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Enhanced mesoscopic fluctuations in the crossover between random-matrix ensembles
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In random-matrix ensembles that interpolate between the three basic ens¢onthlegonal, unitary, and
symplectig, there exist correlations between elements of the same eigenvector and between different eigen-
vectors. We study such correlations, using a remarkable correspondence between the interpolating ensembles
late in the crossover and a basic ensemble of finite size. In small metal grains or semiconductor quantum dots,
the correlations between different eigenvectors lead to enhanced fluctuations of the electron-electron interac-
tion matrix elements which become parametrically larger than the nonuniversal fluctuations.
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Random-matrix theory has focused on the study of three
ensembles of Hamiltonians: the Gaussian Unitary Ensemble Hou(N,a)=Hg(N)+
(GUE), the Gaussian Orthogonal Ensemi®OE), and the VN
Gaussian Symplectic Ensembl&SE). These describe the
statistics of single-particle energy levels and wave functions', . X X Ve
of disordered metal grains or chaotic quantum dots with th&in9l€_eigenvectow is the same as in thénite-sized M
corresponding symmetries; GUE if time-reversal symmetry<M GUE ensemble wittM =2~ if a is large. In Eq.(1),
is broken, and GOE or GSE if time-reversal symmetry isHo(N) andHy(N) areNxN matrices taken from the GOE
present and spin-rotation symmetry is present or absent, ré"d GUE, respectively, with equal variances for the matrix
spectively. In these three basic ensembles, eigenvector el§léments. Asimilar correspondence occurs forghensor of
ments are Gaussian complex/real/quaternion random nuni Kramers doublet in the GOE-GSE crossdveOur main
bers; elements of the same eigenvector and of diﬁererfd”d'”g is that su_ch acor(espondence extends to the correla-
eigenvectors are all statistically independent. tions between different eigenvectors. _

Disordered or chaotic systems with partially broken sym- I this paper we will accomplish four tasks) We show
metries show a variety of phenomena that go beyond a mef@/merically that the relation
“interpolation” of descriptions based on the GOE, GUE, and
GSE alone. For example, in a quantum dot, a weak magnetic Hou(N,@)«—Hy(M), M=2a? (2
field causes long-range wavefunction correlatiofiend a
non-Gaussian distribution of “level velocities,” derivatives between the GOE-GUE crossover Hamiltonidg(«) for
of energy levels with respect to, e.g., a shape change of tHarge « andN and a finite-sizedM XM GUE Hamiltonian
dot® Both effects are absent without a magnetic figfdthe ~ extends to correlations between eigenvectors. Just as in criti-
GOB), or when the magnetic field is strong enough to fully cal phenomena, where simple power laws unfold into univer-
break time-reversal symmet(in the GUB. In a metal grain, sal scaling functions as you flow away from the critical
weak spin-orbit interaction induces mesoscopic fluctuationgoint, here a rich theory of correlations unfolds in the cross-
of the g tenso®’ which does not fluctuate in either the GOE over region. We wish to point out that this principle applies
or the GSE. Further, as we'll show below, in a weak mag-not only to the GOE-GUE crossover, but also, e.g., to the
netic field or for weak spin-orbit scattering, matrix elementsGOE-GSE crossover, or to wave functions in two coupled
of the electron-electron interaction exhibit fluctuations thatquantum dots, which are described by a random Hamiltonian
are parametrically larger than in each of the three basic erinterpolating between two independent GUE's and one GUE
sembles. of double sizé€. (i) We show that, for larger, the universal-

The underlying reason for these phenomena is that eigerity classes are actually curves in the ¢1¥/N) plane, remi-
vector elements are not independentriandom-matrix en-  niscent of renormalization-group flow trajectorf@giii ) We
sembles that interpolate between the three basic symmetoalculate correlations between eigenvectors, based on the
classes: There exist both correlations within the sameurmise(2) and diagrammatic perturbation theofiw) We
eigenvectdr ® and, as we show in this paper, between dif-calculate how the intereigenvector correlations in the cross-
ferent eigenvectors. To study the eigenvector correlations iover region affect matrix elements of the electron-electron
such crossover ensembles, we will make use of a surprisinigiteraction in a quantum dot or metal grain in a weak mag-
relation between the eigenvector statistics late in the crossietic field, and predict a significant enhancement of fluctua-
over from class A to class B and that of finite-sized matricegions compared to the basic ensembles.
in class B(where B is the class of lower symmetryEx- Let us now consider the joint distributioR({v,}) of n
amples of such a relation were known for the statistics of a@igenvectory,,, u=1, ... n, for the example of the GOE-
single eigenvector. For example, in the GOE-GUE crossoveiGUE crossover Hamiltonianl). Throughout the entire
which is described by th&l XN random hermitian matrix GOE-GUE crossover, the distribution of the eigenvectors is
(with N taken toe at the end of the calculatigh invariant under orthogonal transformations. As a conse-

44

Hy(N), @

dhe distribution of the “phase rigidity]v "v|? (Ref. 5 of a
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quence, the joint distributio®({v,}) is completely deter- S . 1-\ 5
mined by the distribution of the orthogonal invarigits e/A o u—v|
-5 ; |
pM,,=p,,M=vlTLv,,, m,v=1...n, €)] : 9
. ”, ] — e ——
where the superscript T denotes transposition. Hence . : 5
n n :
0 1 2 3 4 0 0.04
P({v, D= | 11 dpPUpub 11 d(0)0,~35,,) @ 2
a<v a<v m (el
% 5(U;TL”V_PW)- (4) FIG. 1. Left p_anel: Eigenvalues for one realization_l—bcf)u(a).
_ _ _ The shaded region marks the energy window of siz¥l(a)A
For the physically relevant case of larbe Eq. (4) implies ~ =2a?A for which the eigenvalues are kept in the effective
that the eigenvector elements,,, m=1,... N, have a XM GUE Hamiltonian. Right panet]p,,,|?) as a function of the
Gaussian distribution with zero mean and distance u—v~(e,—¢,)/A between eigenvalues, for=4.0

(dashed line, left panglSolid curve: Eq(9). Data points: numeri-
1 1 cal calculation foiN=400.

<U;mv vn>p:N5,uV5mn1 <U,umU vn>p:NP,uv5mn- 5
. o . in Eq. (1) is strong for these eigenvectors, the matrix ele-
fT_he subscripy o ), indicates that the average is taken atonts petween them form a random hermitian matrix of the
ixed p,,, . For the full ensemble average one has to performg e penoting the effective number of contributing unper-
a subsequent average over thg, with the distribution ey eigenvectors a4 («), we thus reduce the problem of
P({pur3). We can findP({p,,}) from the supposition that, ~finging the distribution of the orthogonal invariantg,, for
for a>1 and for eigenvectors , whose energies are all ho Nx N crossover Hamiltoniaril) to that of finding the
inside a window of size<a”A, A being the level spacing of yigtribution of thep,,, for the much smaller GUE Hamil-

the HamiltoniarH(«), the joint distribution of th‘?)uzv ISthe  (onian of sizeM(a). To calculateM (a) in terms ofN and
same as for a GUE Hamiltonian of finite sizeM2a”. Thus , “\ve turn to the exact solution for the single-eigenvector

thep,,, are independently and Gaussian distributed with zerQjistripution obtained in Refs. 3—5. and fid
mean and with variance ’

(PP =(145,)IM, M=2a2. ©6) M(a)=a’N(a’+2N)/(a?+N)?. 7

Together, Eqs(4)—(6) fix the joint distribution of eigenvec- For largeN this simplifies toM («) =22, in agreement with
tors in the crossover ensemble close to the GUE. For th&q. (6).

single-eigenvector distribution, they reproduce the-1 By our supposition, the distribution of the orthogonal in-
limit of the exact solution of Ref. 3. The fact that the phasevariants should depend on the effective matrix si¢éa)
rigidity |pM|2 of a single eigenvector is a fluctuating quan- only, not ona and N individually, as long asN and « are
tity is the prime cause of the correlations between elementirge. We have verified this by numerical calculation of the
of one eigenvectot? It is the existence of nonzero and fluc- averages(lpw|2> for different points along a curve of con-
tuating p,, for u# v that causes the correlations betweenstantM(a) in the (1N,1l/a) plane. The results of such a

different eigenvectors. calculation are shown in Fig. 2 fgg=v, u=v+1, andu
We now proceed to present arguments in support of our
surmise. We consider eigenvectass(u=1,...n) with GOE

energies within a distance oA from a reference energy o4r t 0.02[ --0000 -0 00~

eref, SOrting them by increasing energy. We then consider 0.01f--s000- -0 -8 ¢ - -

how each of these eigenvectors is built up from the eigen- 0 0005 001
vectorso, of the unperturbed HamiltoniaH,. The admix- g

0.2
ture of eigenvectors, with energye, far away frome ¢ is \

small and can be neglected|i ¢,/ is large enough. On 0.1

the other hand, eigenvectoos with energye, close toe ¢

contribute nonperturbatively for large. Upon increasingy, OOGUE 0.005 0.01
the eigenvectors ,(a) in the latter energy range have un- 1N

d_ergone several avoided crossings, and the unperturbed FIG. 2. Curves of constant effective GUE si#d ), Eq.(7), in
elgenvectorso,,_ have roughly equal weights in each of the the (1kz,i/N) plane for theNXN crossover Hamilto;wian. Eo[’l).
vectorsv,,(a) in our set. . Top to bottom:M =30, M=50, M=100, M =200, andM =400.

It is on this heuristic picture that our supposition for anthe horizontal and vertical axes correspond to the pure GUE and to
gffecuve description of the eigenvector statistics for lage the N— o crossover Hamiltonian, respectively. Insélp,,,|?) for
is based: We only retain those eigenvectors of the unpekne points indicated at the = 100 curve in the main panel. Circles:
turbed HamiltoniarH 5 that are relatively close in energy and u=v; squares;u=rv+1 (eigenvectors with neighboring energy
hence all contribute roughly equally; see Fig. 1 for a depic4evely; diamonds:u=v+2 (next-nearest neighbgrsThe dashed
tion. Since the time-reversal symmetry breaking perturbatiofines indicate the surmise of E().

165310-2



ENHANCED MESOSCOPIC FLUCTUATIONS INTH . .. PHYSICAL REVIEW B 66, 165310(2002

=v+2. We have also verified that the distribution of fhg,  erning the strength of the local interaction. The spatially con-

is indeed Gaussiafnot shown. stant interaction leads to a charging energy and does not
The suppositiori2) is expected to be valid as long as only show mesoscopic fluctuations. Without magnetic field, the

eigenvectors taken from an energy window of widthensemble average of matrix elementsdd¥® is**

<M (a)A=2a?A are involved. If the energy differences be-

tween eigenvectors become of ordefA or larger, the (U',fﬁpg)=)\A(5M§Vp+ 0,p0vst 6410,0)- (12)

eigenvectorsv ,(«) do not share the same unperturbed . . . e
eigenvector®,, and we thus expect that they become un-.If time-reversal symmetry Is broker_1 by a malg7net|c figld.,
correlated. A quantitative description of eigenvector correlal” the GUB, the last term'm Ea1D) is [eft out: . In both .the
tions at energy separationsA can be obtained using dia GOE and GUE, fluctuations of the interaction matrix ele-
" loc : :
grammatic perturbation theory. The only nonzero secon entsU,,,, and corrections to Eq(11) are nonuniversal

vpo
—-1/2 H g H
moment i3<|P,w|2>a which can be computed from and small agat mos}j g~ 4, g being the sample’s dimen-

sionless conductance. Equatidii) can be reproduced from

5 A? random-matrix theory if the wave functionﬁM(F) are re-
<|p,uv| )=- 472 ;4 $152 placed by eigenvectors, and the integration over space is
ree s replaced by a summation over the vector indices.
X(trG'(e,+is,8)G(&,+is,0)), (8) How are the interaction matrix elements distributed in the

] S presence of a weak magnetic field? If we are not interested in
whereG(z)=1/(z—Hoy), 4 is a positive infinitesimal, and  {he nonuniversal () corrections, that question can be an-
the eigenvectors , andv, have energies,, ande,, respec-  swered using the eigenvector distributions for the GOE-GUE
tively. Calculating the averages using the technique of Refergssover that we derived above. First, upon increasing the
12, we find, ifu# v, magnetic field, there is a suppression of the last term in Eq.

5 (11). Second, the appearance of intereigenvector correlations
(o2 = 2a ) enhances the average of “diagonal” interaction matrix ele-
Puv 4o+ 772(8M_81})2/A2' mentsUi_wp,, with w,v andp,o pairwise equal: Using Eq.
(5), we find
A similar result for parametric correlations inside a basic
random-matrix ensemble was derived in Ref. 13. The right (U'lf,‘ip(,):)\A(&Mpﬁva 8uaSupt(Purbhe)).  (12)
panel of Fig. 1 shows|p,,,|?) as a function o ,—«, and a e
numerical calculation of the same quantity. Fora>1,{p,.p;,) is given by Eqgs(6) and(9); hence
The GOE-GUE crossover describes wave-function statis- oc
tics in, e.g., a chaotic quantum dot or a disordered metal <UMVP"'>:)\A(5#05V"'+ S Oup)
grain in a weak magnetic field. Wave-function distributions 2
have immediate experimental relevance for the spacings, x| 1+ 20 R
widths, and heights of Coulomb blockade peaks in the con- 4o+ (e, —e,)%A?
ductance of metal grains or quantum dbt€orrelations be- , . . )
tween wave functions of neighboring energy levels cauth'rd’ the |nt.ere|gen.vect0r cprrelatlons enha_nc'e the flgctua—
correlations between the heights and widths of conductancéPns of the interaction matrix elemer;ts. This is best illus-
peaks. Wave-function distributions also influence the posiirated by the expectation valyeU,,,,,,|*) with all four in-
tions of Coulomb blockade peaks through the electrondice€su, v, p, ando different,
electron interaction matrix elemertswhich we now discuss

loc |2y 2 2 2y 2 2y2
in detail. The interaction matrix elemebt,,,, is defined as (U200 = N0 Xp ol oy = (ML) (2% -(14)
Uuww:J drydrU(ri—rp) The f_irst equality in Eq(14) h.olds for alle, the second one
only if «>1, and the four eigenvalues,, ¢,, ¢,, &, are

within a distance<a?A of each other. We have numerically

calculated|UL‘j§p(,|2) for four neighboring energy levels; see

X b (M) d(1a) b, (1)* do(r)*,  (10)

whereU(F) is the electron-electron interaction potential andF19: 3'_ . , ) )
- . . A similar increase of the fluctuations of the interaction
¢,(r) the wave function for an electron in level,. For

. . . . matrix elements is found for other crossovers between ran-
example, - the d_n‘ference of Interaction matrix elementsdom matrix ensembles, such as the crossover between GOE
U™ UM‘?O# gives the spacing b‘?!W‘?e” peak_ p05|t_|onsand GSE. Although the fluctuations are smalkif 1, they
corresponding to dlffe'rent noneq.whb'num copflguratlonscan be significantly larger than the nonuniversal fluctuations
(levels » ando unoccupied, _respectlvelyn tunneling spec- that vanish agy~2 [for Eq. (14)]. The existence of nonzero
troscopy of small_metal grairiS. . . off-diagonal interaction matrix elements and large fluctua-

n a.metal grain *o.r quantum dot, the |nteract|or? can betions of the diagonal matrix elements implies that existing
approximated by am-independent part and a local interac- gnalytical methods based on the universal description of
tion U'°(r)=\AV&(r), whereA is the mean level spacing, electron-electron interactions in terms of the total spin and
V the sample volume, and a parameter of order unity gov- the total charge only are not valid in the crossover regime.
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hanced fluctuations of interaction matrix elements can be
sought in the existence of the large parametethat plays a
role similar to the dimensionless conductamci the pure
ensembles. The paramete? can be identified as the ratio of
the Heisenberg timey=2x#/A and the timergy needed to
acquire a flux quanturtf Late in the crossover, GUE physics
ranges from the mean level spacifigip to the scalé&/7qy.
In the pure GUE, however, validity of random-matrix theory
ceases only at the higher energy scéle,y, where 7y is
FIG. 3. Root-mean-square fluctuations of the interaction matrixhe ergodic time. The role of the large parametgr
elementU,,,,, for four consecutive levelu=v—1=p—2=0 =7 /7,,, which governs wave-function correlations and in-
—3. The dashed line shows the largeasymptote of Eq(14). The  teraction matrix element fluctuations in the “pure” GUE and

solid line is obtained from numerical generation of 4000 GOE-  5E is thus plaved bw2~ / in the GOE-GUE cross-
GUE crossover matrices, Usifgl ,,,,,1%=MA)X|p..1%p,0l?)- over played by~ i/ Ton

(Direct numerical calculation of) suffers from large finiteN
corrections).
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