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Models of complex systems exhibit universal properties: there is a structural hi-

erarchy of parameter importance. Where does this hierarchy come from? What

do hierarchies say about model predictions, complex systems, and the way we

make sense of phenomena? This thesis explores patterns in the complex, non-

linear models we construct to understand physical and social phenomena, with

a focus on the structural hierarchy of parameter importance. Using informa-

tion geometry, the problem of finding and explaining patterns in models and

data is translated to one of finding structure in high-dimensional geometric ob-

jects, known as model manifolds (representing the space of all possible model

predictions or all data). The structural hierarchy of parameter importance is

turned into a geometric hierarchy of lengths and widths of these manifolds.

In the first part of the thesis, we use approximation theory to connect the un-

derlying smoothness of models to bounds on their corresponding model mani-

folds, explaining global hierarchical structure. Our approach results in univer-

sal bounds on model predictions for classes of smooth models, capturing global

geometric features that are intrinsic to their model manifolds. We illustrate these

ideas using three disparate models from three different fields: exponential de-

cay (physics), reaction rates from an enzyme-catalysed chemical reaction (chem-

istry), and an epidemiology model of an infected population (biology).

In the second part, we derive a new manifold learning technique called

InPCA to obtain low-dimensional visualizations of the manifolds of general,



probabilistic models and data that reveal properties of their corresponding man-

ifolds. Using replicas to tune dimensionality in high-dimensional data, we con-

sider the zero-replica limit to discover a distance metric which preserves dis-

tinguishability in high dimensions, and an embedding with superior visualiza-

tion performance. We apply InPCA to several probabilistic models, including

the finite two-dimensional Ising model of atomic spins, a trained convolutional

neural network, and the model of cosmology which predicts the angular power

spectrum of the cosmic microwave background allowing visualization of the

space of model predictions (i.e. different universes).

Finally, in the third part of this thesis, we use the tools of dimensional reduc-

tion combined with advanced statistical tests to analyse the results of a study in

which we quantified student behaviours in the labs of an introductory calculus

based physics course. Specifically, we analyzed gendered differences in partic-

ipation in these labs. We followed 143 students across multiple lab periods in

two pedagogically different lab types, and performed a cluster analysis to iden-

tify different categories of student behaviour. We found that in labs designed

to foster collaborative group work and promote student decision making, there

was a task division along gender lines with respect to laptop and equipment

use (and found no such divide among students in more guided verification

labs). Specifically, women handled laptops more than men and men behaved

differently depending on whether they were in mixed-gender or single-gender

groups. Students were not overtly assigned tasks, and the only explicit instruc-

tion from one student to another was in the form of quick, directed comments:

the gendered division of tasks at the class level was not the result of overt task

allocation but rather the accumulation of subtle interactions.
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CHAPTER 1

INTRODUCTION

Physics relies on an interplay between reductionism and constructivist episte-

mology. To understand a complicated system, break it down into its component

parts and then see how the parts fit together, specifically through the construc-

tion of falsifiable models (that are then empirically tested). This philosophy

forms the foundation for model construction in physics, one so widely accepted

that we as physicists apply it without much question [7, 123]. However, even

though we view systems as ultimately explainable in terms of their reduced

parts, we are still able to construct practical models of complex systems without

needing to understand all of their elementary pieces. Curiously, we need not

fully understand the microscopic complexity of a system in order to practically

model its behaviour (e.g. we do not need to know the positions and velocities of

every individual water molecule to usefully predict a fluid’s motion through a

city’s water supply1). In many ways, the entire field of statistical physics serves

as an example of this fact. This raises several questions: what makes a system

understandable and predictable? Is the fact that we can model systems without

understanding their full complexity a reflection of the systems themselves, or

us the researchers? Similarly, do common patterns in our models reflect an un-

derlying pattern in the world around us, or in the way we construct models, or

are such patterns a statement about systems we can understand?

To fruitfully bridge the scales between constituent parts and the complex

systems they collectively create, the concept of emergence has been gaining pop-

ularity in recent decades [7]. Emergence is described by Kim [84] as the follow-

1Commendations are in order to the researcher who actually derives the Navier-Stokes equa-
tions for fluid mechanics directly from quantum field theories [52].
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ing:

As systems acquire increasingly higher degrees of organizational

complexity they begin to exhibit novel properties that in some sense

transcend the properties of their constituent parts.

An understanding of the elementary properties of a system, alone, is incom-

plete. I would also argue that, as one considers increasingly complex systems,

it is in fact these emergent properties that matter most for effectively modelling

the system (e.g. the electron coupling in the BCS theory of superconductivity

does not hinge on the nature of the effective attractive force between electrons,

merely that there is one). Because of this, there is a notion of hierarchy in com-

plex systems, at least from the perspective of ‘important features for pragmatic

modelling’.

In this thesis, I explore patterns of structural hierarchies in complex systems

through the lens of information geometry. This area of mathematics is used to

translate the problem of finding patterns in models and data to one of finding

structure in high-dimensional, geometric objects. I outline the important ele-

ments of information geometry for this thesis in Chapter 2.

Complex nonlinear models are typically ill-conditioned or sloppy; their pre-

dictions are significantly affected by only a small subset of parameter combina-

tions, and parameters are difficult to reconstruct from model behavior. Despite

forming an important universality class and arising frequently in practice when

performing a nonlinear fit to data, formal and systematic explanations of slop-

piness are lacking. By unifying geometric interpretations of sloppiness with

2



Chebyshev approximation theory in Chapter 3, we2 rigorously explain sloppi-

ness as a consequence of model smoothness. Our approach results in universal

bounds on model predictions for classes of smooth models, capturing global ge-

ometric features that are intrinsic to their model manifolds, and characterizing

a universality class of models. We illustrate this universality using three models

from disparate fields (physics, chemistry, biology): exponential curves, reaction

rates from an enzyme-catalysed chemical reaction, and an epidemiology model

of an infected population.

In using information geometry to better understand model properties, we

construct geometric objects know as model manifolds whose geometric features

we then analyze. Unsupervised learning makes manifest the underlying struc-

ture of manifolds (and data more generally) without curated training and spe-

cific problem definitions. However, the inference of relationships between data

points is frustrated by the ‘curse of dimensionality’ in high-dimensions. In-

spired by replica theory from statistical mechanics, in Chapter 4 we consider

replicas of the system to tune dimensionality and take the limit as the num-

ber of replicas goes to zero. The result is the intensive embedding, which is

not only isometric (preserving local distances) but allows global structure to be

more transparently visualized. We develop the Intensive Principal Component

Analysis (InPCA) and demonstrate clear improvements in visualizations of the

Ising model of magnetic spins, a neural network, and the dark energy cold dark

matter model as applied to the Cosmic Microwave Background.

Emergence in complex systems describes how microscopic constituents

come together to yield macroscopic phenomena. Groups of people are no ex-

2Because the majority of the work presented in this thesis is the result of collaborative
projects, I will mostly use “we” to refer to “we who did this work”.
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ception to this, and so a natural research question is how collective human be-

haviour emerges from individual interactions. Physics education research offers

a fruitful foundation from which to explore this question, where we look at how

patterns in behaviour in physics labs is impacted by the interactions between in-

dividuals. In Chapter 5, we use poststructural gender theory and cluster anal-

yses to identify patterns in student behaviors during lab instruction, patterns

which relate to students’ gender identities as well as those of their group mem-

bers. We conduct additional analyses to understand those behaviors and further

explore how they are impacted by the instructional context.

1.1 Modeling Physical Phenomena

John Von Neumann famously said [45]:

With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.

Complex nonlinear models used to simulate and predict experimentally ob-

served phenomena often exhibit a structural hierarchy; perturbing a few model

parameter combinations drastically impacts predictions, whereas most others

can vary widely without effect. Such ill-conditioned models are called sloppy.

Sloppy models appear to be common, arising in many areas of physics. In crit-

ical phenomena, this hierarchy of importance explains the parameter scaling

with coarsening for diffusion and the Ising model of magnetism [99]. In acceler-

ator physics, linear combinations of the multitude of tunable beam-line parame-

ters exhibit a geometric hierarchy of importance [61]. Exponential curve fitting,
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a notoriously ill-conditioned problem, poses a significant challenge, e.g. finding

correlators in lattice QCD [92, 76]. Sloppy models are not confined to physics

and in fact appear in systems biology [23, 22, 62], insect flight [17], power sys-

tems [151], machine learning [111], and many other areas [146]. Understand-

ing why sloppiness occurs can therefore connect models used across disparate

fields.

To better understand sloppiness, there are many well-studied cases for in-

sensitivity of model predictions to particular combinations of parameters. Struc-

tural identifiability describes systems for which parameters can be analytically

exchanged for one another [30, 125]. Separation of scales, singular perturba-

tions, and continuum limits can make the behavior at a particular time or dis-

tance region depend only on a subset of the underlying parameters [83, 43, 96].

Universal critical behavior can yield effective parameter compression on long

length scales near continuous transitions [99]. However, these comprehensible

sources of sloppiness do not explain the generality of the phenomenon, nor do

they offer a rigorous framework by which to quantify the hierarchy of parame-

ter importance. In Chapter 3, we address the generic sloppiness of multiparam-

eter nonlinear models in the absence of particular mechanisms or small param-

eters. We unify recently developed geometric descriptions of sloppiness [146]

with classical ideas from polynomial approximation theory [154]. We posit that

in many cases, sloppiness is fundamentally linked to the smoothness of the un-

derlying model, and provide a rigorous description of this connection. Specif-

ically, we use the smoothness of the underlying model to characterize a high-

dimensional hyperellipsoid, which bounds the model manifold, and are able to

quantify the various widths of this hyperellipsoid – and thus the allowed space

for model manifolds.
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1.2 Power and Authority in Institutions of Science

A great strength of physics is its foundation on empirical evidence. Researchers

construct falsifiable theories, laws, and models that are subjected to rigorous

empirical testing. As Richard Feynman famously said in his 1964 Messenger

lectures at Cornell [50],

It doesn’t matter how beautiful your theory is, it doesn’t matter how

smart you are. If it doesn’t agree with experiment, it’s wrong.

By relying so strongly on experiments, physicists have crafted a rigorous frame-

work by which to build practical models of physical phenomena. The widely

successful nature of our technological advancements has led many to argue that

this implies a correspondence truth: our models are getting closer and closer to a

pragmatic reflection of the world as it really is [116, 75], or at least getting better

and better at providing a pragmatic interpretation of the ‘real world’ relative to

a certain purpose [129].

While this philosophy can be appealing, it is easy to forget that research is a

human endeavour, and conducted within human institutions. In holding data

detached from human elements as “objective” authority3, we can fall into the

trap of ignoring, dismissing, or even denying the existence of the subjective na-

ture of research [49]. This can not only limit areas of research, ultimately under-

mining the very goals scientists set out the achieve, but damages the community

as we conflate the authority of empirical evidence with those who present and

interpret said evidence.

3As anyone who encounters the phrase “scientists claim” in news articles can attest.
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A human element which guides research is culture. Many physicists describe

the field as having a “culture of no culture”[152], that by conducting funda-

mental research that aims to remove the human element as much as possible,

we have removed any cultural element from the field itself. However, there

is a culture in physics, and it is constructed and reconstructed by those who do

physics [58, 26]. Importantly, it is hierarchical, with senior researchers in a given

discipline holding enormous prestige and sway in the community. This isn’t to

say social hierarchies serve no purpose: functional accounts [63] argues that hi-

erarchical differentiation can facilitate group coordination by clearly defining

roles [137], allowing the rapid flow of uniform information [6, 9], and creating

patterns of deference. Given the highly technical and complex nature of physics

fields, having designated experts can be advantageous for training, guiding and

mentoring novel researchers (e.g. graduate school) and for assessing research in

that field (e.g. who to reach out to for peer review).

However, there are tangible consequences to research when deference to au-

thority occurs in science. Senior scientists have abused their positions of power

to stifle progress in the field when it conflicts with their own work (such as Rus-

sell convincing his graduate student, Payne-Gaposchki, that her conclusions

regarding the chemical compositions of stars were wrong [161]) or assumed

credit for discoveries made by peers with less social standing (such as Watson

and Crick assuming sole credit for the discovery of the DNA double helix and

sidelining Franklin [14], Hewish and Ryle being awarded the Nobel prize for

Burnell’s discovery of recurring signals in pulsars [155], or Yang and Lee being

awarded the Nobel prize for observing parity violations and sidelining the vital

contributions of Wu [131]).
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Moreover, there is a scarcity of resources in physics. There are limited fac-

ulty positions, as the proportion of people with science Ph.D.’s who manage to

obtain a tenure-track position is dropping [36]. With the increase in supply of

highly qualified candidates and demand for investment in infrastructure rather

than labor, many universities are seeing an increase in adjunct positions instead

of tenure-track positions4 resulting in decreasing job security. In addition, there

is limited funding for research (e.g. only about 23% of NSF funding applica-

tions are granted [108]). The increased pressure on academics fuels the “publish

or perish” mantra, to the detriment of research5 and researchers6. The combi-

nation of strong hierarchical systems with a scarcity of available resources for

community members does not create egalitarian communities, facilitate the free

and open exchange of ideas, nor promote moral and ethical research. The full

impact of such consequences are beyond the scope of this discussion, as I would

like to focus on a particular consequence, that of representation within the field.

What Feynman failed to note in his Messenger lectures was that who you are

also has a huge impact on whether or not your theories and ideas are seen as

‘correct’ by the physics community. There is a large emphasis on innate abil-

ity and raw talent7 in physics [93] (the so-called “lone genius effect” [105]), and

strong cultural stereotypes abound regarding who has innate talent (in partic-

ular, white men [15, 59, 136]). An extreme notion of this philosophy, where

4The American Association of University Professors reports than now over 70% of full-
time faculty are non-tenure track, up from 55% in 1975 https://www.aaup.org/issues/
contingency/background-facts

5Not only does this fuel predatory, for-profit journals but stifles creativity. Nobel Laureate
Higgs doubts he would have been productive enough to survive in the current research cli-
mate [2].

6There is a rising mental health crisis in academia, with graduate students more than six
times likely to experience depression and anxiety as compared to the general population [48,
162]

7For a longer discussion on fixed versus growth mindsets in the context of STEM and educa-
tional systems, see [44, 73].
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researchers actively set out to prove the supposed “natural” superiority of par-

ticular segments of the population, has yielded scientific blunders such as the

IQ controversy [135]. As Traxler explains [153],

Currently, many stereotypes abound in Western technological cul-

ture that relate to both science and sex differences; good scientists,

and good men, are knowers, rational, and predictable. Women are

framed as emotional, unpredictable, and thus irrational and poorly

suited to science.

The culture of physics is highly masculine and androcentric [53, 66] and

laden with masculine connotations [57]. Importantly, general attitudes of re-

searchers in a discipline correlate with representation in the field [93]. In Leslie’s

study, 1820 faculty, postdoctoral fellows, and graduate students across 30 dis-

ciplines were asked to rate their agreement with statements such as “Being a

top scholar of [discipline] requires a special aptitude that just can’t be taught”.

Representation and belief in innate ability were correlated (in both STEM, and

the humanities and social sciences): the stronger a discipline’s association with

the requirement of innate ability (as determined by members of that field), the

fewer women were granted Ph.D.’s.

The composition of a research community has an effect on the research con-

ducted, as a more diverse set of people allows for more diverse modes of think-

ing [58, 24, 65, 127, 128]. By limiting the diversity of physicists, we undermine

the field and stifle growth. More importantly, can we truly call the physics com-

munity an equitable meritocracy that supports the free and open exchange of

ideas if vast segments of the population are effectively barred from entering?

This is not to say that physicists should abandon our field’s foundation on rig-
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orous empirical evidence, but rather that we need to apply our tools of rigorous

criticality to our institutions and cultures as well as our immediate research. By

rigorously analyzing our morals, values, and decision-making processes, and

view this analysis not as an impediment to good science but rather an integral

part of it, we can evolve our culture in a directed, deliberate manner, and funda-

mentally address the problems in the field. In doing so, we can decouple (and

re-evaluate) notions of “natural” and “cultural” authority, and “natural” and

“culturally expected” and ability, to address the hierarchical nature of the field

and great imbalance in representation.

In exploring some of the underlying reasons and mechanisms for this imbal-

ance in representation, in Chapter 5 we explore how gendered behavior man-

ifested in physics labs. We noticed that groups in physics labs, when afforded

the opportunity to divide tasks and roles between members, in fact did so along

gender lines (with women handling laptops and performing data analysis more

than men, and men handling equipment far more when working with other

men). As universities implement pedagogical changes in their classrooms (such

as the AAPT recommendations for undergraduate physics laboratory curricu-

lum [86]), it is vital that we are as aware of the culture and dynamics of our

institutions, and actively account for these effects.
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CHAPTER 2

INFORMATION GEOMETRY

In this chapter, we introduce notation and concepts used throughout the rest

of the thesis. Much of the methods and analysis rely on applications of infor-

mation geometry [5, 4], an area of mathematics in which the problem of pattern

recognition in complex data and models is translated to one of finding structure

in high-dimensional, geometric objects. Here, topology and differential geome-

try meld with information theory and statistics in an elegant manner, revolving

around model manifolds (Section 2.1) and metrics defined by the Fisher information

matrix (Section 2.2).

In particular, the phenomena of ill-posed and well-constrained parameter

combinations becomes manifest in ‘long’ and ‘short’ directions along the model

manifold. We discuss the tangible connections in Section 2.4. Finally, in Sec-

tion 2.5 we discuss different manifold learning techniques, and highlight the

ones used in this thesis.

2.1 Model Manifolds

Model predictions have an elegant geometric interpretation. Given input pa-

rameters, models produce predictions. These predictions can be written out as

a high dimensional vector (of finite or infinite length). Specifically, given some

nonlinear model yθ(t) with model N parameters θ = {θα} evaluated at points

(t1, t2, . . . ), the set of all possible model predictions for all possible model param-
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eters defines the model manifold1:

Y = {Y(θ) | θ} where Y(θ) = (yθ(t1), yθ(t2), . . . ). (2.1)

The dimension of the manifold is determined by the number of input parame-

ters (and so is an N dimensional space), and it is embedded in a space whose

dimension is determined by the number of predictions (i.e. the number of points

ti, which may be finite or infinite). In particular, we can see the model as a map-

ping from parameter space to prediction space.

As an illustration, consider a trivially simple nonlinear model with two input

parameters θ1 and θ2, given as

yθ(t) = cos (θ1t + θ2) , (2.2)

that we evaluate at three time points (t1, t2, t3). The model manifold is therefore

a two-dimensional object embedded in a three dimensional space, as shown in

Fig. 2.1. The geometry of the manifold reflects properties of the model. Here,

because of the periodic nature of cos, there are degeneracies in the model pre-

dictions (e.g. cos(θ1t + θ2) = cos(θ1t + (θ2 + 2π))) which is reflected by a winding in

the manifold itself.

As a second illustration, consider another trivially simple nonlinear model

with two input parameters θ1 and θ2 given as

yθ = e−θ1t + e−θ2t (2.3)

which we evaluate at three time points, (t1, t2, t3). The boundaries of this mani-

fold reflect important limits of the model, with either θ1 or θ2 going to infinity,

1This definition of a manifold does not satisfy the strict, mathematical requirement that every
point on the manifold have a neighborhood that is homeomorphic to Euclidean space because
we allow for features like cusps.

12



(a) Cosine Function

(b) Two Exponentials

Figure 2.1: Model manifolds for the toy nonlinear models in (a) a simple
cosine function (from Eq. (2.2)), and (b) the sum of two expo-
nential curves with different decay rates (from Eq. (2.3)). Model
manifolds are constructed as the set of all possible predictions
for all possible model parameters and seen as a mapping from
parameter space to prediction space. Fitting model parameters
to data can be interpreted as projecting data onto the manifold
(red star).
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or when θ1 = θ2. We will explore the geometric interpretations of boundaries

further in Section 2.4.2.

Fitting model parameters to data has a tangible interpretation in this frame-

work; it can be seen as projecting data onto the model manifold. When fit-

ting parameters to data, the model predictions are compared to experimental

measurements. The measured data (x1, x2, . . . ) are compared to the correspond-

ing model predictions (yθ(t1), yθ(t2), . . . ), and so form a vector in the embedding

space of the model manifold. The parameters corresponding to the best fit are

ones which minimize the cost function,

χ2 = −2 logL (θ | x), (2.4)

where L (θ | x) represents a general likelihood function that the model predic-

tions for parameters θ fit the data x. The cost function serves as a measure of

distance, and can be directly translated to distances in the embedding space.

Minimizing the cost is equivalent to minimizing the distance in this embedding

space (up to a rescaling, discussed next), and so fitting the model parameters to

data can be seen as finding the projection of the data onto the manifold. Fig-

ure 2.1 illustrates this with a red star being projected onto the manifold.

To see this effect explicitly, consider a canonical least-squares model. Here,

the model predictions at different time points yθ(ti) have Gaussian noise

ξ ∼ N(0, σ2
i ). The cost function is expressed as2:

χ2 = −2 logL (x | θ) =
∑

i

(yθ(ti) − xi)2

σ2
i

+ 2 logZ (2.5)

2Note that we are expressing the cost in terms ofL (x | θ) instead ofL (θ | x), i.e. the likelihood
of observing data x given parameters θ rather than the likelihood that θ fit for observed data x.
The two are related through Bayes’ theorem, which states that L (θ | x)L (x) = L (x | θ)L (θ).
where L (x) and L (θ) are priors on the data and the parameters respectively. In assuming uni-
form priors, the two likelihood functions are interchangeable. The impact of non-uniform priors
is a rich and fruitful area of research, but will not be the focus of work presented here.
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where Z is a normalization term, given as
∏

i
1√
2πσ2

i

. If we drop the normal-

ization term (which is a constant independent of chosen parameters) then we

are left with a variance-scaled Euclidean distance between predictions yθ(ti) and

data xi. We use the cost as a basis for a distance function in this space, which we

give as:

d2(y, x) =
∑

i

(yi − xi)2

σ2
i

. (2.6)

With a distance function, we can now find the metric on the manifold by

considering the distance between parameters θ and θ + δθ:

d2(θ, θ + δθ) =
∑

i

(yθ(ti) − yθ+δθ(ti))2

σ2
i

(2.7)

=
∑

i

(yθ(ti) − yθ(ti))2

σ2
i

− 2
∑
α

∑
i

1
σ2

i

(yθ(ti) − yθ(ti))
∂yθ(ti)
∂θα

δθα

−
∑
α,β

∑
i

1
σ2

i

[
(yθ(ti) − yθ(ti))

∂2yθ(ti)
∂θα∂θβ

−
∂yθ
∂θα

∂yθ
∂θβ

]
δθαδθβ + O(δθ3)

=
∑
α,β

∑
i

1
σ2

i

∂yθ(ti)
∂θα

∂yθ(ti)
∂θβ︸                    ︷︷                    ︸

gαβ

δθαδθβ + O(δθ3). (2.8)

The metric gαβ can be expressed in terms of the Jacobian of the model. We

can write this out explicitly as

gαβ =
∑

i

JiαJiβ where Jiα =
1
σi

∂yθ(ti)
∂θα

. (2.9)

This metric is identical to a known object in statistics, known as the Fisher infor-

mation matrix, which we discuss in the next section.
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2.2 The Fisher Information Matrix

The Fisher Information Matrix (FIM) is a measure of the amount of information

about parameters that can be extracted from experimental data [51]. It is fun-

damentally connected to the covariance matrix of model parameters, and so is

widely used in optimal experimental design as a way of determining the ex-

pected accuracy of parameter estimates [87]. In other words, it determines the

best parameter uncertainty you could hope for given a particular experiment.

Given some probability distribution L (x | θ) that depends on parameters θ for

predictions x, the FIM is expressed in two equivalent ways3:

(i) Iαβ(θ) =
∑

x

∂ logL (x | θ)
∂θα

∂ logL (x | θ)
∂θβ

L (x | θ); (2.10)

(ii) Iαβ(θ) = −
∑

x

∂2 logL (x | θ)
∂θα∂θβ

L (x | θ) (2.11)

It is widely seen as the appropriate metric for probability distributions [4], be-

cause it sets a lower bound on the possible variance of parameter estimates for

an unbiased prior through the Cramér–Rao bound [34, 126],

Cov(θ̂) ≥ I(θ)−1, (2.12)

where θ̂ emphasizes that this is the covariance matrix of an estimator of θ.

For the simple least-squares models discussed in Section 2.1 (where model

predictions yθ(t) at points ti with Gaussian noise of variance σ2
i are compared to

data xi), the likelihood functions are expressed as

L (x | θ) =
∏

i

1√
2πσ2

i

exp
(
−

(yθ(ti) − xi)2

2σ2
i

)
. (2.13)

3The equivalence between the two expressions of the FIM can be derived by taking the sec-
ond derivative of the log-likelihood in the second term, and taking advantage of the normalized
nature of L. This is shown in Section A.2.
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By plugging in the above expression for the likelihood function into

Eq. (2.10), a tedious but straightforward calculation in Section A.1 shows that

the FIM for least squares models is given by I = JT J where Jiα =
∂yθ(ti)
σi∂θα

is the Ja-

cobian of the model, thus matching the metric for model manifolds found in

Eq. (2.9).

2.2.1 Connection to Hessians

The Hessian of the cost function at the best fit for least-squared models, using

Eq. (2.5), is expressed as:

∂2χ2(θ)
∂θα∂θβ

= 2
∑

i

(yθ(ti) − xi)
σ2

i︸        ︷︷        ︸
very small near best fit

∂2yθ(ti)
∂θα∂θβ

+
∂yθ(ti)
σi∂θα

∂yθ(ti)
σi∂θβ

≈ 2
∑

i

JiαJiβ︸    ︷︷    ︸
Iαβ

. (2.14)

The Fisher information is therefore equivalent to the Hessian of the cost function

at the best fit (up to a constant factor) for least-squares models.

2.2.2 Reparametrization

An important feature of the local metric is that it’s heavily parameter depen-

dent. Under reparametrization θα → θα̃, the FIM is given by

Iα̃β̃ =
∂θα

∂θα̃
∂θβ

∂θβ̃
Iαβ, (2.15)

which for our purposes can be interpreted as a matrix multiplication, of the

original FIM with the Jacobian of the coordinate transformation.
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2.3 Divergences

How does one measure the ‘distance’ between two probability distributions?

Ideally, if two distributions are indistinguishable they should have distance 0,

and if they have no overlap they should be very far apart. A class of measures

known as f -divergences [35, 106, 3] emerged in the mid-1900s to answer this

question. Given two normalized probability distributions P(x) and Q(x), and

convex function f with f (1) = 0, the divergence is defined as:

D f (P || Q) =

∫
dx f

(
P(x)
Q(x)

)
Q(x) (2.16)

Importantly, the metric for all such divergences is proportional to the FIM [5].

The most commonly used divergence is the Kullback-Leibler (KL) diver-

gence [89], where f (x) = x log x, and written out as:

DKL(P || Q) =

∫
dxP(x) log

(
P(X)
Q(X)

)
(2.17)

The KL-divergence is a measure of the relative entropy between two distribu-

tions.

Another notable divergence is the Hellinger distance [70], where

f (x) =
(√

x − 1
)2

and written out as:

DH(P || Q) = 1 −
∫

dx
√

P(x)Q(X) (2.18)

There is a direct geometric interpretation of the Hellinger divergence, in partic-

ular with its relation to the unit sphere which we will explore in Section 4.2.

A less well-known yet very important distance function for probability dis-

tributions is the Bhattacharyya distance [19], expressed as

DB(P || Q) = − log
∫

dx
√

P(x)Q(x) (2.19)
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While not technically an f -divergence, we will show in Chapter 4 that it is in

fact the limit of an f -divergence. It measures the difference between two distri-

butions in terms of their overlap. Importantly, the metric is also proportional to

the Fisher Information, as shown in a tedious calculation in Section A.3.

2.4 Geometric Interpretations and Sloppy Models

A vital observation made through the study of model manifolds is that they

are hierarchical: there is a structural hierarchy in both their local and global prop-

erties. Specifically, there are longer and shorter directions along the manifold.

By finding the parameter combinations these relate to, one can extract stiff di-

rections in parameter space (i.e. parameter combinations that drastically im-

pact model predictions) and sloppy directions in parameter space (i.e. parameter

combinations that have little impact on predictions) [146]. Figure 2.2 shows an

illustration of how different directions in parameter space translate to different

directions (of varying lengths) in prediction space.

Studying the model manifold yields fruitful information for a variety of rea-

sons. From a pragmatic perspective, an understanding of local features of the

manifold such as curvature can lead to more efficient data fitting methods [148]

due to the geometric connection with data (discussed in Section 2.1, where fit-

ting model parameters to data can be seen as projecting onto the model mani-

fold).

From a theory perspective, understanding the dominant components of the

manifold can yield a better understanding of emergence, i.e. how microscopic

features of the model yield simple macroscopic behaviour [99].
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Figure 2.2: The prediction/behavior space of complex systems is primar-
ily controlled by a few parameter combinations, even when the
model has numerous parameters. The hierarchy of parameter
importance directly translates to a geometric hierarchy in the
local properties (through geometric decay in the eigenvalues
of the metric) and global features (through a geometric decay
in the hierarchy of manifold widths). Figure taken from [134].

2.4.1 Local Properties

Local features on the model manifold are determined by the metric, the FIM.

The structural hierarchy at the local levels is revealed through eigenvalues of the

metric. They are geometrically distributed (evenly distributed on a log scale).

Figure 2.3 shows the eigenvalue spread of the FIM for different nonlinear mod-

els. Larger eigenvalues correspond to stiff parameter combinations (parameter

combinations that heavily affect model predictions) whereas the smaller eigen-

values correspond to sloppy parameter combination that can vary wildly with

minimal impact on model predictions.

While the sloppy spectra shown in Fig. 2.3 are the result of the FIM evaluated

at a single point, the spread appears to be a feature at every (or at least, nearly

every) point on the model manifold. Figure 2.4 shows the normalized distri-

bution of the eigenvalues of the metric computed at every point on the model

manifold for the three different models considered in Chapter 3. The eigenvalue

spectra of the FIM for sloppy models, with speculations regarding a connection
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Figure 2.3: Eigenvalues of the local metric for many disparate, nonlin-
ear models (rescaled by the largest natural eigenvalue for
each model) that span many orders of magnitude. Note
the enormous range in the vertical axis. Cell signaling data
from [22], radioactive decay and neural network are taken
from [148], quantum wavefunction are taken from [157], dif-
fusion model and Ising model are taken from [99], meat oxi-
dation is from [142], CMB data are explained in Section D.4,
accelerator model taken from [61], van der Pol oscillator taken
from [28] and circadian clock model from [37].

to random matrix theory, is explored in Appendix B.

2.4.2 Global Properties

Global properties of the model manifold are determined by the size of the mani-

fold in the embedding space, which reflect the full range of predictions allowed

by the model. There are interesting topological considerations. For instance,

the boundaries represent reduced-model approximations [149], i.e. models with

reduced complexity that still retain much predictive power.
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Figure 2.4: Normalized, stacked histogram of ordered eigenvalues of the
metric computed at every point on the model manifold for the
thee nonlinear models considered in Chapter 3. Note the enor-
mous ranges, both in the horizontal and vertical axes (both are
log-scaled). Color reflects the model (blue is exponential curves
discussed in Section 3.2.1, orange is reaction velocity discussed
in Section 3.2.2, green is the infected fraction of a population in
an SIR epidemiology model discussed in Section 3.2.3). Opac-
ity reflect order of eigenvalues in the local metric (darkest color
is largest eigenvalue in metric). Eigenvalues follow a geometric
decay, indicative of sloppy spectra. While the three models ap-
pear quite different, their eigenvalue spectra follow very simi-
lar geometric decays, a feature explored briefly in Appendix B.

Model manifolds typically form striking hyperribbons [147], so-called be-

cause, like ribbons, successive widths follow a geometric decay. They are much

longer than they are wide, much wider than they are thick, etc., yielding effec-

tive low-dimensional representations. Figure 2.5 shows the hierarchy in mani-

fold lengths for the models considered in this thesis.

Importantly, because directions along the model manifold correspond to

specific parameter combinations, there is a direct connection between the hy-

perribbon nature of model manifolds and the structural hierarchy of model pa-

rameters. In other words, understanding why model manifolds form hyper-

ribbons leads to an understanding of why structural hierarchies in parameter
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Figure 2.5: Manifold lengths for many disparate, nonlinear models
(rescaled by the largest length for each model) illustrating
the hyperribbon structure that characterizes model manifolds.
Note the enormous range in vertical axis. Exponential curves
are discussed in Section 3.2.1, reaction velocities of an enzyme-
catalysed reaction are discussed in Section 3.2.2, and infected
fraction of a population from an SIR epidemiology model are
discussed in Section 3.2.3. Polynomial approximations reflects
the numerically established bounds from Chapter 3. Biased
coin is discussed in Section 4.6.1, Gaussians are discussed in
Section 4.6.2, ΛCDM predictions of the CMB are discussed in
Section 4.6.5, and the Ising model is discussed in Section 4.6.3.
For probabilistic models, imaginary lengths (i.e. negative
squared distances) are reflected by dashed lines and are dis-
cussed in Chapter 4.

importance exists. In Chapter 3, we explore this geometric structure in greater

detail and use polynomial approximation theory to better understand where the

hyperribbon structure comes from.

23



2.5 Manifold Learning

Visualizing high-dimensional data is a cornerstone of machine learning, mod-

eling, big data, and data mining. These fields require learning faithful and in-

terpretable low-dimensional representations of high-dimensional data, and, al-

most as critically, producing visualizations which allow interpretation and eval-

uation of what was learned [41, 97, 91, 163]. Unsupervised learning, which

infers features from data without manually curated data or specific problem

definitions [107], is especially important for high-dimensional, big data appli-

cations in which specific models are unknown or impractical. For high dimen-

sions, the relative distances between features become small and most points are

orthogonal to one another [88]. A trade-off between preserving local and global

structure must often be made when inferring a low-dimensional representation.

Generally, there is seen to be two kinds of manifold learning techniques: (1) lin-

ear methods, which preserve global features, and (2) nonlinear methods, which

capture local features.

Classic manifold learning techniques include linear methods such as Princi-

pal Component Analysis (PCA) [77] and multidimensional scaling (MDS) [144],

which preserve global structure but at the cost of obscuring local features. Such

methods aim to project the data into an orthogonal coordinate system, deter-

mined by the eigenbasis of the covariance matrix of points.

Existing nonlinear manifold learning techniques, such as t-distributed

Stochastic Network Embedding (t-SNE) [98] and diffusion maps [31], preserve

the local structure while only maintaining some qualitative global patterns such

as large clusters. The Uniform Manifold Approximation (UMAP) [102] better
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preserves topological structures in data, a global property. We will use t-SNE in

Chapter 5 to qualitatively visualize the results of a clustering method applied to

behaviour data.

In Chapter 4, we develop a new nonlinear manifold learning technique

which achieves a compromise between global vs. local trade-off, by embed-

ding manifolds into a Minkowski-like space that allows them to be ‘unwound’

in a natural way. We call this new method the Intensive Principal Component

Analysis, or InPCA.
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CHAPTER 3

BOUNDING MODEL PREDICTIONS

In this chapter1, we quantify the underlying smoothness of a model and

combine it with polynomial approximation theory to set geometric constraints

on the space of allowed model predictions. We use this to rigorously quantify

the hyperribbon structure of model manifolds (see Section 2.4.2 for description

of hyperribbons) for regular, least-squares models.

3.1 Polynomial Approximations

Consider a nonlinear model that depends continuously on K input parameters

θ = (θ1, . . . , θK) to generate predictions yθ(t). If we consider the model predictions

at N fixed points, {t0, . . . , tN−1}, then our predictions for parameters θ form an N-

dimensional vector Y(θ) = (yθ(t0), . . . , yθ(tN−1) = (Y0, . . . ,YN−1). We use Y to repre-

sent the model manifold, defined as the space of all possible predictions for all

possible parameter combinations (so all allowed Y(θ)). Specifically, model man-

ifold Y is a K-dimensional surface embedded in an N-dimensional prediction

space.

To bound the model manifoldY and study its geometry, we consider polyno-

mial approximations of model yθ. Without loss of generality, we shift and rescale

1Work in this chapter was done in collaboration with Heather Wilber, Alex Townsend and
James Sethna. The majority of this chapter has been published in PRL [122], and a preprint
is available on the arXiv [121]. We thank Mark Transtrum for suggestions related to selecting
models used in this chapter, John Guckenheimer for suggesting that there could be a connection
between the third and fourth author’s research areas, and Peter Lepage for his expertise and
insight into the connection with lattice QCD. KNQ was supported by a fellowship from the
Natural Sciences and Engineering Research Council of Canada (NSERC), and JPS and KNQ
were supported by the National Science Foundation (NSF) through grant DMR-1719490. AT
was supported by NSF grant no. DMS-1818757, and HW was supported by NSF grant no. DGE-
1650441.
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the points so that {tk}
N−1
k=0 ⊂ [−1, 1]. Let {φ j}

∞
j=0 be a complete polynomial basis, and

suppose that model yθ(t) is decomposed into this basis: yθ(t) =
∑∞

j=0 b j(θ)φ j(t). We

can consider the predictions of the truncated series at fixed points, just as we

considered the model predictions at fixed points to generate the original model

manifold Y. Let pN−1(t; θ) be the truncated series representing the polynomial

approximation to model yθ(t). Note that the truncation is set by the number

of sampled points, N. We can view the coefficients (b0(θ), . . . , bN−1(θ)) as a set

of N parameters. Now, let P(θ) = (pN−1(t0), . . . , pN−1(tN−1)) = (P0, . . . , PN−1) define

the polynomial manifold P. Thus, we have model manifold Y and a polyno-

mial manifold P. Both of these manifolds have associated parameters, given

respectively by the original model parameters θ and polynomial coefficients

(b0, . . . , bN−1). Table 3.1 illustrates the relation between Y and P.

Table 3.1: Manifold relationships between models and their polynomial
approximations at fixed points {t0, . . . , tN−1} for polynomial basis
{φ j}

∞
j=0.

Physical Model Polynomial Approx.

yθ pN−1

Series
∑∞

j=0 b j(θ)φ j(t)
∑N−1

j=0 b jφ j(t)

Parameters θ (b0, . . . , bN−1)

Predictions Y(θ) = (yθ(t0), ..., yθ(tN−1)) P(θ) = (pN−1(t0), ..., pN−1(tN−1))

Manifold Y P

Hyperellipsoid HY HP

Widths 2rσ j(X) + 2‖y − pN−1‖∞ 2rσ j(X)

By definition, P(θ) = Xb, where Xi j = φ j−1(ti−1) and b = (b0, . . . , bN−1)T . Here, X

forms a linear map from the space of polynomial coefficients to the space of pos-

sible predictions, and is determined by the chosen polynomial basis and fixed
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points ti. The singular values of X can be used to understand the hyperribbon

structure of the polynomial manifold P. Suppose, for example, that ‖b‖2 < r, so

that the coefficient space is bounded in S , an n-sphere of radius r. The action

of X on S distorts it into a hyperellipsoid HP. If ` j(HP) is the diameter of the jth

cross-section of hyperellipsoid HP, then

` j(HP) = 2rσ j(X), (3.1)

where σ j(X) are the ordered singular values of X. When X has rapidly decaying

singular values, HP has a hyperribbon structure because there is a strict hierar-

chy in successive widths. Accounting for the polynomial approximation error

‖yθ − pN−1‖∞, where ‖ · ‖∞ is the L∞ norm on [−1, 1], we can define a hyperellip-

soid HY that must enclose model manifold Y, where the cross-sectional widths

are given by

` j(HY) = 2rσ j(X) + 2‖y − pN−1‖∞. (3.2)

In this way, we find that any model manifold Y is bounded within a hyperrib-

bon whenever σ j(X) decays geometrically and ‖y − pN−1‖∞ is small enough. A

fundamental question is whether it matters which polynomial basis or which

set of time points are chosen to define HP and HY . The hyperribbon structure of

Y, of course, does not depend on our representation of yθ, but rather on intrin-

sic properties of the model, such as its smoothness. For example, if for every

t0 ∈ [−1, 1], the Taylor expansion of yθ at t0 has a large enough radius of conver-

gence, any sequence of polynomial interpolants with N distinct interpolating

points converges to yθ at a geometric rate with N [154]. This fact underpins the

qualitative observation in [147, 146] that certain analytic models have manifolds

bounded within hyperribbons. Here we make that observation rigorous.

We consider two such choices. First, we choose our basis functions {φ j}
∞
j=0 as
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the Chebyshev polynomials. Truncated Chebyshev expansions converge to yθ

at an asymptotically optimal rate for a polynomial approximation [154]. As we

show below, this rate controls the magnitude of σ j(X) in Eq. (3.2), and can be

used to explicitly bound the cross-sectional widths of HY . Our bounds deliver

an outright description of a hyperribbon that must contain Y.

We also analyze the case where {φ j}
∞
j=0 are the monomials and pN−1 is the

truncated Taylor series expansion of yθ. In this case, we observe that the numer-

ical computation of σ j(X) results in excellent practical and universal bounds on

the prediction space for large classes of models.

3.1.1 Chebyshev Expansions

Suppose that the model yθ has a convergent Chebyshev expansion, so that it is

given by yθ(t) =
∑∞

j=0 c j(θ)T j(t), where T j(t) = cos( j arccos t) is the degree j Cheby-

shev polynomial [154, Ch. 3]. We can approximate yθ with a degree ≤ N − 1

polynomial by truncating the Chebyshev series after N terms:

pN−1(t; θ) =

N−1∑
j=0

c j(θ)T j(t). (3.3)

Truncated Chebyshev expansions have near-best global approximation proper-

ties. The error ‖yθ − pN−1‖∞ is within a log N factor of ‖yθ − pbest
N−1‖∞ [154, Ch. 16],

where pbest
N−1 is the best polynomial approximant to yθ of degree ≤ N−1. We can-

not directly use pbest
N−1 in our arguments because bounds on ‖yθ − pbest

N−1‖∞ are only

known in an asymptotic sense. Fortunately, explicit bounds on ‖yθ − pN−1‖∞ are

known when yθ is sufficiently smooth.

We first consider the case where yθ is analytic in an open neighborhood of
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[−1, 1]. Such a region contains a Bernstein ellipse Eρ in the complex plane, defined

as the image of the circle |z| = ρ under the Joukowsky mapping (z + z−1)/2. It has

foci at ±1, and the lengths of its semi-major and semi-minor axes sum to ρ. The

polynomial in Eq. (3.3) converges to yθ as N → ∞ at a rate determined by ρ:

Theorem 1 Let M > 0 and ρ > 1 be constants and suppose that yθ(t), t ∈ [−1, 1], is

analytically continuable to the region enclosed by the Bernstein ellipse Eρ, with |yθ| ≤ M

in Eρ, uniformly in θ. Let pN−1(t; θ) be as in Eq. (3.3). Then,

(i) ‖yθ − pN−1‖∞ ≤
2Mρ−N+1

ρ − 1
, (3.4)

(ii) |c0| ≤ M, |c j(θ)| ≤ 2Mρ− j, j ≥ 1. (3.5)

Proof 1 For a proof, see Theorem 8.2 in [154].

To exploit the decay of the coefficients in Eq. (3.5), we define modified

coefficients c̃ j = ρ jc j. We then have that polynomial predictions P(θ) = Xc̃,

where X = JD, Ji j = T j−1(ti−1), and D is diagonal with entries D j j = ρ−( j−1). By

Eq. (3.5), we have that ‖c̃‖2 < 4M
√

4N − 3. This implies that the polynomial

manifold P is bound in a hyperellipsoid HP. By Eq. (3.1), we have that

` j(HP) = 8M
√

4N − 3σ j(X). To bound σ j(X) explicitly, we first prove a conjecture

proposed in [157]:

Theorem 2 Let S ∈ RN×N be symmetric and positive definite. Let E ∈ RN×N be diagonal

with Eii = ε i−1 and 0 < ε < 1. If λ1 ≥ λ2 ≥ · · · ≥ λN are the ordered eigenvalues of ES E,

then λm+1 = O(ε2m). Specifically,

λm+1 ≤
ε2m

1 − ε2 max
1≤ j,k≤N

∣∣∣S jk

∣∣∣ , 1 ≤ m ≤ N − 1. (3.6)
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Proof 2 2 Consider the rank m matrix

S m = S (:, 1:m)S (1 :m, 1:m)−1S (1 :m, :), (3.7)

where 1≤m≤ N−1, and the notation M( : , 1:m) denotes the submatrix of M consisting

of its first m columns. Clearly, S m is well-defined because S (1 :m, 1:m) is a principal

minor of a positive definite matrix and is therefore invertible. Moreover, it can be verified

that (S − S m) jk = 0 for 1 ≤ j, k ≤ m.

Since ES E is positive definite and rank(S m) = m, we know that

λm+1 ≤ ‖E(S − S m)E‖2,

where ‖ · ‖2 denotes the spectral matrix norm [56, Ch. 2]. Using ‖ · ‖F to denote the

Frobenius norm, we have

λ2
m+1 ≤ ‖E(S − S m)E‖22 ≤ ‖E(S − S m)E‖2F (3.8)

=

N∑
j=m+1

N∑
k=m+1

ε2( j−1)+2(k−1)
∣∣∣S jk − (S m) jk

∣∣∣2 (3.9)

≤
ε4m

(1 − ε2)2 max
1≤ j,k≤N

∣∣∣S jk − (S m) jk

∣∣∣2 (3.10)

≤
ε4m

(1 − ε2)2 max
1≤ j,k≤N

∣∣∣S jk

∣∣∣2 , (3.11)

where the last inequality comes from the fact that the block

S (m+1: N,m+1: N) − S m(m+1: N,m+1: N)

is the Schur complement of S (1 :m, 1:m) in S [56].

Applying Theorem 2 to XT X = DJT JD, we have that for j > 1,

σ j(X) ≤
√

Nρ− j+2√
ρ2 − 1

, (3.12)

2Previous proofs with weaker bounds were provided through private communications with
Ari Turner and Yaming Yu. Current proof provided by co-authors Heather Wilber and Alex
Townsend.
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where we have used the fact that |Tk(t)| ≤ 1 for k ≥ 0 and −1 ≤ t ≤ 1. It fol-

lows from Equations (3.2) and (3.4) that predictions for yθ(t) are bounded by a

hyperellipsoid HY , with

` j(HY) ≤
2M
√

4N2 − 3Nρ− j+2√
ρ2 − 1

+
4Mρ−N+1

ρ − 1
, (3.13)

for 2 ≤ j ≤ N, i.e.,

` j(HY) = O(ρ− j + ρ−N). (3.14)

These bounds indicate that the hyperribbon structure of HY is controlled by ρ,

a parameter characterizing the analyticity of the model. As ρ becomes larger

(i.e. as the model becomes “smoother”), bounds on the widths of the succes-

sive cross-sections of HY must decay more rapidly. In principle, HY becomes

successively thinner and more ribbon-like.

When yθ is not analytic on an open neighborhood of [−1, 1], the decay rate of

σ j(JD) is instead controlled by the smoothness of yθ on [−1, 1]. More discussion

of bounding non-analytic models is provided in Appendix A.4. Furthermore,

when we consider models with two experimental conditions (for instance, time

and temperature) these bounds can be extended to the two-dimensional case.

We provide more discussion two-dimensional cases in Section 3.3.

3.1.2 Taylor Expansions

For Taylor expansions, the degree N − 1 truncated polynomial of yθ is

pN−1(t) =
∑N−1

k=0 ak(θ)(t − t0) j, where ak(θ) = y(k)
θ (t0)/k!. One could describe the

smoothness of the model by finding some C > 0 and R > 1 such that∣∣∣∣∣∣ 1
k!

dkyθ(t)
dtk

∣∣∣∣∣∣ < C
Rk (3.15)
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for all k ≥ 1.

We relax this definition, and instead describe the analyticity of yθ using the

following condition: for all N ≥ 1,

N−1∑
k=0

(
Rk

k!
dkyθ(t)

dtk

)2

< C2N, (3.16)

where C > 0, R > 1 are constants in θ. A straightforward but tedious calculation

outlined in Appendix A.5 shows that the lengths of the resulting hyperellipsoid

are given by

` j(HP) ≤
2CN
√

R2 − 1
R− j+2. (3.17)

3.2 Examples

To apply our results, we selected three models from quite disparate fields

(physics, chemistry, biology). This was done deliberately, to illustrate the uni-

versal nature of our results. In all three cases, the context for model construction

is different, and yet the underlying smoothness of each can be used to relate

them to a single, universal bound.

The model manifolds for these three models are shown in Fig. 3.1. They

are all contained within the same hyperellipsoid, as shown in Fig. 3.1(b), and

so share the same universal bound. The hyperribbon structure of the manifolds

is accurately captured by the numerical bound from Eq. (3.17), and the decay

in successive manifold widths are clearly captured by the Chebyshev rate from

Eq. (3.13). These three models were derived in very different contexts and ex-

hibit what would appear to be fundamentally different properties, yet they all

share a fundamental property: in all cases, there is a structural hierarchy in their
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model manifolds as determined by a universal bound. Because of the geomet-

ric decay in successive manifold widths, low-dimensional representations (as

determined by the longest directions) capture the large variance in model pre-

dictions. This is because they are all part of the same universality class, that of

sloppy models.

Appendix D.1 discusses in greater detail how the models are sampled, and

Fig. D.1 shows the parameter ranges considered for each of the three models.

3.2.1 Physics: Exponential Curves

The first model we consider is that of exponential curves, such as for radioactive

decay [146, 148] and calculating correlators in lattice QCD [92, 76]. Here, we set

yθ(t) =

10∑
α=0

Aα exp (−λαt) , (3.18)

where model parameters are the amplitudes Aα and decay rates λα, and t repre-

sents time.

To extend this model to two experimental conditions (discussed further in

Section 3.3), we consider temperature dependent decay rates,

λα → λα exp (−Eαs) , (3.19)

y(t) → y(t, s) =
∑
α

Aα exp
(
−λα exp(−Eαs)t

)
, (3.20)

where s = 1/T is inverse temperature and Eα represents activation energes.
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(a) (b) (c)
Models Model Manifolds

O(ρ − j)

Figure 3.1: Model manifold of three disparate models: (1) exponential
curves described in Section 3.2.1, (2) reaction velocities of
an enzyme-catalysed reaction described in Section 3.2.2, and
(3) the infected population in an SIR model described in Sec-
tion 3.2.3. The models are evaluated at 11 equally spaced points
on [0, 1], and obey the smoothness condition in Eq. (3.16), with
C = 1 and R = 2. (a) An illustration of each model, where
each line represents the respective model predictions with a
different set of parameters. (b) The model manifolds are all
bounded by the same hyperellipsoid, and so the two axes rep-
resent the first and second longest hyperellipsoid axes. Note
that, in all three models, only values greater than 0 are physi-
cally significant. This constraint manifests itself geometrically
through their location in the hyperellipsoid. (c) The lengths of
each model manifold along the eleven axes of the hyperellip-
soid HP in Eq. (3.17). Black points are the numerically com-
puted lengths of HP, given by 2C

√
Nσ j(VD) in Eq. (3.17), and

include the error term from Eq. (3.2) (note the kink at the sec-
ond to last point), forming an upper bound on possible lengths
of the manifolds. The explicit decay rate of the Chebyshev-
based bound (black dotted line) is based on the fact that mod-
els obeying Eq. (3.16) are analytic in the ellipse Eρ(ζ). (Here,
ρ(ζ) ≈ 3.81.) It captures the decay rate of σ j(VD) for j < 11, and
closely follows the true decay rate in the successive widths of
the various manifolds.
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3.2.2 Chemistry: Reaction Velocities

The second model we consider is of an enzyme-catalysed chemical reaction [11,

85]. This model can be expressed as

yθ(t) =
θ1t2 + θ2t

t2 + θ3t + θ4
, (3.21)

where t represents the substrate concentration [146]. This model stands in for

steady-state behavior of complex chemical reaction networks in engineering

and ecology [103].

To extend this model to two experimental conditions (discussed further in

Section 3.3), we consider temperature dependent parameters,

θα → θα exp (−Eαs) , (3.22)

where again s = 1/T is inverse temperature, and Eα represent activation ener-

gies.

3.2.3 Biology: Infected Fraction of a Population

The infected fraction of a population in the SIR epidemiology model [71] pre-

dicts the size of a population that is susceptible to infection (S (t)), infected (I(t)),

and recovered from infection (R(t)). These are expressed through three coupled

differential equations:

Ṡ = −β
IS
Ntot

(3.23)

İ = β
IS
Ntot
− γI (3.24)

Ṙ = γI, (3.25)
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where model parameters β and γ represent the rates of infection and recovery,

and additional parameters include the total population Ntot, and initial infected

and recovered population. At all times, S (t), I(t) and R(t) sum to Ntot, and we set

yθ(t) = I(t). This model serves to represent classes of models involving numerical

ODEs, which occur in power systems [151, 150] and systems biology [23, 22].

To extend this model to two experimental conditions, we introduce infec-

tion and recovery rates that vary continuously with an infection parameter s by

introducing

β → β exp
(
−Eβs

)
, (3.26)

γ → γ exp
(
−Eγs

)
. (3.27)

For our purposes, this model has effectively three parameters: the initial

fraction of a population which is infected, the rate of recovery, and the rate of

infection. We evaluate the model in terms of its reduced parameters (i.e. divid-

ing all equations by Ntot), and consider situations with only initial infection (i.e.

there is no initial recovered population in our models).

3.3 Two-Dimensional Extension of Model Predictions

Here, we extend the three models used Section 3.2 to the 2D setting. We do

this by adding an extra experimental condition, denoted by s, to each model.

In Fig. 3.2, we construct the model manifolds for all three. Just as before, the

model manifold is bounded by a hyperellipsoid HY with a hierarchy of widths

that form a hyperribbon structure.

Fig. 3.2 shows the model manifolds of all three example models, illustrating
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their hyperribbon structures. To generate these figures, we consider models that

obey an analyticity constraint analogous to Eq. (3.17). Specifically, we assume

that for all 0 ≤ j+k ≤ N−1, the following condition holds uniformly in θ for a

given 2D model yθ(t, s):

∑
j+k≤N−1

(
R j+k

j!k!
d j+kyθ(t, s)

dt jdsk

)2

< C2n. (3.28)

where R > 1,C > 0 are constants, and n = N(N + 1)/2. Under this constraint, it

makes sense to bound the prediction space using truncated Taylor expansions of

total degree ≤ N −1 for small to moderate N (see the discussion in Appendix C).

This choice results in an n × n linear system of the form yθ(t, s) ≈ Xã, where X is

a column-scaled 2D Vandermonde matrix, and ‖ã‖2 < C
√

n. The structure of X

can be exploited to bound its singular values explicitly [145]. Alternatively, one

can apply the 2D analogue to Theorem 2 to find explicit bounds in terms of R. In

Fig. 3.2, we simply use the relation ` j(HY) = ` j(HP) + 2‖yθ − pN−1‖∞, and compute

` j(HP) = 2rσ j(X) numerically.

We compare this with the Chebyshev-based bound (established in the fol-

lowing section),

` j(HP) ≤
√

N
3
√

C2

2
nρ−

⌊√
8( j−1)+1/2−1/2

⌋
, (3.29)

where ρ is a characteristic length related to the analyticity of the model,

C2 = (1 + ρ−2 + ρ−4)/(1 − ρ−2)3, and b · c represents the floor function. This bound

captures the subgeometric decay rate of the model manifold lengths for all three

examples, illustrated through the dashed line in Fig. 3.2.
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O

(
ρ−

⌊√
8( j−1)+1/2−1/2

⌋)

(a)

(b)

Figure 3.2: Model manifold of three models with two experimental con-
ditions: (1) exponential decay with temperature dependent de-
cay rates, (2) reaction velocities of an enzyme-catalysed reac-
tion with temperature dependent reaction rates, and (3) the in-
fected population in an SIR model with infection and recovery
rates that vary with parameter s. (a) The models are evaluated
at 25 equally spaced points (ti, si) ∈ [0, 1]2 (shifted and rescaled
from the interval [−1, 1]2) with different model parameters. All
models obey the analyticity condition in Eq. (3.28) with C=1
and R = 2. (b) The explicit lengths of the three models are
shown along the twenty-five axes of the hyperellipsoid HP. The
upper bounds on the possible lengths (black dots) are given by
` j(HP) = 2C

√
nσ j(X), where X is described in Section 3.3. They

exhibit subgeometric decay, with a rate that is captured by the
bound in Eq. (3.33) (dashed line) with ρ ≈ 4.1. The hierarchy
of widths coming from the explicit bounds suggests that the
manifolds are hyperribbons.
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3.3.1 Bounds on the 2D Extension

We can again use polynomial approximation to constrain the geometry of the

resulting model manifold Y for 2D extensions of models. In this case, we as-

sume without loss of generality that (t, s) ∈ [−1, 1]2, and we assume yθ can be

expressed as a 2D Chebyshev expansion: yθ(t, s) =
∑∞

j=0
∑∞

k=0 c jk(θ)T jk(t, s), where

T jk(t, s) = T j(t)Tk(s). The following 2D polynomial of total degree N−1 approxi-

mates yθ:

pN−1(t, s; θ) =
∑

0≤ j+k≤N−1

c jk(θ)T jk(t, s). (3.30)

Let ρ > 1 and M > 0 be constants. For all fixed choices of s = s∗, suppose that

the 1D function of t, yθ(t, s∗), is analytic in t and bounded ≤ M uniformly with

respect to both s and θ, and that an analogous condition holds for yθ(s, t∗). A

result similar to Theorem 1 can be proven by adapting the ideas in [154, Ch. 8]

to the 2D setting. Specifically, we have that

(i) ‖y − pN−1‖∞ ≤ 4MNC1ρ
−N+1, (3.31)

(ii) |c jk(θ)| ≤ 4Mρ−( j+k), (3.32)

where C1 = (2ρ − 1)/(1 − ρ)2.

As in the 1D case, we study the model manifold P associated with pN−1

as an approximation to Y, the manifold for yθ. We parameterize P using

a vector of blocks, P(θ) = (B0, . . . , BN−1)T , where B j = (P0 j, P1( j−1), . . . , P j0) and

P jk = pN−1(t j, sk; θ). Since each block B j has j + 1 entries, P(θ) is of length

n = N(N+1)/2. Corresponding vectors of sample locations t and s are defined

so that P(θ) = pN−1(t, s; θ).

As before, we exploit the decay of the bounds in Eq. (3.32) to show

that P lies in the range of a matrix with strongly decaying singular val-
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ues. To see this, define c̃ as an appropriately ordered n × 1 vector of the

scaled coefficients c̃ jk = ρ−( j+k)c jk, and form the linear map P(θ) = Xc̃. Here,

X = [XB0 | · · · |XBN−1], where XB j is a block of j+1 columns scaled by ρ− j. Specif-

ically, XB j = ρ− j[T0(t)T j(s) |T1(t)T j−1(s) | · · · |T j(t)T0(s)]. Since c̃ is constrained to lie

in an n-sphere of radius 4M
√

n, the manifold P is contained in a hyperellipsoid

HP with cross-sectional widths characterized by the singular values of X. One

can show that the singular values of X must decay at, at least, a subgeometric

rate. An argument similar to the one used in Theorem 2 shows that for 2 ≤ j ≤ n,

σ j(X) ≤
3
√

C2

2
nρ−

⌊√
8( j−1)+1/2−1/2

⌋
, (3.33)

where C2 = (1 + ρ−2 + ρ−4)/(1 − ρ−2)3 and b · c represents the floor function. One

can use HP and Eq. (3.31) to explicitly construct a hyperellipsoid HY that must

contain Y. While our results are stated in terms of Chebyshev expansions, a

similar argument can be made using 2D Taylor expansions, and all of these ideas

extend naturally to the multidimensional case.

3.4 Summary

Our results explain a fundamental feature of the global geometry of sloppy

models, and establish a rigorous framework that explains the role of model

smoothness in the observation of sloppiness. An important implication of our

results is that any model that satisfies the smoothness condition in Eq. (3.16) is

guaranteed to be bounded in a manifold that exhibits this hierarchical structure.

As such, it serves as a natural test of sloppiness. The implications of sharper

bounds that depend on time-points are the focus of future work, as they open

up far-ranging applications in optimizing the experimental design to focus data
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collection at time-points that maximize information extraction by minimizing

the decay rate in hyperribbon widths. Furthermore, sloppy features appear

in probabilistic models, such as the Ising Model of atomic spins in statistical

physics and the dark energy cold dark matter ΛCDM cosmological predictions

of the cosmic microwave background discussed in Chapter 4. An extension of

this approach could be used to constrain the predictions for general, probabilis-

tic models (beyond the least-squares models considered in this chapter), and is

the focus of future study.
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CHAPTER 4

VISUALIZING PROBABILITY DISTRIBUTIONS AND THE INTENSIVE

EMBEDDING

In this Chapter1, we develop a new nonlinear manifold learning technique

which achieves a compromise between preserving local and global structure.

We accomplish this by developing an isometric embedding for general proba-

bilistic models based on the replica trick [104]. By taking the number of replicas

to zero, we reveal an intensive property – an information density characterizing

the distinguishability of distributions – ameliorating the canonical orthogonal-

ity problem and ‘curse of dimensionality.’ We then describe a simple, deter-

ministic algorithm that can be used for any such model, which we call Inten-

sive Principal Component Analysis (InPCA). Importantly, our method quanti-

tatively captures global structure while preserving local distances.

We study five probabilistic models: (1) a biased coin, (2) the canonical set

of one-dimensional Gaussian distributions, (3) the Ising model of magnetism,

which defines probabilities of spin configurations given interaction strengths,

(4) the learning trajectory of a neural network, which predicts the probability of

an image representing a single handwritten digit given weights and biases, and

(5) ΛCDM, which predicts the distribution of CMB radiation given fundamental

constants of nature.
1Work in this chapter was done in collaboration with Colin Clement, Francesco De Bernardis,

Michael Niemack and Jim Sethna. A manuscript has been accepted for publication, and a
preprint is available on the arXiv [118]. We thank Mark Transtrum for guidance on algorithms
and for useful conversations. We thank Pankaj Mehta for pointing out the connection to MDS.
KNQ was supported by a fellowship from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), and JPS and KNQ were supported by the National Science Foundation
through grant NSF DMR-1312160 and DMR-1719490. MDN was supported by NSF grant AST-
1454881.
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In addition, we use three of these models (as well as the MNIST dataset of

handwritten digits) as a basis for comparison between InPCA and two other

established manifold learning techniques, t-SNE and diffusion maps.

4.1 Model Manifolds of Probability Distributions

Any measurement obtained from an experiment with uncertainty can generally

be understood as a probability distribution. For example, when some data x is

observed with normally distributed noise ξ of variance σ2, under experimental

conditions θ j, a model is expressed as

x = f (θ j) + ξ where L(ξ) v N(0, σ2), (4.1)

where f (θi) is a prediction given the experimental conditions. This relationship

is equivalent to saying that the probability of measuring data x given some con-

ditions θ is:

L(x | θ) v N( f (θ), σ2). (4.2)

More complicated noise profiles with asymmetry or correlations can be accom-

modated with this picture. Measurements without an underlying model can

also be seen as distributions, where a measurement xi with uncertainty σ can

induce a probability L (x | xi, σ) of observing new data x.

We define a probabilistic model L (x | θ), the likelihood of observing data x

given parameters θ. The model manifold is defined as the set of all possible pre-

dictions, {L (x | θi)}, which is a surface parameterized by the model parameters

{θi}. The parameter directions related to the longest distances along the model

manifold have been shown to predict emergent behavior (how microscopic pa-

rameters lead to macroscopic behavior) [99]. We will see that InPCA orders its
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principal components by the length of the model manifold along their direction,

highlighting global structure. The boundaries of the model manifold represent

simplified models which retain predictive power [149], and the constraint of

data lying near the model manifold has been used to optimize experimental

design [146].

4.2 Hypersphere Embedding

We promised an embedding which is both isometric and preserves global struc-

tures. We satisfy the first promise by considering the hypersphere embedding:

{zx(θi)} =
{
2
√
L (x | θi)

}
, (4.3)

where the normalization constraint of L (x | θ) forces zx to lie on the positive

orthant of a sphere. A natural measure of distance on the hypersphere is the

Euclidean distance, in this case also known as the Hellinger divergence [70]

d2(θ1, θ2) = ‖z(θ1) − z(θ2)‖2 = 8
(
1 −

√
L (x | θ1) ·

√
L (x | θ2)

)2
, (4.4)

where · represents the inner product over x. Now we can see that the hyper-

sphere embedding is isometric: the Euclidean metric of this embedding is equal

to the Fisher Information metric I (from Eq. (2.10)) of the model manifold [60],

d2(zi, zi + dzi) =
∑

i

dzidzi =
∑
αβ

Iαβdθαdθβ. (4.5)

The Fisher Information Metric (FIM) is the natural metric of the model mani-

fold [5], so the hypersphere embedding preserves the local structure of the man-

ifold defined by L (x | θ).
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As the dimension of the data increases, almost all features become orthog-

onal to each other, and most measures of distance lose their ability to discrim-

inate between the smallest and largest distances [18]. For the hypersphere em-

bedding, we see that as the dimension of x increases, the inner product in the

Hellinger distance of Eq. 4.4 becomes smaller as the probability is distributed

over more dimensions. In the limit of large dimension, all non-identical pairs of

points become orthogonal and equidistant around the hypersphere (a constant

distance
√

8 apart), frustrating effective dimensional reductions and visualiza-

tion.

To illustrate this problem with the hypersphere embedding, consider the

Ising Model, which predicts the likelihood of observing a particular configu-

ration of binary random variables (spins) on a lattice. The probability of a spin

configuration is determined by the Boltzmann distribution, and is a function

of a local pairwise coupling and a global applied field. The dimension is de-

termined by the number of spin configurations, 2N where N is the number of

spins. Holding temperature fixed at one, we vary h and J: external magnetic

field (h ∈ (−1.3, 1.3)) and nearest neighbour coupling (J ∈ (−0.4, 0.6)), using a

Monte Carlo method weighted by Jeffrey’s Prior to sample 12,000 distinct points

(see Section D.2 for plot of parameter ranges). From the resulting set of param-

eters, we compute Xi j = {zi(θ j)} using the Boltzmann distribution, and visualize

the model manifold in the N-sphere embedding of Eq. 4.3 by projecting the pre-

dictions onto the first three principal components of X. Figure 4.1(a) shows this

projection of the model manifold of a 2 × 2 Ising model which is embedded in

24 dimensions. Figure 4.1(b) shows a larger, 4 × 4 Ising model, of dimension

216. As the dimension is increased from 24 to 216, we see the points starting to

wrap around the hypersphere, becoming increasingly equidistant and less dis-
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tinguishable.

A natural way to increase the dimensionality of a probabilistic model is by

drawing multiple samples from the distribution. If D is the dimension of x,

then N identical draws from the distribution will have dimension DN . The more

samples drawn, the easier it is to distinguish between distributions, mimick-

ing the ‘curse of dimensionality’ for large systems. We see this demonstrated

for our Ising model in Fig. 4.1(c), where we drew 4 replica samples from the

same model. Notice that as compared to the original 2×2 model, the model

manifold of the 4-replica 2×2 model ‘wraps’ more around the hypersphere, just

like the larger, 4 × 4 Ising model. High dimensional systems have ‘too much

information,’ in the same way that large numbers of samples have ‘too much

information’. In the next section, we consider the contraposition of the insight

that a large number of replicas leads to the the curse of dimensionality, and

discover an embedding which is not only isometric but also ameliorates the

high-dimensional wrapping around the n-sphere.

4.3 Replica Theory

We saw in Fig. 4.1 that increasing the dimension of the data led to a satura-

tion of the distance function Eq. 4.4. This problem is referred to as the loss of

relative contrast or the concentration of distances [18], and to overcome it re-

quires a non-Euclidean distance function, discussed below. In the last section

we saw the same saturation of distance could be achieved by adding replicas,

increasing the embedding dimension. Figure 4.2(a) shows this process taken to

an extreme: the model manifold of the 2 × 2 Ising model with the number of
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replicated systemlarger system

(a) 24 Dimensional

(b) 216 Dimensional (c) 216 Dimensional

Figure 4.1: Hypersphere embedding, illustrating an embedding of the
two dimensional Ising model. Points were generated through
a Monte Carlo sampling and visualized by projecting the prob-
ability distributions onto the first 3 principal components. The
points are colored by magnetic field strength. As the system
size increases from 2 × 2 to 4 × 4, the orthogonality problem is
demonstrated by an increase in ‘wrapping’ around the hyper-
sphere. This effect can be also be produced by instead consider-
ing four replicas of the original system, motivating the replica
trick which takes the embedding dimension or number of repli-
cas to zero.
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replicas taken to infinity. All the points cluster together, obscuring the fact that

the underlying manifold is two-dimensional. In order to cure the abundance of

information which makes all points on the hypersphere equidistant, we seek an

intensive distance, such as the distance per number of replicas observed. Next,

because the limit of many replicas artificially leads to the same symptoms of the

curse of dimensionality, we will consider the limit of zero replicas, a procedure

which is often used in the study of spin glasses and disordered systems [110].

Figure 4.2(b) shows the result of this analysis, the intensive embedding, where

the distance concentration has been cured, and the inherent two-dimensional

structure of the Ising model has been recovered.

To find the intensive embedding, we must first find the distance between

replicated models. The likelihood for N replicas of a system is given by their

product

L ({x1, . . . , xN} | θ))(N) = L (x1 | θ) · · · L (xN | θ), (4.6)

where the set {x1, . . . , xN} represents the observed data in the replicated systems.

Writing the inner product or cosine angle between two distributions as

〈θ1; θ2〉 =
√
L (x | θ1) ·

√
L (x | θ2), (4.7)

where again · represents the inner product over x, and using Eq. (4.4), the dis-

tance per replica d2
N between two points on the model manifold is

d2
N(θ1, θ2) =

d2(θ1, θ2)
N

= −8
〈θ1; θ2〉

N
− 1

N
. (4.8)

We are now poised to define the intensive distance by taking the number of

replicas to zero

d2
I (θ1, θ2) = lim

N→0
d2

N(θ1, θ2) = −8 log 〈θ1; θ2〉 . (4.9)
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(a) Large System (b) Intensive Embedding
(many replicas) (limit of zero replicas)

ferromagnetic

negative

positive

anti-ferromagnetic
field

field

Figure 4.2: Replicated Ising Model illustrating the derivation of our in-
tensive embedding. All points are coloured by magnetic field
strength. (a) Large dimensions are characterized by large sys-
tem sizes; here we mimic a 128 × 128 Ising model which is
of dimension 21282 (very high dimensional). The orthogonality
problem becomes manifest as all points are effectively orthogo-
nal, producing a useless visualization with all points clustered
in the cusp. (b) Using replica theory, we tune the dimensional-
ity of the system and consider the limit as the number of repli-
cas goes to zero. In this way, we derive our intensive embed-
ding. Because only two parameters are varied, we know that
the manifold is two-dimensional, a feature captured in the in-
tensive embedding. Note that the z-axis reflects a negative-
squared distance, a property which allows violations of the tri-
angle inequality and is discussed in the text.

The last equality is achieved using the standard trick in replica theory,

(xN − 1)/N → log x as N → ∞, which is a basis trick used to solve challenging

problems in statistical physics [110]. The trick is most evident using the identity

xN = exp(log Nx) ≈ 1+ N log x. We show in Section A.3 that the intensive distance

is isometric:

d2
I (θ, θ + δθ) = δθαδθβgαβ = δθαδθβIαβ, (4.10)

where again I is the Fisher Information Metric in Eq. (2.10), so that we can be

confident the intensive embedding distance preserves local structures.
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Importantly, the intensive distance does not satisfy the triangle inequality

(and is thus not Euclidean, as will be discussed in Section 4.5): the distance be-

tween points on the hypersphere can go to infinity, rather than lie constrained

to the finite radius of the hypersphere embedding. Because of this, the inten-

sive embedding can overcome the loss of relative contrast [18] discussed at the

beginning of this section. Distances in the intensive embedding maintain dis-

tinguishability in high dimensions, as illustrated in Fig. 4.2(b), wherein the two

dimensional nature of the Ising model has been recovered. We hypothesize that

this process, which cures the curse of dimensionality for models with too many

samples, will also cure it for models with intrinsically high-dimensionality.

The intensive distance obtained here is proportional to the Bhattacharyya dis-

tance [19]. By considering the zero replica limit of the Hellinger divergence, we

discovered a new way to derive the Bhattacharyya distance. The importance of

this will be discussed further in the following section.

4.3.1 Connection to Least Squares

Consider the concrete and canonical paradigm of models yθ(ti) with data points

xi and additive white Gaussian noise, usually called a nonlinear least-squares

model (and three examples of which are given in Section 3.2). The likelihood

L (x | θ) is defined by

− logL (x | θ) =
∑

i

(yθ(ti) − xi)2

2σ2
i

+ logZ(θ), (4.11)

where Z sets the normalization. A straightforward evaluation of the intensive

distance given by Eq. (4.9) and shown in Section A.6 finds for the case of non-
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linear least squares

d2
I (θ1, θ2) =

∑
i

(yθ1(ti) − yθ2(ti))2

σ2
i

, (4.12)

so that the intensive distance is simply the variance-scaled Euclidean distance

between model predictions.

4.4 Intensive Embedding

Classical Principal Component Analysis (PCA) takes a set of data examples and

infers features which are linearly uncorrelated. [77]. The features to be ana-

lyzed with PCA are compared via their Euclidean distance. Can we generalize

this comparison to utilize our intensive embedding distance? Given a matrix of

data examples X ∈ Rm×p (with features along the rows), PCA first requires the

mean-shifted matrix Mi j = Xi j − X̄i = PX, where Pi j = δi j − 1/p is the mean-shift

projection matrix and p is the number of sampled points. The covariance and

its eigenvalue decomposition are then

Cov(X, X) =
1
p

MT M = XT PPX = VΣVT , (4.13)

where the orthogonal columns of the matrix V are the natural basis onto which

the rows of M are projected:

MV = (UDVT )V = UD = U
√

Σ, (4.14)

where the columns of U
√

Σ are called the principal components of the data X.

The principal components can also be obtained from the cross-covariance

matrix, MMT , since

MMT = PXXT P = (UDVT )(UDVT )T = UΣUT . (4.15)
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The eigenbasis U of the cross-covariance is the natural basis for the components

of the data, and the eigenbasis V of the covariance is the natural basis of the data

points. For us this flexibility is invaluable, as the cross-covariance is more natu-

ral for expressing the distances between distributions of different parameters.

Writing our data matrix as Xi j = zi(θ j) using Eq. (4.3) for replicated systems,

the cross-covariance is

(MMT )(N)
i j = (PXXT P)i j

= (z(θi) − z̄) · (z(θ j) − z̄)

= 4
〈
θi; θ j

〉N
+

4
p2

p∑
k,k′=1

〈θk; θk′〉
N
−

4
p

p∑
k=1

(
〈θi; θk〉

N +
〈
θ j; θk

〉N
)
, (4.16)

where z̄ is the average over all sampled parameters, and we used the definition

of z in Eq. (4.6) extended to the replicated likelihood function in Eq. (4.6). As

with the intensive embedding, we can take the limit as the number of replicas

goes to zero to find

Wi j = lim
N→0

1
N

(MMT )(N)
i j . (4.17)

Explicitly, the intensive cross-covariance matrix (derived in Section A.7) is

Wi j = 4 log
〈
θi; θ j

〉
+

4
p2

p∑
k,k′=1

log 〈θk′; θk〉 −
4
p

p∑
k=1

(
log 〈θi; θk〉 + log

〈
θ j; θk

〉)
= (PLP)i j (4.18)

where Li, j = 4 log
〈
θi; θ j

〉
and P is the same projection matrix as defined above. In

taking the limit of zero replicas, the structure of the cross-covariance has trans-

formed

PXXT P −−−→
N→0

PLP, (4.19)

and thus the symmetric Wishart structure is lost. It is therefore possible to obtain

negative eigenvalues in this decomposition, which give rise to imaginary com-
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ponents in the projections. Note the similarity between the form of this cross-

covariance, and the double-centered distance matrix used in PCA and multidi-

mensional scaling (MDS). This arises because both InPCA and PCA/MDS rely

on mean-shifing the input data before finding an eigenbasis. Thus we view In-

PCA as a natural generalization of PCA to probability distributions, and MDS

to non-Euclidean embeddings.

4.4.1 InPCA Algorithm

In summary, Intensive Principal Component Analysis (InPCA) is achieved by

the following procedure:

1. Compute the cross-covariance matrix from a set of probability samples: Compute

Wi j as derived in Eq. (4.18).

2. Compute the eigenvalue decomposition W = UΣUT .

3. Compute the coordinate projections, T = U
√

Σ.

4. Plot the projections using the columns of T . Order the components based on

the magnitude of the corresponding eigenvalues, from largest to smallest

(i.e. the first projected component corresponds with eigenvalue of largest

magnitude)2.
2Understanding the optimization process, order of eigenvalues, and the full effect of the

negative squared directions is the focus of ongoing work with Han Kheng Teoh.
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4.5 Properties of the Intensive Embedding and InPCA

The new space characterized by our intensive embedding has two weird prop-

erties: first it is formally one dimensional, yet there are multiple orthogonal

directions upon which it can be projected, and second it is Minkowski-like, in

that it has negative squared distances, violating the triangle inequality. We posit

that, fundamentally, this second property is what allows InPCA to cure the or-

thogonality problem.

We begin with a discussion of the the one-dimensional nature of the embed-

ding space. The embedding dimension is given by DN where D is the original

dimension of data x and N is the number of replicas. In the case of non-integer

replicas the space becomes ‘fractional’ in dimension, and in the limit of zero

replicas ultimately goes to one. However, it is still possible to obtain projec-

tions themselves along the dominant components of this space, by leveraging

the cross-covariance instead of the covariance, summarized in step 2 of our al-

gorithm. Visualizations produced by InPCA are cross-sections of a space of the

dimension equal to the number of sampled points of the model manifold, in-

stead of the dimension D or DN .

In the limit of zero replicas in Eq. (4.18), the positive-definite, Wishart struc-

ture of the cross-covariance matrix is lost. It is therefore possible to have nega-

tive squared distances. The Minkowski-like nature of the embedding does not

suffer from the concentration of distances which plagues Euclidean measures in

high dimensions, thus allowing the model manifold to be ‘unwound’ from the

N-sphere and for InPCA to produce useful, low-dimensional representations.

Finally, the eigenvalues of InPCA correspond to the cross-sectional widths of
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the model manifold. We see this quite explicitly with the following example of

a biased coin (specifically, in Fig. 4.3(b)) where the eigenvalues extracted from

InPCA map directly to the manifold widths measured along the direction of

the corresponding InPCA eigenvector. Therefore, we see that InCA produces

a hierarchy of directions, ordered by the global widths of the model manifold.

Note that, as with classical PCA, this correspondence depends on how faithfully

the model manifold was originally sampled, i.e. InPCA can only tell you about

the structure of the manifold from observed points.

4.6 Examples

We illustrate InPCA with five different probabilistic models. The first two, a

biased coin in Section 4.6.1 and Gaussians in Section 4.6.2, are simple intuitive

models with known properties of their respective manifolds. They reveal the

importance of the negative-squared distances. We then apply InPCA to three

more complicated models (Ising model in Section 4.6.3, neural network in Sec-

tion 4.6.4, and the ΛCDM cosmological model in Section 4.6.5) to explore prop-

erties of the models themselves.

Finally, as an application to data, we apply InPCA to the MNIST dataset of

handwritten digits in Section 4.6.6.

4.6.1 Coin Toss

To illustrate the Minkowski-like nature of InPCA, consider a biased coin. Given

some bias θ for the coin (representing the likelihood of heads), the probability
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state vector is given by

(L (Heads | θ),L (Tails | θ)) = (θ, 1 − θ) (4.20)

= (cos2 θ̃, sin2 θ̃), (4.21)

defining a one-dimensional manifold, where we have re-parametrized the prob-

ability distributions to be in terms of θ̃ ∈ [0, π/2]. From Eq. (4.7), we compute

the cosine-angle between two distributions to be:

〈
θ̃1; θ̃2

〉
= cos θ̃1 cos θ̃2 + sin θ̃1 sin θ̃2 (4.22)

In a useful embedding, one would wish ‘all-heads’ and ‘all-tails’ states to

be far apart. Here, we have that ‘all-heads’ corresponds to θ̃1 = 0 and ‘all-

tails’ to θ̃2 = π/2, and so the cosine-angle is zero. From Eq. (4.9) we see that

the intensive distance between these two thus goes to infinity, making the two

extremely biased coins infinitely far apart.

Figure 4.3 shows the top two InPCA components of the biased coin model

manifold, which are related to the bias and variance of the coin. Curves of

constant distance from a fair coin are hyperbolas (gray lines): two points can be

finitely far from a fair coin but infinitely far from each other (demonstrating the

violation of the triangle inequality).

To generate the manifold lengths in Fig. 2.5, and the InPCA embedding of

the manifold in Fig. 4.3, 1,999 probabilites were sampled from 0 to 1 (excluding

0 and 1). Figure 4.4 shows the one-dimensional plot of the different probabilities

considered.

Using L(Heads) = cos2 θ and L(Tails) = sin2 θ, points were uniformly sam-
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Figure 4.3: InPCA visualization of biased coins. The aspect ratio between
axes is one. The first two InPCA components correspond to
the coin bias and variance, yet the first is real and the second is
imaginary. The contour lines represent constant distances from
a fair coin and form hyperbolas: points can be a finite distance
from a fair coin yet an infinite distance from each other.

Figure 4.4: Hypersphere of biased coin probabilities showing the sam-
pled ranged used in this thesis. Orange point in the middle
represents a fair coin.
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pled in θ to reflect a uniform Jeffreys Prior:

LJeff(θ) =
√
Iθθ =

√(
∂

∂θ
log(cos2 θ)

)2

cos2 θ +

(
∂

∂θ
log(sin2 θ)

)2

sin2 θ = 2 (4.23)

4.6.2 Gaussians

A canonical probabilistic model is that of Gaussians3 with varying means and

standard deviations. The classic one-dimensional Gaussian is:

L (x | µ, σ) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
(4.24)

and it is known that the set of Gaussians is embedded on a manifold of con-

stant negative curvature and can be isometrically embedded on the Poincaré

halfplane [33]. From Eq. (4.7), we compute the cosine-angle between two distri-

butions to be:

〈{µ1, σ2}; {µ2, σ2}〉 =

√
2σ1σ2

σ2
1 + σ2

2

exp
(
−

(µ1 − µ2)2

4(σ2
1 + σ2

2)

)
(4.25)

To visualize the model manifold, parameter ranges were sampled as shown

in Fig. 4.5(a). The first two components extracted from InPCA are shown in

Fig. 4.5(b). Gaussians that are easy to distinguish (narrow, with means that are

far apart, i.e. |µ1 − µ2| � 1) are very far apart. As the widths increase and

the resulting Gaussians have greater and greater overlap, they begin to cluster

together in the lower peak of the figure.

3The model manifolds of Gaussians was explored in part with Qingyang Xu and Han Kheng
Teoh.
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(a) Parameter Ranges (b) Model Manifold

Figure 4.5: Model manifold of Gaussians visualized with InPCA,
coloured by µ. (a) Parameter ranges considered to generate
the manifold. (b) The longest direction corresponds to µ, and
the second component is a reflection of σ. Points in the lower
peak are Gaussians with large variance (very wide) and upper
points are narrow Gaussians.

4.6.3 Ising Model

The canonical model from statistical physics considered in this chapter is the

Ising model, described in Section 4.2. The likelihood of observing a particular

spin configuration S is determined by the Boltzmann distribution:

L (S | θ) =
1
Z(θ)

exp (−H(S | θ)) (4.26)

whereH =
∑
µ θ

µφµ(S) is the Hamiltonian of the system, andZ(θ) is the partition

function which sets the normalization, given as

Z(θ) =
∑

S

exp (−H(S | θ)) . (4.27)

Functions φµ(S) are functions of the states used to represent the sum of spins,

sum of nearest neighbour couplings, next-nearest neighbours, etc. Using
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Eq. (4.9), the intensive distance between two Ising models is

d2
I (θ1, θ2) = −8 log

∑
S

√
L (S | θ1)

√
L (S | θ2)

 (4.28)

= −8 log

 1√
Z(θ1)

√
Z(θ2)

∑
S

exp
(
−
H(S | θ1) +H(S | θ2)

2

) (4.29)

= 4
(
logZ(θ1) + logZ(θ2) − 2 logZ

(
θ1 + θ2

2

))
(4.30)

= 4
(
F (θ1) + F (θ2) − 2F

(
θ1 + θ2

2

))
(4.31)

where we make use of the linear properties of the Hamiltonian4 to obtain the last

line and reveal the relationship between the intensive distance and the concave

difference in the free energy F (θ) = 1
T logZ(θ). This fundamental connection to

the free energy makes the intensive distance uniquely suited to study the model

properties of statistical systems, and is the focus of much ongoing work.

The first two components extracted from InPCA reveal important features

in the model manifold: the high/low field regimes and the ferromagnetic/anti-

ferromagnetic regimes, as shown in Fig. 4.2(b) and in the upper left of Fig. 4.6.

If we also explore additional components, we obtain the hierarchy of widths

shown in Fig. 2.5 as well as reveal a twist in the manifold around the critical

point, shown in Fig. 4.6. The interpretable, hierarchical nature of the visual-

izations serve as a natural test of InPCA’s utility5. It also forms the basis for

future research, where manifold changes under coarse graining are used to bet-

ter understand properties of the renormalization group and the geometry of the

manifold near the critical point can be explored, following predictions in [124].

4This relationship was initially discovered by Archishman Raju.
5A comparison of different manifold learning methods on the manifold of Ising models is

presented in Section E.1

61



Figure 4.6: Multiple manifold directions of the manifold of the Ising
model are visualized, and coloured by magnetic field. Or-
ange point represents the critical point. The first and sec-
ond components reveal the important high/low field and
ferromagnetic/anti-ferromagnetic regimes. The second and
fifth directions further reveal a twist in the manifold around
the critical point. In the above figure, the third and fifths com-
ponents are imaginary (negative squared distances).
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4.6.4 Neural Network MNIST Digit Classifier

To demonstrate the utility of InPCA, we use it to visualize the training of a two

layer convolution neural network (CNN), constructed using TensorFlow [1],

and trained on the MNIST data set of hand-written digits6. A set of 55,000

images were used to train the network, which was then used to predict the

likelihood that an additional set of 10,000 images are each classified as a spe-

cific digit between 0 and 9. We use softmax [20] to calculate the probabilities

from the category estimates supplied by the network. The CNN defines the

likelihood L (x | θ) that some input image θ contains the image of a particular

handwritten digit x. The InPCA projections of the CNN output in Fig. 4.7 visu-

alizes the clustering learned by the CNN as a function of the number of learning

epochs. The initialized network’s model manifold shows no knowledge of the

digits (colored dots), but as training commences, the manifold clearly separates

digits into separate regions of its manifold. InPCA can therefore be used as a

fast, interpretable, and deterministic method for qualitatively evaluating what

a neural network has learned.

4.6.5 ΛCDM Predictions of the CMB

We compare our manifold learning technique to two standard methods, t-SNE

and the diffusion maps, applied the six parameter ΛCDM cosmological model

predictions of the cosmic microwave background (CMB). The ΛCDM predicts

L (x | θ) where x represents fluctuations in the CMB, and θ are the different cos-

mological parameters (i.e. it predicts the angular power spectrum of tempera-

6A comparison of different visualization methods for the CNN is presented in Section E.2.
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Figure 4.7: Stages of training a convolutional neural network (CNN).
Each point in the above 3D projections represents one of 10,000
test image supplied to the CNN. At the first epoch, the neu-
ral network is untrained and so is unable to reliably classify
images, with about a 90% error rate – an effect reflected in
the cloud of points. As training progresses and error rate de-
creases, the cloud begins to cluster as shown by InPCA at the
20th epoch. Finally, when completely trained, the clustered re-
gions are manifest at the 2000th epoch with ten clusters repre-
senting the ten digits.

ture and polarization anisotropies in sky maps of the CMB). Observations of the

CMB from telescopes on satellites, balloons, and the ground provide thousands

of independent measurements from large angular scales to a few arcminutes,

that are use to fit model parameters. Here we only consider CMB observations

from the 2015 Plank data release [114]. The ΛCDM model we consider has six

parameters, the Hubble constant (H0) which we sampled in a range of 20 to

100 km s−1 Mpc−1, the physical baryon density (Ωbh2) and the physical cold dark

matter density (Ωch2) both sampled from 0.0009 to 0.8, the primordial fluctu-

ation amplitude (As) sampled from 10−11 to 10−8, the scalar spectral index (η)

sampled from 0 to 0.98, and the optical depth at reionization (τ) sampled from

0.001 to 0.9.
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To determine the likelihood functions, we use the CAMB software pack-

age to generate power spectra [94]. We perform a Monte Carlo sampling of

50,000 points around the best fit parameters provided by the 2015 Planck data

release [114], with sample weights based on the intensive distance to the best fit.

In Fig. 4.8(c), we see that the top two InPCA components correspond to As and

the Hubble constant, parameters which control the two most dominant features

in Planck data.

In Fig. 4.8 we show the first three components of the manifold embedding

for InPCA, t-SNE, and diffusion maps. In order to apply t-SNE and the diffu-

sion map to probabilistic data we must provide a distance. We therefore use our

intensive distance, from Eq. (4.9), for consistency and ease of comparison. In

all three cases, the first component from each method is directly related to the

primordial fluctuation amplitude As, which reflects the amplitude of density

fluctuations in the early universe, and is the dominant feature in real data [114].

The second InPCA component predicts the Hubble constant, whereas the diffu-

sion map predicts the scalar spectral index (a reflection of the size variance of

primordial density fluctuations). In all cases, the parameters are plotted against

components values, and the Pearson coefficient of correlation (r) is calculated.

The values of r range from -1 to 1, and a result of |r| > 0.9 indicates very high

correlation [72].

The results from InPCA are shown in Fig. 4.9. The only parameters with very

strong correlations to components are the primordial fluctuation amplitude (As)

and Hubble constant (H0), mapping to the first and second component respec-

tively. Furthermore, there appears to be additional structure in the plots related

to the physical baryon density (Ωbh2) as well as the optical depth at reioniza-
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expansion rate

scale variance

(a) InPCA

(b) T-SNE (c) Diffusion Maps

Figure 4.8: Model manifold of the six parameter dark energy cold dark
matter (ΛCDM) cosmological model predictions of temper-
ature and polarization power spectra in the CMB using In-
PCA, t-SNE and the diffusion map. Axes reflect true aspect
ratio from extracted components in all cases. Here the model
manifold is colored by the primordial fluctuation amplitude,
the most prominent feature in CMB data. (a) InPCA extracts,
as the first and second component, this amplitude term as well
as the Hubble constant. These parameters control the two most
dominant features in the Plank data, and so reflect a physi-
cally meaningful hierarchy of importance. In contrast, (b) t-
SNE only extract the amplitude term and (c) the diffusion map
extract the amplitude term and a different parameter, the scalar
spectral index η, which reflects the scale variance of the density
fluctuations in the early universe. In all plots, the orange point
represents our universe, as represented by Planck 2015 data.
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tion (τ), however the effect of parameter combinations and degeneracies on the

more nuanced geometry of the manifold is the focus of future work (some pre-

liminary results are shown in Appendix F).

The results from t-SNE are shown in Fig. 4.10. The only parameter that maps

directly to a component is the primordial fluctuation amplitude. This effect is

not entirely unsurprising, as the strength of t-SNE is in revealing local features

(such as clustering) and so the global properties of the manifold are not often

manifested with this technique.

The results from diffusion maps are shown in Fig. 4.11. The primordial

fluctuation amplitude is very strongly correlated with the first extracted com-

ponent. Note that the visualization from diffusion maps produces a crescent-

shaped object. The scalar spectral index (η) is strongly correlated with the radial

component of this visualization (calculated as the Euclidean distance from a

point to the center of the projection), with a Pearson coefficient of r = −0.93.

Because η = 1 corresponds to scale invariance in the primordial density fluc-

tuations of the early universe, an increasing radial component of the diffusion

maps corresponds to an increase in scale variance.

Such stark differences between manifold learning methods are surprising,

as all techniques aim to extract important features in the data distribution, i.e.

important geometric features in the manifolds. Given the ranges of sampled

parameters, one would expect the variation in the Hubble constant to relate in

some way to one of the dominant components, which InPCA satisfies.

To understand why, we discuss anisotropies in the CMB and how they relate

to the different model parameters. The anisotropy in the CMB can be expressed
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Figure 4.9: The parameter correlations with InPCA components for dif-
ferent CMB predictions of the cosmology model, with the Pear-
son coefficient (r in upper left of each plot) to determine the sig-
nificance of correlations. The primordial fluctuation amplitude
(As) and Hubble constant (H0) are very strongly correlated with
the first and second component, respectively. We show the dif-
ferent parameter regions on the manifold, with color maps that
match the respective parameters.
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Figure 4.10: The parameter correlations with t-SNE components for dif-
ferent CMB predictions of the cosmology model considered in
the main text. Superimposed on each plot the Pearson coeffi-
cient (r in upper left of each plot) to determine the significance
of correlations. The primordial fluctuation amplitude (As) is
very strongly correlated with the first component. We show
the different parameter regions on the manifold in the bottom
part of the figure.
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Figure 4.11: The parameter correlations with diffusion map components
for different CMB predictions of the cosmology model, with
the Pearson coefficient (r in upper left of each plot) to deter-
mine the significance of correlations. The primordial fluctua-
tion amplitude (As) is very strongly correlated with the first
component. The scalar spectral index (η) is very strongly
correlated with the radial component of the crescent-shaped
manifold visualization (r = −0.93).
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as fluctuations in the spherical harmonics of a skymap of microwave radiation

intensity, â`m = {âT
`m, â

E
`m, â

B
`m} (where ` and m are coefficients in the multipole

expansion)7. The correlation and cross-correlations of these fluctuations are ex-

pressed as a matrix:

C` =


CTT
` CT E

` 0

CT E
` CEE

` 0

0 0 CBB
`

 . (4.32)

The likelihood functions of observing a particular set of fluctuations (exp-

resed in terms of â`m) are high-dimensional Gaussians, expressed explicitly as

L({â`m} | θ) =
∏
`m

1√
(2π)3|C`|

exp
(
−

1
2

â†`mC
−1
` â`m

)
. (4.33)

In this model, the C` vary with the six model parameters. The full nuance

of how all parameters (and parameter combinations) impact the C` is beyond

the scope of this chapter, however we highlight [156] as providing useful guide

to understanding the impact of each parameter. As a crude illustration of the

impact of the three main parameters extracted by the different manifold learn-

ing techniques, we show how the CMB spectra change as they are are var-

ied in Fig. 4.12, following results from [79]. Increasing the primordial fluc-

tuation amplitude increases the amplitude of the power spectra, as shown in

Fig. 4.12(a). Increasing the Hubble constant shifts the power spectra, as shown

in Fig. 4.12(b). In contrast, the scalar spectral index appears to primarily impact

7Expanded in greater detail in Section D.4
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certain multipoles, while leaving others relatively unaffected. One therefore ex-

pects that parameters which strongly impact all multipoles) should be related

to the dominant features in the manifold visualizations, which InPCA extracts

via the primordial fluctuation amplitude and the Hubble constant.

4.6.6 MNIST Images

New manifold learning methods need to be applied to simple, standard learn-

ing tasks in order for their utility to be demonstrated and so that they can be

contextualized within the larger set of established manifold learning methods.

Unfortunately, because our method is specifically designed to address the prob-

lem of visualizing probabilistic data and models, few such tasks exist (e.g. the

task of “unwinding the coil” or “visualize the sphere” would be inappropriate

for our method, since these are not inherently probabilistic systems).

A standard test of manifold learning techniques is to visualize the set of im-

ages contained in the MNIST dataset [90]. A comparison of different methods

on this task is shown in the python manifold learning package8. While this task

is not inherently probabilistic, because the images are greyscale they can be in-

terpreted as probability distributions by normalizing the pixels of an individual

image (such that pure white pictures, uniform grey, and pure black would all be

uniform distributions). To compare with these established methods, we show

the outputs in Fig. 4.13. All three methods reveal underlying clusters, represent-

ing the different digits considered.

8The sklearn package for python provides a useful comparison with numerous manifold
learning methods, available at https://scikit-learn.org/stable/auto_examples/
manifold/plot_lle_digits.html

72

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


Figure 4.12: Changes in CMB temperature (TT) spectra, as different pa-
rameters are varied. (a) The impact of varying the primor-
dial fluctuation amplitude (As) increases the amplitude of the
power spectrum, impacting all mulitpoles. (b) Increasing the
Hubble constant (H0) shifts the power spectrum. (c) Diffu-
sion maps extract the scalar spectral index (η) as a parameter
which highly impact manifold features. However, η primarily
impacts certain multipoles while having little effect on others.
(d) Varying optical depth at reionization (τ), (e) varying phys-
ical baryon density, and (f) varying physical cold dark matter
density. Spectra generated from CAMB software [94].
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Figure 4.13: Visualizing raw MNIST data. All three manifold learning
methods discussed in Section 4.6.5 (InPCA, t-SNE, diffusion
maps) appear to cluster the raw images. We use the trian-
gle plots to illustrate the number of components needed to
cleanly visualize all 6 clusters. In this way, InPCA performs
well on this more standard task. t-SNE, being specifically de-
sign to reveal clusters and local features, performs best on this
task – however global properties (distance between clusters)
are not meaningful.
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4.7 Summary

There are two important differences between InPCA and other methods. First

is that InPCA has no tunable parameters, and is a geometric object defined en-

tirely by the model distribution. For example, t-SNE embeddings rely on pa-

rameters such as the perplexity, a learning rate, and a random seed (yielding

non-deterministic results), and the diffusion maps rely on a diffusion parame-

ter and choice of diffusion operator, all of which must be manually optimized

to obtain good results. Second, t-SNE and diffusion maps embed manifolds in

Euclidean spaces in a way which aims to preserve local features. However, In-

PCA seeks to preserve both global and local features, by embedding manifolds

in a non-Euclidean (flat but Minkowski-like) space.

In this chapter, we introduced an unsupervised manifold learning technique,

InPCA, which captures low-dimensional features of general, probabilistic mod-

els with wide-ranging applicability. We consider replicas of a probabilistic sys-

tem to tune its dimensionality and consider the limit of zero replicas, deriving

an intensive embedding that ameliorates the canonical orthogonality problem.

Our intensive embedding provides a natural, meaningful way to characterize

a symmetric distance between probabilistic data and produces a simple, deter-

ministic algorithm to visualize the resulting manifold.
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CHAPTER 5

QUANTIFYING GENDERED BEHAVIOR IN PHYSICS LABS

The demographic composition of physicists is not representative of the gen-

eral population, with men over-represented not only in numbers but also in

rank [113]. In exploring the underlying reasons for this, there has been a large

focus on gaps in performance between men and women on concept invento-

ries and course grades [132, 100]. While useful, this approach provides an in-

complete picture [100, 8], and so there is a shift in physics education research

towards investigating other metrics such as sociocultural factors [46, 130], self-

efficacy [109], sense of belonging [95], and identity formation [81]. Moreover,

participation in the physics community through the roles people take on can

heavily shape one’s identity as a physicist [80]. Understanding how these roles

develop and how they are shaped through behaviours in physics courses is crit-

ical, as a gendered division of roles influences the modern practice of physics so

greatly that it is laden with masculine connotations [57, 53].

In this chapter1, we present the results of a study in which we explored gen-

dered differences in behaviour in the context of physics labs. Labs provide an

environment where students interact with peers and accumulate experience in

ways that can influence their perception of physics and of themselves as physi-

cists [101, 38]. We assume that the ways in which students behave provide in-

formation about their experience in the lab, and thus influence these percep-

1Work in this chapter was done in collaboration with Michelle Kelley, Kathryn McGill, Emily
Smith, Zachary Whipps and Natasha Holmes. Part of this work has been published [119], and
is available on the arXiv [120]. We also thank the teaching assistants and lab instructors for the
course used in this study for their invaluable support and cooperation, as well as Chris Gosling
for valuable conversations and insight. This study was supported by the President’s Council for
Cornell Women’s Affinito-Stewart Grant and the Cornell’s College of Arts and Sciences Active
Learning Initiative.
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tions. In what ways do gendered differences in behaviour manifest in physics

labs? How do factors such as group composition and lab type impact these be-

haviours? To answer these questions, we analysed the quantified behaviour of

students in an introductory physics lab to explore the gendered differences that

manifest in these spaces and see how behavioural differences vary with peda-

gogical structure as well as group composition.

We explored student experience through the behaviours students take on in

an introductory physics lab course, building on previous work regarding gen-

dered action in first-year physics labs [40, 74, 119]. Previous work has shown

mixed results with regards to gendered action in first-year physics labs such as

men using desktop computers more than women [40], women using laptops

more than men [119], and that management of equipment apparatus is heav-

ily impacted by gender in mixed-group pairs [74]. To unify these seemingly

disparate results, we generalized these studies within the framework of post-

structural gender theory [25], described in Section 5.1.

Data for this study were collected at two levels of granularity. Coarse be-

haviours were captured for all students in multiple lab periods, and were deter-

mined based on what the students were handling (lab desktop computer, laptop

or personal device, writing on paper, handling equipment, or other). Detailed

behaviours were described for a subset of these students, by analysing videos

that captured individual groups during entire lab periods. Specifically, coarse

behaviours were used to determine differences in task division, and the video

analysis was used to both describe behaviours within tasks and gain insight into

how tasks were allocated.

We found that, in lab sections designed to foster collaborative work and
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promote student agency, women used laptops or personal devices more than

men, and men behaved differently depending on the gender composition of

their group (specifically, men behaved differently depending on whether they

were working with other men or with at least one woman). We found no such

differences in our more traditional lab sections, in which students were guided

through experiments and individually filled out paper worksheets. We conjec-

ture that, due to the pedagogical differences in lab types, students in the in-

quiry labs were afforded the opportunity to divide tasks within their groups

and therefore did so along gendered lines. We use these results to guide future

research in task allocation and positioning (how one positions oneself and oth-

ers into particular roles or stances trough verbal and nonverbal cues) [39, 16],

as well as better characterize the gendered student roles that manifest in the

context of physics labs.

5.1 Poststructural Gender Theory

While exploring gendered differences in performance on standardized tests and

assessments can be useful, such research often does so in a manner that reflects a

deficit model, where women are seen as deficient when compared to men [153].

Not only does this limit avenues of research, but such an approach can reinforce

gendered inequalities of power as it reinforces the use of men’s achievements as

standard [54]. As Traxler expressed in [153],

Is the goal to change women so that they can succeed in a culture

where men are successful, or would it be better to change the culture

so that the experience of men, particularly straight, white, married

men, is not assumed to be the best standard?
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To better understand gendered behaviour in physics labs, we use the frame-

work described in poststructural gender theory [25]. In this framework, gen-

der is not described as an unchanging aspect of a person but is instead per-

formative. It is enacted through dress, speech, composure, and employment

among other aspects [159] and is actively reinforced through daily social inter-

actions [153, 25]. Gender is reflected through the role one assumes in a com-

munity. For example, through an anthropological study of an engineering de-

partment, researchers observed that students identified their peers as having

particular roles such “leader”, “jock” or “curve-breaker” [143]. Importantly, of

the 36 roles documented in the study, only four were available to women (in the

sense that the students only identified their female peers as being in one of those

four roles). Furthermore, all four “female” roles were defined strictly in terms

of social achievements (such as “sorority chick”), whereas the roles assumed

by their male counterparts were defined in terms of both social and academic

achievement (such as “frat boy” and “curve-breaker”). Because of the differ-

ence in roles available to men and women, there is a stark gender division with

respect to available roles in undergraduate STEM courses [117, 58]. By assum-

ing different roles in academic settings, men and women have very different

academic experiences [38].

Furthermore, gender cannot be treated in isolation and must be considered

in relation to multiple factors as part of identity formation, and viewed as a

fluid, context-dependent state [25, 153]. We refer to identity as defined in [58]:

the sum total of one’s beliefs about oneself, one’s actions, and how

one’s behavior is interpreted by others in a given context.

Identity formation is a complicated, multi-dimensional process that includes
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gender, race, physical ability, socioeconomic status, sexual orientation, and reli-

gion, among many, many other factors. The formative process includes individ-

ual agency as well as broader cultural and societal factors [21]: the impact of the

broader culture outside of the physics classroom strongly influences one’s iden-

tity formation (such as a culturally-perceived notion of physics as a masculine

field [10]). Importantly, how one develops a sense of identity impacts the set of

available roles one may take on in a particular context, and strongly determines

persistence in a particular field [27].

In Fig. 5.1, we show how the interplay between context and identity con-

strains the set of roles available for a student to take on. Here we consider the

students’ self-reported gender identity and the specific context of the lab type

(lab sections of two pedagogically different structures) and the composition of

their group (mixed-gender and single-gender groups).

As a way of probing the roles students assume in physics labs, we analyzed

the quantified behaviour profiles (discussed further in Section 5.2.2) of students

in multiple lab periods. We assume that students assuming very different roles

will behave quite differently in labs, producing a measurable effect. Students

in pedagogically different lab sections should behave quite differently: specif-

ically, in labs with increased student agency, there should be a wider range of

available roles, and so we expect a broader range of behaviours to be present.

If men and women are assuming different roles in physics labs, then we expect

behaviour differences along gender lines. Finally, if students assume different

roles depending on the gender of their lab partners (i.e. whether they are in

single-gender or mixed-gender groups) then we expect behaviours to vary with

group composition.
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Figure 5.1: Schematic of the theoretical framework used in this chapter,
illustrating how the broader culture, personal identity and spe-
cific context define the set of roles available to a student in
a physics lab. Arrows are used to emphasize interactions be-
tween factors which influences the boundary.

5.2 Research Methods

All participants in this study were undergraduate students at a major research

university. They were enrolled in the honours-level mechanics course of a

calculus-based physics sequence (the first course in the sequence). The mechan-

ics course was taught in both Fall 2017 and Spring 2018, and students from both

semesters were included in this study.

During Fall 2017, all students attended the same lecture, mixed together in

discussion sections, but were separated into two pedagogically different lab

types discussed below (three traditional lab sections and two inquiry lab sections).

During Spring 2018, the two lab sections under study were both inquiry labs.
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Note that we observed students across multiple lab periods, and so while each

student is in one lab section they appear in multiple lab periods. All partici-

pants were unaware of the differences between lab types: students in Fall 2017

self-selected into their lab sections prior to the start of the course, and only the

inquiry lab sections were available to students in Spring 2018.

The traditional labs were designed to reinforce physics content knowledge

presented in lecture. Students were provided with detailed paper worksheets to

follow during lab, guiding them through experiments that provided them with

hands-on experience. Importantly, while students worked in groups to collect

data for the experiments, they were required to fill out worksheets individually

and hand them in at the end of each lab period.

The inquiry labs were designed to emphasize the process of experimentation

in physics. Students were provided with a specific goal, but were expected to

design their own experiment in order to achieve that goal. Lab instruction and

lab activities were focused on iterating, improving, and extending investigation.

Importantly, in contrast to the traditional labs, students worked collaboratively

to design and implement their experiments and submitted one electronic note-

book per group.

5.2.1 Collecting Demographic Information

We used in-class surveys to obtain student demographic information. In all, 143

students across multiple lab sections were used in this study. While they had

the option to disclose a gender other than woman or man, no student chose to

do so, and only two students did not disclose their gender identity. As a result,
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all students were included in the initial cluster analysis, however the gender

analysis follows the traditional gender binary of woman or man (with the two

undisclosed students omitted from the graphs in Fig. 5.6 and Fig. 5.8 due to

insufficient statistics). Table 5.1 shows the demographic breakdown of student

participants in this study.

Table 5.1: Student demographics of this study. Errors were computed us-
ing standard error for population fractions, shown in Eq. (G.1).
In all, 143 students were considered in this study.

Traditional Labs Inquiry Labs

N % N %

Women 11 19 ± 5 21 25 ± 5

Men 46 79 ± 5 63 74 ± 5

Undisclosed 1 2 ± 2 1 1 ± 1

In both the traditional and inquiry labs in Fall 2017, observers were present

to document student behaviour and single groups were video and audio

recorded. In Spring 2018, the whole class was video taped to document stu-

dent behaviour and single groups were video and audio recoreded. These were

the two means of data collection used in this study, and we elaborate on them

in the following subsections.

5.2.2 Quantifying Coarse Student Behaviours

In all lab sections, observers documented student behaviours following the ob-

servation protocol used in [40]. Every five minutes, an observer noted each

student’s actions in the lab using one of five codes: Desktop, Equipment, Lap-
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top, Paper, and Other. In Fall 2017 an observer was present in the lab, and in

Spring 2018 the same procedure was applied to video recordings. One code

was applied to each student in the class at each five-minute interval, except in

cases where students could not be observed (e.g. because they were late or left

early). The codes are described in Table 5.2, and were based on what a student

could be handling in the lab. The Other code captured all other action such as

engaging in whole-class discussions, writing on whiteboards, discussing with

the TA or UTA, or off-task behaviours, and is used to ensure all in-lab time is

coded. The Desktop code was separated from the Laptop code for three rea-

sons. First, the desktop was property of the lab (with one provided at every lab

bench) whereas the laptops belonged to individual students. Second, the Desk-

top was often required for data collection because it was directly connected to a

detector or piece of equipment. Finally, while desktops were present in both lab

types, only students in the inquiry labs actively used laptops to analyze data,

document their lab procedures, and submit their electronic notebooks. Further

descriptions of the codes were obtained through video analysis and are outlined

in the following section.

To validate this method, two observers coded student actions in the same

lab period using the described protocol but at different five-minute intervals.

Observers were specifically not coding the same student at the same time. This

was done to address two issues: (1) the reliability of the codes, and (2) the va-

lidity of the five-minute interval at capturing coarse student behaviours in a

two-hour lab period. Note that because observers were explicitly not observing

the same student at the same, percent agreement or calculating Cohen’s Kappa

would not provide the necessary information to validate the method. Instead,

a standard chi-squared analysis was performed on the contingency table con-
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Table 5.2: Action codes used in observations. The Laptop code is used for
both handling a laptop or personal device (students used lap-
tops, phones, and tablets for the purpose of notetaking, writeup,
data analysis and reading instructions in the inquiry labs).

Code Description

Desktop Using the desktop computer at the lab bench.

Equipment Handling equipment.

Laptop Using a laptop or personal device.

Paper Writing on paper or in a notebook.

Other Other action or behaviour.

structed from the accumulated codes (the frequency each observer noted each

code, summed over all students). We provide an example of observer compar-

isons in Section G.2 for illustrative purposes. We used the criteria that if two

sets of observations are statistically indistinguishable from each other, then the

observers captured the same distributions. In all cases observers’ distributions

were statistically indistinguishable, and so single observers coded subsequent

lab periods.

Because students were observed during multiple lab periods over a full

semester, we were able to document individual students more than once. As

a result, we obtained 522 unique student profiles, each quantifying the actions of

one student in one lab period through the frequency of associated codes. We

show a schematic of the lab breakdowns in Fig. 5.2 to illustrate the connection

between students and student profiles. Table 5.3 shows a demographic break-

down of the student profiles used in this study.

While a natural analysis on such data could be a comparison of mean fre-
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Course

Lab Section (7)
Lab Type (2)

Lab Period (30)
Group (185)

Student Profile (522)

Traditional Lab

Inquiry Lab

Student Profile

Student (143)

Student Profile

Figure 5.2: Set diagram of the lab breakdown for this study. We observed
143 students in multiple lab periods, generating 522 student
profiles. All students were in the same physics course, but were
in one of two lab types (traditional or inquiry). Students regis-
tered for a particular lab section (three sections were of the tra-
ditional lab type, and four were of the inquiry lab type), and
worked in different groups during the semester. Each student
generated multiple profiles, occurring in different lab periods
with different groups (but for fixed section and lab type).
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Table 5.3: Demographic breakdown of student profiles measured in this
study. Errors were computed using standard error for popu-
lation fractions, shown in Eq. (G.1). In all, 143 students were
observed across multiple lab periods, resulting in 522 unique
student profiles.

Traditional Labs Inquiry Labs

N % N %

Women 34 18 ± 3 87 26 ± 2

Men 152 81 ± 3 246 74 ± 2

Undisclosed 2 1 ± 1 1 0.3 ± 0.3

quencies (broken down by gender or lab type) or a regression (linear model-

ing in some way), such standard methods rely on the assumption of Gaussian

distributions for the underlying data. In this study, the distribution of code

frequencies are highly skewed, with most students engaging in a particular ac-

tivity infrequently or not at all and some students engaging in an activity a lot.

Figure 5.3 shows box plots of the raw data, illustrating the non-Gaussian fea-

tures of the data. For this reason, we instead perform a cluster analysis. Such an

analysis can be used to characterize behaviour types instead of average behaviour.

Clustering can account for non-linearities missed in common regression analy-

ses (such as capturing dominant behaviour as opposed to average behaviour) and

has been used in similar studies of this type to provide fruitful results [32]. By

performing a demographic analysis on the student groupings (i.e. clusters) we

can quantitatively characterize coarse gendered behaviour. A full description of

the clustering method is described in Section 5.2.5.
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Figure 5.3: Box plots of raw data revealing the highly non-Gaussian na-
ture of the code distributions. Each faded point is the accumu-
lated codes for a student in a lab period, and so darker regions
represent more total codes of that value (with the darkest re-
gions near zero). Note that the median for all codes except
Other is less than or equal to one, reflecting the fact that over
half of students were observed engaging in that behavior once
or less than once. This, combined with the fact that there are
a large number of outliers, is an indication that students either
engage in a particular activity a lot or not at all.

5.2.3 Describing Detailed Student Behaviour

We used video recording of single-groups during full lab periods to better de-

scribe more detailed student behaviour. Because the striking genderred differ-

ences in behaviour occur in the inquiry lab, and we observed no measurable

difference in the traditional labs, videos focussed on groups in the inquiry labs,

and looked mostly at mixed-gender groups. In all, ten videos were coded, de-

composing 23 profiles from 17 students (five students appeared in more than

one video). All 23 decomposed profiles from all 10 videos with demographic

88



information are shown in Appendix J.

BORIS software was used to code videos [55], specifically the fraction of time

students engaged in different behaviours. The five codes in Table 5.2 were fur-

ther broken down by what a student was doing (e.g. analysing data) while en-

gaged in coarse behaviour (e.g. using the Desktop). A breakdown of the codes

are shown in Fig. 5.4.

The Paper code was used to predominantly describe students filling out pa-

per worksheets in the traditional labs, and so it was not further decomposed.

Both the Desktop and Laptop codes were used to describe students analysing

data, collecting data, or writing lab notes, and so both of these codes were bro-

ken down in this way. However, when collecting data, the Desktop was often

connected directly to equipment whereas gathering data on a laptop was purely

represented by students manually entering data into their electronic notebook

or analysis software. Students handling equipment were primarily doing so to

either collect data or manipulate the setup in some way (setup, cleanup, calibra-

tion, playing) and so the Equipment code can be further decomposed into these

two tasks. In this way, the Desktop, Equipment, Laptop, and Paper codes were

explicitly decomposed.

To better describe student behaviour while coded as Other, we introduced

four new state codes. These were used to describe significant events in lab,

and are elaborated in Table 5.4. By overlapping the event codes with Other, we

broke down the Other code and provide a more qualitative picture of classroom

activities, such as engaging in whole-class discussions, using whiteboards to

sketch out ideas and concepts, single group discussions with the TA or UTA, or

engaging in inter-group discussions with neighbouring groups.
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(b) Sample Profile from Time-Coded Video

(a) Breakdown of Codes

Figure 5.4: Breakdown of codes by decomposing coarse behaviour (e.g.
“handling laptop”) into more fine-grained behaviour (e.g. “an-
alyzing data”). Ten videos were coded, resulting in 23 de-
composed profiles from 17 different students (five students ap-
peared in more than one video). (a) A breakdown of each
code, showing the fraction of time students engaged in a par-
ticular task while coded as a particular behaviour. Three of
the five codes (Desktop, Equipment and Laptop) were directly
decomposed into sub-codes while analyzing videos, as shown
in (b) illustrating a sample coded time-series. Four additional
group states were coded in the videos, representing large group
behaviour (discussing with a TA or UTA, conversing with other
groups, whole class discussions and announcements, and us-
ing a whiteboard). We decomposed the Other code by over-
lapping it with these larger group states. The Paper code was
purely represented by students filling out paper worksheets in
the traditional labs.
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Table 5.4: Event codes used in video observations. These codes described
significant events in the lab, and were used to decompose the
more coarse-grained Other code. A sample time series illustrat-
ing a coded video is shown in Fig. 5.4(b)

Code Description

Whole Class Discussion The TA or UTA makes an announcement to the

class, or holds a whole class discussion.

Whiteboarding Students perform invention activities in the lab,

and use a white board to sketch out ideas and

concepts.

Single Group Discus-

sion with the TA

TA or UTA engages in a discussion with the

group (but not as part of a whole class discus-

sion).

Inter-Group Discussion Groups compare results or discuss among each

other (not as part of a whole class discussion).

To validate this method, two observers coded the same video as a means of

testing the inter-rater reliability. Cohen’s kappa was used as a measure of agree-

ment between two observers, with a value of 0.61-0.80 representing substantial

agreement. Two observers coded the same video, and obtained a Cohen’s kappa

value of 0.79, indicating substantial agreement between the two. As a result,

only one researcher coded the subsequent videos.

Video analysis was also used to better understand task allocation. Point-

events were identified when one student explicitly instructed another to per-

form a task. We breakdown the criteria for inclusion and exclusion in the fol-

lowing way:
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• Criteria for Inclusion: A student needs to be addressing another, and explic-

itly directing them in some way, such as by saying “you should do X”.

• Criteria for Exclusion: Suggesting a task should be done that a student as-

sumes without being asked is not included. Examples of such events are

characterized by statements such as “We should do X.”, “I think we should

focus on X.”, “Does someone want to work on X?”. Additionally, a student

asking another for help performing a task is excluded (such as asking an-

other student how to sum a row in a spreadsheet, and the student telling

them how).

5.2.4 Rescaling Student Profiles

To perform a cluster analysis on multidimensional data, the scales for each mea-

sure must be the same. In this study, there were two effects present which

caused differences in scales (that were accounted for).

First, the amount of coded time for each student was highly variable, ranging

from less than 45 minutes to over 175 minutes (a full histogram of students’

time in lab is shown in Fig. G.3). To account for this effect, we normalized each

student profile by the total number of observed codes for that student. In this

way, each measure represents the fraction of time spend on a particular task.

Second, there is the inherent differences in the five measures. For instance,

from Fig. 5.3, we can see that the distribution for Other is more spread out than

for Equipment. To account for this, each measure was grand mean scaled so

that, averaged over all students, each measure had mean 0 and standard devi-

ation of 1. In doing so, each measure becomes a Z-score [32, 133]. Thus, each
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student’s z-score tells us whether the time they spent on a particular activity was

above or below average as compared to other students. Moreover, the Euclidean

distance between two profiles has a statistical interpretation in this z-score for-

mat: it measures the dissimilarity of two student profiles in units of standard

deviations [32].

To illustrate this two-step rescaling, a sample profile is shown in Ap-

pendix G.3. Importantly, we rescale all student profiles and turn them into z-

scores in order to cluster them simultaneously, rather than consider sub-groups

(such as lab type or gender). We do this for ease of comparison, so that we can

contrast the distribution of student profiles in the inquiry and traditional labs

and men’s and women’s profiles after clustering (rather than imposing a di-

vide before clustering). To investigate the impact of sub-dividing groups prior

to rescaling and clustering, we present the results of such an analysis in Ap-

pendix H, which shows minimal impact on the distribution of profiles and no

impact on the number or description of the clusters themselves.

5.2.5 Cluster Analysis

We performed a standard k-means clustering on the student profiles. K-means

is an iterative algorithm, where the researcher specifies the number of clusters.

The algorithm clusters and then re-clusters the data in an iterative manner until

the sum of the square of the distances from all points to their respective cluster’s

center is minimized and no point changes cluster between iterations [67].

Note that not all data can be meaningfully clustered. For example, even

if all data form a structure-less blob, a researcher can still input two or more
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clusters and the algorithm will converge to a solution. Therefore, in order to

determine (1) if the data are clusterable, and (2) if so, what the optimal number

of clusters is, we used the elbow method [141]. We plotted the average squared

distance from each point to the center of its assigned cluster, as a function of

the number of clusters, and compared the results to 10,000 randomly generated

student profiles. We used enough random data to generate a smooth function

and ensure that the comparison is not hindered by statistical fluctuations. The

results of the elbow plot are shown in Fig. 5.5. The plot for our collected data

was substantially below random, indicating that the data are clusterable. There

is a distinct kink in the plot for five clusters, indicating that the optimal number

of clusters is five.

From the elbow plot in Fig. 5.5, we can see that the five optimal clusters

account for 70% of the variance in the data (73% of Desktop use, 60% of Equip-

ment use, 78% of Laptop use, and 59% of Other activities), well above the 50%

threshold used for a study of this type [32, 133]. We provide a 2D visualization2

of the set of student profiles using t-SNE [98], with profiles coloured by assigned

cluster, in Fig. 5.6.

Because each student had multiple profiles, arising from several lab periods

over the course of a semester, we investigated whether or not it is possible to

further collapse the profiles to determine “semester-long” behaviours. We did

this by analysing whether or not individual students’ profiles appear in mul-

tiple clusters over the course of a semester. In the traditional labs, 87 ± 4% of

students have profiles appearing in more than one cluster. Similarly, 86 ± 4%

of students in the inquiry lab appear in more than one cluster. This effect is

2Data and analysis for this work was done prior to the publishing of work done in Chapter 4,
and so we used the established visualization methods to visualize the data. For a quantitative
visualization of the data using InPCA, see Appendix I.
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Figure 5.5: Elbow plot used to determine the optimal number of clusters
for the data. The average squared distance from each point
to the center of its assigned cluster is plotted as a function of
the number of clusters. There is a kink at five, indicating that
the optimal number of clusters for the data is five. Our re-
sults were compared against 10,000 randomly generated stu-
dent profiles. Note that the elbow is well below random, a sign
that the data can be clustered. Superimposed on the graph is a
two-dimensional visualization of the data and random points
for qualitative comparison. The data show structure (brown
points in lower left), whereas the random points form a blob
(grey points in center right).

highlighted in Fig. 5.6 by connecting profiles from individual students, with

grey lines representing between-cluster matching and colored lines indicating

within-cluster matching. Because so many students have profiles appearing in

multiple clusters, the weekly variation in an individual’s profile is too great to

further collapse (for numerous reasons, such as variability in lab content and

students changing lab partners). Figure 5.6 is a two-dimensional representation

of a five-dimensional space, and so is used primarily for qualitative illustration:

cluster composition is quantitatively analysed in Section 5.3.
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Figure 5.6: Two-dimensional visualization of clusters and their centers.
Each point represents a unique student profile, with profiles
from the same student connected by a faded line (grey repre-
senting between-cluster matching and colored lines represent-
ing within-cluster matching). Circles represent students in the
traditional labs and stars in the inquiry labs, and black edges
indicate women’s profiles. All points in the Laptop cluster are
stars, whereas all points in the Paper cluster are circles, a re-
flection of the pedagogical differences in the labs (students in
the traditional labs were filling out paper worksheets, whereas
in the inquiry labs were filling out electronic notebooks). Note
that there are far more black-edged points in the Laptop clus-
ter than in the Equipment cluster, hinting at gendered differ-
ences in cluster compositions. This effect is explored in detail
in Fig. 5.8. Clusters are characterized by their centers, and here
the centers of the five clusters are given by large Z-scores for
each of our codes.
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Clusters from k-means are characterized by their centers. Here, the centers

of the five clusters (shown in Fig. 5.6) matched the five codes used in this study

and so we labelled the clusters accordingly. Therefore, the clusters character-

ize “high users” of a particular measure, i.e. a student in the Equipment cluster

spends a larger fraction of their time on the equipment than the average student.

Note that this description fits with the raw data, shown in Fig. 5.3, which illus-

trates that the majority of students engage in a particular task either frequently

or very rarely. Note that this is not just a feature of the data (see blob of random

data in Fig. 5.5) but is a feature of the students’ behaviour and the validity of

the coding scheme (i.e. at approximating student behaviours).

5.3 Results

Based on the pedagogical differences between the two lab types, one can use our

theoretical framework to predict that students in the inquiry labs (who worked

collaboratively within a group) would divide tasks among group members far

more than students in the traditional labs. To address this prediction, we an-

alyzed the cluster assignment of group members to see if members predomi-

nantly fell into the same or different clusters. In the traditional labs, 43 ± 6% of

groups had all members in the same cluster (predominantly the paper cluster)

whereas only 14 ± 2% of groups in the inquiry lab had all members in the same

cluster. This is illustrated in greater detail in Fig. 5.7.

We performed a quantitative analysis of the cluster compositions by consid-

ering the cluster distributions over lab type, gender, and group composition.

In all cases, when comparing cluster compositions, we used a chi-squared test
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Figure 5.7: Fraction of groups with members in identical clusters (dark
ring) and different clusters (light ring) illustrating task division
in the different labs. Almost half of groups in the traditional
labs had all members in the same cluster (primarily Paper clus-
ter), whereas the majority of groups in the inquiry labs had
members in multiple clusters indicating an increase in task di-
vision.

of frequencies on the contingency tables of the raw counts (description and ex-

amples provided in Section G.2). We first looked at the cluster compositions

as broken down by lab type, shown in Fig. 5.8(a). Students in the traditional

labs spent a large portion of their time filling out paper worksheets, as revealed

by the fact that 60% of their profiles were in the Paper cluster. In contrast, stu-

dents in the inquiry labs engaged in a wider range of activities, as reflected in a

more uniform distribution across clusters. This further supports the argument

from the theoretical framework that more roles were available to students in the

inquiry labs.
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Figure 5.8: Cluster compositions for each of the five clusters, broken
down both by lab type, gender and group composition. In
all plots, y-axis represents fraction of student profiles and er-
rors are calculated using the standard error on the fraction
of a population shown in Eq. (G.1). (a) Cluster distributions
broken down by lab type. (b) Clusters were further broken
down by gender. Upon inspection, we see that there are dis-
proportionately more women in the Laptop cluster than men
(blue stars), and disproportionately more men than women in
the Equipment cluster (yellow stars). (c) Cluster distributions
were further broken down in the inquiry lab by group type
(men and women in mixed-gender groups and single-gender
groups). Upon inspection, we see that the Laptop difference re-
mained (blue stars), while a difference emerged in Other (pur-
ple starts). Furthermore, far more men are high-equipment
users when in single-gender groups (yellow stars). Due to in-
sufficient statistics, no comparison can be made with women
in single-gender groups (p>0.17 in all cases).
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We then decomposed the clusters by gender and lab type, as shown in

Fig. 5.8(b). Through a chi-squared test of frequencies, we determined that there

is no statistically significant difference in the distributions for men and women

in the traditional laps (p=0.65) but that there is one for the inquiry labs (p=0.01).

Upon inspection of the resulting distribution, we noted that there are dispropor-

tionately more women in the Laptop cluster than men and disproportionately

more men in the Equipment cluster than women.

To investigate the cause of the equipment and laptop differences in the in-

quiry labs, and to consider the impact of group demographics (whether or not

a student working only with same-gendered peers affects their behaviour), we

further decomposed the clusters by group type in the inquiry labs (men and

women in mixed-gender or single-gender groups) in Fig. 5.8(c). A statistically

significant difference persists in the inquiry labs between men and women in

mixed-gender groups (p=0.02), with women being high-laptop users far more

than men but now with men engaging in Other activities far more than women.

Furthermore, the initial difference in equipment usage in the inquiry labs ap-

pears to be a result of a difference in men’s behaviour when in mixed- versus

single-gender groups (p=0.007), namely that men are far more likely to be high

equipment users when working with other men and that all group members in

mixed-gender groups are unlikely to be high equipment users. Unfortunately,

due to insufficient statistics, no comparison can be made with women in single-

gender groups (p>0.17 in all cases). Note that the fraction of students in the

inquiry labs in the Desktop cluster remained effectively constant (∼ 20%) for all

cluster breakdowns shown in Fig. 5.8.

From the cluster analysis, we noticed a significant difference in behavior
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between men and women in mixed-gender groups, and for men who worked

solely with other men as compared to when they worked with women. Specifi-

cally, women were high-laptop users more often than men. Men were substan-

tially more likely to be high equipment users when working only with other

men, and were more often engaged in other activities when working with at

least one woman. To better characterize these behavioural differences, we used

single-group video analysis of students in mixed-gender groups in the inquiry

labs, with the data shown in Appendix J. The difference in laptop usage be-

tween men and women in mixed-gender groups appeared to be the results of

students engaging in data analysis, with women having spent about twice as

much time as men analyzing data on their laptops (14 ± 7% of their time for

women as compared to 6± 3% for men). The difference in the Other cluster was

solely due to differences in within-group behaviours such as talking, observing,

or interacting with group members. Men in mixed-gender groups spent a third

of their time (30 ± 4%) engaging in these activities, as compared to women in

mixed-gender groups who spent about a quarter of their time (26 ± 5%).

To better understand the source of these behavioural differences, we used

video analysis of single-groups to identify instances of explicit task allocation.

We identified very few such events occurring in a lab (two or three times per

lab period per group). Furthermore, all such events were best described as spe-

cific direction of a student already engaged in a task. A typical example of such

an occurrence is the following: a group of students were calculating the period

of a simple pendulum, and while one student was analysing the data another

instructed them to calculate the period by dividing the time of multiple oscilla-

tions by the number of oscillations by saying “you should probably divide all

those by five.”
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From the single-group video analysis, we conclude that the significant dif-

ference in behaviour is not the result of overt, explicit allocation. Rather, it is

the result of the accumulation of subtle interactions at the individual level that

become manifest at the classroom level.

5.4 Discussion

Do men and women behave differently in physics labs? How are behaviours re-

lated to participation and the roles students take on in their group of peers, and

in what ways do these roles contribute to student experiences and persistence

in the field? To address these questions, we quantified the behaviour of 143 stu-

dents in multiple lab periods in two pedagogically different sections of the same

lab course. To probe the set of available roles for students in these sections (elab-

orated in our theoretical framework in Fig. 5.1), we quantified their behaviour

through five coarse metrics and performed a cluster analysis, using the resulting

clusters as a proxy for these roles. The five resulting clusters represent students

engaging in a particular task substantially more than average, and so charac-

terize high equipment users, high desktop users, high laptop users, high paper

users, or engaging in other activities far more than average (such as talking or

observing their peers).

The traditional labs, designed to reinforce concepts introduced in lecture,

were highly guided and structured. Students had very little room for active

decision making about the experiment, as they primarily followed detailed in-

structions. Furthermore, although they worked in groups, each student was

responsible for completing their own individual worksheet. As a result, the set
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of available roles is both highly constrained and manifestly similar for all stu-

dents.

In contrast, the inquiry labs were designed to emphasize the process of ex-

perimentation and thus students were given more agency for active decision

making about the experiment. In particular, Fig. 5.8(a) illustrates the more even

distribution across the different measures for the inquiry labs (whereas the ma-

jority of students in the traditional labs are high paper users) and Fig. 5.7 pro-

vides strong evidence for within-group task allocation as over 85% of groups

have members spread across multiple clusters. As a result, the set of available

roles is much greater in the inquiry labs and students are able to assume very

different roles from one another.

Women in the inquiry labs were more likely to be heavy laptop users than

men when working in mixed-gender groups. Specifically, women spent about

twice as much time as their male group members analysing data on their lap-

tops. While we obtained insufficient statistics to make definitive claims about

women who worked in single-gender groups, we can see qualitative differences

between women who worked with other women as compared to when they

worked with men in Fig. 5.8(c) (women were probably less likely to be heavy

laptop users and more likely to engage in other within-group activities when

working with other women).

Men in the inquiry labs behaved very differently when working only with

other men as compared to when they worked with women. Specifically, when

men were in single-gender groups, they were far more likely to be high equip-

ment users (than either their female peers or male peers in mixed-gender

groups). This difference is an indication of the different roles men assume de-

103



pending on social context. When in groups of men, there were different social

dynamics as compared to when in groups with women, thereby changing the

set of available roles (and thus observed behaviours). We speculate that this is

the increased use of equipment in men-only groups was the results of “playful-

ness” [69], with men more likely to play around with the equipment, and is the

focus of further study. Furthermore, when men were in groups with women,

they were considerably more likely to engage in other within group activities

(such as talking or observing) than both their female group members and male

peers in single-gender groups.

To explore the cause of the gendered division of roles, we used single-group

video analysis to determine task allocation. These allocations were not overt, i.e.

students were not directly assigning each other tasks through explicit instruc-

tion. The only instruction from one student to another was in the form of quick,

directed statements about an existing task. Students must have been either pre-

dominantly self-assigning tasks within groups, “falling into” roles, or directing

each other through positioning (subtle verbal and non-verbal social cues [39, 16]).

Exploring these other mechanisms of task allocations is the focus of future study,

to better understand how roles become gendered.

Substantial gendered behaviours occurred in the inquiry labs with regards to

equipment manipulation, laptop usage, data analysis, and within-group inter-

actions, however we did not measure these same features in our traditional labs.

Such vastly different results in the same study better contextualize the conflict-

ing results from previous studies, which has shown mixed results with regards

to gendered action in first-year physics labs [38, 82] such as men using desktop

computers more than women [40], and how management of equipment appara-
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tus is heavily impacted by gender in mixed-group pairs [74]. By understanding

how the lab structure impacts the set of roles available to students as well the

ways in which these are roles gendered, researchers can better unify seemly

conflicting results (i.e. what appears as “masculine” or “feminine” behaviour

in one context can change in another). For example, the conflicting results with

computer usage between this study and [40] can be better understood in rela-

tion to data collection versus analysis, and how the corresponding roles of “data

collector” and “data analyst” are viewed as “masculine” or “feminine” roles.

A more nuanced understanding of behaviours and roles and how they are

assumed by students can better inform instructors and physics departments

wishing to implement institutional changes. The vastly different roles students

take on when in the same physics program greatly influences their experience,

identity formation as physicists and future prospects, ultimately impacting per-

sistence and representation in the field. As the pedagogical structure of labs are

changed and improved, we argue there is an equal need to structure group func-

tions (equity in task and role allocation) as there is to design the lab procedure

itself. If not, we risk inadvertently reinforcing gendered roles in the labs.
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CHAPTER 6

CONCLUSIONS

In the era of big data and emergent phenomena in complex systems, re-

searchers need advanced statistical and analytic tools. How can we faithfully re-

duce complex, high-dimensional data sets to reveal underlying structure within

them? How can we systematically reduce the complexity of nonlinear models

so as to preserve predictive power? What properties of models and data make

this possible (and, conversely, what properties would make this task impossi-

ble)?

Information geometry, described in Chapter 2, can be such a tool. We used it to

generate a new manifold learning method called InPCA in Chapter 4, which can

faithfully reveal underlying structure in complex, nonlinear models with very

high dimensional, probabilistic predictions. We combined information geom-

etry with approximation theory to describe and quantify seemingly universal

patterns in model behaviors, namely their “sloppy” properties (i.e. a hierar-

chical dependence on certain parameter combinations), by deriving bounds on

model predictions through underlying model smoothness in Chapter 3. Smooth-

ness in model predictions necessarily lends itself to a hierarchical structure in

model predictions, and therefore makes it possible to reduce certain models.

There is a disparity in representation in physics, with men dominating in

rank and number. Motivated by poststructural gender theory that extends be-

yond the classic “deficit model” of performance gaps, in Chapter 5, we quan-

tified the complex behavior patterns of individuals in an introductory physics

labs, and revealed the gendered division of roles that occurred in them. Our

results indicate a pressing need to include structured equity in reformed labs
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which aim to emphasis the process of experimentation and student agency. Nu-

merous resources are currently used to redesign labs, in particular to align them

with the new AAPT lab guidelines [86]. However, if we don’t pay equal atten-

tion to the group dynamics and roles students assume within these spaces, we

risk inadvertently reinforcing gendered roles and division of labour.
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APPENDIX A

TEDIOUS CALCULATIONS AND DERIVATIONS

In this appendix, we provide detailed calculations for the FIM connections

in Chapter 2, the proofs for bounds in Chapter 3 (bounds on non-analytic mod-

els and the hyperellipsoid lengths for monomial expansions), and derive the

intensive-distance for least-squares models and the intensive cross-covariance

in Chapter 4.

A.1 Fisher Information Matrix for Least-Squares Models

Here, we show that the FIM for least squares models matches the metric on the

model manifold from Eq. (2.9). We do so by plugging in the likelihood function

from Eq. (2.13) into the definition of the FIM from Eq. (2.10). To do so, we first

find derivatives of the log-likelihood:

∂α logL (x | θ) = −
∑

i

yθ(ti) − xi

σ2
i

∂αyθ(ti) (A.1)

where we use the convention that ∂α := ∂
∂θα

. The FIM is now given as

Iαβ =

∫
dx

∑
i

yθ(ti) − xi

σ2
i

∂αyθ(ti)


∑

j

yθ(t j) − x j

σ2
j

∂βyθ(t j)

∏
k

1√
2πσ2

k

e

(
−

(yθ(tk )−xk )2

2σ2
k

)

(A.2)

When i , j, the integral over xi and x j will both yield zero because of the expo-

nential term. When i = j, the integral over all xk for k , i, j will be one because of

the normalization of the likelihood function. The above expression can therefore
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be simplified to

Iαβ =
∑

i

∂αyθ(ti)∂βyθ(ti)
∫

dxi
(yθ(ti) − xi)2

σ4
i

1√
2πσ2

i

exp
(
−

(yθ(ti) − xi)2

2σ2
i

)
(A.3)

=
∑

i

1
σ2

i

∂αyθ(ti)∂βyθ(ti). (A.4)

The FIM for least squares models can therefore be expressed using the Jacobian

of the model, and matches the metric on the model manifold from Eq. (2.9).

A.2 Equivalent Representations of the Fisher Information Ma-

trix

We show how the two forms of the FIM in Eq. (2.10) are equivalent. We do so

by turning Eq. (2.10)(ii) into Eq. (2.10)(i):

Iαβ = −
∑

x

∂2 logL(x | θ)
∂θα∂θβ

L(x | θ) (A.5)

= −
∑

s

∂

∂θα

[
1

L(x | θ)
∂L(x | θ)
∂θβ

]
L(x | θ) (A.6)

= −
∑

x

−1
L(x | θ)2

∂L(x | θ)
∂θα

∂L(x | θ)
∂θβ

L(x | θ) −
∑

x

∂2L(x | θ)
∂θα∂θβ

(A.7)

=
∑

x

∂ logL(x | θ)
∂θα

∂ logL(x | θ)
∂θβ

L(x | θ) −
��

���
���

��:0∂2

∂θα∂θβ

∑
x

L(x | θ) (A.8)

The last term cancels due to the normalization of L (the distribution, if normal-

ized, integrates to one regardless of model parameters). We therefore obtain the

form of the FIM from Eq. (2.10)(i).
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A.3 Fisher Information Matrix and the Bhattacharyya Distance

Here, we show that the metric for the Bhattacharyya distance from Eq. (2.19) is

proportional to the FIM in Eq. (2.10). We consider parameter-dependent distri-

butions L (x | θ) that we express as Lθ to simplify the expressions, and compute

the distance between parameters θ and θ + δθ:

DB(θ || θ + δθ) = DB(θ || θ) + ∂αDB(θ || θ)δθα + ∂α∂βDB(θ || θ)δθαδθβ + O(δθ3). (A.9)

We compute the different terms in this expansion. The zeroth order vanishes,

DB(θ || θ) = − log
(∫

dx
√
Lθ

√
Lθ

)
= 0. (A.10)

We see that the first order term also vanishes:

∂αDB(θ || θ) = −
1∫

dx
√
Lθ
√
Lθ

∫
dx
√
Lθ

2
√
Lθ

∂Lθ
∂θα

= −
∂1
∂θα

= 0 (A.11)

The second order term is given by:

∂α∂βDB(θ || θ) =
1(∫

dx
√
Lθ
√
Lθ

)2

(∫
dx
√
Lθ

2
√
Lθ

∂Lθ
∂θα

) (∫
dx
√
Lθ

2
√
Lθ

∂Lθ
∂θβ

)
(A.12)

+
1∫

dx
√
Lθ
√
Lθ

∫
dx
√
Lθ

4L3/2
θ

∂Lθ
∂θα

∂Lθ
∂θβ

(A.13)

−
1∫

dx
√
Lθ
√
Lθ

∫
dx
√
Lθ

2
√
Lθ

∂2Lθ

∂θα∂θβ
. (A.14)

Because the distributions are normalized, the only surviving term is the one

on Line (A.13). Using the fact that ∂α logL = 1
L
∂αL, we can therefore express

Eq. (A.9) as

DB(θ || θ + δθ) =
1
4

∫
dx
∂ logLθ
∂θα

∂ logLθ
∂θβ

Lθ︸                           ︷︷                           ︸
Iαβ

δθαδθβ + O(δθ3), (A.15)

and so the metric for the Bhattacharyya distance is directly proportional to the

FIM.
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A.4 Bounding Non-Analytic Models

In Section 3.1.1, we considered models yθ(t), t ∈ [−1, 1], that are continuously de-

pendent on parameters θ = (θ1, . . . , θK) and analytic in an open neighborhood

of [−1, 1]. We bounded the model manifold Y of model predictions by consid-

ering the truncated Chebyshev approximation from Eq. (3.3). When yθ is not

analytic on [−1, 1], the convergence of Eq. (3.3) to yθ as N → ∞ is still controlled

by the smoothness of yθ. A standard result supplied in [154, Ch. 7] states that

if yθ has ν − 1 ≥ 0 derivatives that are absolutely continuous on [−1, 1], with the

νth derivative of total bounded variation V < ∞, then

(i) ‖yθ − pN−1‖∞ ≤
2V
πν

(N − 1 − ν)−ν, N > ν + 1, (A.16)

(ii) |c j| ≤
2V
π

( j − ν)−(ν+1), j ≥ ν + 1. (A.17)

To bound P, the model manifold of pN−1(t), we note that pN−1(t) = Xc̃ for

t = (t0, . . . , tN−1)T , where X = JD, with Ji j = T j−1(ti−1), D j j = ( j − 1 − ν)−(ν+1) for

j ≥ ν + 2, with D j j = 1 otherwise. Likewise, we set c̃ = (c̃0, . . . , c̃N−1)T , where

c̃ j = ( j − ν)(ν+1)c j for j ≥ ν + 1, and c̃ j = c j otherwise. The singular values of X

decay at, at least, an algebraic rate that increases with ν (see Fig. A.1). As in

the analytic case, one can use X as a linear map and construct a hyperellipsoid

HY that bounds the model manifold associated with yθ(t). Its cross sections are

controlled by the singular values of X and typically shrink algebraically fast.

As a question of nomenclature, we suggest that an object with an algebraic

decay of widths should also be described as a hyperribbon. Although our math-

ematical bounds control the the asymptotic decay of widths, the decay of the

first few, longest axes is usually of most interest in model predictions.
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Figure A.1: The singular values σ j(X), where X is described in Ap-
pendix A.4, are plotted on a log scale against the index j for
three models of the form yθ(t) = f (θ)|t|ν: ν = 1 (orange), ν = 3
(blue), and ν = 5 (purple). For simplicity, we assume f is
smooth and independent of t. In each case, the model yθ is
ν-times differentiable on [−1, 1]. The asymptotic decay of the
singular values (dotted black lines) is algebraic, with stronger
decay rates as ν becomes larger. This suggests that continu-
ously differentiable models have manifolds with (fat) hyper-
ribbon structures, since a ν-times differentiable model yθ has a
manifold enclosed in HY , with ` j(HY) ≈ 2rσ j(X) for some con-
stant r > 0.

A.5 Deriving Manifold Bounds from Monomial Basis

In the Section 3.1.2, we bounded model predictions yθ(t) evaluated at N points

t = (t0, . . . , tN−1)T by approximating yθ with its degree ≤ N−1 truncated Taylor

expansion, which we denote by pN−1(t; θ). The manifold associated with pN−1 is

bounded within a hyperellipsoid HP. The cross-sectional diameters of HP are de-

fined in terms of the singular values of the column-scaled Vandermonde matrix

X = VD, where (VD)i j = t j−1
i−1 R−( j−1). Here, we show how the bound on the hy-

perellipsoid was obtained, and provide numerical observations for high dimen-

sional manifolds comparing the Chebyshev and monomial (Taylor expansion)
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bases.

In deriving the bound for the monomial basis, we use the bound from

Eq. (3.16). The Taylor series for yθ expanded about any point t ∈ [−1, 1] has a

radius of convergence of at least R. One can use the Cauchy integral formula

to show that the assumptions in Theorem 1 from the Chapter 3 implies that the

derivative bound in Eq. (3.16) holds for some C and R dependent on M and ρ. If

t0 = 0 and R > 1, then we find by simple estimates that

‖y − pN−1‖∞ ≤
C(NR − N + R)

(1 − R)2 R−N+1. (A.18)

As with the Chebyshev coefficients, we define ãk = Rkak, and express the poly-

nomial predictions as P(θ) = VDã, where Vi j = t j−1
i−1 and D = diag(R0, . . . ,R−(N−1)).

While explicit bounds on the singular values of VD can be derived using its

displacement structure [13], we require bounds that are characterized by the

analyticity of yθ. For this reason, we instead apply Theorem 2 to DVT VD, so

that σ j(VD) is bounded in terms of R. By applying the constraint from Eq. (3.16)

to pN−1, we see that ‖ã‖2 < C
√

N. It follows that the polynomial manifold P is

bounded in a hyperellipsoid HP from Eq. (3.17).

One can conclude the manifold associated with yθ(t), is bounded in a hyper-

ellipsoid HY with cross-sectional widths obeying

` j(HY) ≤ ` j(HP) + 2‖yθ − pN−1‖∞.

A.6 Connection Between Intensive Distance and Least-Squares

Here, provide the proof for Section 4.3.1, by showing that the intensive distance

derived in Eq. (4.9) between two least-squares models is exactly the variance-
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scaled Euclidean distance between predictions. Using the likelihood function

shown in Eq. (4.11), we write out the intensive distance between two models as

d2
I (θ1, θ2) = −8 log


∫

dx
∏

i

1√
2πσ2

i

√
exp

(
−

(xi − yθ1(ti))2

2σ2
i

)
exp

(
−

(xi − yθ2(ti))2

2σ2
i

)
(A.19)

= −8
∑

i

log

 1√
2πσ2

i

∫
dxi exp

(
−

(xi − yθ1(ti))2 + (xi − yθ2(ti))2

4σ2
i

) (A.20)

=
∑

i

(yθ1(ti) − yθ2(ti))2

σ2
i

, (A.21)

and so we get the distance shown in Eq. (4.12).

A.7 Deriving the Intensive Cross-Covariance Matrix

In this section, we use the replica trick to derive the intensive cross-covariance

matrix in Eq. (4.18). Using the relation xN = 1 + N log x + O(N), we write out the

cross-covariance per replica as

(MMT )i j

N
=

4
〈
θi; θ j

〉N

N
−

4
N p

p∑
k=1

(
〈θi; θk〉

N +
〈
θ j; θk

〉N
)

+
4

N p2

p∑
k,k′=1

〈θk; θk′〉
N

=
4 + 4N log

〈
θi; θ j

〉
− 4

p

∑p
k=1

(
2 + N log 〈θi; θk〉 + N log

〈
θ j; θk

〉)
N

+

4
p2

∑p
k,k′=1 1 + N log 〈θk; θk′〉

N
+ O(N)

= 4 log
〈
θi; θ j

〉
−

4
p

p∑
k=1

(
log 〈θi; θk〉 + log

〈
θ j; θk

〉)
+

4
p2

p∑
k,k′=1

log 〈θk; θk′〉 + O(N).

(A.22)

When the above expression is considered in the limit as N → 0, we obtain the

form of the cross-covariance expressed in Eq. (4.18).
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APPENDIX B

RANDOM MATRIX THEORY AND FISHER INFORMATION

This appendix shows preliminary results, speculating on a possible connec-

tion between the distribution of eigenvalues for the FIM in sloppy models and

general ensembles of random matrices1, through the construction of generalized

Wishart ensembles with the Vandermone matrix.

Sloppy models are characterized by the eigenvalues of their FIM. The eigen-

values follow a geometric decay, i.e. they are roughly log-evenly distributed

(successive eigenvalues are related by a constant factor). We would therefore

expect that, for every point on the model manifold (i.e. for all fixed parameters

θ), the eigenvalues of the metric follow a geometric decay. The ordered eigen-

values of the metric are therefore related by:

log λi − log λi+1 ≈ C, (B.1)

for some constant C. This describes the probability distribution over the range

of possible eigenvalues:

L(λ)d log λ = CdL. (B.2)

The probability density of the eigenvalues therefore goes like

L(λ) ∝ λ−C (B.3)

for some power C. Figure B.1 shows the numerically generated distributions for

three such models (truncated by numerical precision), and all appear to follow

a similar power-law decay.

Inspired by fruitful results in random matrix theory, such as the semi-circle

law for the distribution of eigenvalues for Wigner matrices that has provided
1Motivation for this work was provided in an A-exam question by Liam McAllister.
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Figure B.1: Eigenvalue distributions of local metrics for three nonlin-
ear least-squares models discussed in Chapter 3. (a) Expo-
nential curves from Section 3.2.1, (b) reaction velocities of an
enzyme-catalyzed reaction from Section 3.2.2, and (c) infected
fraction of a population in an SIR epidemiology model from
Section 3.2.3. Opacity represent order from largest to smallest
(largest eigenvalue is darkest color). Distributions constructed
from stacked histograms of numerically computed eigenval-
ues from sampled manifolds, and all appear to follow a power-
law decay (note the huge range in values for the horizontal and
vertical axes).
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fruitful results for understanding energy levels in atomic nuclei [160, 138], we

consider sets of random matrices to explain features in the eigenvalue distribu-

tions of sloppy models. Because of the FIM decomposition in Eq. (B.6), and the

connection between the FIM and the Jacobian of the model (where I = JT J for

least-squares models, discussed in Section 2.2), we consider generalizations of

the Wishart ensemble of random matrices.

A classic least squares model has predictions given by yθ(t). If we assume an-

alyticity of the underlying model, then this model can be seen as a point in the

space of all possible model predictions, as described by some complete polyno-

mial basis {φ j}
∞
j=0. We can perform a Taylor expansion of the model to obtain:

yθ(t) =
∑

n

1
n!
∂nyθ(t̄)
∂tn (t − t̄)n, (B.4)

where we are describing the model in terms of its location in the space of mono-

mials. The Jacobian of the model is given by

Jiα =
1
σi

∂yθ(ti)
∂θα

=
∑

n

1
σin!

∂

∂θα
∂nyθ(t̄)
∂tn︸              ︷︷              ︸

Mnα

(ti − t̄)n︸  ︷︷  ︸
Vin

. (B.5)

We can therefore decompose the Jacobian into a product of a Vandermonde ma-

trix (that varies with sampled points) and a matrix of derivatives (that varies

with parameters). The FIM can be expressed as

I = MT VT V M = MT UT ΣUM, (B.6)

where Σ is a diagonal matrix whose entries are the squares of the singular values

of the Vandermonde matrix, and U is an orthonormal matrix. Without loss of

generality, we shift and rescale all points ti such that |ti − t̄| < 1. For each fixed

parameters θ, we find a maximum characteristic length R(θ) such that for all t

on the interval containing points {ti}

1
σn!

∂

∂θα
∂nyθ(t)
∂tn < R(θ)−n, (B.7)
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where σ = mini σi. If we consider the parametrization where θα =
∂ny(t̄)
∂tn (i.e.

where the terms in the Taylor series expansion are themselves the parameters),

then using Theorem 2 (from Chapter 3), we have that the diagonal entries of the

diagonal entries are bounded by

Σnn(θ) < O
(

R(θ)−2n

|R(θ)2 − 1|

)
. (B.8)

The spectra in Fig. B.1 are from three disparate models, all subject to the

same constraint in R. They all follow the same power-law decay, (one can see

this either by comparing the plots in Fig. B.1 or from Fig. 2.4 which superim-

posed the distributions) however there appears to be additional features that

distinguish them from each other. For instance, while the eigenvalue spectra for

reaction velocities in Fig B.1(a) appears to follow exactly a power-law decay, the

other two show more structure (bumps and local peaks). There are noticeable

differences in the location of the ordered eigenvalues (i.e. the distribution of the

largest as compared to the smallest), as well as eigenvalues that span noticeably

different overall ranges. To account for these “second order” effects in the dis-

tribution, we turn to random matrices. Specifically, we consider different ways

to construct matrix M, the parameter-dependent component in Eq. (B.6).

B.1 Correlated Random Matrices

As a preliminary investigation of a possible connection between the FIM and

random matrices, we consider the sets of matrices shown in Fig. B.1. We use

the decomposition of the FIM shown in Eq. (B.6), truncating the series at fi-

nite values, to numerically approximate the exact the eigenvalues. If there is

an ensemble of random matrices that describes the resulting eigenvalue distri-

bution, then we can consider the set of matrices M as elements drawn by this
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distribution (without needing to know its exact functional form or expression).

By using the set of matrices M to recreate different ensembles (say, for all ele-

ments, for each matrix index separately, for the rows and columns) we control

how correlated the elements are, to see what features are important for exactly

recreating the original eigenvalue distributions.

Figure B.2(a,c,e) shows the distribution of matrix entries Mnα for the three

least-squares models considered here, and Fig. B.2(b,d,f) confirms that the ap-

proximate eigenvalues constructed from the truncated series expansions in

Eq. (B.6) match the exact values up to numerical precision.

We now use the entries of Mnα to form ensembles from which to draw el-

ements to generate eigenvalue distributions. By varying (1) individual ele-

ments, Mnα, (2) rows, M[n, :], and (3) columns, M[:, α], we consider the effect

of correlations on the resulting eigenvalue distributions. We generate random

matrices of the form

F = XT VT VX (B.9)

where V is the Vandermonde matrix from Eq. (B.6), and X is a random matrix

constructed by drawing elements from the set of numerically generated matri-

ces, {M}. X is an Ne ×Np matrix, where Ne is the order of the expansion (Ne = 160

for exponential curves, Ne = 20 for reaction velocities, and Ne = 20 for model of

infected fraction of a population) and Np is the number of parameters (Np = 8

for exponential curves, Np = 4 for reaction velocities, and Np = 3 for model of

infected fraction of a population).
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Figure B.2: Approximating FIM through truncated Taylor expansion, fol-
lowing the decomposition in Eq. (B.6), for the nonlinear model
of exponential curves discussed in Section 3.2.1 and model of
reaction velocities in an enzyme-catalyzed chemical reaction
discussed in Section 3.2.2. (a,c,e) Distribution of matrix en-
tries, Mnα. (b,d,f) Matching FIM with truncated Taylor series.
The horizontal axis corresponds to the exact eigenvalue of an
FIM from the distribution of eigenvalues shown in Fig. B.1, and
vertical axis represents the corresponding eigenvalue from the
FIM of a truncated Taylor expansion. Eigenvalues match ex-
actly, up to python’s default numerical precision (note that the
horizontal and vertical axes are log-scaled).
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B.1.1 Uncorrelated Entries

In considering uncorrelated, independently drawn entries of X (for the random

matrices F = XT VT VX in Eq. B.9), we generate two different ensembles from the

collection of matrices M. The first is shown in Fig. B.2(a). The collection of all

entries from all M from the metrics sampled on the manifold for each model

forms an ensemble Lall for each of these models, from which all elements of

X are drawn (Xnα ∼ Lall). The resulting eigenvalue distributions are shown in

Fig. B.3(c), which preserves the same decay rate as the original distributions but

which fails to capture the fine features at large eigenvalues: the bumps in the

original distribution appear smoothed over.

As a second consideration, each index (n, α) of M (from the explicit FIM de-

composition in Eq. (B.6)) is used to index disparate ensembles, which we label

as Ln,α. The elements of X (for the random matrices F in Eq. B.9) are drawn

from these ensembles, Xnα ∼ Lnα, and the resulting distribution of eigenvalues

is shown in Fig. B.3(d). While the overall decay rate of the distribution is pre-

served, the structure of the distribution at large eigenvalues still isn’t perfectly

captured.

For uncorrelated entries, the overall eigenvalue distribution captures the cor-

rect decay rates, however detailed features for large eigenvalues are not pre-

served. Specifically, the first, second and third “bumps” are not as pronounced

as they should be, and the location of the local beaks is shifted. The whole spec-

trum is also “shifted” to the right, with far larger maximum eigenvalues than

the original distribution.

121



Figure B.3: Eigenvalue distributions for different nonlinear models.
(a) Exact distribution compared to the eigenvalue distribution
from (b) truncated series expansion. Opacity reflects the eigen-
value order. Random matrices are of the form in Eq. (B.9).
Uncorrelated entries: each element of X is drawn from (c) the
same ensemble (shown in Fig. B.2) and (d) different ensembles.
Correlated matrices: we draw (e) all rows of X from the same
ensemble and (f) each row X[n, :] from its own ensemble, and
(g) all columns of X from the same ensemble and (h) each col-
umn X[:, α] from its own ensemble. All ensembles follow the
same geometric decay, but have different structure for large
eigenvalues. 122



B.1.2 Correlated Rows and Columns

We consider random matrix ensembles F = XT VT VX (from Eq. B.9) where the

rows and columns of X are correlated. First, we generate an ensemble of all

rows, Lrow, and for rows of fixed index n, Ln, from the rows of M, M[n, :]. This

is equivalent to considering correlations between parameters, for fixed point

derivatives n. While the eigenvalue distributions for both X[n, :] ∼ Lrow and

X[n, :] ∼ Ln both capture the correct overall geometric decay, they both fail to

capture features at large eigenvalues, as shown in Fig. B.3(e) and Fig. B.3(f) re-

spectively.

Finally, we generate an ensemble of all columns, Lcol, and for columns of

fixed index α, Lα, from the columns of M, M[:, α]. This is equivalent to consider-

ing correlations between derivatives for fixed model parameter, θα. In other

words, considering correlations between ∂
∂θα

∂nyθ(t)
∂tn for fixed θα and varying n.

Again, the overall geometric decay for the two resulting distributions captures

the original decay, but now the ensemble appears to preserve much of the im-

portant features for large eigenvalues, as shown in Fig. B.3(g) and Fig. B.3(h) for

Lcol and Lα respectively.

These results show the importance of correlations in the original matrices

M in the FIM decomposition from Eq. (B.6). By allowing for correlated rows,

randomly generated matrices F = XT VT VX (from Eq. (B.9)) have eigenvalue

distributions that capture the important features of the original eigenvalue dis-

tribution. Future work aims to determine exactly what these correlation func-

tions look like, to see if they can be effectively approximated with two-point
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correlation functions over all elements,

Cnαmβ =
〈
MnαMmβ

〉
− 〈Mnα〉

〈
Mmβ

〉
. (B.10)

The Wishart ensemble considers random matrices of the form XT X. By in-

troducing a Vandermonde matrix into the heart of this multiplication, we are

introducing correlations in the columns of X → VX (since all entries in a column

of V are exponentiated by the same power). By considering correlated entries in

X, we can explore properties of a more general Wishart ensemble that considers

correlated rows and columns. This is the focus of future work.

B.2 Sequential Random Matrices

A great advantage of neural networks in machine learning is that they can be

used as universal function approximators for non-linear models [68, 29]. We

consider a multi-layer, deep neural network (say, of the type described in Sec-

tion D.3). Each layer of a neural network is a matrix, whose entries are opti-

mized during the training process. By considering a many layers of a network,

we can consider the effect of sequentially multiplying many random matrices.

Note that a re-parametrization of the model changes the FIM in the following

way2:

Iα̃β̃ =
∂θα

∂θα̃
∂θβ

∂θβ̃
Iαβ. (B.11)

Because the nonlinear model parameters θ determine the coefficients in the ex-

pansion of Eq. B.4, we can view them as a re-parametrization of the coefficients.

2Motivation for considering nested random functions was the result of multiple conversa-
tions at the 2018 ICAM Workshop at CUNY, on Machine Learning and Physics.
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Furthermore, because there are fewer model parameters than coefficients in the

polynomial expansion, this is a natural way of reducing the intrinsic dimension-

ality of the system.

Given the form of the FIM shown in Eq. (B.6), we look at Wishart ensembles

with matrices of the form XT X for rectangular matrices X, where the random

matrix X is analogous to the Jacobian of the transformation. We decompose X

in the following way:

Xiα =

N−1∑
n=0

VinR−nMnα (B.12)

where V is the Vandermonde matrix, R ≥ 1 is a random number (reflecting

the fact that the exact smoothness of the function varies with location on the

manifold), Mnα is a matrix whose entries are correlated. V reflects the properties

of the sampled points ti (experimental conditions), M and R reflects the wide

range of random functions available to describe the model (i.e. random entries

in the Taylor series, with each coefficient it’s own parameter, whose smoothness

are characterized by R) and is used to reduce the intrinsic dimensionality of

the system to the number of parameters in the nonlinear model and reflects the

parameter dependence (i.e. from the dimension of the embedding space to that

of the parameter space). The characterstic length R can be fixed, or allowed to

vary slightly, reflecting the fact that R(θ) in Eq. (B.7) changes with parameters.

We consider lengths such that Rmin = minθ R(θ) ≥ 1.

To account for the effect of a many-layered neural network, we include it

in the construction of the parameter matrix M. We let M(0) be an N × K matrix

of random entries (where N is the number of points ti and K is the number of

parameters). We then let M( j) for j ≥ 1 be a set of K × K matrices of random
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entries, and construct the parameter matrix as

M = M(0)M(1) · · · (B.13)

where the number of M( j) in the above product reflects how correlated the pa-

rameters are. The FIM decomposition of Eq. B.6 can therefore be expressed as

I = · · ·M(1)T
M(0)T

R VT V︸︷︷︸
(a)

R︸︷︷︸
(b)

M(0)︸︷︷︸
(c)

M(1) · · ·︸  ︷︷  ︸
(d)

(B.14)

where the term in (a) is a reflection of experimental conditions, (b) is a reflec-

tion of the underlying smoothness, (c) reflects the dimensionality reduction to

the number of model parameters, and (d) determines the correlation between

parameters.

The geometric decay in the eigenspectra is ultimately due to the Vander-

monde matrix at the heart of the FIM. Finer details of the distribution (overall

range of eigenvalues, number of local peaks, spread/isolation of the ordered

eigenvalues) are affected by the variability in characteristic lengths R, dimen-

sionality reduction from M(0) and the parameter correlations from M( j). To better

understand these finer details, we vary characterstics of the underlying distri-

bution and see what effect they have.

The eigenspectra can be decomposed into peaks, related to the order of the

eigenvalues. For instance, if the model has 3 parameters, then the spectra has 3

local peaks, related to the largest, middle, and smallest eigenvalue. The size and

spacing between these peaks relates directly to the eigenvalue spacing in the

FIM because each ordered eigenvalue is drawn from its corresponding peak.

Figure B.4 illustrate now the number of peaks changes with varying number

of sampled points {ti}, which affects the intrinsic dimensionality of the system

(dimension of the embedding space for the model manifold) as well as by de-

creasing the number of model parameters.
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Figure B.4: The number of peaks in the eigenvalue distributions of se-
quential random matrices are characterized by the number of
points in the Vandermonde matrix (number of sampled points)
as well as the number of model parameters. By increasing the
number of points from 11 to 21, the number of peaks increases
from 11 to 21. By decreasing the number of model parameters
from 11 to 3, the number of peaks also decreases to 3. In both
figures, black line represents distribution from the original dis-
tribution, with each peak corresponding to the ordered eigen-
values. Purple distribution reflects the new eigenvalue distri-
bution after transformation, with opacity reflecting eigenvalue
order (dark purple being the largest eigenvalue).
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Figure B.5: The spacing between peaks are related to the spacing between
points (even vs. uneven) as well as the characteristic length.
Peaks become more pronounced by making the spacing be-
tween points more uneven, and by increasing the size of the
characteristic length the peaks become more spread out. In
both figures, black line represents distribution from the origi-
nal distribution, with each peak corresponding to the ordered
eigenvalues. Purple distribution reflects the new eigenvalue
distribution after transformation, with opacity reflecting eigen-
value order (dark purple being the largest eigenvalue).

The spacing between peaks depends on the spacing between sampled

points, {ti}, as well as the characteristic length R, as shown in Fig. B.5. The more

unevenly distributed the points, the more pronounced the peaks are, and the

greater the characteristic length, the more separated the peaks are.

Finally, the spread in peaks is determined by how correlated the parameters
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Figure B.6: The spread in the peaks are determined by the correlations
in the FIM, as characterized by the correlations in model pa-
rameters as well as allowing the characteristic length to vary.
The spread of the peaks increases by increasing the correla-
tions and by allowing the characteristic length to vary. In both
figures, black line represents distribution from the original dis-
tribution, with each peak corresponding to the ordered eigen-
values. Purple distribution reflects the new eigenvalue distri-
bution after transformation, with opacity reflecting eigenvalue
order (dark purple being the largest eigenvalue).

are and by the spread in the characteristic lengths, R, as shown in Fig. B.6. The

more correlated the parameters (i.e. the more M( j) in the construction of the

FIM), the more spread out the peaks are.

By varying these different features in the ensemble, we try to fit the eigen-

spectra from Fig. B.1. Here, elements of M( j) are drawn from a Gaussian dis-
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tribution, M( j)
i j ∼ N(0, 1). By varying the number of sequential matrices, and al-

lowing R to vary slightly between drawn samples, the distributions can be more

easily fit. However, this picture of sequential random matrices doesn’t appear

to quite fit the distributions perfectly, and a better approach may be explicitly

incorporating correlated elements, as described in Section B.1.

130



Figure B.7: Eigenvalue distributions of local metrics for three nonlinear
least-squares models, with fits from RMT ensembles generated
using Eq. (B.14). (a) Exponential curves from Section 3.2.1,
(b) reaction velocities of an enzyme-catalyzed reaction from
Section 3.2.2, and (c) infected fraction of a population in an
SIR epidemiology model from Section 3.2.3. Opacity represent
order from largest to smallest (largest eigenvalue is darkest
color). Superimposed on each plot is a black line, representing
the distribution constructed from sequential random matrices.
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APPENDIX C

NUMERICAL OBSERVATIONS FOR HIGH DIMENSIONAL MANIFOLDS

In Chapter 3, we derive bounds on model predictions using two different

basis in a polynomial approximation: (1) Chebyshev expansion in Section 3.1.1

and (2) Taylor expansions in Section 3.1.2.

The constraint in Eq. (3.16) implies that yθ is analytic in the region R of

the complex plane of distance < R from [−1, 1]. It can be shown that yθ must

also be analytic and bounded by a function M(ζ) on any Bernstein ellipse

Eρ(ζ) in R, with ρ(ζ) = ζ +
√
ζ2 + 1 [42]. The largest such ellipse is given by

ρmax = R +
√

R2 + 1, suggesting that Chebyshev-based bounds can improve the

bounds from Eq. (3.17) by nearly a factor of 2 j. However, M(ζ) is unbounded

as ζ → R, so one must select 0 < ζ < R to minimize the Chebyshev bound.

Even when ζ is selected carefully, the conversion from Eq. (3.16) to a constraint

involving Eρ(ζ) may introduce an unphysically large constant into the bound.

One expects that the decay rate O(R− j) in Eq. (3.17) is weak as an upper

bound on the ordered widths of the underlying hyperribbon Y. This is related

to the fact that unlike truncated Chebyshev expansions, truncated Taylor poly-

nomials do not converge to yθ at a rate that is asymptotically optimal for poly-

nomial approximants (see [154, Ch. 12–16]).

However, we find that the singular values σ j(VD) behave in a surpris-

ing way: For small to moderate j, the magnitude of σ j(VD) decays at a

rate close to the limit predicted by Chebyshev approximation: O(ρ− j
max), where

ρmax = R +
√

R2 + 1. It is only when j is sufficiently large that σ j(VD) appears

to decay at the predicted rate O(R− j). We do not yet fully understand why the
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singular values of VD decay at two distinct rates, but speculate that it may be

related to the kink observed in error plots for Clenshaw–Curtis quadrature on

analytic functions [158].

Due to this phenomenon, we find that using σ j(VD) directly results in good

bounds on model prediction spaces for low dimensions (the larger axes of the

hyperellipsoid HY). At higher dimensions (shorter hyperellipsoid axes), the

Taylor-based bounds become suboptimal, and it is beneficial to instead convert

the constraint in Eq. (3.17) to one involving Bernstein ellipses. The conversion

of the constraint can result in bounds that are inflated by a large unphysical con-

stant, but the decay rate in the new bound, close to O(ρ− j
max), is nearly double the

rate O(R− j). When viewed together, the Chebyshev-based bounds and numeri-

cal Taylor-based bounds describe the successive lengths of the model manifold

across two regimes (low vs. high dimension). We illustrate this observation us-

ing a high-dimensional manifold (N = 100) in Fig. C.1.
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O(R− j)O(ρ − jmax )

Figure C.1: Bounds on the hyperellipsoid lengths ` j(HP) using trun-
cated Taylor (dotted purple) and truncated Chebyshev (dot-
ted blue) expansions are plotted on a log scale against the
dimension index j. These form a universal bound on the
ordered manifold widths of the prediction space for mod-
els yθ that satisfy Eq. (3.17). In this example, C = 1, R = 2,
N = 100, and ρmax ≈ 4.2. The solid lines show the actual com-
puted hyperellipsoid cross-sectional lengths (on a log scale)
` j(HP) = 2rσ j(X), where X = VD for the Taylor-based bounds,
and Xi j = T j−1(ti−1)ρ−( j−1)

max for the Chebyshev-based bounds. The
largest 40 Taylor-based hyperellipsoid lengths decay at the
rate predicted by the Chebyshev-based bounds. Then, a
kink occurs (indicated by a black arrow) and the lengths de-
cay at the rate predicted by the bound in Eq. (3.17). For
the smaller dimensions, the Chebyshev-based results produce
tighter bounds. Model manifold lengths outside of the shaded
region cannot occur.
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APPENDIX D

GENERATING AND VISUALIZING MODEL MANIFOLDS

In this appendix, we go through the details of how the different model mani-

folds were generated in Chapter 3 and Chapter 4. In Section D.1, we go through

the least-squares models discussed in Chapter 3 and explain how the manifolds

were projected along the natural axes of the bounding hyperellipsoids. In Sec-

tion D.2, D.3, and D.4 we discuss the probabilistic models outlined in Chapter 4

and detail how their manifolds were sampled and visualized with InPCA.

D.1 Least Squares Models

Here, we provide a detailed description of how data for the 1D models used

in Section 3.2 were generated: physics (exponential curves), chemistry (reaction

velocities) and biology (SIR epidemiology model). Data for the 2D extension of

all three models (shown in Section 3.3) were computed in a similar way.

In order to generate the model manifolds, a Monte Carlo sampling was per-

formed on the parameter space of all three models. The model predictions for

the randomly selected parameters were accepted or rejected based on whether

or not they satisfied the constraint on the derivative from Eq. (3.17), where we

set C = 1 and R = 2. Since we consider eleven equally spaced points for all three

models in Section 3.2, in all example models the derivative constraint was ap-

plied up to the eleventh derivative.

1. For exponential curves, the model is of the form

yθ(t) =

10∑
α=0

Aα exp (−λαt) , (D.1)
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and the derivative constraint from Eq. (3.17) can be expressed as

N−1∑
k=0

 10∑
α=0

RkAα

k!
(−λα)k exp (−λαt)

2

< C2N (D.2)

for all −1 ≤ t ≤ 1. From a Monte Carlo sampling, 42,000 valid samples

were randomly generated. A histogram of parameters used to generate

the model manifold is shown in Fig. D.1(a).

2. The model of reaction velocities is given by

yθ(t) =
θ1t2 + θ2t

t2 + θ3t + θ4
, (D.3)

where t is the substrate concentration. The derivative constraint can be

expressed as

N∑
k=1

(
Rk

k!
dk

dtk

(
θ1t2 + θ2t

t2 + θ3t + θ4

))2

< C2N, (D.4)

for all −1 < t < 1. We generated 24,000 valid parameter combinations, and

a histogram of the different parameter values is shown in Fig. D.1(b).

3. Finally, for the infected population in an SIR model, the number of peo-

ple susceptible (S ), infected (I), and recovered (R) are determined through

three coupled differential equations:

(i) Ṡ = −β
IS
Ntot

,

(ii) İ = β
IS
Ntot
− γI,

(iii) Ṙ = γI,

where β is the infection rate, γ is the recovery rate, and Ntot is the total size

of the population. If we let the model predictions be the infected popula-

tion, then we have yθ(t) = I(t). To find the kth derivative of such a model,

we note that Ṡ = f1(S , I) and İ = g1(S , I). The subsequent derivatives can
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therefore be found recursively, by ÿθ = Ï =
dg1
dS Ṡ +

dg1
dI İ = g2(S , I) and so on.

From a Monte Carlo sampling, we obtained 20,000 valid parameter com-

binations. A histogram of parameter values used to generate the model

manifold is shown in Fig. D.1(c).

In all three models, the smallest physically meaningful prediction is yθ(t) = 0.

For exponentials and the SIR model, the largest physically meaningful predic-

tion allowed by Eq. (3.17) is yθ(t) = C
√

N, and so the longest manifold distance

possible is CN. With this sampling method, we obtained manifold lengths that

are within 1.5% of this maximally allowed distance, and so while more refined

sampling methods could be used to resolve the manifold boundaries, they are

unnecessary for our purposes.

Once a sampling of the possible parameter combinations is obtained for a

model, we visualize it. Each parameter combination is evaluated at eleven

equally spaced points. The space spanned by the model predictions at these

points forms the model manifold Y.

To visualize Y, it is rotated into the basis given by the hyperellpsoid

axes constructed from the space of allowed polynomials predictions, P. Let

{φ j}
∞
j=0 be a complete polynomial basis, and let P(b) = (P0, . . . , PN−1) define

the model manifold P of pN−1(t) =
∑N−1

j=0 b jφ j(t). Polynomial predictions are

given by Pk = pN−1(tk). By definition, P(b) = Xb, where Xi j = φ j−1(ti−1) and

b = (b0, . . . , bN−1)T . To find the rotation matrix used to visualize the model man-

ifold Y, we perform a singular value decomposition on X,

X = UΣVT , (D.5)

to extract the rotation matrix U. The data points on the model manifold are then
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(a)

(b)

(c)

Figure D.1: Histograms of valid parameter values used to generate the
model manifolds. In all the models, a Monte Carlo sam-
pling was performed, with parameters accepted or rejected
based on whether or not they satisfied the derivative condition
from Eq. (3.17). (a) Parameter values for exponentials, show-
ing the distributions for the amplitudes Aα and decay rates
λα. (b) Parameter values for the reaction velocities, for each
θ1, θ2, θ3 and θ4. (c) Parameter values for the SIR epidemiol-
ogy model, showing the distribution of infection rates β/Ntot,
recovery rates γ and initial infected population.

rotated using this matrix, and visualized in Fig. 3.1(b) and Fig. 3.2(b) where we

set X = VD to be the column-scaled Vandermonde matrix.
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Figure D.2: Ising parameter ranges sampled in this thesis, coloured by Jef-
frey’s prior (yellow indicates regions of high probability, pur-
ple areas of low probabilities).

D.2 2D Ising Model

The Ising model manifolds generated in Chapter 4 were sampled around the

critical point using an MC with probability of accepting/rejecting a step given

by Jeffrey’s prior, equivalent to the determinant of the FIM:

LJeff(θ) =
√
|I(θ)|. (D.6)

We calculate the FIM using Eq. (2.10):

Iµν = −
∑

S

(
∂µ∂ν logL(S | θ)

)
L(S | θ) (D.7)

=
1
Z(θ)

∂µ∂νZ(θ) −
1
Z2(θ)

∂µZ(θ)∂νZ(θ), (D.8)

where Z(θ) is the partition function defined in Eq. (4.27). The ranges of param-

eters sampled are shown in Fig. D.2.
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Figure D.3: Convolutional neural network used to classify MNIST hand-
written digits. Image taken from TensorFlow tutorials [1].

D.3 Convolutional Neural Network with TensorFlow

A two-layer convolutional neural network was constructed in Section 4.6.4 us-

ing TensorFlow [1]. The outputs were converted to a probabilities using Soft-

Max [20]. A schematic of the network is shown in Fig. D.3.

The outputs of the network are turned into probabilities using SoftMax,

which effectively treats the output weights as negative energies in a Bolzman

distribution. Specifically, if xi is the vector of network outputs, the probability

is given as:

L(xi) =
exi∑
j ex j

(D.9)
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D.4 Cosmic Microwave Background

We turn our attention to CMB spectra1, and describe the manifold which rep-

resents all theoretically possible spectra generated by the 6 parameter ΛCDM

model visualized in Section 4.6.5. The anisotropy in the CMB can be character-

ized by a 2 × 2 direction dependent intensity matrix Ii j(n̂) whose components

can be recognized as 3 of the 4 Stokes parameters. By expanding the various

components of the intensity matrix into spherical harmonics, we obtain 3 maps

of interest; the temperature fluctuation map T and 2 polarization maps, E and

B. These can be expanded into spherical harmonics,

X(n̂) =
∑
`m

aX
`mY`m(n̂) where X = T, E, B. (D.10)

The angular spectra are defined as the cross correlation of the coefficients in

the expansion, written as

CXY
` ≡

1
2` + 1

∑
m

〈
aX
`maY

`m

〉
where X,Y = T, E, B. (D.11)

Using this, we can construct a correlation matrix for the fluctuations,

C` =


CTT
` CT E

` 0

CT E
` CEE

` 0

0 0 CBB
`

 , (D.12)

where the CT B
` and CEB

` vanish for symmetry reasons [12]. The values of Cl are

parameter dependent, and a likelihood analysis of CMB data fit with such a

correlation has been extensively studied, particularly in the case of limited sky

coverage, as it is invaluable for fitting CMB measurements [115, 64, 139].

1Part of this writeup was initially presented as part of an A-exam questions for James Sethna
and Julia Thom.
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In the case of perfect full sky coverage we can decompose the measured fluc-

tuations into spherical harmonics, and obtain coefficients â`m = {âT
`m, â

E
`m, â

B
`m}.

These are expected to be (approximately) Gaussian, with mean zero. The

probability of a fit for this data can be expressed as a huge product of high-

dimensional Gaussians:

L({â`m} | θ) =
∏
`m

1√
(2π)3|C`|

exp
(
−

1
2

â†`mC
−1
` â`m

)
. (D.13)

This conditional probability defines the likelihood function [115, 139], and so

we can generate the FIM. Equation (2.10) can be re-written as

Iαβ(θ) = −

∫ [
∂α∂β logL(θ | x)

]
L(θ | x)dx. (D.14)

We can use the definition of L for CMB fitting and perform the integral over all

{â`m}. We begin by looking at the second derivatives of L:

−∂α∂β logL(θ | {â`m}) =
1
2

∑
`m

∂α∂β
(
log |C`| + â`mC−1

` â`m
)

=
1
2

∑
lm

(
∂α∂β|C`|

|C`|
−
∂α|C`|∂β|C`|

|C`|
2

)
+

1
2

∑
`m

â`m∂α∂βC−1
` â`m.

(D.15)

We can plug this expansion into Eq. (D.14) and pull out all terms independent

of the data. Thus, the first 2 terms in the sum can be completely pulled out

of the integral. The remaining term is harder, and to evaluate it we make use

of the following integral for symmetric, positive definite M × M matrix A and

symmetric M × M matrix B√
|A|

(2π)M

∫
xT Bx exp

(
−

1
2

xT Ax
)

dx = Tr(A−1B). (D.16)

This allows us to solve Eq. (D.14), setting A = C−1
` and B = ∂α∂βC

−1
` . We can

now combine all the pieces together, and obtain a formula for the FIM

Iαβ(θ) =
∑
`

2` + 1
2

(
∂α∂β|C`|

|C`|
−
∂α|C`|∂β|C`|

|C`|
2

)
+

∑
`

2` + 1
2

Tr
(
C`∂α∂βC

−1
`

)
. (D.17)
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We can compare this to to previous results for FIM derivations, [112, 139]

and confirm that we obtain the same result.

To determine the eigenvalue spread presented in Fig. 2.3, the FIM was cal-

culated numerically using CAMB software and code provided by Francesco De

Bernardis.

To visualize the model manifold in Fig. 4.8, we use Eq. (4.7) to compute the

cosine-angle between two distributions:

〈θ1; θ2〉 =

∫
d{â`m}

√
L({â`m} | θ1)

√
L({â`m} | θ2)

=
∏
`m

∫
dâ`m

1√
(2π)3|C(1)`|

1/4|C(2)`|
1/4

exp

−1
2

â†`m

C−1
(1)` + C−1

(2)`

2

 â`m


=

∏
`


∣∣∣C−1

(1)` + C−1
(2)`

∣∣∣−2

22d|C(1)`||C(2)`|


2`+1

4

(D.18)

where d reflects the dimension of C`.

To sample the model manifold, and MC sampling was performed around

the best-fit provided by the Planck 2015 data release. The probability of ac-

cepting/rejecting a step was determined by the Bhattacharyya distance to the

best-fit spectra.
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APPENDIX E

INPCA COMPARISONS WITH T-SNE AND DIFFUSION MAPS

We provide a detailed comparison of the Ising model manifold and the out-

puts of a convolutional neural network trained on the dataset of MNIST hand-

written digits using three techniques: (1) the InPCA algorithm developed in

Chapter 4, (2) t-SNE [98], and (3) diffusion mapping [31]. Importantly, because

t-SNE and diffusion maps are purely visualization techniques that require a dis-

tance to be input, we supply our intensive distance to all three methods for con-

sistency and ease of comparison.

E.1 Ising Model Manifold

In this section, we provide a detailed comparison of the Ising model mani-

fold discussed in Section 4.6.3. We look at the model manifold for a 2 × 2

system with the parameter ranges discussed Section 4.2 and Section D.2. Fur-

thermore, because of the simple nature of manifold (we vary two parameters,

external field and nearest-neighbour coupling) two-dimensional visualizations

from each method are effectively equivalent. For this reason, we consider the

first three components (i.e. when the Minkowski-like nature of InPCA has a

significant effect).

Fig E.1(a) shows the manifold as visualized with InPCA. Note that the third

component (z-axis) is imaginary. In this way, InPCA embeds the manifold in

a Minkowski-like space. Because two parameters are varied (field and nearest-

neighbour coupling) the manifold is two dimensional, a property that is ex-

tracted by InPCA. The t-SNE visualization of the Ising manifold is shown in
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Fig. E.1(b). This embedding technique is best used to reveal clusters and lo-

cal features, but it fails to fully represent the global features of the manifold.

Diffusion maps is used to visualize the Ising manifold in Fig. E.1(c). The two-

dimensional nature of the manifold is also revealed through this visualization,

however it is still embedding the manifold in a Euclidean space. We see a ‘curl-

ing’ at the edges of the manifold, as the diffusion maps appear to be struggling

to capture the important property of large positive/negative fields being very

far apart from each other.

How can this visualization be useful? Figure E.1 illustrates the family of

behaviors exhibited by Ising models, and could be coarse-grained by sampling

a sub-grid of spins in a larger Ising model. The renormalization group tells us

that this coarse-grained model can be rescaled to match the original model at

renormalized parameters; distance in the intensive metric embedding could be

a systematic, principled way of matching these parameters. This is the focus of

ongoing research.

E.2 Neural Network

In this section, we provide a detailed comparison of the outputs of a trained

neural network constructed with TensorFlow [1]. The outputs are viewed as

probabilities through SoftMax [20]. For a well-trained newtork, one expects the

outputs to form clusters. Specifically, the number of clusters is a reflection of the

number of categories imposed on the network. Here, we have 10 digits, and so

we expect any visualization method to reveal 10 clusters.

Figure E.2 shows the outputs visualized with the thee manifold learn-
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(a) InPCA (c) Diffusion Maps(b) t-SNE

Figure E.1: Manifold of the Ising model visualized with different mani-
fold learning techniques. In all figures, axes reflect aspect ratio
of extracted components and colors reflect external magnetic
field matching the main text. The manifold is two intrinsi-
cally dimensional, as we only vary two parameters (field and
nearest-neighbour coupling). (a) InPCA visualization with fist
three extracted components. Note that the third component is
imaginary. (b) t-SNE visualization in three dimensions and (c)
fist three components of diffusion maps.

ing methods, and each method shows clusters. The t-SNE visualization in

Fig. E.2(b) shows the cleanest clusters. It is important to note, however, that t-

SNE is optimized for local features (and so the distances between clusters is not

meaningful). For instance, the digits 6 and 7 are very different, and so should

be considered quite distinct in this picture. However, t-SNE places the clusters

of 6’s and 7’s right next to each other. InPCA and diffusion maps have similar

visualizations (shown in Fig. E.2(a) and Fig. E.2(c))).

Because InPCA captures global features (as shown in the large distance be-

tween 6’s and 7’s), it will not artificially cluster points and so it is useful for

comparing the outputs for trained vs. untrained networks (as shown in the

Fig. 4.7).

How can such geometries be useful? By using InPCA to better understand
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the global geometry of an initialized neural network, as well as after the first

couple epochs, properties of the network can be analyzed (e.g. what clusters

emerge first? Is there a hierarchical structure?) and is the focus of onging re-

search.
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Figure E.2: Outputs of the trained neural network visualized with differ-
ent manifold learning techniques. In all figures, axes reflect as-
pect ratio of extracted components and colored by digit match-
ing the main text. All projections reveal underlying clusters in
the outputs, with one cluster per digit, a reflection of the train-
ing of the neural network. (a) InPCA visualization with fist
two extracted components. (b) t-SNE visualization. (c) First
two components from diffusion maps. t-SNE produces the
cleanest visualization of the clusters, however it is important to
note that global features are note meaningful. For instance, the
digits 6 and 7 are very different. InPCA shows these two clus-
ters as far apart, whereas t-SNE has them next to each other,
because InPCA preserves global features.
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APPENDIX F

PARAMETER DEGENERACIES AND COMBINATIONS IN THE CMB

There are parameter degeneracies in the CMB spectra which make fitting

to data particularly difficult (when solely considering CMB spectra for deter-

mining parameters). As a preliminary consideration of this effect on the vi-

sualization of the model manifold with InPCA (from Chapter 4), we consider

Ap = Ase−2τ [140], a degeneracy in the primordial fluctuation amplitude and

the optical depth at reionization that affects the amplitude of the CMB spec-

tra. Figure F.1(a) shows how Ap correlates with the first component of InPCA

(the first component shows a strong correlation with the primordial fluctuation

amplitude As, as shown in Fig. 4.9, and so serves as a motivation for this corre-

lation). We see that the Pearson correlation between Ap and the first parameter

is r = 0.98 [72], indicating a near perfect correlation: the biggest feature that

InPCA appears to extract in CMB spectra (from the parameter ranges in Sec-

tion 4.6.5) is the overall size of the fluctuations. We visualize the manifold of

possible CMB spectra using the first two InPCA components in Fig. F.1(b).

Next, we consider1 the combination of matter density (Ωm = Ωb +Ωc), and the

reduced Hubble constant (h) given as Ωmh3. The constraint on Ωmh3 is very tight

(as compared to orthogonal directions) [78]. We show the correlation between

Ωmh3 and the second InPCA component (which is an orthogonal direction in

prediction space to the one associated with Ap, and appears correlated with the

Hubble constant in Fig. 4.9). Figure F.1(b) shows the correlation, with a Pearson

coefficient of r = 0.83, indicating a strong correlation [72].

1Investigating the connection between Ωmh3 and InPCA components was initially suggested
to KNQ by David Spergel at the 2019 Aspen winter conference.
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(a) (b)

(c) (d)

Figure F.1: The parameter combination correlations with InPCA compo-
nents for different CMB predictions of the cosmology model,
with the Pearson coefficient to determine the significance of
correlations. In all figures, orange dots represent our universe.
(a) Shows the correlation of Ap = Ase−2τ with the first compo-
nent, and (b) colors the manifold visualization by Ap. (c) Shows
the correlation between Ωmh3 and the second component, and
(d) shows the model manifold colored in this way.

How can such geometries be useful? By adding new parameters to the

model, which are not well known, the full model manifold can be explored and

an understanding of the geometry allows for complex non-linearities and pa-

rameter degeneracies to become manifest without the need for heuristics. Fur-

thermore, models can be expanded to include foreground features and other

properties which influence the observed spectra. Again, this provides a system-
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atic way of exploring the impact on fitting to data.
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APPENDIX G

STATISTICAL TESTS FOR QUANTIFYING BEHAVIOUR

In this appendix, we provide supporting calculations, examples and figures

for material presented in Chapter 5.

G.1 Error Estimates

To obtain the standard error on the fraction of a population (such as in Table 5.1

or Fig. 5.8), we used the following:

Err(p,N) =

√
p(1 − p)

N
(G.1)

where p is the fraction of the population, and N is the size of the total popula-

tion.

G.2 Statistical Tests

To compare distributions for populations of varying sizes, we performed chi-

squared tests on the contingency tables constructed from the total numbers.

Note that a series of pair-wise comparisons would be inappropriate in this case,

as the different measures are correlated for normalized distributions (e.g. since

they are all normalizable, if one measure goes up then another must go down).

As an illustration of this method, consider the observation protocol de-

scribed in Section 5.2.2. A sample graph of the accumulated codes for two ob-

servers in a traditional lab section is presented in Fig. G.1. The contingency

table constructed from these observations is given by Table G.1. Because the
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Figure G.1: Bar plot of code counts from two observers used to form the
basis of a chi-squared test to validate the observation protocol
used in the behaviour study from Chapter 5. Two observers
documented the same lab period, and the resulting contin-
gency table (given by the raw counts displayed on the graph
and shown in Table G.1) was used to determine statistical va-
lidity of the method. Here, the two distributions are statisti-
cally indistinguishable indicating that the observers captured
the same distribution of student actions.

two distributions are statistically indistinguishable, the observers captured the

same distribution of student actions.

Table G.1: Sample contingency table used to determine if two distribu-
tions are statistically different. Two observers documented the
same lab period, and a chi-squared test was performed to deter-
mine if the resulting distributions are statistically similar or dis-
similar. Here, we obtain p > 0.1, indicating that the observers
captured the same distribution of student actions.

Observer Desktop Equipment Laptop Paper Other

1 41 14 9 182 161

2 32 22 20 174 154

As a second illustration of this method, consider the cluster compositions

presented in Fig. 5.8. To determine if the distribution of men’s profiles in the
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inquiry lab were statistically different for mixed-gender versus single-gender

groups, we performed a chi-squared test on the contingency table represent-

ing the constructed from the number of profiles in each cluster. This table is

shown in Table G.2. When comparing these two distributions, we obtained

p = 0.007, indicating that the two distributions are different: men behaved dif-

ferently when with men as compared to when they were with women.

Table G.2: Sample contingency table showing the distribution of men’s
profiles in the inquiry lab for mixed- versus single-gender
groups. Here, we obtained p = 0.007, indicating that the two
distributions are significantly different.

Group Type Desktop Equipment Laptop Paper Other

Mixed-Gender 17 6 20 0 42

Single-Gender 38 31 45 0 48

G.3 Example of Student Profile Rescaling

To perform a cluster analysis on multidimensional data with k-means, each

measure needs to be on a comparable scale. The raw data collected for the study

in Chapter 5 was gathered by coding the student’s action every five minutes, us-

ing printed sheets as shown in Fig. G.2. The quantified behaviour of students

measured in this way needed to be rescaled for two reasons in order to satisfy

the criteria for clustering.

First, as shown in Fig. 5.3, each of the five observation codes appears to be on

different scales, in the sense that they are spread out by different amounts. For

instance, the Other code distribution is much wider than that for Equipment.
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(a) Traditional Lab (b) Inquiry Lab

Figure G.2: Coding sheets used by observers in this study (scaled for il-
lustrative purposed to fit in figure), for students in (a) the tra-
ditional labs and (b) the inquiry labs. Observers mark student
names/descriptors at each table, and use the boxes to mark D,
E, L, P, O every five minutes to code student behaviors.

Second, students spent very different amounts of time in the lab, as shown

in Fig. G.3.

A sample of gathered data for an example student is shown in Fig. G.4(a).

Once all the codes were collected over the course of the lab period, they were

collapsed to form a normalized distribution representing the student profile

in Fig. G.4(b) to account for the large variation in times students spent in lab

(shown in Fig. G.3). Finally, once all the data was collected, student profiles

were grand mean scaled so that each measure (Desktop, Equipment, Laptop,
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Figure G.3: Stacked histogram of the amount of coded time students
spent in lab, broken down by lab type. The time stu-
dents spent is highly variable, from less than 45 minutes to
over 175 minutes. Part of this was due to difference in lab
type, as students in the traditional labs spent on average
80 ± 6 min, whereas students in the inquiry labs spent on av-
erage 107 ± 6 min.

Paper, Other) had mean 0 and standard deviation 1. In this way, naturally dif-

ferent measures (such as Other and Equipment) could be compared on the same

scale. The student in Fig. G.4 was in a control lab, reflected in the large Paper

measure. They were also assigned to be in the Paper cluster, a reflection of the

fact that the Z-score for Paper is the highest.

G.4 Effect of Student Group Sizes

We note that group sizes in the two labs are were the same. Groups in the tra-

ditional and inquiry labs were of of varying sizes, as shown in Fig. G.5. Groups

in the inquiry labs typically had three or four students, whereas groups in the

inquiry labs typically had two or three members. One could expect that, in
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(a) Table of Codes

(b) Distribution of Codes (c) Z-Scores

Figure G.4: Sample student profile illustrating the two-step rescaling pro-
cess performed on the raw data to generate student profiles be-
fore clustering. (a) Shows a portion of the raw table, where the
student’s action was documented every five minutes. (b) The
collected codes from the course of the entire lab period were
collapsed together to form a normalized distribution. (c) Each
measure (Desktop, Equipment, Laptop, Paper, Other) was
grand-mean scaled across all students (so that each measure
has mean 0 and standard deviation 1 when averaged over all
students).

groups with more members, there is an increased chance of task division oc-

curring. While groups in the traditional labs typically had more members than

those in the inquiry labs, Fig. 5.7 in fact shows proportionally fewer groups in

the inquiry labs with members in identical clusters, supporting the conclusion

that groups in the inquiry labs were more likely to divide tasks.
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Figure G.5: Stacked histogram of the number of groups with two, three,
four or five members, broken down by lab type. Students in
the inquiry labs were predominantly in groups of two or three,
whereas groups in the traditional labs had three or four mem-
bers.
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APPENDIX H

DIFFERENT CLUSTER ANALYSIS

In this appendix, we sub-divide student profiles from Chapter 5 by lab type

and gender prior to clustering to test the robustness of the extracted clusters

and insure the validity of performing a cluster analysis on all profiles simulta-

neously. We consider four student groupings, and perform independent clus-

ter analysis on each following the method described in Section 5.2.4 and Sec-

tion 5.2.5:

1. Only women’s profiles

2. Only men’s profiles

3. Only profiles from students in the traditional labs

4. Only profiles from students in the inquiry labs

If the clusters extracted from each of the student groupings is counter to the

clusters we found in Chapter 5, then we run the risk of imposing the cluster

breakdown of a dominant group (as defined by the group with the most stu-

dent profiles) onto other groups, thereby obscuring important behaviour differ-

ences. We found no significant difference between extracted clusters in all four

groupings, and so we perform a single cluster analysis on all student profiles

simultaneously in Chapter 5.

We begin by generating an elbow plot for each of the four groupings, to inde-

pendently determine the optimal number of clusters in each case. Importantly,

we rescale student profiles for each grouping independently (see Section 5.2.4 for

a description of Z-scores and rescaling student profiles). The results of this are
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Figure H.1: Elbow plot of different groupings of student profiles, testing
the robustness of the five clusters. All student profiles (thick,
brown line) have a kink at five clusters, as does extracted clus-
ters from considering (1) only women’s profiles (red, dotted
line), (2) only men’s profiles (blue, dotted line), (3) only stu-
dent profiles from the traditional lab (pink, dotted line) and
(4) only student profiles from the inquiry lab (black, dotted
line). In all cases, there is a kink at five, indicating that the
optimal number of cluster for all cases is five. Moreover, all
groupings are well below random, which displays no kink
(grey, dashed line).

shown in Fig. H.1. In all cases, the optimal number of clusters is five. For ease

of comparison, we superimpose on the figure the plot for all student profiles

from Fig. 5.5, which indicate substantial agreement with the initial analysis, as

well as the plot for randomly generated profiles to show that the clusters for all

groupings are significantly different from random.
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Next, we analyse the centers of all five cluster for each of the four student

groupings, to characterize each cluster. The results are shown in Fig. H.2. For

ease of comparison, we show in Fig. H.2(a) the cluster centers extracted for

all student profiles (identical to the results presented in Fig. 5.6. Note that

they are all characterized by high engagement in a particular activity (i.e. high

equipment use). Figure H.2(b) shows the cluster centers when considering only

women’s profiles, and Fig. H.2(c) shows the cluster centers when considering

only men’s profiles. In both cases, center peaks align with the five codes, in

agreement with the original analysis. Furthermore, the Z-score characterizing

the peak in each center matches in magnitude with the original analysis.

Figure H.2(d) shows the cluster centers when only considering profiles from

students in the traditional labs, and Fig. H.2(e) shows the cluster centers when

only considering profiles from students in the inquiry labs. Again, we see that

the centers align with those of the original analysis, falling along the five obser-

vation codes. However, there appears to be an important feature characterizing

the center of the Laptop cluster in Fig. H.2(d) and the Paper cluster in Fig. H.2(e).

Specifically, the Z-score characterizing the peak for these two centers is signif-

icantly larger in both cases than it is in Fig. H.2(a). This is because students

in the traditional labs fill out paper worksheets, and nearly all students never

handle a laptop or personal devise. However, a non-zero number of students

did occasionally use their laptop in lab, and so this skews the resulting Z-score

for those students (because it is scaled by the standard deviation, which in this

case is very small). Similarly, students in the inquiry labs use electronic note-

books via laptops and personal devices (and the lab desktop computer) and so

most never use paper. However, a non-zero number of students still brought a

notepad to lab to write on, and so highly skews the resulting Z-scores for paper,
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Figure H.2: Cluster centers of different groupings of student profiles, test-
ing the robustness of the five clusters. (a) All student profiles
have five clusters, matching the five codes used in observa-
tion. We then consider (b) only women’s profiles, (c) only
men’s profiles, (d) only student profiles from the traditional
lab and (e) only student profiles from the inquiry lab. In all
cases, cluster centers match up with observation codes, indi-
cating that in all groupings the same clusters are present.
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again because Z-scores are scaled by standard deviation, which is very small in

this case.

Because the extracted clusters are the same regardless of student grouping,

in that they all line up with the five codes used in the observation protocol and

therefore all characterize high engagement in a particular activity, we perform

a single cluster analysis on all student profiles in Chapter 5. Because we are

interested in comparing demographic composition of the resulting clusters (e.g.

who are the high equipment users?), it is necessary to include all students in the

Z-score rescaling. In this way, we can more transparently highlight important

behavioural differences between students, since they are all on the same scale.
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APPENDIX I

INPCA VISUALIZATION OF STUDENT BEHAVIOURS

In this appendix, we visualize the collection of student profiles and reveal

underlying geometric structure in the data from Chapter 5, using both the qual-

itative method in the original analysis and quantitative method from Chapter 4.

We use t-SNE in Fig. I.1(a) to qualitatively visualize the data, in a way which

shows primarily the underlying clusters. Figure I.1(b) shows the data visualized

using InPCA (only using the first two components), which preserves global and

local features, and reveals additional underlying features in the data. The five

main clusters follow the five codes, and the average profile from each cluster1 is

shown in Fig. I.1(c).

To quantitatively visualize the collection of student profiles using InPCA, we

first perform an eigenvalue decomposition on the cross covariance matrix from

the data (see Section 4.4.1) to determine the optimal number of components to

keep. From Fig. I.2, we see that the first four components are real and the third

is imaginary. To capture 60% of the variation in the data, we use the first three

components, and to capture over 85% we use the first five in Fig. I.4(a).

From InPCA, we see that there are dense regions, reflecting many profiles

that are similar to one another, as well as less dense regions, reflecting pro-

files that are somewhat similar to only a few others. There are also three dense

stripes, emanating from the central region. Note that, using these visualization

methods, we see that the Other cluster reflects points in this central core, with

the remaining clusters surrounding it. In particular, the Desktop, Laptop, and

1Here, we do not show the average Z-score such as in Fig. 5.6 but rather the average distri-
bution. We do so to preserve the probabilistic nature of the data, so that it can be used with
InPCA.
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Figure I.1: Visualization of student profiles using (a) t-SNE, revealing un-
derlying clusters in the data and (b) with InPCA, revealing ad-
ditional structure. In particular, there are three dense stripes
that intersect several clusters. Points are coloured by cluster,
and edge-color reflects lab type (black border is a profile in
the traditional lab, white border is a profile in the inquiry lab).
(c) Average profile of each cluster, compared to overall student
average (dashed line), for each of the five codes used (Desktop,
Equipment, Laptop, Paper, Other).
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Figure I.2: Ordered InPCA eigenvalues of quantitative projections, re-
vealing five dimensions needed to capture important features.
Green points are positive eigenvalues, blue are negative. Be-
cause we need five dimensions to accurately visualize the data,
we plot the orthogonal components in the triangle plot in
Fig. I.4.

Paper clusters are highly distinct from one another and are located in very dif-

ferent regions.

To determine if these features are reflect data structure or measurement

methods, we compare the features to 10,000 randomly generated student pro-

files. We generate each random profile through a uniform sampling of integers

from 0 to 20 for four measures, and from 1 to 20 for one measure2 that are then

rescaled following the same protocol as in Section 5.2.4. We do so to see if the

stripes/dense regions are a feature of the sampling, discretization, or 5-D nature

of the data. Figure I.3(b) shows an InPCA visualization of random data, form-

2We ensure that one measure is nonzero, to ensure that no random profile is exactly orthog-
onal from another, otherwise they will be an infinite distance apart and impossible to visualize.
The one measure that is sampled from 1 to 20 reflects the Other code in observations (nearly all
students were observed doing other at least once).
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Figure I.3: InPCA visualization of profiles as compared to random data.
(a) Real data collected in this study show structure. (b) Random
profiles form a blob of points. Note that we are showing the first
two projections here, and both are real. Aspect ratio reflects the
actual ratio of projections.

ing a cloud of points with a dense central region. The first four components are

real, and the fifth is imaginary. Note that the features of random data are dis-

similar to our measured data in two important ways: (1) real data have dense

stripes/jets emanating from the central region, whereas random data do not,

and (2) random data have a dense central core, whereas our real data do not.

There is one similar feature, namely that the fifth projected component in both

cases is imaginary. Thus the imaginary fifth component shown in Fig. I.4(a) may

be a reflection of the measurements method rather than a statement about the

underlying data.

Confident that the stripes are a significant feature of the data (and not

a reflection of the method of data collection), we use DBSCAN [47] to iso-

late and study the different regions of interest (stripes, dense regions). DB-

SCAN (density-based spatial clustering of applications with noise) is a clus-
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tering method, where clusters are determined by connected simplices whose

vertices are the data points. We identified nine regions of interest, by manually

tuning the clustering parameters until the stripes were captured. Four of these

regions contain profiles that are only in the traditional labs, and five of these

regions contain profiles that are only in the inquiry labs: indicating that the

most significant factor impacting student behaviour is the pedagogical struc-

ture of the labs. More regions are associated with the inquiry labs, reflecting the

greater diversity of behaviour occurring in these labs.

About one third the student profiles (32.5%) are not associated with a par-

ticular region (i.e. they are not densely packed with other student profiles).

We show the InPCA projections of student profiles colored by their region in

Fig. I.4(a). The first InPCA component (largest, most important direction) di-

rectly lines up with the pedagogical structure of the lab. Students from the

inquiry labs are in the negative direction of this component (left-hand side)

whereas students in the traditional labs are in the positive direction of this com-

ponent (right-hand side). From Fig. I.4(b), we see that all regions have profiles

engaged in other activities to some degree. Interestingly, all regions also have

students never engaging in a particular activity (e.g. no student in the purple re-

gion is observed ever handling a laptop or paper). The regions therefore reflect

areas of “reduced dimension”, in the sense that have 4 or less non-zero mea-

sures. For example, the blue region is described by students solely writing on

paper or engaging in other activities to varying degrees (and who never handle

the desktop computer, equipment, or a laptop or personal device).

To understand how the regions interact with the main clusters, we look at

the average student profile in each region, shown in Fig. I.4(b). Two jets are
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Figure I.4: Quantitative visualization of student profiles using (a) InPCA,
revealing structure in the data. Note that the fifth projected
component is imaginary. Points with black border are pro-
files from the traditional labs, and white border are points from
the inquiry labs. (b) Average profile in each region, with light
grey representing points not assigned a region, for each of the
five codes used (Desktop, Equipment, Laptop, Paper, Other).
Black border represents regions with profiles only from tradi-
tional lab, and white border represents regions with profiles
only from inquiry labs. From (a), we see that the most dom-
inant effect is lab type, with the inquiry and traditional labs
occupying different ends of the first component.
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solely associated with the inquiry labs, and one jet is solely associated with the

traditional labs. Students along these jet appear to engage in two activities to

varying degrees:

1. The purple jet: corresponds to students in the inquiry labs to handle the

desktop, equipment, or engage in other activities more than average (and

who never handle a laptop or personal device, nor write on paper).

2. The brown jet: corresponds to students in the inquiry labs who use their

laptops or personal devices or engage in other activities more than aver-

age, and handle equipment, but never touch the desktop or paper.

3. The blue jet: corresponds to students in the traditional labs who write on

paper the most, engage in other activities less than average, and who never

touch the desktop, equipment, or a laptop or personal device.

We further explore this relationship by considering the overlap between

clusters and regions, as shown in Fig. I.5. Here, we consider only profiles in a

particular cluster, and show their average broken down by region. Figure I.5(a)

shows the Desktop cluster, decomposed by overlapping regions. For all regions,

student profiles have an above-average fraction of time spend on the desktop

code. On of the jets in the data (see Fig. I.4(a)) is highlighted in purple, with

a large number of profiles in the Desktop cluster. Note that the purple region

overlaps with the Other cluster as well (Fig. I.5(e)), here with profiles that spend

above-average amount of time engaged in other activities as well as desktop.

Similarly, the brown jet reaches from the Other cluster, to the Laptop cluster,

and a slightly overlaps the Equipment cluster, representing students to engage

primarily in handling a laptop or other activities. Finally, the blue jet only goes

from the Other to Paper cluster (and never overlaps with the other clusters).
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(a)

(b)

(c)

(d)

(e)

Figure I.5: Cluster breakdown of student profiles overlapping the regions
extracted from Fig. I.4. Bars with black border are regions with
profiles only in the traditional labs, and white border are re-
gions with profiles only from the inquiry labs (light grey bor-
der represents free points that are not clustered). Almost all
regions overlap with the Other cluster in (e), the central core
of the distributions of profiles in Fig. I.1. The horizontal axis
in each case represents the distribution over observation codes
(Desktop, Equipment, Laptop, Paper, Other).
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Understanding the demographic breakdown of these three jets, as well as

less dense regions (representing students engaging in very dissimilar behaviour

from their peers) is the focus of ongoing work.

172



APPENDIX J

VIDEO CODING

In this appendix, we show the coded time series for 23 decomposed student

profiles (discussed in Chapter 5), grouped by lab type. Because of the gendered

differences observed in the inquiry lab, as highlighted by the cluster analysis,

only profiles from the inquiry labs were decomposed. Furthermore, emphasis

was placed on understanding roles in mixed-gender groups, and so the majority

of groups analyzed through single-group video are mixed gender. The impor-

tance of social dynamics in single-gender groups is the focus of future work.

The detailed time series for each lab appears very qualitatively different for

each group for a couple reasons. First, each week students were engaged in

different activities. Fig. J.1,J.2, J.3,J.4 show the time series for students perform-

ing the Bouncing Ball experiment. Note that in all figures, a large portion of

the lab at the beginning is dedicated to whole-class discussions and an inven-

tion activity involving whiteboards. Fig. J.5 shows the time series for students

performing the Hooke’s Law experiment. Fig. J.6,J.7 sow the time series for stu-

dents in the Pendulum experiment. Fig. J.9,J.8 show the time series for students

in the final Project Lab section, where they have designed their own experiment.
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Figure J.1: Decomposed student profiles of two students in the same
group during the Bouncing Ball experiment, with the x-axis
representing time.

Figure J.2: Decomposed student profiles of two students in the same
group during the Bouncing Ball experiment, with the x-axis
representing time.
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Figure J.3: Decomposed student profiles of two students in the same
group during the Bouncing Ball experiment, with the x-axis
representing time.

Figure J.4: Decomposed student profiles of two students in the same
group during the Bouncing Ball experiment, with the x-axis
representing time.
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Figure J.5: Decomposed student profiles of two students in the same
group during the Hooke’s Law experiment, with the x-axis rep-
resenting time..

Figure J.6: Decomposed student profiles of two students in the same
group during the Pendulum experiment, with the x-axis rep-
resenting time.
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Figure J.7: Decomposed student profiles of three students in the same
group during the Pendulum experiment, with the x-axis rep-
resenting time.

Figure J.8: Decomposed student profiles of two students in the same
group during the Project Lab experiment, with the x-axis repre-
senting time.
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Figure J.9: Decomposed student profiles of three students in the same
group during the Project Lab experiment, with the x-axis repre-
senting time.
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