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Enhanced mesoscopic fluctuations in the crossover between random-matrix ensembles
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In random-matrix ensembles that interpolate between the three basic ensembles~orthogonal, unitary, and
symplectic!, there exist correlations between elements of the same eigenvector and between different eigen-
vectors. We study such correlations, using a remarkable correspondence between the interpolating ensembles
late in the crossover and a basic ensemble of finite size. In small metal grains or semiconductor quantum dots,
the correlations between different eigenvectors lead to enhanced fluctuations of the electron-electron interac-
tion matrix elements which become parametrically larger than the nonuniversal fluctuations.
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Random-matrix theory has focused on the study of th
ensembles of Hamiltonians: the Gaussian Unitary Ensem
~GUE!, the Gaussian Orthogonal Ensemble~GOE!, and the
Gaussian Symplectic Ensemble~GSE!. These describe the
statistics of single-particle energy levels and wave functi
of disordered metal grains or chaotic quantum dots with
corresponding symmetries; GUE if time-reversal symme
is broken, and GOE or GSE if time-reversal symmetry
present and spin-rotation symmetry is present or absent
spectively. In these three basic ensembles, eigenvector
ments are Gaussian complex/real/quaternion random n
bers; elements of the same eigenvector and of diffe
eigenvectors are all statistically independent.1

Disordered or chaotic systems with partially broken sy
metries show a variety of phenomena that go beyond a m
‘‘interpolation’’ of descriptions based on the GOE, GUE, a
GSE alone. For example, in a quantum dot, a weak magn
field causes long-range wavefunction correlations2–4 and a
non-Gaussian distribution of ‘‘level velocities,’’ derivative
of energy levels with respect to, e.g., a shape change o
dot.5 Both effects are absent without a magnetic field~in the
GOE!, or when the magnetic field is strong enough to fu
break time-reversal symmetry~in the GUE!. In a metal grain,
weak spin-orbit interaction induces mesoscopic fluctuati
of theg tensor,6,7 which does not fluctuate in either the GO
or the GSE. Further, as we’ll show below, in a weak ma
netic field or for weak spin-orbit scattering, matrix elemen
of the electron-electron interaction exhibit fluctuations th
are parametrically larger than in each of the three basic
sembles.

The underlying reason for these phenomena is that eig
vector elements are not independent in~random-matrix! en-
sembles that interpolate between the three basic symm
classes: There exist both correlations within the sa
eigenvector2–6 and, as we show in this paper, between d
ferent eigenvectors. To study the eigenvector correlation
such crossover ensembles, we will make use of a surpri
relation between the eigenvector statistics late in the cr
over from class A to class B and that of finite-sized matric
in class B ~where B is the class of lower symmetry!. Ex-
amples of such a relation were known for the statistics o
single eigenvector. For example, in the GOE-GUE crosso
which is described by theN3N random hermitian matrix
~with N taken to` at the end of the calculation!8
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HOU~N,a!5HO~N!1
a

AN
HU~N!, ~1!

the distribution of the ‘‘phase rigidity’’uvTvu2 ~Ref. 5! of a
single eigenvectorv is the same as in thefinite-sized M
3M GUE ensemble withM52a2 if a is large. In Eq.~1!,
HO(N) andHU(N) areN3N matrices taken from the GOE
and GUE, respectively, with equal variances for the ma
elements. A similar correspondence occurs for theg tensor of
a Kramers doublet in the GOE-GSE crossover.6,7 Our main
finding is that such a correspondence extends to the cor
tions between different eigenvectors.

In this paper we will accomplish four tasks.~i! We show
numerically that the relation

HOU~N,a!↔HU~M !, M52a2 ~2!

between the GOE-GUE crossover HamiltonianHOU(a) for
large a and N and a finite-sizedM3M GUE Hamiltonian
extends to correlations between eigenvectors. Just as in
cal phenomena, where simple power laws unfold into univ
sal scaling functions as you flow away from the critic
point, here a rich theory of correlations unfolds in the cro
over region. We wish to point out that this principle appli
not only to the GOE-GUE crossover, but also, e.g., to
GOE-GSE crossover, or to wave functions in two coup
quantum dots, which are described by a random Hamilton
interpolating between two independent GUE’s and one G
of double size.9 ~ii ! We show that, for largea, the universal-
ity classes are actually curves in the (1/a,1/N) plane, remi-
niscent of renormalization-group flow trajectories.10 ~iii ! We
calculate correlations between eigenvectors, based on
surmise~2! and diagrammatic perturbation theory.~iv! We
calculate how the intereigenvector correlations in the cro
over region affect matrix elements of the electron-elect
interaction in a quantum dot or metal grain in a weak ma
netic field, and predict a significant enhancement of fluct
tions compared to the basic ensembles.

Let us now consider the joint distributionP($vm%) of n
eigenvectorsvm , m51, . . . ,n, for the example of the GOE
GUE crossover Hamiltonian~1!. Throughout the entire
GOE-GUE crossover, the distribution of the eigenvectors
invariant under orthogonal transformations. As a con
©2002 The American Physical Society10-1
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quence, the joint distributionP($vm%) is completely deter-
mined by the distribution of the orthogonal invariants2,3

rmn5rnm5vm
Tvn , m,n51, . . . ,n, ~3!

where the superscript T denotes transposition. Hence

P~$vm%!5E )
m<n

n

drmnP~$rmn%! )
m<n

n

d~vm
† vn2dmn!

3d~vm
Tvn2rmn!. ~4!

For the physically relevant case of largeN, Eq. ~4! implies
that the eigenvector elementsvmm , m51, . . . ,N, have a
Gaussian distribution with zero mean and

^vmm* vnn&r5
1

N
dmndmn , ^vmmvnn&r5

1

N
rmndmn . ~5!

The subscript̂ . . . &r indicates that the average is taken
fixed rmn . For the full ensemble average one has to perfo
a subsequent average over thermn with the distribution
P($rmn%). We can findP($rmn%) from the supposition that
for a@1 and for eigenvectorsvm whose energies are a
inside a window of size!a2D, D being the level spacing o
the HamiltonianH(a), the joint distribution of thermn is the
same as for a GUE Hamiltonian of finite size M52a2. Thus
thermn are independently and Gaussian distributed with z
mean and with variance

^urmnu2&5~11dmn!/M , M52a2. ~6!

Together, Eqs.~4!–~6! fix the joint distribution of eigenvec-
tors in the crossover ensemble close to the GUE. For
single-eigenvector distribution, they reproduce thea@1
limit of the exact solution of Ref. 3. The fact that the pha
rigidity urmmu2 of a single eigenvector is a fluctuating qua
tity is the prime cause of the correlations between eleme
of one eigenvector;4,5 It is the existence of nonzero and flu
tuating rmn for mÞn that causes the correlations betwe
different eigenvectors.

We now proceed to present arguments in support of
surmise. We consider eigenvectorsvm(m51, . . . ,n) with
energies within a distance!a2D from a reference energ
« ref , sorting them by increasing energy. We then consi
how each of these eigenvectors is built up from the eig
vectorson of the unperturbed HamiltonianHO. The admix-
ture of eigenvectorson with energy«n far away from« ref is
small and can be neglected ifu« ref2«nu is large enough. On
the other hand, eigenvectorson with energy«n close to« ref
contribute nonperturbatively for largea. Upon increasinga,
the eigenvectorsvm(a) in the latter energy range have u
dergone several avoided crossings, and the unpertu
eigenvectorson have roughly equal weights in each of th
vectorsvm(a) in our set.

It is on this heuristic picture that our supposition for
effective description of the eigenvector statistics for largea
is based: We only retain those eigenvectors of the un
turbed HamiltonianHO that are relatively close in energy an
hence all contribute roughly equally; see Fig. 1 for a dep
tion. Since the time-reversal symmetry breaking perturba
16531
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in Eq. ~1! is strong for these eigenvectors, the matrix e
ments between them form a random hermitian matrix of
GUE. Denoting the effective number of contributing unpe
turbed eigenvectors asM (a), we thus reduce the problem o
finding the distribution of the orthogonal invariantsrmn for
the N3N crossover Hamiltonian~1! to that of finding the
distribution of thermn for the much smaller GUE Hamil-
tonian of sizeM (a). To calculateM (a) in terms ofN and
a, we turn to the exact solution for the single-eigenvec
distribution obtained in Refs. 3–5, and find11

M ~a!5a2N~a212N!/~a21N!2. ~7!

For largeN this simplifies toM (a)52a2, in agreement with
Eq. ~6!.

By our supposition, the distribution of the orthogonal i
variants should depend on the effective matrix sizeM (a)
only, not ona and N individually, as long asN and a are
large. We have verified this by numerical calculation of t
averageŝ urmnu2& for different points along a curve of con
stant M (a) in the (1/N,1/a) plane. The results of such
calculation are shown in Fig. 2 form5n, m5n11, andm

FIG. 1. Left panel: Eigenvalues for one realization ofHOU(a).
The shaded region marks the energy window of size;M (a)D
52a2D for which the eigenvalues are kept in the effectiveM
3M GUE Hamiltonian. Right panel:̂urmnu2& as a function of the
distance m2n'(«m2«n)/D between eigenvalues, fora54.0
~dashed line, left panel!. Solid curve: Eq.~9!. Data points: numeri-
cal calculation forN5400.

FIG. 2. Curves of constant effective GUE sizeM (a), Eq.~7!, in
the (1/a,1/N) plane for theN3N crossover Hamiltonian Eq.~1!.
Top to bottom:M530, M550, M5100, M5200, andM5400.
The horizontal and vertical axes correspond to the pure GUE an
the N→` crossover Hamiltonian, respectively. Inset:^urmnu2& for
the points indicated at theM5100 curve in the main panel. Circles
m5n; squares:m5n11 ~eigenvectors with neighboring energ
levels!; diamonds:m5n12 ~next-nearest neighbors!. The dashed
lines indicate the surmise of Eq.~6!.
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5n12. We have also verified that the distribution of thermn

is indeed Gaussian~not shown!.
The supposition~2! is expected to be valid as long as on

eigenvectors taken from an energy window of wid
!M (a)D52a2D are involved. If the energy differences b
tween eigenvectors become of ordera2D or larger, the
eigenvectorsvm(a) do not share the same unperturb
eigenvectorson , and we thus expect that they become u
correlated. A quantitative description of eigenvector corre
tions at energy separations@D can be obtained using dia
grammatic perturbation theory. The only nonzero seco
moment is^urmnu2&, which can be computed from

^urmnu2&52
D2

4p2 (
s1 ,s256

s1s2

3^tr GT~«m1 is1d!G~«n1 is2d!&, ~8!

whereG(z)51/(z2HOU), d is a positive infinitesimal, and
the eigenvectorsvm andvn have energies«m and«n , respec-
tively. Calculating the averages using the technique of R
12, we find, ifmÞn,

^urmnu2&5
2a2

4a41p2~«m2«n!2/D2
. ~9!

A similar result for parametric correlations inside a ba
random-matrix ensemble was derived in Ref. 13. The ri
panel of Fig. 1 showŝurmnu2& as a function of«m2«n and a
numerical calculation of the same quantity.

The GOE-GUE crossover describes wave-function sta
tics in, e.g., a chaotic quantum dot or a disordered m
grain in a weak magnetic field. Wave-function distributio
have immediate experimental relevance for the spacin
widths, and heights of Coulomb blockade peaks in the c
ductance of metal grains or quantum dots.14 Correlations be-
tween wave functions of neighboring energy levels ca
correlations between the heights and widths of conducta
peaks. Wave-function distributions also influence the po
tions of Coulomb blockade peaks through the electr
electron interaction matrix elements,15 which we now discuss
in detail. The interaction matrix elementUmnrs is defined as

Umnrs5E drW1drW2U~rW12rW2!

3fm~rW1!fn~rW2!fr~rW2!* fs~rW1!* , ~10!

whereU(rW) is the electron-electron interaction potential a
fm(rW) the wave function for an electron in level«m . For
example, the difference of interaction matrix eleme
Umnnm2Umoom gives the spacing between peak positio
corresponding to different nonequilibrium configuratio
~levelsn ando unoccupied, respectively! in tunneling spec-
troscopy of small metal grains.16

In a metal grain or quantum dot, the interaction can
approximated by anrW-independent part and a local intera
tion U loc(rW)5lDVd(rW), whereD is the mean level spacing
V the sample volume, andl a parameter of order unity gov
16531
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erning the strength of the local interaction. The spatially co
stant interaction leads to a charging energy and does
show mesoscopic fluctuations. Without magnetic field,
ensemble average of matrix elements ofU loc is14

^Umnrs
loc &5lD~dmsdnr1dmrdns1dmndrs!. ~11!

If time-reversal symmetry is broken by a magnetic field~i.e.,
in the GUE!, the last term in Eq.~11! is left out.17 In both the
GOE and GUE, fluctuations of the interaction matrix e
mentsUmnrs

loc and corrections to Eq.~11! are nonuniversal
and small as~at most! g21/2, g being the sample’s dimen
sionless conductance. Equation~11! can be reproduced from
random-matrix theory if the wave functionsfm(rW) are re-
placed by eigenvectorsvm and the integration over space
replaced by a summation over the vector indices.

How are the interaction matrix elements distributed in t
presence of a weak magnetic field? If we are not intereste
the nonuniversal (1/g) corrections, that question can be a
swered using the eigenvector distributions for the GOE-G
crossover that we derived above. First, upon increasing
magnetic field, there is a suppression of the last term in
~11!. Second, the appearance of intereigenvector correlat
enhances the average of ‘‘diagonal’’ interaction matrix e
mentsUmnrs with m,n and r,s pairwise equal: Using Eq
~5!, we find

^Umnrs
loc &5lD~dmrdns1dmsdnr1^rmnrrs* &!. ~12!

For a@1, ^rmnrrs* & is given by Eqs.~6! and ~9!; hence

^Umnrs
loc &5lD~dmrdns1dmsdnr!

3S 11
2a2

4a41p2~«m2«n!2/D2D . ~13!

Third, the intereigenvector correlations enhance the fluct
tions of the interaction matrix elements. This is best illu
trated by the expectation value^uUmnrsu2& with all four in-
dicesm, n, r, ands different,

^uUmnrs
loc u2&5~lD!2^urmnu2urrsu2&5~lD!2/~2a2!2.

~14!

The first equality in Eq.~14! holds for alla, the second one
only if a@1, and the four eigenvalues«m , «n , «r , «s are
within a distance!a2D of each other. We have numericall
calculated̂ uUmnrs

loc u2& for four neighboring energy levels; se
Fig. 3.

A similar increase of the fluctuations of the interactio
matrix elements is found for other crossovers between r
dom matrix ensembles, such as the crossover between G
and GSE. Although the fluctuations are small ifa@1, they
can be significantly larger than the nonuniversal fluctuatio
that vanish asg22 @for Eq. ~14!#. The existence of nonzero
off-diagonal interaction matrix elements and large fluctu
tions of the diagonal matrix elements implies that existi
analytical methods based on the universal description
electron-electron interactions in terms of the total spin a
the total charge only14 are not valid in the crossover regime
0-3
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For a full description, new calculations, using the tools d
veloped in this paper, are necessary.

The origin of the eigenvector correlations and the e

FIG. 3. Root-mean-square fluctuations of the interaction ma
element Umnrs for four consecutive levelsm5n215r225s
23. The dashed line shows the large-a asymptote of Eq.~14!. The
solid line is obtained from numerical generation of 4003400 GOE-
GUE crossover matrices, using^uUmnrsu2&5(lD)2^urmnu2urrsu2&.
~Direct numerical calculation ofUmnrs suffers from large finite-N
corrections.!
n

n

y

i
y

e

16531
-

-

hanced fluctuations of interaction matrix elements can
sought in the existence of the large parametera2 that plays a
role similar to the dimensionless conductanceg in the pure
ensembles. The parametera2 can be identified as the ratio o
the Heisenberg timetH52p\/D and the timetOU needed to
acquire a flux quantum.14 Late in the crossover, GUE physic
ranges from the mean level spacingD up to the scale\/tOU.
In the pure GUE, however, validity of random-matrix theo
ceases only at the higher energy scale\/terg, whereterg is
the ergodic time. The role of the large parameterg
5tH /terg, which governs wave-function correlations and i
teraction matrix element fluctuations in the ‘‘pure’’ GUE an
GOE is thus played bya2;tH /tOH in the GOE-GUE cross-
over.
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