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Noise in disordered systems: The power spectrum and dynamic exponents in avalanche mode

Matthew C. Kuntz* and James P. Sethna†

LASSP, Department of Physics, Cornell University, Ithaca, New York 14853
~Received 15 December 1999; revised manuscript received 21 July 2000!

For a long time, it has been known that the power spectrum of Barkhausen noise had a power-law decay at
high frequencies. Up to now, the theoretical predictions for this decay have been incorrect, or have only
applied to a small set of models. In this paper, we describe a careful derivation of the power spectrum exponent
in avalanche models, and in particular, in variations of the zero-temperature random-field Ising model. We find
that the naive exponent, (32t)/snz, which has been derived in several other papers, is in general incorrect for
smallt, when large avalanches are common. (t is the exponent describing the distribution of avalanche sizes,
andsnz is the exponent describing the relationship between avalanche size and avalanche duration.! We find
that for a large class of avalanche models, including several models of Barkhausen noise, the correct exponent
for t,2 is 1/snz. We explicitly derive the mean-field exponent of 2. In the process, we calculate the average
avalanche shape for avalanches of fixed duration and scaling forms for a number of physical properties.
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I. INTRODUCTION

Many physical systems, from superconductors1 to
sandpiles2 to martensitic shape-memory alloys3 produce
noise with power-law characteristics. The noise in many
these systems can be modeled in terms of avalanches.
example of this is Barkhausen noise in ferromagnetic m
rials. Many ferromagnetic materials magnetize not smoot
but in jumps of all sizes. The resulting ‘‘noise’’ is characte
ized by power laws. For example, the distributions of a
lanche sizes, durations, and energies are all seen to be p
laws. Recently, it has been proposed that this noise is a re
of either a disorder induced critical point,4–9 or self-
organized criticality.10,11 Several variations of the zero
temperature random-field Ising model have been propose
model this critical behavior.

One of the main power laws which must be explained
these models are to be successful is the power-law beha
of the power spectrum. Actually, the power spectrum exh
its two different power laws, one for low frequencies, a
another for high frequencies. The high-frequency power l
Pav(v), reflects the dynamics within avalanches, and
low-frequency power law,Pcorr(v), reflects the correlations
between avalanches. Simulations of various random-fi
Ising models have been fairly successful in modeling
high-frequency scaling of the power spectrum, but theor
cal predictions of this scaling have been absent
wrong.5,8,9,12,13~See the discussion in Sec. V for a descr
tion of several previous calculations.! In this paper, we will
derive an exponent relation for the high-frequency pow
spectrum which applies to several variations of the rando
field Ising model. Large portions of the derivation shou
also apply to any critical avalanche model.

II. THE MODELS

Several variations of the zero-temperature random-fi
Ising model have been proposed to explain the power law
Barkhausen noise. They are differentiated on the basis o
presence of long-range forces, and the details of the dyn
PRB 620163-1829/2000/62~17!/11699~10!/$15.00
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ics. In a separate paper, we examine in detail the differen
between these models.14 A general Hamiltonian for the mod
els is

H52(
nn
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Jinf

N
si

2(
$ i , j %

Jdipole

3 cos~u i j !21

r i j
3

sisj , ~1!

where si561 is an Ising spin,Jnn is the strength of the
ferromagnetic nearest-neighbor interactions,H is an external
magnetic field,hi is a random local field,Jinf is the strength
of the infinite range demagnetizing field,10 andJdipole is the
strength of the dipole-dipole interactions. The critical exp
nents of the power laws are independent of the particu
choice of random-field distributionsr(hi) for a large variety
of distributions. Most commonly, a Gaussian distribution
random fields is used, with a standard deviationR. ~When we
refer to the strength of the disorder, we are referring to
width, R, of the random-field distribution.!

Two different dynamics have been considered. The firs
a front propagation dynamics in which spins on the edge
an existing front flip as soon as it would decrease their
ergy to do so. Spins with no flipped neighbors cannot fl
even if it would be energetically favorable. Second is a d
namics which includes domain nucleation. Any spin can fl
when it becomes energetically favorable to do so. In b
cases, spins flip in shells—all spins which can flip at timt
flip, then all of their newly flippable neighbors flip at tim
t11.

Depending on which terms are included in the Ham
tonian, the behavior appears to fall into three different u
versality classes. When domain nucleation is allowed,
only nearest-neighbor interactions are included, there
second-order critical point at a particular disorder,Rc , and
external fieldHc . For disorders belowRc , a finite fraction
of the spins in the system~even in the thermodynamic limit!
flip in a single jump. This critical point seems to have a wi
critical region,4–9 so this critical behavior might be seen
11 699 ©2000 The American Physical Society
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11 700 PRB 62MATTHEW C. KUNTZ AND JAMES P. SETHNA
experiments even without tuning the disorder. For disord
below Rc , or when domain nucleation is not allowed, th
addition of an infinite-range demagnetizing field10,15can self-
organize the system to a different critical behavior.~Self-
organization means that the system naturally sits at a cri
point, without having to tune any parameters.! The infinite-
ranged interaction is sometimes introduced to mimic the
fects of the boundaries of materials with dipolar, or oth
long-ranged interactions;11 these interactions also sel
organize the model to the critical point.16 Our use of the term
‘‘infinite-range models’’ perhaps obscures the clear phys
origin of this universality class of models. The critical b
havior in front propagation was originally described in
non-self-organized depinning model by Ji and Robbins.17,18

Zapperiet al.11 claim that the addition of dipole-dipole inter
actions to the infinite-range model lowers the upper criti
dimension to three and produces mean-field exponent
three dimensions. Since large mean-field simulations
much easier than large simulations with dipole-dipole int
actions, we will give results from mean-field simulations
this paper. Dipolar interactions without an infinite-ran
term were explored by Magni19 in two dimensions, who
found labyrinthine patterns and hysteresis loops similar
those seen in garnet films. The relevant exponents for
three universality classes can be found in Table I. Excep
Sec. IV, all of the results in this paper are from thre
dimensional simulations, disorderR51.8, nearest-neighbo
interactionJNN51, and infinite range interactionJinf50.25;
this model exhibits self-organized front-propagation exp
nents.

III. DERIVING THE EXPONENTS

In the process of deriving the form of the critical expone
for the power spectrum or energy spectrum~power output
during the duration of the experiment!, we will derive
the scaling forms of several other quantities which
themselves of interest. Warned by the failure of the na
scaling exponent for the power spectrum, we will pres
numerical scaling plots for each of these intermediate qu
tities.

A. The avalanche shape

Near criticality, the avalanches in the random-field Isi
model have a very ragged shape. There are avalanches
sizes precisely because each avalanche is always finely

TABLE I. Important exponents for the three universali
classes.t is the exponent for the avalanche size distributionD(S)
;S2t. snz relates the avalanche sizeS to the avalanche duration
T:T;Ssnz

Short range~3D! Front propagation~3D! Mean field

t 1.6 1.28 1.5
snz 0.58 0.58 0.5

Short range~4D! Front propagation~4D!

t 1.53 1.42
snz 0.52 0.56
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anced between continuing and dying out. Most large a
lanches come close to dying many times. The time series
a typical large avalanche can be seen in Fig. 1. Pettaet al.20

have emphasized that the nontrivial structure within a
lanches like these are crucial to understanding the po
spectra, and a good test of the models.

Despite this rough shape, criticality implies that the av
age avalanche shape will scale in a universal way. Cons
the average shape of avalanches of durationT. If we rescale
the time axis,t, by a factor ofT, and divide the vertical axis
which measures the number of spins flipped~proportionate,
in simple cases, to the voltageV which would be measured
in a pickup coil!, by the average voltage, we should get
generic shape which is independent ofT. The average heigh
is the average area,S(T);T1/snz ~let this define the expo-
nentsnz),21 divided by the duration,T. Therefore, the scal-
ing form should be

V~T,t !5T1/snz21f shape~ t/T!. ~2!

The scaling of the average avalanche shape according to
~2! can be seen in Fig. 2.22

B. Distribution of voltages V in avalanches of sizeS

The power spectrum is sensitive not only to the shape
the avalanches, but to the fluctuations in the avalan
shapes. An interesting measure of these fluctuations is
probability P(VuS) that a voltageV will occur at some point
in an avalanche of sizeS. If this probability scales univer-
sally, then we know it must have the form

P~VuS!5V2xf voltage~VS2y!. ~3!

But what are the exponentsx andy? We can determine the
value ofx by integrating over all voltages. SinceP(VuS) is a
probability distribution, it must integrate to 1:

E
0

`

V2xf voltage~VS2y!dV5AS2y(x21)51. ~4!

From this, we know thatx51. @The alternative,y50, can be
discarded because along with Eq.~3! it would imply that
P(VuS) is independent of the avalanche sizeS.#

FIG. 1. The shape of a typical large avalanche. Notice that
avalanche nearly stopped several times, and the voltage~the number
of spins flipped in each time step! fluctuated drastically.
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We also know that the average voltage in the avalan
must be equal to the avalanche sizeS divided by the ava-
lanche durationT;Ssnz, so

^V&5E
0

`

VP~VuS!dV5E
0

`

f voltage~VS2y!dV;Sy;S12snz.

~5!

From this, we know thaty512snz, and the probability of a
voltageV occurring in an avalanche of sizeS is

P~VuS!5V21f voltage~VSsnz21!. ~6!

As can be seen in Fig. 3, this scaling form works very we

C. The scaling of avalanche energyE with avalanche sizeS

The voltage distribution in Eq.~6! allows us to calculate
the dependence of avalanche energy on avalanche size

FIG. 2. The average avalanche shape for three different d
tions. Spasojevic´ et al.13 measured the average avalanche shape
perimentally and found a somewhat different shape. This kind
measurement provides a much sharper test for the theory tha
tradition of comparing critical exponents. Presumably, the aver
avalanche shape for large sizes and times is a universal sc
function f shape: if the experiment differs in this regard from ou
model, then our model is expected to have different critical ex
nents. All features at long length and time scales should be uni
sal.

FIG. 3. A collapse of the voltage distribution for three avalanc
sizes according to Eq.~6!.
e

.

he

avalanche energy is simply the average squared volt
^V2&, times the average avalanche duration,Ssnz. Using Eq.
~6!, this is

E~S!5SsnzE
0

`

V2P~VuS!dV

5SsnzE
0

`

V fvoltage~VSsnz21!dV;S22snz. ~7!

Note that this is the same result we would find if we assum
that the time dependence had a square profile.

D. The scaling of the time-time correlation function with S

With this information, we can calculate the scaling of t
time-time correlation function within avalanches, which
simply related to the high-frequency part of the powe
spectrum,Pav(v). The time-time correlation function is de
fined as

G~u!5E V~ t !V~ t1u!dt. ~8!

If we assume that the magnetic field is increased adiab
cally and the avalanches are well separated in time,
can calculate the time-time correlation function separat
for each avalanche and then add the individu
functions together to get the overall time-time correlati
function.23

This allows us to break up the time-time correlation fun
tion into the contributions from avalanches of different siz
S. Let G(uuS) be the average time-time correlation functio
of an avalanche,given that the avalanche is of sizeS. ~In
contrast, the notationG(u,S) would denote the contribution
of all avalanches of sizeS to G(u). This would be weighted
by the probability that an avalanche is of sizeS, S2t.! If we
consider Eq.~8! at u50, we see that theu50 component of
the correlation function is*V(t)2dt, which is proportional to
the avalanche energy. Using this fact along with the sca
of the energy from Eq.~7!, we find that the time-time corre
lation function should scale as

G~uuS!5S22snzf time corr~uS2snz!. ~9!

As shown in Fig. 4, this scaling works very well over a wid

a-
x-
f

the
e

ing

-
r-

e

FIG. 4. A collapse of avalanche time-time correlation functio
according to Eq.~9!. The data is binned logarithmically to get goo
statistics.
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11 702 PRB 62MATTHEW C. KUNTZ AND JAMES P. SETHNA
range of avalanche sizes.

E. The scaling of the power spectrum withS

The power or energy spectrum describes the amoun
energy released in Barkhausen noise at each frequenc
can be calculated as the cosine transform of the time-t
correlation function. Transforming Eq.~9!, we find that the
scaling of the power spectrum with avalanche size has
form

E~vuS!5E
0

`

cos~vu!G~uuS!du

5E
0

`

cos~vu!S22snzf time corr~uS2snz!du

5S2f energy~v1/snzS!. ~10!

~We will call this the power spectrum, but use the nam
E(v) to remind us to divide by the duration of the expe
ment to change energy to power.! A collapse of the power
spectra for different avalanche sizes according to this form
shown in Fig. 5.

F. The power spectrum scaling depends on the large
avalanche cutoff

The power spectrum for all avalanches~the quantity usu-
ally measured in experiments! is just the integral
*D(S)E(vuS)dS, whereD(S);S2t is the probability per
unit volume of having an avalanche of sizeS. If we substi-
tute Eq.~10! and D(S);S2t into the integral, we generat
the naive prediction of

Ewrong~v!5E D~S!E~vuS!dS

;v2(32t)/snzE y22t f energy~y!dy;v2(32t)/snz

~11!

as predicted by Lieneweget al.,12 Dahmen and Sethna,5,8,9

and Spasojevic´ et al.13 In Sec. III G we will argue that the
energy contributed by an avalanche at a fixed frequencyv is
proportional toS: this immediately implies using the scalin

FIG. 5. A collapse of the power spectra for different avalanc
sizes according to Eq.~10!.
of
. It
e

e

e

is

form 10 thatf energy(y);A/y for largey. Thus the integrand
in Eq. ~11! dies off as a power lawy12t for largey. Hence,
it gives the correct answer ift.2, but for t,2 the naive
indefinite integral in 11 diverges and must be replaced b
definite integral. The naive result should work for the int
grated avalanche size distribution for the short-ran
model5,7 at the critical pointRc . In that case~which we will
not study in this paper!, the corresponding exponentt
1sbd52.03 in three dimensions~close to two, so we
would expect logarithmic corrections!, and rising to
the mean-field value of 9/4 in six dimensions. For t
models we study here,t,2 and the cutoff at the larges
avalanches in the integral over avalanche sizes change
form of the power spectrum. In Sec. III H after next, we w
derive our resulting exponent relation for the power sp
trum.

G. The energy at frequencyv scales linearly with the
avalanche sizeS

We argue in this section that except at very small frequ
cies the energy at a fixed frequencyv is proportional toS.
According to Eq.~10!, this implies that the power spectrum
at fixed S scales asv21/snz. This means that dividing
E(vuS) by Sv21/snz should collapse the curves and elim
nate thev dependence. The result of this collapse for t
infinite-range model can be seen in Fig. 6.

The fact that the energy at frequencyv scales linearly
with S follows from two assumptions. First, each spin in t
avalanche contributes equally toE(v). Second, the contribu
tion of a given spin is independent of the size of the a
lanche it is in.~Of course, a few spins at the beginning of th
avalanche might differ, so long as the fraction of such sp
vanishes for large avalanches.! One way in which this could
be true would be if the following two hypotheses were tru
First, each spin contributes toE(v) only through its corre-
lations with physically nearby spins. Second, the lo
growth of an avalanche does not reflect the overall size of
avalanche. The first hypothesis seems likely in the mod
described in this paper because the times of physically
tant spin flips are likely to be randomly distributed in tim

e FIG. 6. A collapse of the power spectra for several avalan
sizes S. The collapse is performed by dividing out the linearS
dependence. The curves are made flat by dividing out the sim
power lawv1/snz. Thev axis has not been rescaled, so the highv
cutoffs collapse together and the smallv cutoffs do not.



nl
te
ru
E
in

w
er
es
s

u

f

.

.

el
u

c
o

s

ll
a

sp
y

th
is

l
ex-

cut-
-

b-
izes
s
che

am-
d
.
uld

tions

en-
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and contribute incoherently to the power spectrum. O
nearby spin flips will be correlated in time and contribu
coherently. The second hypothesis is also likely to be t
because the avalanches are occurring at a critical point.
ery part of the avalanche is always on the verge of stopp
regardless of the size of the avalanche.

We can check these hypotheses by breaking up the po
spectrum into the contributions from pairs of spins at diff
ent radiir. The time-time correlation function for avalanch
of sizeS can be written in terms of individual pairs of spin
as

G~uuS!5(
i , j

d~ t j2t i2u!, ~12!

wheret i is the time at which spini flips. From this form, we
can use an additional delta function to pull out the contrib
tion due to pairs of spins separated by a distancer:

G~u,r uS!5K (
j

d~ t j2t i2u!d~ urW j2rW i u2r )L
i

, ~13!

where ^& i implies an averaging over all values ofi. Using
this definition of the functionG(u,r uS), we can rewrite the
time-time correlation function as

G~uuS!5SE G~u,r uS!dr. ~14!

Now, we can use Eq.~14! to calculate the contribution o
spins separated by a distancer to the power spectrum
E(vuS) at a frequencyv. Taking the cosine transform of Eq
~14!, we find that

E~vuS!5SE E cos~vu!G~u,r uS!drdu[SE E~v,r uS!dr,

~15!

where the functionE(v,r uS) is defined by this equation
Notice that E(v,r uS) must have a cutoff at the largestr
present in an avalanche of sizeS. We can see from Eq.~15!
that in order forE(vuS) to be proportional toS, the integral
must be independent of thisS dependent cutoff. This is a
more precise statement of the hypothesis that only corr
tions between nearby spins contribute to the power spectr
It is also necessary that except for extreme values ofv andr,
E(v,r uS) must be independent ofS. Combined with the first
condition, this corresponds to the hypothesis that the lo
growth of the avalanche should not reflect the overall size
the avalanche.

Figure 7 showsE(v,r uS) is decaying approximately a
1/r . Figure 8 shows that it is independent ofS and that the
decay is oscillating about zero. Neighboring radial she
contribute with opposite sign. Hence the integral 15 appe
to be conditionally convergent at large distances: each
contributes toE(v) only through its correlations with nearb
spins, andE(vuS);S.

H. Integrating the power spectrum over avalanche sizes

In Sec. III F we found that we need to understand
cutoff at large avalanche sizes. In our simulations there
typical largest avalanche sizeS* which is primarily due to
y

e
v-
g

er
-

-

a-
m.

al
f

s
rs
in

e
a

finite size effects:S* ;L1/sn. In experiments, the typica
largest avalanche size could be determined by the finite
perimental duration or from the demagnetizing forces.~In
some cases, demagnetizing forces also contribute to the
off in our simulations.! These effects would cut off the prob
ability of getting large avalanches.

The contribution toE(v) from an avalanche of sizeS
scales linearly inS, for large avalanches: each spin contri
utes the same amount. The cutoff at large avalanche s
dominates the scaling ofE(v) precisely because most spin
are in the largest avalanches. The distribution of avalan
sizesD(S,S* ) cannot be a simple power-law cutoff atS* for
t,2, because we know*SD(S,S* )dS51; *S* S12tdS de-
pends onS* and diverges asS* →` for t,2. Hence the
overall amplitude ofD must decreases asS* gets bigger. If

FIG. 7. This graph shows the functionuE(v,r uS)u for a range of
values ofr at S532 500. The functionE(v,r uS) not only decays
with v, but also oscillates about zero. To better compare the
plitudes of the curves at differentr, we took the absolute value an
performed a running average overv, averaging out the oscillations
The horizontal lines show how the positions of these curves sho
scale if they went as 1/r . Notice that while for smallr the ampli-
tudes drop slower than 1/r , for larger r the amplitudes drop off
approximately as 1/r .

FIG. 8. This graph showsuE(v,r uS)u at r 56 for two sizes of
avalanches. No averaging has been performed, so the oscilla
are visible~the function changes sign at each dip!. For largerr, the
oscillations are much faster. Notice that the curves are nearly id
tical for the two sizes—E(v,r uS) has no significantS dependence
at smallr.
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we choose a scaling form for the avalanche size distribu
with an overall amplitude which depends uponS* , we can
fix this problem:

D~S,S* !dS5~S* !22f size~S/S* !, ~16!

f size~y!;y2t y→0, ~17!

E SD~S,S* !dS5E ~S* !22S fsize~S/S* !dS

5E y fsize~y!dy51, ~18!
,
s

em

ex

e

-

be
n
n

u
er
tio
nwhere the last equation provides a condition on the sca
function f size.

We are now ready to integrate the power spectrum oveS,
finding the formE(v) corresponding to Eq.~11! but valid
for t,2. We discovered in the last sections thatf energy(y)
→A/y. We control the integral by adding and subtracti
A/y:
E~v!5E D~S,S* !E~vuS!dS5E @~S* !22f size~S/S* !#@S2f energy~v1/snzS!#dS5E ~S/S* !2f size~S/S* ! f energy~v1/snzS!dS

5E ~S/S* !2f size~S/S* !A/~v1/snzS!dS1E ~S/S* !2f size~S/S* !@ f energy~v1/snzS!2A/~v1/snzS!#dS. ~19!
in
ree
the

of
the
10
ge
el

wer

red
po-

he
In the first integral, we setz5S/S* . In the second integral
we sety5v1/snzS. Also, the second integral now converge
so we can substitutef size(S/S* )→(S/S* )2t:

E~v!5v21/snzE Az2f size~z!dz

1~S* !t22v2(32t)/snzE y22t@ f energy~y!2A/y#dy

~20!

;v21/snz ~t,2!. ~21!

The exponent in the second term of Eq.~20!, (3
2t)/snz, is Ewrong of Eq. ~11!, given by ignoring the cutoff
at large avalanche sizes. However, fort,2 the first term
will dominate over the second term both for large syst
sizes and for largev. Only for t.2 will the second term
dominate. For all of the models we are considering,t,2.
~See Table I.! In fact, the exponent (32t)/snz disagrees
badly with the results observed in both simulations and
periments, and the exponent 1/snz agrees very well. In mean
field theory, we can actually derive rigorously that the pow
spectrum exponent is 2~see the Appendix!. This is in perfect
agreement with the exponent 1/snz, and complete disagree
ment with the exponent (32t)/snz, which would be 3. A
plot of the power law for the infinite-range model can
seen in Fig. 9. A comparison of the two possible expone
with simulations for each of the three models can be see
Table II.

IV. HOW UNIVERSAL IS THE EXPONENT 1 Õsnz?

So far in this paper, we have only discussed these res
for the infinite range model in three dimensions. Howev
we have also checked these results in several other situa
where botht and snz take on a range of values.~In all
,

-

r

ts
in

lts
,
ns

cases,t,2.! We have checked the short-range model
three and four dimensions, the infinite-range model in th
and four dimensions, and mean-field theory. In all cases,
linear scaling withS seems exact, and bothE(vuS) and
E(v) scale asv21/snz to within simulational precision.
In all cases, the exponent (32t)/snz is completely
inconsistent with the observed results. The results
mean field theory and the short-range model at
three dimensional critical point can be seen in Figs.
and 11. The results for the four-dimensional short-ran
model and the four-dimensional infinite range mod
were also completely consistent with a 1/snz scaling expo-
nent.

V. DISCUSSION

There have been several previous predictions of the po
spectrum exponent. In her Ph.D. thesis, Dahmen9 did a cal-
culation similar to the one done in this paper, but she igno
the problems with the integral and came up with the ex

FIG. 9. The power spectrum for the infinite range model. T
dashed line is not a fit. It is a power law with an exponent 1/snz.
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nent (32t)/snz, which we have shown should hold only
t.2. This exponent was published by our group5 without
the derivation, and was compared to experimental work
Cote and Meisel24,25 and Bertottiet al.26 The correct expo-
nent form derived here makes the agreement between
short-range model and these experiments substantially be
they quote an exponent of ‘‘around 2,’’ our former~wrong!
prediction was 2.4660.17, and the correct prediction
1.7560.25.

Presumably the earliest derivation of (32t)/snz ~we
thank the referee for pointing this out!, is by Lieneweg and
Gross-Nobis12 in 1972: their exponent 112e2d translates
precisely to (32t)/snz in our notation.12 They use this to
analyze their unannealed data, for which they measurt
52.1 ~hence making their derived exponent appropria!;
their annealed wires show values oft51.73, and indeed
their power spectrum shows a much steeper falloff, qu
close to our predicted value 1/snz which they measure to b
1.63.

Spasojevic´ et al.13 also came up with the same~wrong!
form based on arguments about the average pulse sh
They measured an experimental power spectrum expone

TABLE II. This table compares values of the power spectru
exponent measured in simulations with the values predicted by
exponents 1/snz and (32t)/snz. Notice that for all three models
1/snz is very close to the simulated exponent, and (32t)/snz is
in complete disagreement.

1/snz (32t)/snz Simulated

Short-range 1.72 2.41 1.70
Infinite-range 1.72 3.00 1.70
Dipole 2.00 3.00 2.00

FIG. 10. The mean-field model. Notice that the power spectr
for avalanches of sizeS collapses when divided byS, and that the
power spectrum for avalanches of sizeS and the overall power
spectrum both have the same power law as the average avala
size as a function of the inverse avalanche duration. Sizes 96, 1
24 576, and 196 608 are shown in the collapse ofP(vuS)/S.
The average avalanche size as a function of the inverse avala
duration is the definition of the exponent 1/snz. Power laws
of 1/snz and (32t)/snz are also shown for comparison
Notice that (32t)/snz is completely incompatible with the
results.
y

he
er:

e

pe.
of

1.6. For their experimentally determined values oft51.77
andsnz50.662, they found that (32t)/snz51.86 fit their
data well, but the value of (32t)/snz52.46 quoted by
Dahmenet al.5 was much too large. This lead them to disr
gard the plain old critical model with domain nucleation as
possible explanation of Barkhausen noise in their syst
However, note that their experimental value of 1/snz
51.51 is as close to their measured power spectrum ex
nent as their value of (32t)/snz51.86. The value of
1/snz51.7560.25 quoted by Dahmenet al. is even closer
to the experimentally observed power spectrum expon
~The value oft51.6 predicted by Dahmenet al. is also
closer to the experimentally measuredt51.77 than any of
the other models: front propagation has an exponentt51.3,
and mean-field theory has an exponentt51.5.! One should
note, however, that the average avalanche shapes mea
by Spasojevic´ et al. disagree with those predicted by th
short-range model~Fig. 2!.

In 1989, Jensen, Christensen, and Fogedby27 published a
different calculation of the power spectrum exponent
sandpile models, which has been cited many times as
explanation for 1/v2 scaling of the power spectrum in san
piles, Barkhausen noise, and other systems. They made
major assumptions in their derivation. First, they assum
that the avalanche shape could be approximated by a
function: V(t)5S/T for all t,T. For our models, this as
sumption turns out to be valid for calculating the avera
avalanche energy, but is not valid for determining the ove
scaling of the time-time correlation function. Second, th
assumed that one of their scaling functions, which was
lated to the time-time correlation function, had the simp
scaling formG(T);Ta exp(2T/T0). As can be seen from
the exact mean field time-time correlation function in E
~A6!, this is not at all a safe assumption. In terms of o
exponentst and snz, their prediction was that the powe
spectrum would have the formE(v);v (32t)/snz for t.3
22snz andE(v);v22 for t,322snz. This is the same
as our result in the case wheresnz51/2. For the particular
model they were studying, their assumptions seem to be
rect, but in the more general case, the exponent
2t)/snz should become invalid fort,2, rather thant
,32snz. Also, for t,2, exponents other than 2 are po
sible, depending on the particular dynamics. For the clas

he

che
6,

he

FIG. 11. The short-range model in three dimensions. The p
and the sizes are the same as in Fig. 10.
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models described in this paper, the correct exponent fot
,2 is 1/snz.

Narayan16 derives a power-spectrum exponent for fro
propagation, considering the dynamic height-height corre
tion function for the growing interface. His exponent,28 (2z
1d21)/z21 involves the static height-height correlatio
exponentz: ^h(x,t)h8(x8,t)&;ux2x8u2z, along with the di-
mensiond. This prediction is rather different from the tw
discussed in this paper. Narayan and Fishe
52d5e-expansion results29 show z52/3 andz5222e/9
1O(e2) yielding a predicted power-spectrum exponent
8/71O(e2) in three dimensions, quite different from th
value of around 1.7 that we measure. Narayan’s deriva
does not separate the high-frequency power lawPav(v)
which we study from the low-frequency power lawPcorr(v)
reflecting the correlations between avalanches~discussed in
the introduction!: his analysis is probably describing th
asymptotic behavior of the latter.

There are other specific models for which the power sp
trum exponent has been calculated. For example, Bak, T
and Wiesenfeld2 calculated the power spectrum exponent
their sandpile models, and Durin, Bertotti, and Magni30 cal-
culate the form and asymptotic power law for the pow
spectrum of the Alessandro-Beatrice-Bertotti-Montorsi31,32

model. Without further investigation, we cannot expect o
arguments for an exponent of 1/snz to hold for these and
other models. However, we do expect that in any avalan
based model, the power spectrum exponent fort.2 will be
(32t)/snz, and another exponent will dominate fort,2.
Whenever the arguments in Sec. III G hold, fort,2 the
exponent 1/snz, relating the avalanche size to avalanche d
ration, should dominate.
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APPENDIX: THE MEAN-FIELD POWER SPECTRUM

In mean-field theory, we can calculate the power sp
trum exactly. The Hamiltonian in mean-field theory is t
Hamiltonian in Eq.~1!, without nearest-neighbor or dipol
terms:

H52(
i

~H1J1hi !si . ~A1!

When a spin flips with an external field ofH, all spins with
random fields between2(H1JM) and 2@H1J(M
12/N)# will flip. Therefore, each spin has a probability o
(2J/N)r(2H2JM) of flipping, wherer(h) is the probabil-
ity distribution of the random fields. On average, 2Jr(2H
2JM) spins will be flipped. If 2Jr(2H2JM).1, then the
avalanche will tend to grow indefinitely, and there will be
infinite avalanche. If 2Jr(2H2JM),1, then the avalanche
will quickly die out, and all avalanches will be small.
2Jr(2H2JM)51, then avalanches will always be fine
t
-

s

f

n

c-
g,

r

-

r

e

-

n-
s
f
-
.

-

balanced between continuing and dying, and there will b
critical distribution of avalanches. If the random-field dist
butionr(h) has a maximum value of 1/2J, then there will be
a critical distribution of avalanches at the value ofH5Hc
wherer(h) is a maximum.

Let us calculate the power spectrum for the critical syst
with r(h)51/2J. To begin with, we will calculate the prob
ability distribution of time seriesn1 ,n2 , . . . ,n` . We know
that in shell zero, exactlyn051 spins will flip. At the critical
point, where each spin on average causes one more
to flip, shell one will have a Poisson distribution wit
mean one:P(n1)51/en1!. Shell i will have a Poisson
distribution with meanni 21 : P(ni)5eni21ni 21

ni /ni !. There-
fore, the probability distribution for the entire time serie
will be

P~1,n1 ,n2 , . . . ,n`!5
1

en1!)i 52

` eni 21ni 21
ni

ni !
. ~A2!

Now, from Eq.~A2!, we can calculate the average tim
time correlation function

G~u!5(
i 50

`

^nini 1u&, ~A3!

where

^nini 1u&5 (
$n1, . . . ,n`%50

nini 1uP~n1 , . . . ,n`!. ~A4!

To simplify Eq. ~A4!, we need to use several properties
the Poisson distribution: (n50

` (e2xxn/n!) 51,
(n50

` n(e2xxn/n!) 5x, and (n50
` n2(e2xxn/n!) 5x1x2.

Using the first rule repeatedly, we can simplify Eq.~A4!
to

^nini 1u&5 (
$n1 , . . . ,ni 1u%50

`

nini 1uP~n1 , . . . ,ni 1u!.

Then, using the second rule repeatedly, we can further s
plify to

FIG. 12. The exact time-time correlation for mean field theo
with a maximum time cutoff ofT51000.
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^nini 1u&5 (
$n1 , . . . ,ni %50

`

ni
2P~n1 , . . . ,ni !.

Now, applying the second and third rules repeatedly, we
simplify to a single sum:

^nini 1u&5 (
n150

`
~ i 21!n11n1

2

en1!
5 i 11. ~A5!

Notice that the correlation between two times is proportio
only to the first time, and not the separation between
times.

Now, we can find the value of the time-time correlatio
function G(u) by summing the result of Eq.~A5!. Because
the time-time correlation function as defined is proportion
to the square of the total time, we must cut off the summ
tion at some maximum timeT to get a finite result. Summing
according to Eq.~A3!, we find

G~u!5 (
i 50

T2u21

i 115
~T2u!~T2u11!

2
5

T2

2
1

T

2
1

u2

2
2

u

2

2Tu. ~A6!

This shape for a cutoff time ofT51000 is shown in Fig. 12.
Notice that the exact shape in mean-field theory is very si
lar to the experimentally measured correlation functions
three dimensions.
n

l
e

l
-

i-
n

To get the exact form of the mean-field power spectru
we just take the cosine transform of Eq.~A6!:

E~v!5E
0

`

cos~vu!G~u!du

5E
0

`

cos~vu!S T2

2
1

T

2
1

u2

2
2

u

2
2Tu Ddu

5Tv221
v22

2
@12cos~Tv!#2v23sin~Tv!.

~A7!

The dominant term in this equation isTv22. This is the
same exponent as predicted by the general scaling a
ments: 1/snz52. The general scaling arguments also p
dicted that a term smaller by a factor ofT and with the
exponent (32t)/snz53 would be subtracted off, and it is
but multiplied by a factor of sin(Tv). However, the sin(Tv)
turns out to simplify things even more. Because the corre
tion function was actually discrete, we should conside
discrete power spectrum, where the frequencies are multi
of v052p/T. This means that cos(Tv)51 and sin(Tv)50
for all v in the discrete spectrum. Because of this, all ter
except theTv22 term drop out. If we divide byT to get the
power spectrum, we find

P~v!5v22. ~A8!
also
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