorder
strength o}, at o, = 0:

dE _ dEpen
dO’b h dO’b

B e ~A(mM\ (= A(m
= D A
op= m

> mN\ (= ~(m B 2 Y
+ (B 257) En - 13") = —— B &

(E7)

(7;7=0

or, in terms of disorder strength D defined in Eq. (ES),
dE B - o
=—ﬁ;ﬂm-sm. (ES)

dD
We will specifically be interested in the derivative of the saddle
configuration’s energy, which will depend on its location s and
rotation p. Noting that p will simply rotate the bend vector 8,
we can write down the form of the dependence on p:

dEsaddle(suO)
dD

D=0

= —A(s)cos[p — p*(s)]
D=0
(E9)

for some A(s) and p*(s). A(s) gives the maximum derivative
(sensitivity to disorder) at position s, and p*(s) is the preferred
rotation of the saddle that gives the maximum (negative)
derivative. We can find A(s) and p*(s) numerically using the
derivative calculated at two values of p separated by 7 /2:

Esaddle (S ’ 10) =

AG) = \/1Epygqe.00P + [Eggue(s.1/DP (EL0)

(E11)

E a1 (8.77/2
p*(s) = arctan [M} '

E;addle(s ,0)

Figure 14 shows a typical A as a function of s. Figure 15
compares the first-order approximation to the saddle energy at
the location s*, given by DA(s™), to Eggqe calculated numer-
ically by zeroing forces (see Appendix E 3). We see that the
approximation correctly predicts the scale of the change for
the disorder sizes in which we are interested but overestimates
the change by many kT for large disorder. We therefore use
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FIG. 14. (Color online) Typical sensitivity of saddle energy
to bending disorder strength as a function of position [A(s), as
defined in Eq. (E9)], for L = 740 nm. Peaks indicate positions where
plectoneme nucleation is energetically favored. For DNA, the bending
disorder strength D is estimated to be of order 0.01 to 0.1 nm~'/?;
thus we expect pinning to individual sites (with barriers on the order
of kT) but also that multiple plectoneme locations will contribute
to the final hopping rate in Eq. (32) (with multiple locations having
energy within about 1 k7).

the first-order approximation to find the likely locations of the
lowest energy saddle points [at the peaks of A(s)], and then
zero the forces numerically.

To estimate the typical size of this sensitivity to disorder, we
first note that the bend magnitude for the saddle configuration
is [inserting Egs. (5) into Eq. (D1)]

> 2d s
| Bsaddie| = 7860h<z>. (E12)

Esa(l(lle/ kT

0.00 0.01 0.02 003 004 005 006 007 008 0.09
Disorder strength D (nm~'/?)

FIG. 15. (Color online) The lowest saddle energy as a function
of disorder strength D. The blue dots are the true saddle energies,
calculated by numerically zeroing forces on the saddle configuration.
The green line represents the first-order approximation given by
D A(s*); we see that the approximation correctly predicts the scale of
the change but overestimates it by many k7 at large disorder.
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Approximating the function sech(x) as 1 in the range —2 <
x < 2 and 0 elsewhere, Eq. (E8) becomes

4¢/d

dEsadd]e 2d

— N (E13)
dD |py  d ¢ ;fm

for randomly distributed & with unit variance, which produces

dEsaddle 2 %4_3
dD N

Inserting B = (43 nm)k7T and ¢ ~ 10 nm gives a typical
sensitivity of about (50 nm'/?)kT, agreeing with the scale
found in the full calculation, as shown in Fig. 14.

(E14)

PHYSICAL REVIEW E 83, 041924 (2011)

C. Finding saddle points

With large disorder, the saddle points must be found
numerically. We start by estimating the set of saddle locations
{s*} and rotations {p*} using first-order perturbation theory
(Appendix E2). We find the local maxima of A(s) using a
one-dimensional local search method starting from a set of
points spaced by the saddle configuration length scale £. This
gives {s*}, from which {p*} can be found using Eq. (E11).
For each s* and corresponding p*, we create a zero-disorder
saddle configuration [Eqs. (5)], and then use this as the starting
point for a multidimensional equation solver (scipy.fsolve)
that numerically locates the saddle with disorder by finding
solutions with zero net force on each segment.
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