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Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models
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For a long time, it has been known that the power spectrum of Barkhausen noise had a power-law decay at
high frequencies. Up to now, the theoretical predictions for this decay have been incorrect, or have only
applied to a small set of models. In this paper, we describe a careful derivation of the power spectrum exponent
in avalanche models, and in particular, in variations of the zero-temperature random-field Ising model. We find
that the naive exponent, (37)/ovz, which has been derived in several other papers, is in general incorrect for
small 7, when large avalanches are commoniq the exponent describing the distribution of avalanche sizes,
andovz is the exponent describing the relationship between avalanche size and avalanche duvatiimd
that for a large class of avalanche models, including several models of Barkhausen noise, the correct exponent
for 7<2 is liovz. We explicitly derive the mean-field exponent of 2. In the process, we calculate the average
avalanche shape for avalanches of fixed duration and scaling forms for a number of physical properties.

[. INTRODUCTION ics. In a separate paper, we examine in detail the differences
between these model$A general Hamiltonian for the mod-
Many physical systems, from superconductor®o  els is
sandpile$ to martensitic shape-memory alldygroduce 3
noise with power-law characteristics. The noise in many of inf
these systepms can be modeled in terms of avalanches)./ one T _% ‘]””Sisi_zi: HSi_Z‘ hiSiJrZ N
example of this is Barkhausen noise in ferromagnetic mate-
rials. Many ferromagnetic materials magnetize not smoothly, 3cog6;;)—1
but in jumps of all sizes. The resulting “noise” is character- - E Jdipoe ™3 SIS @
i — i} ry
ized by power laws. For example, the distributions of ava- !
lanche sizes, durations, and energies are all seen to be powehere sj==*1 is an Ising spinJ,, is the strength of the
laws. Recently, it has been proposed that this noise is a resifirromagnetic nearest-neighbor interactiadss an external
of either a disorder induced critical poititt or self- magnetic fieldh; is a random local fieldJ is the strength
organized criticality’'* Several variations of the zero- of the infinite range demagnetizing fiefland Jgoc is the
temperature random-field Ising model have been proposed fstrength of the dipole-dipole interactions. The critical expo-
model this critical behavior. nents of the power laws are independent of the particular
One of the main power laws which must be explained ifchoice of random-field distributions(h;) for a large variety
these models are to be successful is the power-law behavief distributions. Most commonly, a Gaussian distribution of
of the power spectrum. Actually, the power spectrum exhibrandom fields is used, with a standard deviafiWwhen we
its two different power laws, one for low frequencies, andrefer to the strength of the disorder, we are referring to the
another for high frequencies. The high-frequency power lawwidth, R, of the random-field distributiop.
Palw), reflects the dynamics within avalanches, and the Two different dynamics have been considered. The first is
low-frequency power lawP,{(w), reflects the correlations a front propagation dynamics in which spins on the edge of
between avalanches. Simulations of various random-fieléin existing front flip as soon as it would decrease their en-
Ising models have been fairly successful in modeling theergy to do so. Spins with no flipped neighbors cannot flip
high-frequency scaling of the power spectrum, but theoretieven if it would be energetically favorable. Second is a dy-
cal predictions of this scaling have been absent omnamics which includes domain nucleation. Any spin can flip
wrong>®#91213(See the discussion in Sec. V for a descrip-when it becomes energetically favorable to do so. In both
tion of several previous calculationsn this paper, we will  cases, spins flip in shells—all spins which can flip at time
derive an exponent relation for the high-frequency powefflip, then all of their newly flippable neighbors flip at time
spectrum which applies to several variations of the randomt+1.
field Ising model. Large portions of the derivation should Depending on which terms are included in the Hamil-
also apply to any critical avalanche model. tonian, the behavior appears to fall into three different uni-
versality classes. When domain nucleation is allowed, and
only nearest-neighbor interactions are included, there is a
second-order critical point at a particular disordeg, and
Several variations of the zero-temperature random-fieléxternal fieldH.. For disorders belovR., a finite fraction
Ising model have been proposed to explain the power laws inf the spins in the systett@ven in the thermodynamic limit
Barkhausen noise. They are differentiated on the basis of thifip in a single jump. This critical point seems to have a wide
presence of long-range forces, and the details of the dynaneritical region?=° so this critical behavior might be seen in

Il. THE MODELS
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TABLE I. Important exponents for the three universality
classesr is the exponent for the avalanche size distributin{s)
~S7 7. ovz relates the avalanche si&to the avalanche duration
T:T~87"%

Short rangg3D)  Front propagatiori3D) Mean field

T 16 1.28 15 S
ovz 0.58 0.58 0.5
Short rangg4D)  Front propagatiorf4D) V
T 1.53 1.42 v W}M
ovz 0.52 0.56 " h

t

experiments even without tuning the disorder. For disorders g5 1 The shape of a typical large avalanche. Notice that the

below R;, or when domain nucleation is not allowed, the ayajanche nearly stopped several times, and the voltagaumber
addition of an infinite-range demagnetizing fité°can self-  of spins flipped in each time stefiuctuated drastically.

organize the system to a different critical behavi@@elf-
organization means that the system naturally sits at a CritiC%nced between Continuing and dy|ng out. Most |arge ava-
point, without having to tune any parametgrghe infinite-  |anches come close to dying many times. The time series for
ranged interaction is sometimes introduced to mimic the efg typical large avalanche can be seen in Fig. 1. Rettd?°
fects of the boundaries of materials with dipolar, or otherhave emphasized that the nontrivial structure within ava-
long-ranged interaction$; these interactions also self- |anches like these are crucial to understanding the power
organize the model to the critical poitftOur use of the term spectra, and a good test of the models.
“infinite-range models” perhaps obscures the clear physical Despite this rough shape, criticality implies that the aver-
origin of this universality class of models. The critical be- age avalanche shape will scale in a universal way. Consider
havior in front propagation was originally described in athe average shape of avalanches of durafioli we rescale
non-self-organized depinning model by Ji and RobBIMS.  the time axist, by a factor ofT, and divide the vertical axis,
Zapperiet al! claim that the addition of dipole-dipole inter- \which measures the number of spins flipgedoportionate,
actions to the infinite-range model lowers the upper criticalin simple cases, to the voltagéwhich would be measured
dimension to three and produces mean-field exponents i a pickup coi), by the average voltage, we should get a
three dimensions. Since large mean-field simulations argeneric shape which is independenflofThe average height
much easier than Iarge simulations with dipOle-dipOle inter-is the average areﬁ(T)NT]-/UVZ (|et this define the expo-
actions, we will give results from mean-field simulations in nentgvz),?* divided by the durationT. Therefore, the scal-
this paper. Dipolar interactions without an infinite-rangejng form should be
term were explored by Maghiin two dimensions, who
found labyrinthine patterns and hysteresis loops similar to V(T,t):Tl"”zflfshapgt/T). 2
those seen in garnet films. The relevant exponents for th
three universality classes can be found in Table |. Except i;
Sec. IV, all of the results in this paper are from three-
dimensional simulations, disordé&= 1.8, nearest-neighbor
interactionJyy=1, and infinite range interactiod,;= 0.25;
this model exhibits self-organized front-propagation expo- The power spectrum is sensitive not only to the shapes of
nents. the avalanches, but to the fluctuations in the avalanche
shapes. An interesting measure of these fluctuations is the
IIl. DERIVING THE EXPONENTS probability P(V|S) that a voltageV will occur at some point

. » in an avalanche of siz& If this probability scales univer-
In the process of deriving the form of the critical exponentsa”y then we know it must have the form

for the power spectrum or energy spectrgpower output

during the duration of the experimentwe will derive P(V|S):V_vao|tage(VS_y)- 3)
the scaling forms of several other quantities which are ]
themselves of interest. Warned by the failure of the naivé3ut what are the exponentsandy? We can determine the
scaling exponent for the power spectrum, we will present/alue ofx by integrating over all voltages. Sin€V|S) is a
numerical scaling plots for each of these intermediate quarRrobability distribution, it must integrate to 1:

tities.

he scaling of the average avalanche shape according to Eq.
2) can be seen in Fig. Z.

B. Distribution of voltages V in avalanches of sizeS

f V f yoragd VS Y)dV=ASY* D=1, (4
A. The avalanche shape 0

Near criticality, the avalanches in the random-field IsingFrom this, we know that=1.[The alternativey=0, can be
model have a very ragged shape. There are avalanches of discarded because along with E®) it would imply that
sizes precisely because each avalanche is always finely bd#{V|S) is independent of the avalanche s&¢
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. FIG. 4. A collapse of avalanche time-time correlation functions
. FIG. 2. T_h?_a"e“;‘ge avalanche shape for three different duraaiccording to Eq(9). The data is binned logarithmically to get good
tions. Spasojeviet al.> measured the average avalanche shape €X3tatistics.
perimentally and found a somewhat different shape. This kind of
measurement provides a much sharper test for the theory than thg/alanche energy is simply the average squared voltage,
tradition of comparing critical exponents. Presumably, the averagey/?) times the average avalanche duratisfi?. Using Eq.
avalanche shape for large sizes and times is a universal scalir‘(@)' this is
function fg,qpe if the experiment differs in this regard from our
model, then our model is expected to have different critical expo-
nents. All features at long length and time scales should be univer-
sal.

E(S)=S‘”’ZJ V2P(V|S)dV
0

We also know that the average voltage in the avalanche =S‘”Zf0 Viioragd VS™* HdV~S~ 72 (7)

must be equal to the avalanche sRelivided by the ava-

lanche duratiorilT~S”"?, so Note that this is the same result we would find if we assumed
that the time dependence had a square profile.
_ ” — ” —y Q¥ _cl-ovz
V) jo VP(V|S)dV fo Fuotagd VS ) dV~5'~S ' D. The scaling of the time-time correlation function with S
©) With this information, we can calculate the scaling of the

time-time correlation function within avalanches, which is
simply related to the high-frequency part of the power-
spectrum,P, (). The time-time correlation function is de-

From this, we know thag=1— ovz, and the probability of a
voltageV occurring in an avalanche of sizis

P(V[S)=V ™ yotagd VS™* ). ) fined as
As can be seen in Fig. 3, this scaling form works very well. G(0)=f VOV(t+ )dt. ®
C. The scaling of avalanche energ{ with avalanche sizeS If we assume that the magnetic field is increased adiabati-

The voltage distribution in Eq6) allows us to calculate cally and the avalgnches are well _separate_d in time, we
the dependence of avalanche energy on avalanche size. Tﬁ%n calculate the time-time correlation function separately

or each avalanche and then add the individual
functions together to get the overall time-time correlation
function?

This allows us to break up the time-time correlation func-
tion into the contributions from avalanches of different sizes,
S Let G(0|S) be the average time-time correlation function
of an avalanchegiven that the avalanche is of siz& (In
contrast, the notatio®(#,S) would denote the contribution
of all avalanches of siz8to G(6). This would be weighted
. by the probability that an avalanche is of sBeS™".) If we
02| / ] consider Eq(8) at #=0, we see that thé=0 component of

/ v DO the correlation function igV(t)2dt, which is proportional to
/ - the avalanche energy. Using this fact along with the scaling
‘ \ ‘ N of the energy from Eq(7), we find that the time-time corre-
0 0.5 1 L3 2 lation function should scale as

V chz—l
_ Q2-0VZf . — vz
FIG. 3. A collapse of the voltage distribution for three avalanche G(6]9)=S Fiime corf S )- ©)
sizes according to Ed6). As shown in Fig. 4, this scaling works very well over a wide

0.8
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FIG. 5. A collapse of the power spectra for different avalanche

. . FIG. 6. A collapse of the power spectra for several avalanche
sizes according to Eq10).

sizesS. The collapse is performed by dividing out the line&r
dependence. The curves are made flat by dividing out the simple
power laww?”?. The » axis has not been rescaled, so the high
cutoffs collapse together and the smallcutoffs do not.

range of avalanche sizes.

E. The scaling of the power spectrum withS

The power or energy spectrum describes the amount dbrm 10 thatf¢.eq(y) ~Aly for largey. Thus the integrand
energy released in Barkhausen noise at each frequency. itt Eq. (11) dies off as a power law! ™" for largey. Hence,
can be calculated as the cosine transform of the time-timé gives the correct answer #f>2, but for 7<<2 the naive
correlation function. Transforming E@9), we find that the indefinite integral in 11 diverges and must be replaced by a
scaling of the power spectrum with avalanche size has thdefinite integral. The naive result should work for the inte-
form grated avalanche size distribution for the short-range

modeP’ at the critical poinR; . In that caséwhich we will
(" not study in this paper the corresponding exponent
E(w|S)—f0 cogw6)G(6]S)do +0B5=2.03 in three dimensionsclose to two, so we
would expect logarithmic correctiops and rising to
[~ 2— vz vz the mean-field value of 9/4 in six dimensions. For the
B fo cogwf)S Ftime corl 65~ 7")d0 models we study here;<<2 and the cutoff at the largest
avalanches in the integral over avalanche sizes changes the
=S f gnergf 0 7*7S). (100 form of the power spectrum. In Sec. Ill H after next, we will

(We will call this the power spectrum, but use the namedenve our resulting exponent relation for the power spec-

E(w) to remind us to divide by the duration of the experi- trum.
ment to change energy to poweA collapse of the power
spectra for different avalanche sizes according to this formis G. The energy at frequencye scales linearly with the

shown in Fig. 5. avalanche sizeS
_ We argue in this section that except at very small frequen-
F. The power spectrum scaling depends on the large cies the energy at a fixed frequenayis proportional toS.
avalanche cutoff According to Eq.(10), this implies that the power spectrum

The power spectrum for all avalanch@se quantity usu- at fixed S 50&_"13/5 Zaswfl/”z- This means that dividing
ally measured in experimentsis just the integral E(@|S) by So™""** should collapse the curves and elimi-
JD(S)E(w|S)dS, whereD(S)~S 7 is the probability per nate thew dependence. The result of this collapse for the

unit volume of having an avalanche of sigelf we substi- infinite-range model can be seen in Fig. 6. _
tute Eq.(10) andD(S)~S " into the integral, we generate ~ The fact that the energy at frequenay scales linearly
the naive prediction of with Sfollows from two assumptions. First, each spin in the

avalanche contributes equallyEfw). Second, the contribu-

tion of a given spin is independent of the size of the ava-
Ewrond @) = f D(S)E(w|S)dS lanche it is in.(Of course, a few spins at the beginning of the
avalanche might differ, so long as the fraction of such spins
- @Dz [ 21 Yy~ 3=z vanishes for large avalanche&ne way in which this could
@ y energfY) Ay~ be true would be if the following two hypotheses were true.

(11) First, each spin contributes #©(w) only through its corre-
lations with physically nearby spins. Second, the local
as predicted by Lienewegt al,'?> Dahmen and Sethn&°  growth of an avalanche does not reflect the overall size of the
and Spasojeviet al® In Sec. Il G we will argue that the avalanche. The first hypothesis seems likely in the models
energy contributed by an avalanche at a fixed frequenéy  described in this paper because the times of physically dis-
proportional toS: this immediately implies using the scaling tant spin flips are likely to be randomly distributed in time
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and contribute incoherently to the power spectrum. Only
nearby spin flips will be correlated in time and contribute
coherently. The second hypothesis is also likely to be true
because the avalanches are occurring at a critical point. Ev-
ery part of the avalanche is always on the verge of stopping =
regardless of the size of the avalanche. o
We can check these hypotheses by breaking up the power 8
spectrum into the contributions from pairs of spins at differ- =

e ————

ent radiir. The time-time correlation function for avalanches ST
of sizeScan be written in terms of individual pairs of spins R
as 105 L Sy
0 0.1 02 03 04 05
G(als):iEJ 5(tj_ti_ 0), (12 Frequency

FIG. 7. This graph shows the functioB(w,r|S)| for a range of
values ofr at S=32500. The functiorE(w,r|S) not only decays
with o, but also oscillates about zero. To better compare the am-
plitudes of the curves at different we took the absolute value and

.. performed a running average ower averaging out the oscillations.
G(6,r|S)= < > 8(ti—ti—60)8(|rj—ri|—=r)) , (13)  The horizontal lines show how the positions of these curves should
i i scale if they went as 4/ Notice that while for small the ampli-
tudes drop slower than r1/for largerr the amplitudes drop off
approximately as 1/

wheret; is the time at which spimnflips. From this form, we
can use an additional delta function to pull out the contribu
tion due to pairs of spins separated by a distance

where (); implies an averaging over all values bfUsing
this definition of the functiorG(,r|S), we can rewrite the

time-time correlation function as o _ .
finite size effects:S*~LY". In experiments, the typical

largest avalanche size could be determined by the finite ex-
G(6|S):Sf G(o,r[Sdr, (14) perimental duration or from the demagnetizing forcés.
some cases, demagnetizing forces also contribute to the cut-
Now, we can use Eq14) to calculate the contribution of off in our simulations. These effects would cut off the prob-
spins separated by a distanceto the power spectrum ability of getting large avalanches.
E(w|S) at a frequencyn. Taking the cosine transform of Eq. The contribution toE(w) from an avalanche of siz&
(14), we find that scales linearly ir§, for large avalanches: each spin contrib-
utes the same amount. The cutoff at large avalanche sizes
E(w|S)=Sf f cos{we)G(a,r|S)drdazsf E(w,r|S)dr, dom_inates the scaling &(w) precisely be_zcaL_Jse most spins
are in the largest avalanches. The distribution of avalanche
(15 sizesD(S,S*) cannot be a simple power-law cutoff &t for

where the functionE(w,r|S) is defined by this equation. 7<2, because we knoWwSD(S,S*)dS=1; [ sl-"ds de-
Notice thatE(w,r|S) must have a cutoff at the largest pends onS* and diverges a§* —« for 7<2. Hence the
present in an avalanche of sigeWe can see from Eq15  overall amplitude oD must decreases & gets bigger. If
that in order forE(w|S) to be proportional tcg, the integral
must be independent of thiS dependent cutoff. This is a
more precise statement of the hypothesis that only correla- o ‘S=16250 (‘r=6)
tions between nearby spins contribute to the power spectrum. ——— $=32500 (1=6)
It is also necessary that except for extreme valuas ahdr, 102 N
E(w,r|S) must be independent & Combined with the first
condition, this corresponds to the hypothesis that the local
growth of the avalanche should not reflect the overall size of
the avalanche.

Figure 7 showsE(w,r|S) is decaying approximately as
1/r. Figure 8 shows that it is independent ®&ind that the 10° ¢
decay is oscillating about zero. Neighboring radial shells
contribute with opposite sign. Hence the integral 15 appears
to be conditionally convergent at large distances: each spin 10"
contributes tdE(w) only through its correlations with nearby
spins, ancE(w|S)~S.

10

[E(w,r [S)]

0 0.1 0.2 0.3 0.4 0.5
[0}

FIG. 8. This graph showtE(w,r|S)| atr=6 for two sizes of
avalanches. No averaging has been performed, so the oscillations
are visible(the function changes sign at each)dipor largerr, the

In Sec. Il F we found that we need to understand thepscillations are much faster. Notice that the curves are nearly iden-
cutoff at large avalanche sizes. In our simulations there is #cal for the two sizes-E(w,r|S) has no significan dependence
typical largest avalanche siZ&* which is primarily due to  at smallr.

H. Integrating the power spectrum over avalanche sizes
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we choose a scaling form for the avalanche size distributionvhere the last equation provides a condition on the scaling
with an overall amplitude which depends upSh, we can  function f ..
fix this problem: We are now ready to integrate the power spectrum 8yer
_ finding the formE(w) corresponding to Eqg11) but valid
__ 2
D(8,57)dS=(S") " *f5.d S/S"), (16) for 7<<2. We discovered in the last sections thiglefy)
fody)~y 7 y—0, (17) ;;CI/y. We control the integral by adding and subtracting

f SD(S,S*)dS=f(S*)‘ZstiZe(S/S*)dS

- [ Vistyray-1, 19

E(0)= [ DISSIEOI9US- [ [(S) ad SISV cprgf 079 1dS= [ (SIS 1o IS enof 0910

= J (SIS*)?f 4, d SIS*) Al (0*72S)d S+ f (SIS*)2f 512d SIS* ) f energf @*72S) — Al (0™72S) ]d S, (19

In the first integral, we set=3S/S*. In the second integral, cases,7<2.) We have checked the short-range model in
we sety=w”"?S, Also, the second integral now converges, three and four dimensions, the infinite-range model in three
S0 we can substitute,{ S/IS*)—(S/S*) " and four dimensions, and mean-field theory. In all cases, the
linear scaling withS seems exact, and both(w|S) and
E(w) scale asw Y** to within simulational precision.
In all cases, the exponent {3r)/ovz is completely
inconsistent with the observed results. The results of
=2, —@-7lovz | \,2-7 _ mean field theory and the short-range model at the
H(E) P0G fy [Tenergy) ~Aly]dy three dimensional critical point can be seen in Figs. 10
(20) and 11. The results for the four-dimensional short-range
model and the four-dimensional infinite range model
~w Y7 (7<), (21) were also completely consistent with artkz scaling expo-
nent.

E(w)=w_l/‘”’zf AZfg,d2)dz

The exponent in the second term of EO), (3
— 1)/ ovz, is Eyong Of EQ. (11), given by ignoring the cutoff V. DISCUSSION

at large avalanche sizes. However, for2 the first term There h b | . dicti fh
will dominate over the second term both for large system ere have been several previous predictions of the power

sizes and for largen. Only for 7>2 will the second term spectrum exponent. In her Ph'[.)' th_esis, Datitrdid a qal-
dominate. For all of the models we are considering;2. Culation similar to the one done in this paper, bu.t she ignored
(See Table ). In fact, the exponent (3 7)/ovz disagrees the problems with the integral and came up with the expo-

badly with the results observed in both simulations and ex-
periments, and the exponentliz agrees very well. In mean

field theory, we can actually derive rigorously that the power 10
spectrum exponent is @ee the Appendjx This is in perfect

agreement with the exponentol/z, and complete disagree-

ment with the exponent (3 7)/o vz, which would be 3. A 107 |

plot of the power law for the infinite-range model can be 6
seen in Fig. 9. A comparison of the two possible exponents .
with simulations for each of the three models can be seen in ~ Power Spectrum
Table II. A Fit (0™
IV. HOW UNIVERSAL IS THE EXPONENT 1 /ovz? o7
' 3 = -1 0

So far in this paper, we have only discussed these results
for the infinite range model in three dimensions. However,
we have also checked these results in several other situations FIG. 9. The power spectrum for the infinite range model. The
where both7 and ovz take on a range of valuegln all dashed line is not a fit. It is a power law with an exponemtiiz.
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TABLE Il. This table compares values of the power spectrum
exponent measured in simulations with the values predicted by the

exponents Xvz and (3— 7)/ovz. Notice that for all three models
1l/ovz is very close to the simulated exponent, and-@/ovz is
in complete disagreement.

llovz (3—7lovz Simulated

1.72
1.72
2.00

241
3.00
3.00

1.70
1.70
2.00

Short-range
Infinite-range
Dipole

nent (3— 7)/ovz, which we have shown should hold only if
>2. This exponent was published by our grdwgithout

the derivation, and was compared to experimental work by

Cote and Meiséf-?° and Bertottiet al?® The correct expo-

10

10

- P(lS)/S

—1/6vz.

- w(x—s)/ ovz

-5

10 ™

FIG. 11. The short-range model in three dimensions. The plots
and the sizes are the same as in Fig. 10.

nent form derived here makes the agreement between the
short-range model and these experiments substantially better:6. For their experimentally determined valuesref1.77

they quote an exponent of “around 2,” our form@vrong
prediction was 2.460.17, and the correct prediction is
1.75+0.25.

Presumably the earliest derivation of {3)/ovz (we
thank the referee for pointing this guis by Lieneweg and
Gross-Nobi&? in 1972: their exponent +2e— 6 translates
precisely to (3- 7)/ovz in our notation? They use this to
analyze their unannealed data, for which they measure
=2.1 (hence making their derived exponent appropjiate
their annealed wires show values of1.73, and indeed
their power spectrum shows a much steeper falloff, quit
close to our predicted valuedt?z which they measure to be
1.63.

Spasojevicet al*® also came up with the sam@rong)
form based on arguments about the average pulse sha
They measured an experimental power spectrum exponent

10
10°
10°
----- S(U/T)
L | T P -
10 - P(0]S)/S
-1/ovz
—_—— o)(r—s)/crvz
107 : :
10° 107 10’

FIG. 10. The mean-field model. Notice that the power spectru
for avalanches of siz8 collapses when divided b8 and that the
power spectrum for avalanches of si&and the overall power

spectrum both have the same power law as the average avalanch > dE
size as a function of the inverse avalanche duration. Sizes 96, 1536, <7 VZ an (0)~w

24576, and 196 608 are shown in the collapse Pgfw|S)/S.

P

andovz=0.662, they found that (3 7)/ovz=1.86 fit their
data well, but the value of (37)/ovz=2.46 quoted by
Dahmenet al® was much too large. This lead them to disre-
gard the plain old critical model with domain nucleation as a
possible explanation of Barkhausen noise in their system.
However, note that their experimental value ofo iz
=1.51 is as close to their measured power spectrum expo-
nent as their value of (37)/ovz=1.86. The value of
1l/ovz=1.75£0.25 quoted by Dahmeat al. is even closer

to the experimentally observed power spectrum exponent.

(?The value of7=1.6 predicted by Dahmeet al. is also

closer to the experimentally measuree 1.77 than any of
the other models: front propagation has an exponent.3,
aend mean-field theory has an exponenrtl.5) One should
npte, however, that the average avalanche shapes measured
By Spasojevicet al. disagree with those predicted by the
short-range modglFig. 2).

In 1989, Jensen, Christensen, and Fogétpublished a
different calculation of the power spectrum exponent for
sandpile models, which has been cited many times as an
explanation for 1b? scaling of the power spectrum in sand-
piles, Barkhausen noise, and other systems. They made two
major assumptions in their derivation. First, they assumed
that the avalanche shape could be approximated by a box
function: V(t)=S/T for all t<T. For our models, this as-
sumption turns out to be valid for calculating the average
avalanche energy, but is not valid for determining the overall
scaling of the time-time correlation function. Second, they
assumed that one of their scaling functions, which was re-
lated to the time-time correlation function, had the simple
scaling formG(T)~T“ exp(—T/Ty). As can be seen from
the exact mean field time-time correlation function in Eq.

m(A6), this is not at all a safe assumption. In terms of our

exponentsr and ovz, their prediction was that the power
gectrum would have the forf(w) ~w® V"% for 7>3
~2 for 7<3—20vz. This is the same
as our result in the case wheserz=1/2. For the particular

The average avalanche size as a function of the inverse avalancheodel they were studying, their assumptions seem to be cor-

duration is the definition of the exponentolfz. Power laws
of l/lovz and (3—7)/ovz are also shown for comparison.
Notice that (3-7)/ovz is completely incompatible with the
results.

rect, but in the more general case, the exponent (3
—7)/ovz should become invalid for<2, rather thanr
<3—ovz. Also, for 7<2, exponents other than 2 are pos-
sible, depending on the particular dynamics. For the class of
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models described in this paper, the correct exponentrfor 10°
<2 is llovz.

Narayan® derives a power-spectrum exponent for front
propagation, considering the dynamic height-height correla-
tion function for the growing interface. His exponéft(2¢ 10
+d—1)/z—1 involves the static height-height correlation
exponentZ: (h(x,t)h’(x’,t))~|x—x'|?, along with the di-
mensiond. This prediction is rather different from the two
discussed in this paper. Narayan and Fisher's 10
5—d= e-expansion resulf8 show {=2/3 andz=2—2¢/9
+0(€?) yielding a predicted power-spectrum exponent of
8/7+0O(€?) in three dimensions, quite different from the ,
value of around 1.7 that we measure. Narayan’s derivation 10

G(6)

L
0 1 2 3

, 10 10 10 10

dogs not separate the high-frequency power By w) 6

which we study from the low-frequency power l&i,,{( )

reflecting the correlations between avalanctdiscussed in FIG. 12. The exact time-time correlation for mean field theory

the introduction: his analysis is probably describing the With @ maximum time cutoff off =1000.
asymptotic behavior of the latter.

There are other specific models for which the power specbalanced between continuing and dying, and there will be a
trum exponent has been calculated. For example, Bak, Tangtitical distribution of avalanches. If the random-field distri-
and Wiesenfelficalculated the power spectrum exponent forbutionp(h) has a maximum value of 1J2then there will be
their sandpile models, and Durin, Bertotti, and Magmial- ~ a critical distribution of avalanches at the valuetbt=H,
culate the form and asymptotic power law for the power-wherep(h) is a maximum.
spectrum of the Alessandro-Beatrice-Bertotti-Montdré Let us calculate the power spectrum for the critical system
model. Without further investigation, we cannot expect ourwith p(h)=1/2J. To begin with, we will calculate the prob-
arguments for an exponent ofd#z to hold for these and ability distribution of time seriesi;,n,, ... n.. We know
other models. However, we do expect that in any avalanchthat in shell zero, exactlgy=1 spins will flip. At the critical
based model, the power spectrum exponentfo2 will be  point, where each spin on average causes one more spin
(3—1)/ovz, and another exponent will dominate fexx2.  to flip, shell one will have a Poisson distribution with
Whenever the arguments in Sec. I G hold, fex2 the mean one:P(n;)=1/en!. Shell i will have a Poisson
exponent 1#vz, relating the avalanche size to avalanche dudistribution with meam,;_, : P(ni)=e”i‘1n?11/ni!. There-

ration, should dominate. fore, the probability distribution for the entire time series
will be
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APPENDIX: THE MEAN-FIELD POWER SPECTRUM G(O)= 2 (niniw), (A3)
=0
In mean-field theory, we can calculate the power spec-
trum exactly. The Hamiltonian in mean-field theory is the where
Hamiltonian in Eq.(1), without nearest-neighbor or dipole

terms:
>

(ninHe}:{n L nini4gP(Ng, ... n.).  (A4)

nt Z (HJ+h)s;. (A1) To simplify Eq. (A4), we need to use several properties of
When a spin flips with an external field éf, all spins with thf Ii(x)lison d|str|but|onw: ?”:_Ox(en xnt) = 12
random fields between—(H+JM) and —[H+J(M  =n=oN(€ XVnh=x, —and X,_on“(e "x"/n!) =x+x"
+2/N)] will flip. Therefore, each spin has a probability of USing the first rule repeatedly, we can simplify Ed4)
(23/IN)p(—H—JIM) of flipping, wherep(h) is the probabil- to
ity distribution of the random fields. On averagelp?—H
—JM) spins will be flipped. If Jp(—H—-JIM)>1, then the _

avalanche will tend to grow indefinitely, and there will be an <n‘n‘+">_{n 2 =0 MM+ gP (N1, - M)

infinite avalanche. If 2p(—H—JM) <1, then the avalanche

will quickly die out, and all avalanches will be small. If Then, using the second rule repeatedly, we can further sim-
2Jp(—H—-JM)=1, then avalanches will always be finely plify to
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* To get the exact form of the mean-field power spectrum,
(nin;, o) = > nZP(Ny, ... N;). we just take the cosine transform of E#\6):
{n =0

Now, applying the second and third rules repeatedly, we can E(w)= fwcoswe)G(e)de
simplify to a single sum: 0
LI

0
Sttt 5 Te de

o0

(i—1)n;+n?
<nini+a>_n12=0 —enll =

it+1.  (A5) = fo cogwf)

2

Notice that the correlation between two times is proportional T 2+ @ [1-cogTw)]— o 3sin(Tw)
> .

only to the first time, and not the separation between the

times. (A7)
Now, we can find the value of the time-time correlation

function G(6) by summing the result of EqAS5). Because The dominant term in this equation ®w 2. This is the

the time-time correlation function as defined is proportionalsame exponent as predicted by the general scaling argu-

to the square of the total time, we must cut off the summaments: 16vz=2. The general scaling arguments also pre-

tion at some maximum tim& to get a finite result. Summing dicted that a term smaller by a factor &fand with the

according to Eq(A3), we find exponent (3- 7)/ovz=3 would be subtracted off, and it is,

but multiplied by a factor of sif{w). However, the siMw)

T . (T-0)(T—60+1) T2 T 6> ¢ turns out to simplify things even more. Because the correla-
G(0)= ZO I+1= > =5 T5%t5 5 tion function was actually discrete, we should consider a
o discrete power spectrum, where the frequencies are multiples
-T6. (AB) of wy=2#/T. This means that cof{p)=1 and sinTw)=0

. . B . - for all w in the discrete spectrum. Because of this, all terms
This shape for a cutoff time of = 1000 is shown in Fig. 12. except theT w2 term drop out. If we divide byT to get the

Notice that the exact shape in mean-field the_ory is very S'mr'Power spectrum, we find
lar to the experimentally measured correlation functions i

three dimensions. Plw)=w 2. (A8)
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