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Measuring nonlinear stresses generated by
defects in 3D colloidal crystals
Neil Y. C. Lin1*†, Matthew Bierbaum1†, Peter Schall2, James P. Sethna1 and Itai Cohen1

Themechanical, structural and functionalpropertiesof crystals
are determined by their defects1–4, and the distribution of
stresses surrounding these defects has broad implications for
the understanding of transport phenomena. When the defect
density rises to levels routinely found in real-world materials,
transport is governed by local stresses that are predominantly
nonlinear1,5–8. Such stress fields however, cannot be measured
using conventional bulk and local measurement techniques.
Here, we report direct and spatially resolved experimental
measurements of the nonlinear stresses surrounding colloidal
crystalline defect cores, and show that the stresses at vacancy
cores generate attractive interactions between them. We
also directly visualize the softening of crystalline regions
surrounding dislocation cores, and find that stress fluctuations
in quiescent polycrystals are uniformly distributed rather than
localized at grain boundaries, as is the case in strained atomic
polycrystals. Nonlinear stress measurements have important
implications for strain hardening9, yield1,5 and fatigue10.

Bulk measurements of the nonlinear materials response have
shown that fascinatingmechanical behaviours emergewhen crystals
are plastically deformed4. Suchmeasurements however, average over
the rich spatial heterogeneity in structure and stress distributions.
This averaging makes it difficult to determine how microscopic
mechanisms collude to determine a crystal’s bulk behaviour.
Pioneering measurements of local crystalline strains have done
much to elucidate the heterogeneity in the linear stress response
of crystals11–16. Despite these advances however, applying such
techniques to measure the nonlinear stress distributions in crystals
with defects has remained prohibitive since it is impossible to
a priori determine how the nonlinear modulus varies with strain
or even define a strain when the structure is highly distorted.
Consequently, it has been difficult to experimentally determine even
the qualitative interactions between defects that give rise to these
fascinating mechanical behaviours under large deformations.

Here, building on the technological advances offered by high-
speed confocal microscopy, we use stress assessment from local
structural anisotropy (SALSA) to directly measure the complete
stress tensor down to the single-particle scale in a three-
dimensional (3D) colloidal crystal. Hard-sphere colloidal crystals
have been widely employed as a model system to investigate
many fundamental and important processes including defect
nucleation12, crystal melting2,3 and crystal growth17. In Brownian
hard-sphere systems, the force with which particles collide can
be related to the thermal energy kBT . Therefore, using a time
series of featured particle positions18,19, we determine the thermal
collision probability, and directly report the stress arising from
these Brownian collisions. Our derivation (see Supplementary

Information) shows that the stress tensor σ αij =σij(xα) at particle α
can be approximated by

σ αij =
kBT
Ωα

( a
∆

)
〈ψα

ij (∆)〉 (1)

where kBT is the thermal energy,Ωα is the volume occupied by the
particle, a is the particle radius, and ∆ is the cutoff distance from
contact (Supplementary Information and Supplementary Movie).
Here, 〈ψα

ij (∆)〉 is the time-averaged local structural anisotropy or
fabric tensor for the particle, 〈ψα

ij (∆)〉= 〈
∑

β∈nn r̂
αβ

i r̂αβj 〉, where nn
is the set of particles that lie within a distance 2a+∆ from particle
α, ij are spatial indices, and r̂αβ is the unit vector between particle
α and particle β . In the local structural anisotropy calculation, the
trace r̂αβi r̂αβi is the total number of neighbours while the remaining
components capture the anisotropy of the collisions20. The time-
averaged fabric tensor of each particle accurately captures the
probability of thermally induced collisions arising from the spatial
distribution of its neighbours (Fig. 1). Scaling the probability by
the energy density per collision kBT/Ωα , we then determine the
Cauchy stress at the selected particle’s position. This capability
enables us to measure the local stress distributions surrounding
crystalline defects such as vacancies (0D), dislocations (1D) and
grain boundaries (2D).

Vacancies dominate mass transport in crystals by playing key
roles in electromigration growth of voids in integrated circuit
interconnects, impurity diffusion, and dislocation creep and climb.
These processes are governed by the vacancy interaction arising
from the stress field. Whether the stress field surrounding the core
is linear or nonlinear directly determines the qualitative interaction
between vacancies and influences our understandings of those pro-
cesses. Tomeasure the stress field using SALSA,we create a crystal of
2a=1.3-µm-diameter silica particles via sedimentation in an index-
matched water–glycerol mixture. We image the 3D microstructure
of isolated vacancies (Fig. 2a) and determine their stress fields.

The mean pressure of our crystal sample is ∼24mPa (green line
in Fig. 2b), which is consistent with previous numerical predictions
(orange curve)21 and our Brownian dynamics simulations (blue
dots) for hard-sphere crystals at φ∼0.59 (purple line). The top row
of images in Fig. 2c show the vacancy 3D stress isosurfaces predicted
by linear elasticity. The six independent stress components deter-
mined by SALSA are shown in the next row of Fig. 2c. For simplicity,
we show 2D cuts of each stress component along the (111) or x–y
plane (green planes) centred at the vacancy core in the upper images.
We also conduct Brownian dynamics simulations (see Supplemen-
tary Information) and directly calculate particle stresses (second to
last row of Fig. 2c). The simulation results give quantitatively similar
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Figure 1 | Particle-level stress measurements (SALSA). a, Particles exhibit Brownian motions (trajectories’ segments) and exert stresses on the selected
particle (red sphere) when the neighbouring particles collide with it. The energy density (stress) per collision is kBT/Ωα . b, A schematic illustrating the
SALSA algorithm for hard spheres. A thin shell (∆= 106 nm) is constructed to identify colliding particles (brown spheres), which lie within distance 2a+∆
from the selected particle. The shear stress is zero when the colliding particles’ configuration is symmetric. c, When the collisions are asymmetric, the
shear stress is non-zero. The schematics here are 2D, but all presented calculations are fully 3D.
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Figure 2 | Stress around a vacancy. a, A confocal image of a crystal with an isolated vacancy defect with no other defects within five lattice spacings in the
plane, or in the adjacent layers along the (111) direction. The hard-sphere interparticle potential, large particle size, and high volume fraction slow down
vacancy di�usion, which allows for time averaging. To account for particle polydispersity (Supplementary Information) and the background stress we
imaged 20 independent defects. Each vacancy is imaged for 20 s at a scan rate of 2 stacks per second, yielding a total of 800 snapshots for averaging. The
absence of a particle at the defect core results in asymmetric collisions on the particles surrounding the vacancy. The upper right (blue circle) and lower
right (red circle) particles are under positive and negative shear σxy as indicated by blue and red arrows, respectively. b, SALSA accurately reports the mean
pressure of the tested colloidal crystal with volume fraction 0.59 (purple line). The green line is the SALSA value. The blue dots are our hard-sphere
simulation results, and the orange curve is the prediction from the literature. The shades of green and purple lines are the standard deviations. c, All stress
components around a vacancy determined using SALSA (upper row), simulation (middle row), and nonlinear elasticity (lower row). In contrast to the
significant feature in σxy , we find that the small fluctuations in σxz and σyz are less than 20% of the variation in σxy . These measurements are consistent
with the fact that both σxz and σyz exhibit nodes along the x–y plane. Additionally, we find that the normal stresses σxx and σyy demonstrate elastic dipoles
that align horizontally and vertically, respectively. d, Pressure is plotted as a function of distance r/(2a) from the vacancy core. Both experimental (blue)
and theory (red) results show clear stress enhancements at r∼3a. e, Histograms of the particle separations near (red) and far away from (blue) the
vacancy. The observed 50% change in surface–surface spacing would correspond to a∼8.3% local volume change in a defect-free crystal.

features for all stress components. For example, as shown in the
first column of Fig. 2c, σxy exhibits a quadrupole distribution, which
arises from the asymmetric collisions due to the absence of a particle
at the vacancy core (blue and red arrows in Fig. 2a).

The vacancy stresses also show non-trivial trends in the radial
pressure distribution as shown in Fig. 2d that are not captured
by isotropic linear elasticity. In particular, while linear elasticity
predicts a constant pressure outside the vacancy core, here we

observe a pressure bump at r ∼ 3a that results from a ≈ 50%
reduction in particle surface separation near the core (double arrows
in Fig. 2e). In hard-sphere systems this reduced separation, hence
increased local collision rate, leads to an enhancement of the
local modulus.

To account for this changing modulus, we develop an isotropic
elastic model including all terms up to third order with finite
strain. Using the volume change (1V = 8.4%) estimated in
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Figure 3 | Dislocation stress. a, 3D reconstruction of a partial dislocation (red line) and the associated stacking fault plane (blue) analysed using the
dislocation extraction algorithm. b, Pressure and shear stress, σxz, around a dislocation determined using SALSA (left column), simulation (middle column),
and linear elasticity (right column). In each panel, the dislocation core is labelled with a green (⊥), and the stacking fault is indicated by a black dotted line.
The experimental and simulation data are depth-averaged. In simulation, the experimental particle positions are used to determine appropriate initial and
boundary conditions. The system is relaxed before recording the stresses to avoid particle overlaps due to featuring uncertainties. For the theory
calculation, we use the observed Burgers vector and orientation of the partial dislocation to calculate the corresponding stress fields. c, Both experimental
(exp.) and simulation (sim.) stress–strain relations show softening behaviours at strains |γ |≥0.08 (orange region). d, Shear modulus versus position for
fields within 2 µm of the purple arrow in b. The modulus decreases by∼50% at the defect core, which is approximately four particles wide. Since the
modulus value fluctuates in the grey area due to the sign changes in stress and strain, the corresponding points are removed for clarity.

experiments and literature values of the bulk (K = 93mPa) and
shear (µ=92mPa) moduli for our system’s volume fraction22, we fit
the pressure distribution by adjusting the three third-order isotropic
elastic constants. We find that the predicted stress distributions
quantitatively reproduce all stress components (last row of Fig. 2c)
as well as the radial pressure distribution (red line Fig. 2e).
Furthermore, the local modulus at the pressure ring region can be
determined from the fitting. We find that the bulk modulus at that
region more than doubles to 213mPa. This drastically increased
modulus is consistent with the value from numerical studies of bulk
hard spheres21,22 at the local interparticle spacing of the pressure
ring region. Overall, the strongly enhanced local modulus indicates
a significant hardening near the defect core.

While linear isotropic theory predicts no interaction between
vacancies, our findings indicate that vacancies attract within the
length scale associated with the pressure bump, as was predicted by
numerical studies8,23,24. This attraction can be understood by noting
that the volume change 1V due to one vacancy is negative and so
the P1V term in the elastic energy leads to a force that attracts that
vacancy to the pressure ring of the other (see Supplementary Infor-
mation). Therefore, we estimate the elastic energy of the attraction
∼2.6kBT at r∼4a. Since this attraction is several times larger than
the thermal energy, it will significantly accelerate the aggregation
of vacancies. In an atomic crystal, this large vacancy aggregate will
form a void. For hard-sphere crystals without attractive interactions,
void formation is inhibited by large configurational entropies found
at very low equilibrium defect density. At the vacancy densities in
many experimental systems, however, voids form in equilibrium23

and neighbouring particles surrounding a void will ‘evaporate’ into
the void, filling it with liquid-state particles in local equilibriumwith
the surrounding crystal.

Dislocations are 1D topological defects whose collective
interactions determine macroscale plasticity including work
hardening, yield stress and fatigue. At the high defect densities
involved in such processes however, interactions are significantly
altered by nonlinear stress fields surrounding these defects. One
critical conjecture that has been widely employed in the dislocation
simulation literature is that the modulus softens at the dislocation
core7,25. This conjecture however, has never been validated.

To study the dislocation stress field using SALSA, we grow a
crystal on a patterned template with a lattice spacing 1.5% larger
than the equilibrium crystal lattice. A 3D reconstruction of the

particle configuration is shown in Fig. 3a. The dislocation (red)
delineates the lower bound of a stacking fault (green) embedded in
a crystalline region (blue), which has been clipped for visual clarity.
The dislocation is slightly curved (variation∼2a) and aligned along
the y axis corresponding to the (11̄0) direction of the face-centred
cubic (fcc) lattice. The dislocation core is highlighted with a (⊥)
and has a Burgers vector 1/6(1̄1̄2), which corresponds to a Shockley
partial, the most prominent dislocation in fcc metals.

Using SALSA, we measure the stresses near the dislocation and
show the pressure (upper row) and shear stress, σxz (lower row),
in Fig. 3. The stress field is averaged along the dislocation line
to eliminate the effects of polydispersity. To confirm that SALSA
accurately extracts the stress features in this more complicated
defect structure, we compare the SALSAmeasurementswith stresses
calculated by direct Brownian dynamics simulations that are seeded
by the experiment data (middle column Fig. 3) (Supplementary
Information). Both experimental and simulation results show com-
parable features. Overall, we observe a pressure gradient across
the stacking fault, and a shear stress dipole centred at the defect
core. These general trends are consistent with predictions of linear
isotropic elastic theory (right column Fig. 3) indicating that dislo-
cation curvature does not qualitatively alter the stress distribution.
However, both SALSA (blue) and the simulation (orange) results
show a nonlinear strain softening in highly strained regions near
the defect core (Fig. 3c). This local modulus drop allows us to
visualize the precise location and size of the dislocation core. To
do so, we focus on the cross-section region denoted by the black
dotted line in Fig. 3b, and plot nonlinear shear modulus (dσxz/dγxz )
versus position (r/2a) in Fig. 3d (Supplementary Information).
The modulus decreases by ∼50% on both sides of the dislocation
core, which is about four particles in width. Overall, our measured
modulus profile shows a softening consistent with the non-singular
continuum assumption widely employed in dislocation theories and
simulations7,25, in which the divergence in the stress at the disloca-
tion core is cut off.Moreover, this modulus softening regularizes the
interactions between dislocations and dramatically influences the
dislocation creep behaviour in crystals.

Grain boundaries are 2D structures important for crystal
growth26, melting kinetics2,3 and transport properties27, and
can substantially harden materials through internal stress
variation15,16,28. While X-ray microbeam experiments have been
used to reveal strain fluctuations at the scale of 100 nm (ref. 16),
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Figure 4 | Stress near grain boundaries. a, One confocal image slice of a
time series consisting of 50 3D stacks. b, Pressure (upper) and σxy (lower)
fields of the polycrystal. Both experimental (left) and simulation (right)
results show qualitatively similar stress distribution features. The grain
boundaries are indicated with dotted lines. We find intergrain pressure and
shear stress fluctuations between grains 1 and 2, and grains 1 and 4,
respectively. Stress fluctuations within a single grain can be found in
grain 3.

measuring stress remains challenging at these scales, especially at
the grain boundaries where particles are highly disordered.

To visualize such stresses using SALSA, we grow polycrystals
using the same method described in the vacancy section (see
Fig. 4a for a confocal image). We plot the measured pressure
and shear stress σxy in the left column of Fig. 4b. Just as for the
dislocation simulation, we employ the featured particle positions
as initial configurations, and simulate stresses in the polycrystal.
The simulation results (right column in Fig. 4b) show similar
features to the SALSA stress distributions in both pressure and shear
components.

The spatial fluctuations in both pressure and shear stress seen
in Fig. 4b are significant compared to relevant stress scales. The
standard deviation in pressure (≈6mPa) is about 15% of the mean
pressure whereas the shear stress fluctuation is approximately
0.7mPa. To provide intuition, this stress level is about 30% of
the stress magnitude one lattice constant from a dislocation core,
the principle component of a tilt grain boundary. Moreover, we
find that both pressure and shear stresses fluctuate between and
within grains. For example, the mean pressure difference between
grains 1 and 2 is 5mPa (25%) whereas grain 3 shows an intragrain

fluctuation of ≈10% the mean pressure. Similar trends can be
seen in the shear stress difference between grains 1 and 4, and the
fluctuations within grain 3.

Overall, our observation of the stress fluctuations in the
polycrystal is consistent with previous simulations1, and X-ray
microbeam measurements15,16, where neighbouring grains
consisting of millions of atoms were found to have substantially
different strains. The SALSA measurements indicate such stress
fluctuations also arise within grains consisting of only hundreds of
particles. These small crystallites are reminiscent of the nanoscale
grains in atomic crystals. Previous atomistic simulations have
predicted that the stress fluctuations in a strained nanocrystal are
predominately localized to the grain boundaries1. In our colloidal
crystal grains however, the stress fluctuations are spread roughly
evenly throughout the grains (see Supplementary Information for
direct comparison). Our sample however has not been subject to
shear. We conjecture that condensation of stress under plastic strain
arises from trapping of dislocations at grain boundaries, grain
boundary slip1, or an as of yet unidentified mechanism.

In conclusion, we measure, for the first time, the microscale
stress fields of crystalline defect cores that determine fundamental
mechanisms governing processes ranging from local defect
interactions to macroscale yielding. The ability to measure local
stresses beyond the linear response regime opens the door to
investigating systems driven further out of equilibrium by applied
strains, and directly determine the stress precursors that generate
material failure. More broadly, since SALSA can extract stresses
without a reference lattice, this technique becomes particularly
advantageous as the suspensions become even more disordered, as
is the case in melting crystals, colloidal alloys and glasses.

Code availability. The code used to calculate theory and simulation
results is available at http://www.lassp.cornell.edu/sethna/SALSA.
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