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Behavior of extended DNA with fluctuations

The behavior of extended DNA is appreciably affected by thermal fluctuations. For the applied forces in the range
considered in this experiment, we can use the following fixed-torque free energy:
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where the last term is the lowest-order correction due to fluctuations [1].
The fluctuations decrease the extension:
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(The −1/32 in Eq. (1) comes from an approximation to a higher-order correction [1].)
Expanding the last term of Eq. (S1) to match the form of a “zero-temperature” chain, we can instead write

G(τ)
L

= −Feff −
τ2

2Ceff
, (S3)

where the effective force and twist elastic constant are given by
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B
(S4)
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Note that Ceff is a function of force: there is less “softening” at higher forces. In the experiments of Forth et al.,
the renormalized Ceff was measured directly via the torque. However, the range of applied forces was small enough
that Ceff did not change appreciably, and a single value of C = (89 nm)kT was quoted. Here, we also use the same
renormalized but force-independent value for C.

Changing Eq. (S3) to a fixed-linking-number expression via a Legendre transformation, we arrive at our expression
for the straight state free energy (also found in Ref. [2]):
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C
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)2

L− FeffL. (S6)

Derivation of linear expressions for FCS and zCS

We first write down the linear scaling of the free energy and extension with linking number. For any δK that does
not take the system out of the CS,

FCS(K + δK,L) = FCS(K, L) + 2πτδK; (S7)
zCS(K + δK,L) = zCS(K, L)− qδK, (S8)

where q is the slope of extension versus linking number and τ is the CS torque. Next, to find the scaling with
increasing L, we imagine adding a piece of stretched DNA of length δL at the coexisting torque (keeping the system
in a stable CS). This also adds an amount of linking number that scales with δL, δK[δL] = τδL/(2πC), which we
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will have to unwind to get back to the original K. First adding the piece of stretched DNA, and then unwinding to
find the dependence on L only, we find

FCS(K, L + δL) = FCS(K, L)−
(

τ2

2C
+ Feff

)
δL. (S9)

Similarly for the extension, [using ξ(τ) from Eq. (1)]

zCS(K, L + δL) = zCS(K, L) +
(
ξ(τ) +

τ

2πC
q
)

δL. (S10)

Combining Eqs. (S7) and (S8) with Eqs. (S9) and (S10), we can write the free energy and extension of the CS as
linear in K and L, each with a slope and an intercept:

FCS(K, L) = F0 + 2πτK −
(

τ2

2C
+ Feff

)
L; (S11)

zCS(K, L) = −z0 − qK +
(
ξ(τ) +

τ

2πC
q
)

L. (S12)

Note that C and ξ(τ) are known from experiments on stretched DNA, leaving the four anticipated force-dependent
quantities to be described by a theory of supercoiling: τ , q, F0, and z0.

Self-repulsion

It is essential to include a repulsive force between sections of the DNA that come near each other; without it, the
rod can pass through itself, unphysically removing linking number in the process and preventing the formation of
plectonemes. The physical origins of repulsive forces in DNA include both electrostatic and entropic effects. We use
discretized versions of the repulsive interactions described in Ref. [3].

Electrostatic forces are modeled using a Debye-Huckel screened Coulomb interaction:

ESC(r) =
|e−νd|2

ε

e−r/λD

r
, (S13)

where ν = 8.4 nm−1 is the effective number of electron charges per unit length, λD = 0.8 nm is the Debye screening
length, and e2

−/ε = 2.9 pN nm2. (These values are dependent on the ionic concentration of the buffer, and were picked
to match with ≈ 150 mM NaCl.)

The entropic free energy of a helical structure is calculated in Ref. [3], coming from the increasing confinement of
fluctuations in more tightly coiled structures. We use the same free energy, written as a pairwise interaction between
segments:

Eent(r) =
25/3

√
πΓ(1/3)

Γ(5/6)
kTd2

(B/kT )1/3r5/3
. (S14)

Since we also include straight parts of the DNA that should not have the same entropic interaction, we cut off the
entropic potential at a distance of 2B/kT , where the argument for the form of the potential breaks down [3].

Extra terms in the circular end-loop model

Extra terms in the free energy that we have not considered would change the predictions of the circular end-loop
model — these could include electrostatic interactions, entropic effects, etc. In fact, we can solve for the properties that
such an extra free energy term (call it Fextra) would need to have in order to make the model match the experimental
data.

Adding this unknown term, we have

Fl(Kl, Ll) =
C

2Ll
[2π(Kl −Wrloop)]2 + (2π)2

B

2Ll
+ Fextra(Kl, Ll). (S15)
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FIG. S1: Entropic corrections from the literature do not help the circular end-loop model fit the data. The dots show the
required free energy contribution Fextra (top plot) and its derivative with respect to end-loop circumference dFextra/dLl (bottom
plot) that would produce an F0 and z0 that match with the experiment (with Wrloop = 0.8). Bars on the top plot show the
required derivative, the value of which is shown on the bottom plot. Vertical grey lines show one standard deviation error
bars. Note especially the inability of any of the proposed entropic terms to match the well-constrained negative derivative at
large end-loop circumferences (which happen at low force in the experiment); this produces Ll (and thus z0) that are too small
at low forces. A lessening of the effective force felt by the end-loop of about 0.5 pN would help agreement, but none of the
proposed corrections provides this.

Since the terms we will imagine adding will not depend on Kl, we will assume that Fextra is only a function of Ll.
Setting the force and torque equal to the coexisting state values (dFl/dLl = −(Feff + τ2/(2C)); dFl/dKl = 2πτ) then
gives

L∗l = 2π

√
B

2(Feff + dFextra/dLl)
(S16)

K∗
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τL∗l
2πC

+ Wrloop. (S17)

We now use the fact that

F0 = F∗
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τ2

2C
)L∗l − 2πτK∗

l (S18)

z0 = ξ(τ)L∗l − q
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)
(S19)
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to solve for the necessary values of Fextra and dFextra/dLl in order to match with the experimental F0 and z0. We
find

Fextra = F0 + 2πτWrloop − FeffL∗l −
2π2B

L∗l
(S20)

dFextra

dLl
=

2π2B

L∗2l

− Feff , (S21)

where

L∗l =
z0 + qWrloop

ξ(τ)
. (S22)

These required properties of the added free energy term are plotted in FIG. S1 for Wrloop = 0.8.
We can then test whether different possible extra free energy terms would match the requirements. Here we try

four possibilities taken from the literature. First, there is electrostatic repulsion coming from like charges on opposite
sides of the DNA circle. This looks like (using the Debye-Huckel formulation from Ref. [3])

Felectrostatic
extra = kT lBν2K0

(
Ll

πλD

)
Ll (S23)

and is plotted in yellow in FIG. S1. Second, Odijk calculates the free energy for a circular DNA loop and finds terms
in the free energy [4] [Eq. (2.13)]

FOdijk
extra = kT log

2πL

B/(kT )
− (kT )2

8B
L; (S24)

this is plotted in purple in FIG. S1. Third, a similar term is found by Tkachenko in solving for the J-factor for
unconstrained DNA cyclization [5] [Eq. (4)]:

FTkachenko
extra = 5kT log

L

B/(kT )
; (S25)

this is plotted in green in FIG. S1. Finally, we could imagine that entropic contributions from confinement similar
to the one used by us for our elastic simulation could be important. Although the form was derived for a different
configuration (superhelical DNA), we could try it to see if something similar might help. Integrating the confinement
entropy from Marko and Siggia [3] over a circle gives

Fconfinement
extra =

kT

(B/kT )1/3(L/(2π))2/3
L, (S26)

which is plotted in blue in FIG. S1.
Although these possible terms are only initial guesses at the possible corrections due to entropic and other effects,

we see that they are all qualitatively unable to help, especially at long loop lengths, which is where the circular loop
model fares worst at fitting the data.

Calculating entropic contributions from fluctuations in plectoneme location, length, and linking number

To investigate entropic effects, we would like to find the free energy of states with multiple plectonemes [6], including
fluctuations of linking number and length both within individual plectonemes and moving among different plectonemes.
We can achieve this by calculating the partition function for a state with n plectonemes, identifying unique states by
the plectoneme positions si, the plectoneme lengths Lpi, and the plectoneme linking numbers Kpi:

Zn(K, L) =
1

Ln
0

∫ L

0

ds1

∫ L

s1

ds2...

∫ L

sn−1

dsn (S27)

1
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∫ L
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dLpn

1
Kn

0

∫ ∞

−∞
dKp1

∫ ∞

−∞
dKp2...

∫ ∞

−∞
dLKn

exp [−Fn(L,K, Lpi,Kpi)/kT ],
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where we have neglected the complications coming from the possibility that plectonemes could overlap. The constants
L0 and K0 set the length change and linking number change, respectively, that produce an independent state. Since
we are only concerned with the free energy difference between the straight state and coexisting state, these constants
would be set by the change in entropy of the degrees of freedom in the straight state that are lost to the collective
modes we are integrating over in the coexisting state.

The first line of integrals represents the choice of where to put each plectoneme, which does not change the free
energy (Fn does not depend on si). We therefore simply get a factor of Ln, divided by n! since plectonemes are
indistinguishable:

Zn(K, L) =
(L/L0)n

n!
1

Ln
0Kn

0

∫ L

0

∏
i

dLpi

∫ ∞

−∞

∏
i

dKpi exp
[
−Fn(L,K, {Lpi}, {Kpi})/kT

]
. (S28)

Next we need to know the free energy of coexisting states that are away from the equilibrium plectoneme length
and linking number. Assuming that the plectoneme free energy density is quadratic in linking number density (as in
Marko’s model [2]), this turns out to be

Fn(L,K, {Lpi}, {Kpi}) =
n∑

i=1

C

2

(
1

1 + v

)(
2π

Kpi

Lpi

)2

Lpi (S29)

+
C

2

(
2π

K −
∑

Kpi

L−
∑

Lpi

)2

(L−
∑

Lpi)− Feff(L−
∑

Lpi) + nµ,

where µ is the chemical potential for plectoneme ends and v ≡ 2CFeff/τ2.
We first evaluate the integrals over Kpi, which amount to n Gaussian integrals; this gives

Zn(K, L) =
(L/L0)n

n!
1

Ln
0Kn

0

πn/2

∫ L

0

∏
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dLpi

 ∏
i Lpi/c1

1 + (1 + v)
P

Lpi

L−
P

Lpi

1/2

(S30)

exp (− 1
kT

[
C
2 (2πK)2

L−
∑

Lpi + (1 + v)(
∑

Lpi)
− Feff(L−

∑
Lpi) + nµ

]
).

Now changing to unitless variables xi = Lpi/Lp and y = Lp/L, and rearranging to move all the factors that depend
on the sum of the plectoneme lengths y into the exponent, the term in the exponent becomes

f(y) =
1

kT

(
C
2 (2πK)2/L

1 + vy
− FeffL(1− y) + nµ

)
+

1
2

log
(

1 + vy

1− y

)
, (S31)

and we have

Zn(K, L) =
(L/L0)n
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∏
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=
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xi δ
(∑

xi − 1
) exp [−f(Lp/L)]

=
(L/L0)2n(L/c1)n/2

Kn
0

πn/2 γn

n!

∫ 1

0

dy exp [−(f(y)− 3n− 2
2

log y)].

The integral in large square brackets (characterizing fluctuations in the individual plectoneme lengths that do not
change the total plectoneme length) gives a numerical constant γn = πn/2/(2nΓ(3n/2)) = 2b

n−1
2 cπb

n
2 c/(3n− 2)!!. To

evaluate the y integral over total plectoneme length, we make a Gaussian approximation [noting that the total length
is well-constrained by f(y)]. Then the fluctuations in the (fractional) total length of plectonemic DNA are of size

σy =

 d2

dy2

[
f(y)− 3n− 2

2
log y

] ∣∣∣∣∣
y∗

−1/2

, (S33)
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where y∗ is the equilibrium value of y, and the derivative is

d2

dy2

[
f(y)− 3n− 2

2
log y

]
=

1
2

 1
(1− y)2

+
3n− 2

y2
−

v2
(
1− 8π2CK2

LkT (1+vy)

)
(1 + vy)2

 . (S34)

Without the entropic corrections, the equilibrium length is y∗ = (u − 1)/v, where u = 2πCK/(τL). We can safely
use this value if we are far from y∗ = 0 and y∗ = 1, and get

σy =
√

2
v

(
1
u

2τ2L

kTC
− 1

u2
+

1
(v − u + 1)2

+
3n− 2

(u− 1)2

)−1/2

. (S35)

[Since we are usually near y∗ = 0 at the transition, to calculate the length-dependence shown in Fig. 4 (left), we
approximate y∗ numerically and use Eq. (S33) instead of Eq. (S35).] In the end, we have

Zn(K, L) =
(L/L0)2n(L/c1)n/2

Kn
0

πn/2 γn

n!

√
2πσy

(
u− 1

v

)(3n−2)/2(
v − u + 1

uv

)1/2

exp [−F(K, L)/kT ]. (S36)

The full partition function for all plectonemic states is then

Z(K, L) =
∞∑

n=1

Zn(K, L) (S37)

(which we can numerically approximate by truncating the series at a reasonable n), such that the coexisting state free
energy is given by FCS(K, L) = −kT log Z(K, L). For the experimental values, we find that only the single plectoneme
n = 1 state contributes significantly near the transition.

Independence of results on entropic effects

In the paper, we have set the entropy from the previous section to zero (S = 0) for most of the calculations. How
would we expect that including S would change any of the results?

First, S would create a shift between the experimental F0 and the predictions from models that do not include
fluctuations. We find that this shift is largely independent of force, and is mostly dependent on L0. We do not
currently have a way of calculating L0, but we expect that it should be on the order of the persistence length of DNA,
about 50 nm. We find that setting L0 to about 100 nm makes the prefactor equal to 1, or equivalently sets S = 0. If
we assume that L0 is about equal to the persistence length of DNA, we expect that we would need to shift the model
predictions by at most about kT log 2 ≈ 5 pN nm.

Second, we find that S has a logarithmic dependence on L. This means that we expect F0 to decrease by something
on the order of kT log(L2/L1) when we increase the length from L1 to L2. For the experimental lengths (with
L2 ≈ 2L1), this again corresponds to a shift of about 5 pN nm.

Shifting F0 by these amounts would slightly change only the theory curves for F0 (about 5 pN nm), ∆z (about 10
nm), and ∆τ (about 1 pN nm).
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