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We present real-space renormalization-group (RG) calculations of the critical properties of the
random-field Ising model on a cubic lattice in three dimensions. We calculate the RG flows in a
two-parameter truncation of the Hamiltonian space. As predicted, the transition at finite random-
ness is controlled by a zero-temperature, disordered critical fixed point, and we exhibit the universal
crossover trajectory from the pure Ising critical point. We extract scaling fields and critical expo-
nents, and study the distribution of barrier heights between states as a function of length scale.

I. INTRODUCTION L

The critical properties of the random-field Ising
model’>? have been the subject of intense controversy.
One of the simplest of disordered systems, the model is
governed by the Hamiltonian

H= —JZ 8i8; — Z(H + hy)si, (1)
(i3) i '

where 8; = +1 is an Ising spin on a cubic lattice, H
is 2 homogeneous external field, and the variables h;
are independent Gaussianly distributed random fields of
mean zero and variance o2?. The notation (ij) indicates
a sum over nearest-neighbor sites. The controversy sur-
rounded the existence of a ferromagnetic phase transition
at weak disorder in three dimensions. Supersymmetry
techniques® and experiments by Hagen and co-workers*
appeared to indicate that arbitrarily weak disorder would
break the system up into random domains at long enough
length scales. Simpler arguments given by Grinstein and
Ma,® along with experiments by Belanger et al.® sug-
gested that ferromagnetism persisted until a critical value
of the disorder was reached. The issue was settled defini-
tively by Imbrie and others,”*® who proved that the latter
viewpoint was the correct one.

It was realized that the unusual experimental prob-
lems posed by the random-field model are the result
of extremely slow, glassy dynamics in the system. Ini-
tial treatments of the dynamics® concentrated on the
nonequilibrium coarsening of the domains in the ferro-
magnetic phase: the domain walls pin on the random
fields, and as the domains grow these pinning barriers
grow too. When the barriers become large compared to
the temperature, thermal activation becomes ineffective
and the system falls out of equilibrium without estab-
lishing long-range order. Later analyses by Bray and
Moore'® and by Fisher!! indicated that this glassy be-
havior extends also to the equilibrium dynamics near
the critical point. They argue that as the tempera-
ture approaches the ferromagnetic transition tempera-
ture t = [T — T.(0)]/T.(c) — 0 and the correlation
length £ ~ t™¥ grows, the effective coarse-grained Hamil-
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tonian flows to a zero-temperature, disordered critical
fixed point. Unlike most critical points, the equilibrium
energy scale E ~ t~9” at the correlation length becomes
much larger than the temperature (violation of hyper-
scaling). As a result, the temperature is an irrelevant
variable in the renormalization group (RG) treatment of
the system. The exponent ¥ determining the divergence
of the energy barriers

B ~tT¥ (2)

‘is assumed to equal 8, which follows from the irrelevant

eigenvalue governing the RG flow of the temperature. In-
stead of a competition between bond energy and thermal
fluctuations, the battle at long length scales is between
the bonds and the (renormalized) disorder. The dynam-
ics, which proceeds by thermal activation with time con-
stant 7 ~ exp(B/kT), slows down exponentially already
above T.(0).

We present here a real-space RG calculation which di-
rectly confirms this theoretical picture. Figure 1 previews
our results: the pure Ising critical point T, is unstable to
random-field disorder, and the rescaled effective temper-
ature and disorder flow to a disordered critical fixed point
at T = 0, 0 = o.. As well as providing a useful quali-
tative picture of the RG flows in the model, our method
gives values for the critical exponents at the two fixed
points. In addition to the simple two-parameter trunca-
tion of Hamiltonian space, we consider additional forms
of disorder to (a) confirm that they correspond to irrel-
evant operators, and (b) improve our critical exponents.
The calculation gives more precise exponents than direct
methods, though our systematic errors are potentjally
large because of our small system size. We also calculate
the distribution of energy barrier heights for our system.
Combining this calculation with RG results on the scal-
ing of temperature and random-field disorder, we show
explicitly how this distribution varies with length scale.

II. THE RENORMALIZATION-GROUP METHOD

We investigate the model by a straightforward com-
putational implementation of the real-space RG (Refs.

©1993 The American Physical Society
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FIG. 1. Lines of RG flow through Hamiltonian space for
the case of zero external field. The range (0,00) has been
mapped onto the unit square by taking hyperbolic tangents.
The pure Ising fixed point is unstable to randomness: the uni-
versal critical behavior along the disordered phase boundary
is determined by the fixed point at (T' = 0,0 = o). The
trajectory marked with a thicker line is the one used in the
calculation of the barrier height distribution, Figs. 3 and 4.

12-16) on a cubic lattice. For given values of the bond
strength J, the external field H, and the variance of the
random fields, the procedure is as follows.

(1) Choose random values for the variables h; on each
site of the lattice according to the Gaussian probability
function

Pg{h,0) = \/21_71_0_ exp [—%] . (3)

(2) Divide the lattice into cubic blocks of eight spins
each. For each block, we define a coarse-grained spin
variable g!.

(8) For each configuration of the coarse-grained spins,
sum all the Boltzmann factors for configurations of the
original lattice consistent with those spins, using the so-
called “majority rule” (see Ref. 12).

(4) This defines a renormalized Hamiltonian #’ which
can be written in terms of the coarse-grained variables as

W= =3 Tlstsl — SE + H)s!
(&) i
+ longer-range interactions. (4)

Once we know, numerically, the value of the renormal-
ized Hamiltonian for each configuration of the coarse-
grained variables, we can invert (4) to give the new bond
strengths Jj; and fields h} on the blocked lattice, as well
as any longer-range interactions between two or more
spins generated by the renormalization procedure. For
example, the renormalized bond strengths are given by!2
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J‘fj = % Z ’H'sgs'j. (5)

(5) In the simplest case we discard all the longer-range
interactions and define the renormalized bond strength
to be the mean J' = (J..) of the new bonds, the renor-
malized external field to be the mean H' = (h!) of the
new fields, and the renormalized variance to be the vari-
ance of the new fields o'* = (k%) — (h})2. Later, we will
consider more sophisticated versions of the RG which in-
clude higher moments in the distribution of bonds and
fields than just the mean and variance considered here.
These all turn out to be irrelevant operators, but their
inclusion in the calculation can improve the results for
the critical exponents.

To achieve good statistics we average the values of J'
and o'? over many different realizations of the random-
ness. For consistency with earlier work, we quote our
results in terms of the ratios T'/J and H/J, and the
standard deviation of the random fields or “randomness”
o/J. ,

Employing the method first in two dimensions for
a 4 x 4 system (with rules analogous to the three-
dimensional ones described above) we find no nontrivial
fixed points other than the pure Ising critical point.'”
We conclude that, within this approximation, there is
no phase transition at finite randomness in two dimen-
sions. This is in agreement with the findings of Imbrie,”
Berker,'® Bricmont and Kupiainen,® and others.

In three dimensions, the size of the system we can
study is limited by step 3 above, in which we are required
to sum over all spin configurations of the lattice. We are .
working on more sophisticated algorithms to speed the
calculation, but for the moment we present results for a
system of 2 x 2 x 4 spins. This is large enough to give
reasonable results, but small enough for the method to
be directly applicable. Our numerical results for the RG
flows, Fig. 1, are consistent with the flow diagram pos-
tulated by Bray and Moore.!® Each point in Fig. 1 is
an average over 100 different realizations of the random
fields. In the regions close to the fixed points, we also
performed a number of runs in which we averaged over
as many as 10% different realizations of the randomness
in order to improve the accuracy of our values for the
critical exponents. .

There are two nontrivial fixed points. One is the nor-
mal Ising fixed point at finite temperature and zero ran-
domness, and the other is at zero temperature and finite
randomness. This latter fixed point governs the phase
transition between the paramagnetic (disordered) state
and the ferromagnetic one. As predicted by Fishman
and Aharony,!® all three parameters in the problem—-
temperature, external field, and randomness—are rele-
vant at the pure Ising critical fixed point. At the disor-
dered critical fixed point only the external field and the
randomness are relevant; the temperature is irrelevant.
There exists a unique trajectory which leads from omne
critical fixed point to the other. This curve determines
the crossover behavior for weakly disordered systems: far
from T.(o) for small o the system will have critical fluc-
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tuations given by the pure fixed point, and the growing
influence of disorder is of a universal form given by this
trajectory.

III. IRRELEVANT OPERATORS

The RG transformation does not actually provide us
with a single renormalized value for the bond strength
J', but with a distribution of strengths, which is con-
siderably skewed from a pure Gaussian. Figure 2(a), for
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FIG. 2. (a) A histogram of the distribution of bond
strengths generated by the RG procedure close to the disor-
dered fixed point in 1000000 different runs. The distribution
is normalized to have a mean of unity. The dashed line is
a Gaussian of the same mean and standard deviation. Note
that the distribution is somewhat skewed from the Gaussian.
(b) The distribution of the random fields generated during the
same runs. This distribution is extremely close to Gaussian.
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instance, shows a histogram of the renormalized bond-
strengths J' generated by repeating the RG calculation
1000000 times for a set of parameters close to the dis-
ordered critical point. We can map the RG flows more
accurately if we allow for this deviation from the pure
Gaussian, parametrizing it by three quantities: the mean
bond strength J, the standard deviation oy, and the
skewness ;. In this more sophisticated calculation, we
generate the bonds randomly according to the probabil-
ity function

1 dPg(J,
Ps(J,05) = Pg(J,05) + EW—GL(ZIU—J)

1 dng(.], O'J)
tK T

where Pz is the Gaussian probability function defined
in Eq. (3). The last term in this new probability func-
tion gives the distribution a finite Kurtosis K; as well
as skewness. The Kurtosis at the disordered fixed point
turns out to be negligible, but this term is kept in order
to ensure that the probability function will have a pos-
itive value in the limits J — =oo. No higher moments
were introduced in the distribution of the random fields.
Figure 2(b) shows why: the distribution of the renormal-
ized random fields close to the disordered fixed point is
very close to Gaussian, so little error is introduced by
assuming it to be exactly Gaussian.

We then repeat the RG calculation, this time making
a histogram of the renormalized bond strengths J' over
many runs to extract renormalized values ¢; and v/ for
the new parameters. The new parameters turn out to
be irrelevant, as we would hope. And the trajectories
leading away from the fixed point are again universal.

(8)

IV. RESULTS FOR THE CRITICAL PROPERTIES

While the entire trajectory contains universal infor-
mation about the critical behavior, the most commonly
measured properties are the positions of the critical fixed
points, and the critical exponents. Our value for the
critical temperature at the pure Ising critical point is
T. = 5.38, which is substantially higher than the known
value of 4.51, due to the small system size. Near this
point, the three parameters (T' — T.)/J, H/J, and o/J
are expected to scale independently under the RG trans-
formation, and our calculation confirms this. Our value
for the critical randomness at the disordered critical fixed
point is o, = 1.675 & 0.002. It has been conjectured?

* that near this fixed point the correct eigenvectors of

the RG transformation are not the bare parameters of
the problem, but are instead T'/J, H/J, and the linear
combination (o — o.)/J + A(T/J), where A is a mix-
ing constant. We believe however that the T = 0 plane
should be invariant under the RG transformation, and
this would imply that A = 0 in general. Qur calculation
confirms this. On the other hand, we see no physical rea-
son why T'/.J should be an eigenvector at the disordered
critical point, and in that case the most general scaling

fields for the problem would be H/J, (¢ — 0.)/J, and
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T/J + B(o — 0.)/J. Within our numerical calculation
we find that B = 0, but not because of any symmetry of
the Hamiltonian. B is zero because the flow is asymp-
totically dominated by the lowest-lying states cousistent
with each configuration of coarse-grained spins. The ar-
gument that leads us to this result is valid for systems of
any finite size, but becomes invalid in the thermodynamic
limit, so it is not clear from our calculation whether B
will be zero for an infinite system.

In the more sophisticated calculation, where we choose
the bond strengths at random from a skewed Gaussian
distribution, we find the disordered critical fixed point at
T =0,0=1.55,05 =0.36, vy = —0.20.

Table I shows our values for the eigenvalue exponents
given by linearizing the RG flows around the fixed points,
together with those of previous simulations. Getting
from the eigenvalue exponents to real critical exponents
is straightforward. The exponents 3, v, 8, n, and v are all
defined as usual'? along with two others; the exponent
9, describing the divergence of the energy barriers as
we approach the critical temperature, has already been
defined [see Eq. (2)], and the exponent 7 describes the
dependence on q of the magnetization Auctuations at the
phase boundary, for large g¢:

[ma)l® ~ =5 (7)

These seven exponents are given in terms of the eigen-

value exponents by the following relations (see Table 1 of
Ref. 2):

i
l/"—"'?g - TETETE e ae L e
ﬂ_d—yH
Yo
_ 2yg—ysy—d
Y= v 3
17=2+d+yJ—2?JH,
Y —Yrs
d—yg’
Y =1y,. (8)

‘We have included in Table I estimates of the statisti-
cal errors. In addition to these statistical errors, we ex-
pect large systematic errors because of finite-size effects
on the small lattice. Even with these systematic errors,
however, our results at the important disordered fixed
point are competitive with previous results.?%:21 We are
extending our work to a 4 x4 x4 system, which should al-
low us to include longer-range renormalized interactions
and extract reliable, accurate exponents.

J

1= (Prr—ty + Prour) Priom

M = Pryy1y L~ (Pryott + Priosy)
Pyt 0
0 Py
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TABLE 1. Results for the six eigenvalue exponents at the
two critical fixed points. The figures in the last column are
taken from Ferrenberg and Landau (Ref. 27) and Nattermann
and Villain (Ref. 2).

Fixed point| Exponent Value Best result

Finite T YT 1.206 "1.594 & 0.004

fixed point yH 2.212 2.488 + 0.004
Yo 0.509 =+ 0.002 o

T=0 Yo  0.672+0.005_ 0.9 0.15

fixed point yH 1.88 4 0.01 2.95 +0.05
ys © 1.00 £0.05

1.5 +£0.2

The eigenvalue exponents are expected to satisfy a
number of different inequalities:!}2272¢ yp — 4; < d/2,
yg < d,y; <d/2,y; <d—1, and yg —ys/2 > d/2.
Our calculated values satisfy all of these inequalities ex-
cept for the last one, where yg is slightly less than the
required value of 3(d + ys) = 2.00. This inequality is an
expression of the fact that the magnetization fluctuations
on the phase boundary between para- and ferromagnetic
phases are expected to diverge in the limit ¢ — 0.24 On
the present small lattice it is not surprising then that this
inequality fails. We hope that a calculation on a larger
lattice would bring the value of yg up.

V. BARRIER HEIGHT DISTRIBUTION

Qur renormalization group also gives us the means
to calculate the variation in the distribution of barrier
heights with length scale. For the renormalized system
with only two coarse-grained spins, it is a straightforward
matter to calculate the distribution of barrier heights
between the four possible states of the system. In the
Ppresent calculation we examine the behavior of the sys-
tem under single-spin-flip dynamics where the probabil-
ity of a transition from state A to state B is given by the

- “heat-bath” formula:

eB
P =B 9
A—B es - en 9 ( )
with
e; = e BB, (10)

For such a system we can define a vector p =
(P+41P+15 Pyt Pyy) giving the probability that the system
will be in each of its possible states at some particular
time step. The corresponding vector at the next time
step is then given by Mp, where M is the transfer ma-
trix

Pt , 0
o , Pty (11)
L= (Pyort + Prrn) LATRNE

Py 1= (Pu—tL+ Piyosyr)

The largest eigenvalue of this matrix is unity and corresponds to the stable Boltzmann distribution of occupation
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probabilities. The next largest eigenvalue is
=14 _lesyest — ereyy| _ (12)
2 vert Terpvert Tepryery Tepvenr ey

This eigenvalue tells us about the time scale 7 for the
system to come to equilibrium. If the system starts with
some non-Boltzmann probability vector p for being in
each of its various states, the slowest-decaying compo-
nent of the vector will be that parallel to the eigenvector
corresponding to the eigenvalue A. The time for it to
decay to 1/e of its initial value is then given by

1

AT = —, - N &
! S

and this corresponds to an energy barrier B given by

(14)

T = eB/FT,

pecarnfn (3]

We calculate the barrier height distribution by repeating
the calculation of this quantity for many different real-
izations of the random fields. Though the small size of
the lattice probably means that the exact shape of the
distribution is not representative of the distribution in
bulk systems, the behavior of the distribution with in-

Thus

(15)
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FIG. 3. The distribution of barrier heights in multiples of J
for a system with small randomness, slightly below the critical
temperature, shown at increasing length scales.

f

creasing length scale, which we can extract from our RG,
should be qualitatively correct. We calculate the barrier
height distribution for a system with initial values J, o
of the bond strength and randomness, and also for sys-
tems along the RG trajectory that starts at this point.
The successive distributions correspond to the distribu-
tion for the original system on length scales increasing
by a factor of, in this case, two for each step along the
trajectory. In Fig. 3 we have plotted the barrier height
distributions for successive steps along one RG trajec-
tory. This trajectory, which is indicated by the thicker
line in Fig. 1, starts fractionally below T, near the o =0
axis, moves along the edge of the phase boundary and
lingers briefly near the disordered critical fixed point, be-
fore turning away towards the ferromagnetic fixed point
at T = 0, 0 = 0. The barriers are plotted in multiples
of the bond strength at each stage, and the vicinities of
the fixed points are visible in the progression to longer
length scales as stationary regions in which the distri-
bution changes little. Figure 4 shows the mean barrier
height, this time with the factors of J included, as a
function of length scale. Scaling near the fixed points is
represented by the straight-line portions of this plot. The
zero slope follows from hyperscaling; the slope 2 follows
from the area of an interface. The structure at shorter
length scales will probably not have an effect on experi-
ments, since it represents mean barrier heights much less
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FIG. 4. The mean barrier height as a function of length
scale for a system with small randomness, slightly below the
critical temperature. The dotted lines indicate the expected
scaling of the mean barrier height in the vicinity of the three
fixed points: the slopes are zero, 1.00 £ 0.05, and two, respec-
tively.
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than kT. But the behavior at longer scales, particularly
the crossover between the disordered and ferromagnetic
fixed points might be measurable in an experiment that
correlates the size of magnetization fluctuations (related
to the length scale) with the time scale on which they
occur (related to the barrier height).

VI. CONCLUSIONS

In conclusion, we provide a direct implementation of
the RG for the random-field Ising model on a cubic lat-
tice, a model whose unusual scaling behavior was the
cause of substantial controversy and which now provides
the best understood example of glassy dynamics.
results for the RG flows under coarse graining confirm
earlier conjectures concerning the position and nature of
the fixed points. It is encouraging that the statistical er-
rors on our exponents are much smaller than the errors

Our

NEWMAN, ROBERTS, BARKEMA, AND SETHNA 48

generated by other techniques. If the systematic errors
that arise from working on the smallest possible lattice
can be reduced by going to larger lattices, the technique
promises exponents of greater accuracy than those avail-
able at present. The RG also gives us a simple method
for calculating the barrier height distribution as a func-
tion of length scale. The results may have experimentally
measurable consequences.
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