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CrossMark
Abstract
Theoretical limits to the performance of superconductors in high magnetic fields parallel to their
surfaces are of key relevance to current and future accelerating cavities, especially those made of
new higher-T, materials such as Nb3Sn, NbN, and MgB,. Indeed, beyond the so-called
superheating field Hy,, flux will spontaneously penetrate even a perfect superconducting surface
and ruin the performance. We present intuitive arguments and simple estimates for H,, and
combine them with our previous rigorous calculations, which we summarize. We briefly discuss
experimental measurements of the superheating field, comparing to our estimates. We explore
the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we
need to control surface orientation in the layered compound MgB,? Can we estimate
theoretically whether dirt and defects make these new materials fundamentally more challenging
to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin
superconducting layers or laminates to enhance the performance of superconducting cavities.
Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the
dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

Online supplementary data available from stacks.iop.org/sust/30,/033002 /mmedia

Keywords: superheating field, superconducting radio frequency cavities, flux penetration,
disordered nucleation

(Some figures may appear in colour only in the online journal)

1. Introduction

To transfer energy to beams of charged particles, accelerators
S Author to whom any correspondence should be addressed. frequently use superconducting radio-frequency (SRF)
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cavities, devices that are capable of sustaining large amplitude
electromagnetic fields with relatively small input power. The
energy gain of a beam traversing a cavity is determined by the
electric field amplitude along its path—a larger amplitude can
reduce the number of cavities required to reach a given
energy. This is especially important in high energy accel-
erators, which call for as many as tens of thousands of cavities
[1]. It is therefore of interest to understand the mechanisms
that fundamentally limit the accelerating electric field. For
state-of-the-art SRF cavities that have been carefully prepared
to prevent non-fundamental degradation processes such as
field emission [2, 3] and multipacting [4], studies show that
the limit is not the electric field, but rather the interaction of
the magnetic field with the superconducting material of the
cavity walls. The fundamental limit to acceleration in SRF
cavities is the superheating field Hy,, introduced in section 2.

This article will cover ideas, methods, and results
revolving around the superheating field and its dependence on
the superconductor—materials properties, anisotropy, defects
and disorder, and laminates. The ideas and methods are pri-
marily gleaned from the broader condensed matter commu-
nity. In section 2 we review computations of Hy, for clean
systems using field theories from the 1950s derived for pure
superconductors near their transition temperature [5]; in
section 4.1 we draw from more sophisticated theories from
the 1960s to calculate Hy, at all temperatures [6], and discuss
the future need to use these historical theories to incorporate
effects of strong coupling and electronic structure [7] in new
materials. In section 4.2 we review the use of these methods
to address the electronic anisotropy of some of the new
materials. In section 4.3 we introduce an illustrative calcul-
ation of the effects of disorder using tools and methods
developed in the 60s for disordered systems [8, 9] and
nucleation theory [10, 11], providing reassurance that new
materials will likely not be far more sensitive to flaws and
dirt. Finally, in section 5 we investigate the properties of
superconducting laminates, by drawing from work from the
90s on the dynamics of ‘pancake vortices’ in certain layered
high-temperature superconductors [12] (particularly BSCCO,
Bi,Sr,Ca; - 1Cu,, 00y 44 2)-

We frankly have two goals for this article. As discussed
above, we wish to provide an introduction for the accelerator
community into tools and methods from the broader con-
densed matter community that can help interpret current
experimental challenges and guide plans for future research in
optimizing materials properties for SRF cavities. But con-
versely, we want to provide a window for the broader con-
densed matter theory community into the remarkable frontiers
of field, frequency, and materials preparation being explored
by the SRF community. We invite their participation in
melding 21st century materials-by-design tools from electro-
nic structure theory with 20th century field theories of
superconductivity, bridging the scales to address current
technological challenges in the accelerator field. (Full dis-
closure: this article was supported in part by the Center for
Bright Beams, an NSF Science and Technology Center whose
mission is precisely to bring the accelerator community
together with outside experts in physical chemistry, materials

science, condensed matter physics, plasma physics and
mathematics.)

1.1. Basic facts about superconductors: type | and I, H,, H.;,
and H,,

Normal conducting metals, such as copper, are not viable as
radio-frequency cavities for long-pulse high-gradient appli-
cations. Due to their high surface resistance, these cavities
dissipate too much power on the walls, which can result in
melting, among other structural problems, if they are not
sufficiently cooled. When subject to high accelerating fields,
copper cavities are limited to short-pulse applications. In
contrast, SRF cavities have a much lower surface resistance,
which implies low dissipation on the walls and high quality
factors (of about 10'°, compared to 10* for copper) [13].
Taking into account the refrigerator power to keep the cavity
in the superconductor state, SRF cavities are considerably
more economical than copper cavities, and present huge
benefits, especially for long-pulse applications. At high
magnetic fields, however, high-temperature superconductor
cavities can dissipate as much power as copper due to the
nucleation and motion of vortices.

At low enough temperature and applied magnetic field
(which for now we assume to be constant in time), super-
conductors exhibit the Meissner effect: magnetic fields are
expelled from the interior of the superconductor, exponen-
tially decaying from the interface surface. Larger applied
magnetic field can destroy this Meissner state in two ways,
depending on the type of superconductor. In type-I super-
conductors, an abrupt phase transition takes place at the
thermodynamic critical field H., above which the super-
conductor is in the normal state. In type-II superconductors,
the situation is slightly more complicated. Magnetic flux
penetration starts, via vortex nucleation, at a lower magnetic
field H.; < H.. H., is called the lower critical field. The
transition to the normal phase takes place at the upper-
critical field H,, (H.; > H.). In the intermediate range,
H.; < H < H,, the system is in the vortex lattice state’.

1.2. The superheating field

For these cavities during operation, the external magnetic
field is parallel to the superconductor surface. In many
applications, the threshold field for flux penetration onto the
superconductor is not set by H, or H,; (for type-I and type-1I
superconductors, respectively); it is set by the metastability
limit of the Meissner state, i.e. by the superheating field [14—
26]. The Meissner state is metastable at H, < H < Hg, for
type-I superconductors, and at H. < H < Hy, for type-II
superconductors. The onset of instability of the Meissner state
is related to the vanishing of a surface energy barrier that
prevents field penetration onto the superconductor even when
H> H.or H> H,.

7 At higher magnetic fields (>H.,), surface superconductivity can persist up
to a third critical field, H.3. This critical field should not be mistaken for the
superheating field, below which the system displays bulk superconductivity
and field expulsion.
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Table 1. Representative material parameters for niobium, the traditional superconducting material used in SRF cavities, as well as candidate
SRF materials that have the potential to reduce cooling costs due to their higher 7.. The coherence length ¢ is calculated using equations in
[29]. The penetration depth A is calculated from equation 3.131 in [5]. The ratio kK = A\/€ is called the Ginzburg—Landau parameter, and
determines many properties of superconductors. A residual resistivity ratio of 100 was assumed for niobium. For MgB,, the values of A and £

are experimental values given in the reference. For calculations, H, =

B0/ [11o2N2TEN)] is used [5]. He; for Nb is found from fit to

numerically computed data in [30, 31]. H., for strongly type II materials is found from equation 5.18 in [S]. Hy, is calculated using
Hg, ~ H.(0.75 + 0.545~'/2) [14]. The condensation energy density F is given by pOHf /2 [5]. Nb data is extracted from [32], Nb3;Sn data

from [30], NbN data from [33], and MgB, data from [34].

Material  Amm)  §mm)  k T(K) Ha(T) HdT) Hu(T) FAm™)  FE/kg(K)
Nb 40 27 1.5 9 013 021 025 17547 25009.0
Nb3Sn 111 4.2 264 18 0.042 05 042 99472 533.6
NbN 375 29 1293 16 0.006 021 017 17547 31.0
MgB, 185 4.9 378 40 0017 026  0.21 26 897 229.1

The metastable Meissner state is analogous to the state of
superheated water (perhaps explaining the name ‘super-
heating field’). Liquid water in a glass can be superheated in a
microwave to a temperature above the liquid—gas transition
temperature, but still remain in the liquid state due to the
surface tension barrier at the liquid—gas interface, causing
small vapor bubbles to contract rather than grow. Surface
tension in water is analogous, for instance, to the surface
tension due to the energy barrier preventing vortex nucleation
in type-II superconductors. Unlike the case of water, as we
argue in section 1.4, thermal nucleation of vortices occurs at
relatively long time scales, suggesting that the Meissner state
can be sustained in RF applications for fields as large as the
superheating field. However, this scenario can considerably
change when one considers the effects of disorder in the
superconductor.  Section 4.3 discusses disorder-induced
nucleation of vortices.

The superheating field is associated with spinodal curves
where the local stability of the Meissner state is broken. This
is a more precise definition that is useful for both type-I and
type-II superconductors. We shall discuss calculations of the
superheating field in section 2. Our calculations there will be
assuming an external field that is constant in time and ignore
thermal fluctuations. We here discuss these approximations.

1.3. Why GHz is slow

Calculations of the superheating field for DC applied magn-
etic fields will be accurate for RF applications when the
microscopic relaxation times are smaller than the time scales
that are associated with changes in the fields inside the cavity.
Time scales for the latter are of order of nanoseconds [13]. A
version of time dependent Ginzburg—Landau theory given by
Gor’kov and Eliashberg predicts the characteristic relaxation
time near T.. 761, = 7/ /[8 k (I. — T)], where h is the
Planck constant divided by 27 and k is the Boltzmann con-
stant [5]. For T, — T = 1 K, one obtains 7, ~ 1073 ns for
oscillating fields parallel to the sample surfaces. Using
A ~ kT, where A is the superconductor gap, we find
7oL ~ ! at low temperatures, which is similar to the scaling
of collective modes in unconventional superfluids (see e.g.
section 23.5 of [27]). However, note that Gor’kov and
Eliashberg theory is applicable to gapless superconductors,

filled with magnetic impurities and sufficient pair-breaking
strength. For superconductors with a clean gap, the relaxation
time is expected to be larger than 75, and to scale with the
inelastic phonon-scattering time 7z, which, near 7 is of the
order of ~1078s in Al and ~10~!'s for Pb [5], due to its
larger critical temperature®. Yoo e al measured an ultra fast
electron—phonon relaxation time of 360 fs for niobium [28].
So, at GHz frequencies we may ignore the time dependence in
studying the stability.

1.4. Why thermal fluctuations are small

One key question for our purposes is whether thermal fluc-
tuations can help activate vortices over the surface barrier.
Thermal fluctuations in most superconductors (apart from the
high-T, cuprate superconductors) are very small. This is due
to the same approximation that makes the BCS theory of
superconductors so successful. BCS theory is a mean-field
theory of interacting Cooper pairs, which becomes exact
when each Cooper pair interacts with an infinite number of
neighbors (thus seeing the mean behavior of the system).
Each Cooper pair is of radius roughly the coherence length ¢,
so BCS theory will be valid when the density of Cooper pairs
times &3 is large. Simple estimates show that there are about
10° centers of Cooper pairs within the region occupied by
each pair state; a scenario where the pairs strongly overlap in
space, and each pair only feels the average occupancy of the
other pair states [35]. Thermal fluctuations of vortices will be
unimportant so long as the condensation energy density—the
amount of energy F that is necessary to destroy super-
conductivity over a unit volume—times &3, is large compared
to kg7T. Table 1 gives the characteristic temperature
T, = F&3/kg where fluctuations will become important, for
niobium and also three candidate materials being explored for
next generation accelerating cavities. Only for NbN is this
characteristic temperature remotely comparable to 7.

We can gain further insight from an analytic calculation
of E,/(kg T), where E, is the energy per unit length of a
vortex line integrated over a coherence length £. Using results
from BCS theory, the zero-temperature thermodynamical

8 A simple estimate given in section 10.3 of [5], assuming a Debye phonon
spectrum and free-electron Fermi surface, gives 7i scaling as 7, .
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critical field is given by H.(0) = 2 ¥7N(0) A, where
N(Q©) = m kg /(2 2 7?) is the density of states at the Fermi
energy, A is the superconductor gap at zero temperature, and
kg is the Fermi wave number. Also, A ~ 1.76 kg T, and the
coherence length &, = 7wg/(mwA), where vg is the Fermi
velocity. Thus,

5 H°253~ﬁ(5—F)2 M
ks T kpT r \A)°

where eg = /2 kg?/ (2 m) is the Fermi energy, and t = T/T,.
Since the gap is much smaller than the Fermi energy, we can
neglect thermal nucleation of vortices; unlike the case of
superheated water, the effects of thermal fluctuations is very
small. More generally, we expect that 7. < Teay < Tonv.
within the Meissner metastable state, where Tyic, Teay, and
Tiny. correspond to time scales associated with microscopic
degrees of freedom, the variation of the cavity fields, and
thermal nucleation of vortices, respectively.

The negligible effects of thermal fluctuations tells us that
estimating the limiting superheating field of a perfectly clean
surface will not be analogous to bubble formation for
superheated water. Instead, we shall use linear stability theory
in section 2.2 to estimate the field at which the uniform
Meissner state becomes energetically unstable to an infinite-
simal perturbation in the space of magnetic fields and
superconducting order. A variant of critical droplet theory
will appear in section 4.3, where we estimate the effects of
flaws and disorder in nucleating vortex penetration.

2. Basic theory of the superheating field

The superheating field Hy, is set by the competition between
magnetic pressure (imposed by the external magnetic field),
the energy cost to destroy superconductivity, and the attrac-
tive force due to the zero-current boundary condition at the
interface. In Ginzburg-Landau theory, the ratio kK = A\/¢ of
the penetration depth A to the coherence length ¢ determines
many properties of superconductors. In particular, k < 1/+/2
and k > 1/+/2 are associated with type-I and type-II super-
conductivity, respectively. In the flux-line lattice of type-II
superconductors, both the vortex supercurrent and magnetic
field are confined to a tube of radius . The superconductivity
is destroyed (the density of superconducting electrons van-
ishes) over a smaller vortex core of radius & Within GL
theory, Hy, (T)/H.(T) depends on materials properties only
through the parameter s, which is independent of temper-
ature. A careful calculation using linear stability analysis [14]
shows that Hg, plateaus at about 0.75H, in the large « limit,
and diverges as k=72 for k < 1.

2.1. Simple arguments for the superheating field

We now give simple arguments and pictures to estimate the
superheating field of superconductors (see e.g. [36]). The
main idea is to compute the work necessary to push magnetic
field onto the superconductor through an energy barrier set by
the magnetic energy, and compare the result with the

Vacuum

H

Figure 1. (On the left) Illustration of a superconductor occupying the
half-space x > 0, and subject to an applied magnetic field H that is
parallel to the z axis. ‘SC’ stands for superconductor. (On the right)
Approximate shape of a superconducting RF cavity in the regions of
high magnetic fields. As in the flat case, the magnetic field that is
generated by the accelerating beam (and excited by an external RF
source, driving the operating/accelerating mode) is parallel to the
interior surface of the cavity.

condensation energy. It is worth noting that there are
important qualitative differences between these simple argu-
ments and the actual linear stability analysis of the GL free
energy. We will return to these issues when we discuss the
effects of anisotropy in section 4.2, and discuss them further
in the full publication [36].

Consider a superconductor occupying the half-space
x > 0, and subject to an applied magnetic field H that is
parallel to its surface, along the direction z. We illustrate this
geometry on the left side of figure 1, where ‘SC’ stands for
superconductor. Note that the superconductor region extends
to infinity in the positive and negative y and z directions, and
in the positive x direction; there are no ‘corners’ in this
geometry”.

Let us start with the argument for the superheating field
of a type-I superconductor. For small external magnetic fields,
the order parameter does not vanish at the vacuum-super-
conductor interface. However, if we push a slab of magnetic
field onto the superconductor (just enough to make the order
parameter vanish at the interface), we will destroy super-
conductivity over a length scale of order £. The work per unit
area that is necessary to push magnetic energy onto the
superconductor is set by the magnetic pressure and the
penetration length; it is given approximately by
[Hy, /(Am)]Hg, A in cgs units. To estimate the superheating
field, we compare this work with the condensation energy per
unit area [H.2/(8m)] &, resulting:

Ha o g1r2 112, 2)
H,

Equation (2) should be compared with the small-x limit
of the exact result using Ginzburg—Landau theory [14]:
Hy /H, =~ 27147172,

° The absence of corners is an important limiting factor in our approach, for
corners typically facilitate field penetration in real samples of arbitrary
shapes. Modern RF cavities have an approximate cylindrical shape in the
region of high magnetic fields (see right side of figure 1), with no corners, so
such geometric considerations become unimportant.
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Figure 2. Illustrating the penetration of a vortex core into a type-Il
superconductor. We estimate the superheating field from the work
necessary to push a vortex core a distance x ~ £ into the
superconductor. The vortex then must fight past an attractive force to
a depth x ~ A to destroy the Meissner state. Reprinted figure with
permission from [36]. Copyright 2016 by the American Physical
Society.

In type-II superconductors, field penetration occurs via
vortex nucleation, and the superheating field is set by the
magnetic pressure that is necessary to push a vortex through a
surface barrier onto the superconductor'®. There are two steps
to this penetration. First, the core of the superconducting
vortex (of radius ~ £) must penetrate into the surface, at a
cost given by the core volume times the condensation energy.
Second, this newly penetrated vortex must fight past an
attractive force toward the surface due to the boundary con-
ditions at the surface, which is usually estimated [26] by the
attraction to an ‘image vortex’. Below we discuss the super-
heating field estimated from the initial penetration of the
vortex. (Bean and Livingston’s original estimate [26] of the
superheating field starts (somewhat arbitrarily) at a distance
x = £ after this initial penetration, and focuses on the effects
of the attractive longer-range force.)

Figure 2 illustrates the penetration of a vortex core (red
disk) onto a superconductor occupying the half-space x > 0.
The magnetic work per unit length to push the vortex core
onto the superconductor is given approximately by the con-
densation energy (per unit length):

Hg ®o

HZ
— 4N =
4 1 ¢ 8

T, 3

where Hy, /(4 ) is the magnetic pressure, ®, is the fluxoid
quantum, )2 is the vortex area in the xy plane, 4 \ £ is
approximately the area that is associated with the region of
field penetration (area of the orange box in figure 2; it is the
amount of the area of the vortex that penetrates the super-
conductor when a vortex core is pushed inside), and 7&2 is the
area of the vortex core. Using ®y =22 7H. X € in

19 Note that this argument is not related to Yogi’s ‘vortex line nucleation’
[37, 38] estimate of Hg,. The latter, developed to analyze impressive
experimental data, was qualitatively incorrect [14]. In particular, its estimate
for the metastable limit Hg, for large x went below H.;, which makes no
sense. This misled the SRF field for years into ignoring the potential
importance of higher x materials.

equation (3):

~ 0.14, “

independent of .

How does this estimate compare with the field esti-
mated from the attractive force, and with the true answer?
The true answer, given below in section 2.2, is about five
times larger: Hy,/H. ~ 0.75. Bean and Livingston’s esti-
mate of the superheating field due to the attractive force to
the image vortex is Hy, /H, = 0.71, of the same form as our
estimate 0.14 but larger and closer to the true estimate. We
present the calculation of the field necessary to introduce the
core primarily due to its simplicity, and also because it
motivates our analysis of anisotropic superconductors in
section 4.2.

One should think of these two contributions as being
sequential rather than serial: first the core must penetrate,
and then the vortex must fight the longer-range attraction to
enter the bulk. (It is interesting and convenient that these two
fields are of the same scale.) The GL calculation in
section 2.2 of course incorporates both the initial core
penetration and the longer range attractive force, together
with cooperative effects of multiple vortices entering at the
same time.

Note that, while the field needed to push the vortex core
into the superconductor is roughly comparable to that needed
to push the vortex past the attractive long-range potential, the
two contributions contribute very differently to the total
energy barrier to flux penetration. Energy is force times
distance: the two forces are comparable but the Bean—
Livingston force acts on a scale longer by a factor Kk = \/§
than our core nucleation, and will dominate the barrier height.
Finally, note that in practice the dominant mechanisms for
vortex nucleation that set the superheating field will not
involve straight vortices penetrating all along their lengths (as
in our calculation above) or, even more impressively, arrays
of straight vortices cooperatively pushing their way through
the surface barrier (section2.2 below). We expect that dis-
order and flaws (discussed in section 4.3) will lead to loca-
lized intrusions of single vortex loops into the material
(figure 8).

2.2. Linear stability calculation of the superheating field

In this section we have seen that the superheating field arises
in a bulk superconductor due to the competing effects of
magnetic pressure and the destruction of superconductivity.
Using relatively simple arguments, we derived the qualitative
dependence of this field on x. We now describe a more rig-
orous calculation of the superheating field using a linear
stability analysis. Linear stability analysis is commonly used
in a variety of pattern formation problems [39-44]. For type II
superconductors, the transition from the Meissner state to the
mixed state is triggered by fluctuations of a critical wave-
length that spontaneously break the transverse symmetry of
the bulk sample, which when coupled to the inhomogeneous
depth dependence of the Meissner state, make the
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superheating transition a challenging application of this
method. We here describe this calculation using the Ginz-
burg-Landau theory for concreteness, although the basic
procedure could be extended to other theories as we discuss
below. Our presentation follows closely the procedure
described in [14], however, the calculation has a long history
in the literature[18-25].

_52(]‘1_22 + q2 + 3f2
2fq
0

or= | " ax(F s, 84,

The Ginzburg-Landau free energy for a superconductor
occupying the half space x > 0 in terms of the magnitude of
the superconducting order parameter f and the gauge-invariant
vector potential q is given by

Afa= [

X

&r {§2<Vf>2 +la—pr g
>0 2

+ (Hy — AV x q)2}, &)
where H, is the applied magnetic field (in units of /2 H,).

We take the applied field to be oriented along the z-axis
H, = (0, 0, H,), and the order parameter f = f (x) to depend
only on the distance from the superconductors surface.
Assuming that the order parameter is real and parameterizing
the vector potential as q = (0, g (x), 0) fixes the gauge. The
Ginzburg-Landau equations that extremize F with respect to
fand q are

Ef —af+f-f =0, Xq" —fq=0, (6
and with our choices H = \¢g’, where primes denote deriva-
tives with respect to x. With appropriate boundary conditions
[5, 14] these equations can be solved numerically to char-
acterize the Meissner state.

For a given solution (f, ) we next consider the second
variation of F associated with small perturbations
f—f+ 6 and q — q + 6q given by

CF = [ Er(@ VY + 4ffa- ba -+ S 00
x>
x Gf2 + @ — D2+ NV x 692} ()

If the expression in equation (7) is positive for all possible
perturbations, then the solution is (meta) stable. Since the
solution (f, 6q) depends only on the distance from the
boundary (and is therefore translationally invariant along the
y and z directions), we can expand the perturbation in Fourier
modes parallel to the surface. As shown in [18], we can
restrict our attention to perturbations independent of z and
write

& (x, y) = 6f (x)cos ky,

oq(x, y) = (64, sinky, 64, cosky, 0), (8)

where k is the wave-number of the Fourier mode. The
remaining Fourier components (corresponding to replacing
cos — sin and vice-versa in equation (8)) are redundant as
they decouple from those given in equation (8) and satisfy the
same differential equations derived below.

After substituting into the expression (7) for the second
variation and integrating by parts, we arrive at

e -1 2fq 0

§F
2 & 2 2. d (5{
XL vt |l ©)
/\Zki f2 + Xk2 6qx
dx

This matrix operator is self-adjoint, and the second variation
will be positive definite if its eigenvalues are all positive. In
the eigenvalue equations for this operator, the function 6g,
can be solved for algebraically. The resulting differential
equations for ¢f and 0q, are

8" + Gf* + ¢* — 1 + DY + 2fqbq, = EOf ,
(10)

and

2d ’2 E 5~/ 25.. 2 s‘“ E5~
de| f2 4+ Xk>—E 104, + Haly v
an

where E is the stability eigenvalue. Note that by decomposing
in Fourier modes, the two-dimensional problem is trans-
formed into a one-dimensional eigenvalue problem. Numeri-
cally, it can be solved by the same methods as the Ginzburg—
Landau equations [14].

The stability eigenvalue will depend on the solution of the
Ginzburg-Landau equations, i.e., the applied magnetic field
H,, and the Fourier mode k under consideration. The super-
heating field is found by varying both the applied magnetic
field and Fourier mode until the smallest eigenvalue first
becomes negative. The wave-number of the destabilizing
fluctuations are therefore found simultaneously with Hg, and
denoted by k.. Values of Hg, and k. were calculated in Ginz-
burg-Landau theory for a wide range of « in [14, 25] along
with analytic estimates. The results are summarized in figure 3.

For small k, the critical fluctuation occurs with wave-
number k. = 0 while for large k, k. > 0. Interestingly, the
transition to nonzero k. occurs at some critical k. that is distinct
from the type-I/type-II boundary (x = 1/+/2). Estimates of r,
vary in the literature from 0.5 [18] to 1.13(£0.05) [23]. Esti-
mates of k. from solving equations (10) and (11) range from
1.10 [22] to 1.1495 [14] (our high-accuracy result).

The linear stability approach described in this section
could be extended to other geometries as was done for the
case of a superconducting film separated from a bulk super-
conductor by a thin insulating layer in [45]. More complicated
theories of superconductivity can also be solved using our
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Figure 3. Superheating field in Ginzburg-Landau theory. (a) A
numerical estimate of Hg, in Ginzburg-Landau theory over many
orders of magnitude of x was found in [14] (black solid line), along
with a large-x expansion (red dashed line). A Padé approximation
for small x was derived in [25] (blue dotted—dashed line). (b) The
linear stability calculation also yields the wavenumber of the
destabilizing fluctuation k. (black solid line). This first becomes
nonzero at k. ~ 1.1495 where it empirically behaves like
1.2 /& — K. (blue dotted—dashed line). Large-« estimates for k. were
also derived in [14] (red dashed line). Reprinted figure with
permission from [14]. Copyright 2011 by the American Physical
Society.

methods by replacing the Ginzburg—Landau free energy with
the appropriate analog, such as the Eilenberger formalism
described in more detail in section 4.1.

3. Experiments

3.1. High power pulsed RF experiments

Some of the earliest measurements showing Hy, > H. for
niobium were reported by Renard and Rocher based on DC
magnetization measurements. Yogi et al performed a more
systematic study at RF frequencies on samples of Sn, In, Pb,
and alloys, in order to cover a range of x values [37]. Ana-
lysis of their data resulted in the vortex line nucleation model
discussed in footnote 9. Noting that measurements of the RF

250

° “quuencn’ Nb unbaked
-/IOHSW Nb unbaked
|:|"0Hc1‘ Nb unbaked

B HgHonen: ND baked
[ 1+, H, Nb baked
l:|“och' Nb baked

A “oHpen’ Nb unbaked

200

50

Figure 4. Pulsed measurement of the maximum field of super-
conducting niobium cavities from Valles (symbols), compared with
estimates of the theoretical maximum possible superheating field
(colored ranges). All measurements show good agreement with Hy,
at high temperatures. The cavity baked to remove HFQS degradation
(red squares) also shows good agreement at low temperatures. DC
flux penetration measurements (green triangles) show good agree-
ment with Hy, as well.

critical field have shown inconsistency, Campisi used a very
high power RF source at SLAC to very quickly ramp up the
fields in cavities [46]. The goal of these high power RF
measurements is to reduce the influence of defects by out-
pacing the thermal effects they cause. Campisi performed
high power RF measurements on Nb, Nb;Sn, and Pb cavities.
Hays and Padamsee performed similar measurements on
these materials at Cornell [47]. The niobium results are
reproduced in figure 4, showing fairly reasonable agreement
with the expected superheating field close to 7,'', but then
diverging at lower temperatures.

After these experiments were performed, new preparation
techniques were developed for niobium cavities, including a
recipe involving electropolishing and a bake at 120 C. This
recipe was found to avoid the ‘high field Q-slope’ (HFQS)
degradation mechanism that occurs in niobium cavities at peak
fields of approximately 100 mT [48, 49]. Experiments by Valles
show that pulsed measurements of unbaked niobium produced
curves that diverged from the expected Hg, near the expected
onset field of HFQS. However, after the bake was performed,
the data agreed very well [50]. The H., and Hy, curves plotted
in the figure were calculated from niobium material parameters
that were extracted from measurements of R, versus T and f
versus 7' via the SRIMP Matthis—Bardeen code [51, 52]. The
baked curve has a lower Hy, due to the change in the mean free
path after the bake, which in turn affects .

3.2. DC flux penetration measurements by N. Valles

Valles also performed measurements of the superheating field
of unbaked niobium using a DC probe to avoid the effects of
HFQS. Using a superconducting solenoid, he applied a DC

H T. assumed to be 9.2 K for Valles’ data.
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Figure 5. Temperature dependence of the ratio H)’ /H.. Note the
non-monotonic behavior at low temperatures. Reprinted figure with
permission from [15]. Copyright 2008 by the American Physical
Society.

field to the exterior of a niobium cavity operating at low
fields. A sudden decrease in the quality factor of the cavity
indicated that flux from the magnet had penetrated to the
interior cavity surface. The penetration field extracted from
measurements of the applied field agreed well with the
expected superheating field for unbaked niobium, as shown in
figure 4 [50].

4. Beyond Ginzburg-Landau: Eilenberger,
anisotropy, and disorder

The isotropic Ginzburg-Landau analysis of section 2 is a
trustworthy estimate for the superheating field only for ideal
surfaces of single-band superconductors with cubic symmetry
near the superconducting transition temperature 7.. In this
section we pursue three topics that introduce new physics to
this calculation. First, superconducting RF cavities are usually
run at temperatures significantly lower than 7.; niobium
cavities, with 7. ~ 9 K are usually run at 7T =2-4K in
working accelerators. In section (4.1) we review calculations
of the superheating fields that use Eilenberger theory, which
is valid at lower temperatures, presenting the analytic results
[15] at large . Our estimates suggest that these Eilenberger
corrections to GL are quantitatively important at operating
temperatures, but not large. Second, many of the potential
new superconductors have rather anisotropic crystal structures
and electronic properties; if the superheating field has sig-
nificant anisotropy, this could motivate single-crystal or
controlled growth conditions to control surface orientations in
cavities. In section 4.2 we review calculations [36] which
show that this anisotropy will be small near 7,; we also dis-
cuss conflicting results for the anisotropy of multi-band
superconductors (like MgB,) at low temperatures. Third, in
section 4.3 we estimate the effects of disorder and flaws in
these materials, presenting both qualitative and simple
quantitative estimates of the effects of defects and dirt in
locally lowering the barrier to magnetic flux penetration and
thus lowering the effective superheating field.

4.1. Eilenberger theory for lower temperatures

The Ginzburg-Landau approach to superconductivity is
generally accurate near the critical temperature 7., but
usually the accuracy of its prediction worsen as temper-
ature is lowered below T.. A basic example of its failure is
given by the temperature dependence of the order para-
meter A: according to GL theory, A(T) behaves as
J1 —T/T., in agreement near T, with the microscopic
BCS theory. The latter, however, predicts that at low
temperatures the order parameter is temperature-indepen-
dent up to exponentially small corrections. For our pur-
poses, the limited validity of GL theory implies that the
dependence of the superheating field on x discussed in
section 2 cannot be assumed to be quantitatively accurate at
the low temperatures at which RF cavities are usually
operated. This motivates us to consider a more general
approach, valid at arbitrary temperature.

For low-T. superconductors, the coherence length
&y = /wp /24 is much longer than the Fermi wavelength; here
&, is the zero-temperature coherence length for a clean super-
conductor with zero-temperature order parameter A, and Fermi
velocity vg. Thanks to the separation in length scales (or
equivalently, the separation in energy scales between A, and
the much larger Fermi energy), these superconductors can be
modeled using the so-called quasiclassical approach, reviewed
for example in [53, 54]. This powerful approach is quite
flexible, permitting in principle to include effects such as Fermi
surface anisotropy and impurity scattering (we will comment
on the latter at the end of this section). This come at the price of
having to calculate various Green’s functions from which
physical quantities such as the order parameter and the current
can be obtained. Such calculations are usually much more
involved that those of the GL approach.

It was shown by Eilenberger [6] that one can arrive at an
expression for the thermodynamic potential as functional of
order parameter A (r) and vector potential A (r), similar to the
GL functional, once the quasiclassical equations for the
Green’s function have been solved. While a general solution
is not possible, for the case of a clean superconductor with
spherical Fermi surface we developed in [15] a perturbative
approach valid for large . Then the thermodynamic potential
Qis

0= yfd%{é(v x A — H)?* + Azlog(%)

+f (dn)[Az 2R+ & - wy)

Wy
VO 4+ A2
+ %”—z(n - Vs0)2 (12)
HO 4QI‘I

In this expression v is the density of states at the Fermi
energy, lengths are in units of the zero-temperature penetra-
tion depth A,

1 8_”(2”50 )2VA2 (13)

X 3\ @
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the vector potential is in units of ®y/2m€, with @, the
magnetic flux quantum, kg = A /§,, and n is the unit vector
on the Fermi surface. We also use the short-hand notations

[an =271 %,

with w, =27T(n + 1/2), n=20,1,2, ..., the fermionic
Matsubara frequencies, and

Oy =w,—in-A, (14)

20
2+

The thermodynamic potential in equation (12) reduces to the
GL one near 7T,.'? and it can be used to find the superheating
field at arbitrary temperature in the regime k> 1. The
calculation of Hy, proceeds in the same manner as in the GL
approach, by studying the stability against small perturbation
of the local minima of 2. This study was performed in [15] at
leading order in kg — +o0o. The ratio Hy, /H, between
superheating and critical field can be calculated analytically at
T=T and T = 0:

5O = (15)

o0 o0
[Zl_sha;) ~ 0,745, %(0) ~ 0.840, (16)

C C

where we use the oo symbol in the superscript to indicate that
these are leading-order results. Interestingly, the zero-temp-
erature ratio is almost 13% larger than the near-T, one,
indicating that naive extrapolation to low-temperatures of the
GL result underestimates the superheating field. At arbitrary
temperature, the Hg’ /H, ratio can be found numerically and
is shown in figure 5. Note the non-monotonic dependence of
Hg' /H. on temperature, which leads the superheating field to
acquire its largest value Hg® ~ 0.843H.(0) at T ~ 0.04T..

It should be noted that while the Meissner state remains
metastable up to Hg,, a clean superconductor can become
gapless at a lower field H, [55]; for example at T = 0 we
have H, ~ 0.816H. < Hy,. The field H, is relevant to appli-
cations such as superconducting cavities because as the
applied field approaches H,, AC losses rapidly increase.
Indeed, in the presence of a gap the AC losses are in general
exponentially suppressed, but this ‘protection’ from losses is
absent in the gapless state.

The above results are restricted to the leading order in
1/ko, which makes it possible to neglect the contributions
from the last term in square brackets in equation (12). At next
to leading order, that term must be taken into account and
leads to an expression for the superheating field of the form'?

Hyp sh h(T)
T) ~ = (T : 17
Hc( ) H. (T) + = 7

This formula, with a weakly temperature-dependent dimen-
sionless coefficient A(7), has the same inverse square root
dependence on k as the GL expression [14].

12 considering the limit 7 — 7; in [15], a prefactor was missed in
equation (29) and consequently equation (31), which should read respectively:
kgL = 2nT2/3C ko ~ 150k and &(T) = \[2/3 [Ao/AT)]E, in the
notation of that work.

13 This formula can be obtained by extending to next-to-leading order the
calculations of [15] (Catelani, unpublished).
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Figure 6. Phase diagram of anisotropic superconductors in terms of

mass anisotropy (y = /m./m,) and GL (\,/&,) parameters. The

superconductor is of type-I to the left of the blue line, of type-II to
the right of the dark red line, and mixed in between (in the mixed
phase, the SC is of type-I for ¢||z and of type-II for ¢ L z). The blue

and yellow regions correspond to the asymptotic solutions

HJh / Hj ~ ~'/? and Hi‘h /Hst ~ 1, respectively (within 10% accur-
acy). Note that the superheating field of MgB, is nearly isotropic
near T = T;. Reprinted figure with permission from [36]. Copyright
2016 by the American Physical Society.

In closing this section, let us comment briefly on the
effect of impurity scattering. Both non-magnetic and magn-
etic impurities were considered in [55] in the limit K — oo.
At sufficient strength of the non-magnetic impurities scatter-
ing rate, there are some qualitative changes: the non-mono-
tonicity of Hg, (T) is suppressed, and more importantly the
gap remains open up to Hg,. However, quantitatively the
value of Hy,/H. is changed by at most a few percent. In
contrast, adding magnetic impurities strongly decreases Hyy,
similar to the well-known suppression of T, due to the pair-
breaking effect of such impurities.

4.2. Anisotropic superconductors

Layered superconductors can display highly anisotropic cri-
tical fields. The upper-critical field of bsccoM, for instance,
can vary by two orders of magnitude depending on the angle
between the crystal anisotropy axis ¢ and the applied magn-
etic field [5]. Near zero temperature, the upper critical field of
magnesium diboride is about six times larger for ¢ L B than
for ¢ || B (see e.g. [56, 57]). Here we review [36], which
investigates the effects of crystal anisotropy on the super-
heating field of superconductors, motivated partly by the
opportunity of controlling surface orientation in order to
achieve higher accelerating fields inside the cavity.

Near the critical temperature, for the anisotropy axis ¢
aligned with one of the Cartesian directions, the anisotropic
formulation of Ginzburg—Landau theory [58—61] provides a
clean approach to study the anisotropy of the superheating

4 The cuprate superconductors have d-wave order parameters, and hence
have an anisotropic gap that vanishes along certain directions. Thus, as
discussed for gapless superconductivity in section 4.1, these likely will not be
useful for sustained operations at GHz frequencies.
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Figure 7. (a) Illustrating vortex (blue disk) and vortex core (red disk) of zero-temperature MgB, in the ac plane, with the external magnetic
field parallel to the normal of the plane of the figure. We have drawn £, about 30 times larger with respect to ),, so that the core becomes
discernible; in the correct scale, the vortex core occupies the tiny black region in the middle of the figure. Notice that vortex and vortex core
have identical shapes within GL theory. (b) To estimate the superheating field, we calculate the work to push a vortex core into the

superconductor, thus destroying the Meissner state. The very different area of the black dashed boxes for ¢||y (left) and c||x lead to substantial
anisotropy of the superheating field for low-temperature MgB,. Reprinted figure with permission from [36]. Copyright 2016 by the American

Physical Society.

field. We can use a change of coordinates and rescaling of the
vector potential to turn the anisotropic GL free energy onto
isotropic form, and then use previous results from [14] to
calculate the superheating field anisotropy of several materi-
als. We find that:

ani_{

Hg (5)),
HSh (’Y’ﬂl)?

where the superheating field on the right-hand side is
the solution of the linear stability analysis for isotropic
Fermi surfaces, which we discussed in section (2.2),
using k= x| and Kk =k =k for ¢ parallel and
perpendicular to z, respectively. Within GL theory,
vy = me/m, = /\C/)\a = §a/§c, with m;, A; and ¢ repre-
senting the effective mass, penetration depth, and coherence
length along the ith direction, respectively. Since
Hy, =~ 0.75 H. goes to a constant for large , we find that
the superheating field is nearly isotropic for most high-x
unconventional superconductors. On the other hand,
Hy ~ 0.84 H, x'/2 for small-x type-I superconductors,
resulting in an anisotropy of about 7'/? when £y is small.
Figure 6 displays a phase diagram in terms of x and 7,
showing the region where GL theory predicts type-I (left of
the blue line), type-II (right of dark red line) and mixed (in
between dark red and blue lines) superconductivity, and the
regions where each asymptotic solution is expected. Note, in
particular, that HS”h /Hg ~ 1 for MgB,. This result is valid
only very near 7., where the anisotropies in A and & are
equivalent. In the next paragraph we will use results from a
two-gap BCS theory to estimate the superheating field
anisotropy of MgB, at lower temperatures.

Theoretical and experimental studies indicate that the
assumption A /A, = £, /&, (vortex and vortex core have
identical shapes within GL theory) is strongly violated for
low-temperature MgB,, thus suggesting the use of two
parameters to describe crystal anisotropy, namely 3, = Ac/Aq
and , = ¢, /€. Also, 7, and ~, exhibit different temperature
dependences, with 7, decreasing and -, increasing for
decreasing temperature, respectively. Calculations from [56]

fore | z,
sh = (18)
fore|| x ory,

10

Table 2. Estimates of the superheating field and maximum
anisotropy of low-temperature MgB, for three geometries.

Hg, (Tesla)

Approach cllx |y cllz Max. Anis.
1st estimate 0.04 0.006 0.04 ~6
1st (corrected) 0.2 0.03 0.2 ~6
2nd estimate (B & L) 1.13 0.18 0.18 ~06
‘Extended GL’ 0.21 0.22 0.22 ~1

using a two-gap BCS model suggest that v, and Y become
equal only at T,; near zero temperature, Ve R 6 whereas
T ~ 1, agreeing with some [57, 62, 63], but not all (see [56]
and references therein) experimental estimates.

We can use our simple estimates of section 2.1 to make a
qualitative prediction for the resulting anisotropy HS™ / Hsi”y
in the superheating field, when Y = N deviates from the
single-band GL prediction. Now the anisotropic shape of the
vortex and vortex core plays an important role (see
figure 7(a)). When c is in the xy plane, as in figure 7(b), for
instance, the superheating field is estimated from the work
performed to push the black-dashed ‘box’ into the super-
conductor, which can considerably vary from c||y (left) to c||x
(right). This leads to an estimate HS“Y /H;“y N % / N A
second estimate generalizes the Bean and Livingston argu-
ment of the longer-range vortex attraction to incorporate
anisotropy, and leads to a slightly different result:
Hs%”x / HSH ~ Ve / 7 Yet a third calculation, which we term
‘Extended GL’, yields an almost isotropic result, and is based
on a direct linear stability analysis of the anisotropic GL free
energy (see equation (7) of [36]) assuming unconstrained X\’s
and £’s. Table 2 summarizes our estimates of Hg, for the three
geometries, using experimental values for H, and « for MgB,.
Note that we correct numerical discrepancies of our first
estimates in the second row of the table: ‘1st (corrected)’. The
last column shows the maximum superheating field aniso-
tropy according to each method. Most of the values of H, are
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as low as Hg, =~ 0.24T for Nb [13]. We discuss the origin of
these disparate predictions further in [36].

Our GL arguments for the superheating field anisotropy
can be trusted near T.: at large ~ the superheating field
anisotropy is not a reason to control surface orientation. Our
arguments at lower temperature and for multi-band super-
conductors are more speculative. The vortex core shape will
surely change for x ~ £ due to the boundary conditions at the
surface; the anisotropy in the long-range attraction in multi-
band materials may be different from that of a simple ani-
sotropic GL approach. It will be important to apply linear
stability analysis to more sophisticated theories, such as
multi-gap BCS or strong-coupling Eliashberg theory, espe-
cially in the face of the conflicting results shown in table 2.

4.3. Disorder and vortex nucleation

Niobium RF cavities are routinely operated in the metastable
regime, at fields H,| < H < Hy, above the field H.; where
vortices in equilibrium would penetrate into the super-
conductor (and dissipate roughly the same energy as in a
normal metal). Table 1 in section 1.4 gives H.; and Hy, for
other candidate materials. For niobium this metastable regime
gives us an important factor of ~1.6 in field. Running in the
metastable regime is crucial for utility with the higher temp-
erature superconductors, whose H., equilibrium fields are
much lower than the operating fields for current Nb cavities
(table 1).

It took many years of experimentation to raise operating
fields of the niobium cavities to approach near to their fun-
damental limits. Will the new, more complex materials be
fundamentally more challenging to optimize? Our preliminary
experimental cavities using Nbs;Sn appear already to be
operating above H; [64], but are not yet delivering anywhere
near to the theoretically predicted superheating field. Just as
we have been exploring the fundamental theoretical limits to
the fields for ideal surfaces, in this section we explore the
fundamental theoretical challenges in minimizing the effects
of dirt, flaws, and defects in lowering the barriers to vortex
entry.

What kind of flaw or disorder fluctuation would be
needed to allow vortices to enter at fields substantially lower
than the superheating field? How big a damage region is
needed to bypass the surface barrier to vortex entry? Damage
will significantly affect the superconducting properties if the
flaw or fluctuation has a characteristic length of order the
coherence length £. Since the proposed candidate materials
for next generation SRF cavities have shorter coherence
lengths than niobium (table 1), this potentially could imply
that these new materials are more susceptible to defects
and dirt.

Figure 8 shows a cartoon of a vortex loop entering a
superconductor. Based on the discussion at the end of
section 2.1 and the caption of figure 8, at external fields far
from H,, and Hy,, the energy of the vortex loop will grow in
the absence of disorder until it reaches a critical radius R., at
which point the energy will again decrease. This critical

11

Figure 8. Flux tube nucleation allowing the penetration of a single
vortex core into the superconductor occupying the half space x > 0.
The nucleation barrier at zero disorder can be estimated by
computing the energy of this loop, plausibly a semicircular loop of
radius R, and subtracting the magnetic work done by the pressure
due to the external field H, where H,; < H < Hy,. This figure
illustrates the nucleation barrier for low fields near H.; at higher
fields the radius becomes comparable to £. The boundary conditions
at the surface of the superconductor lead to an attractive force on the
vortex as discussed in section 2.1, in addition to the curvature energy
of the vortex loop (ignored here). We can estimate the disorder
needed to nucleate at a field H by calculating the damage needed to
lower this barrier to zero as the radius R grows.

radius and the needed damage zone will get smaller as the
field H grows, vanishing at H = Hy,.

The energy per unit length of the vortex loop will have
two contributions—a curvature energy and an attractive
energy between the vortex and the surface. The latter can be
estimated from the attraction of a straight vortex to the ‘image
vortex’ needed to set the correct boundary conditions at the
surface. This potential barrier (the major component of the
superheating field) was estimated by Bean and Livingston for
high x type-II superconductors [26]. The unitless Gibbs free
energy per unit length 47 G/ (~/2 H, ®;) of a straight vortex
flux line a depth x inside a superconductor with external field
H can be written in the (London) large-+ limit as [12]:

<I>0( o 1 ®
G=—"|H@Eeh - = Ko(2 ,\+Hc), 19
pym (e ) Sy 0(2x/ ) i), (19
47 G _ Ko@2x/)\)  Ink
— L —g) =k -1y - 2 R
> H. o, g(x) = h( ) 5. o n
(20)
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Figure 9. (a) Unitless Gibbs free energy (equation (20)) to push a
straight vortex line from a depth £ to depth x into a superconductor
like Nb3Sn with k = 26.4, for several values of the magnetic field.
The superheating field can be estimated in the large x limit from the
condition G’ (¢€) = 0, characterizing the vanishing of the surface
energy barrier at x = £; Bean and Livingston’s estimate gives

hen = 1/2 so Hy, = H. /N2 = 0.71H,, comparable to the correct
large-« limit. Note that the peak in the barrier is at x, ~ {Hy, /H;
near H, it is roughly A\ =~ x&/logkx = A/logk ~ A, but in the
interesting region near Hy, it is near the coherence length . (b) The
spatially-dependent critical temperature shift « = a/(x), needed to
flatten the energy barrier and allow for the penetration of vortices, in
our particular model with « for Nb;Sn. This is shown for several
values of H in the interval [H|, Hy,). Here H = 0.6H, would
duplicate the maximum possible superheating field for niobium.

10 20

where h = H/(~2H,), and K, denotes the modified Bessel
function of imaginary argument [65], and for now x and \ are
the Ginzburg—Landau parameter and penetration length of the
pure material, respectively. The first term is a magnetic
pressure, the second term is the interaction with the ‘image
vortex’ that imposes the correct boundary conditions, and the
third term is the energy per unit length of a vortex deep in the
superconductor. We can estimate R.(H) by setting the deri-
vative dG/dx = 0 in equation (19) and expanding the Bessel
function for small arguments, leading to R.(H) ~ {Hy, /H.
At the lowest field for vortex penetration H,; this expansion is
unreliable; however, since H, = Hy,log(k)/k [12], the
resulting estimate R.(H.|) ~ £r/log(k) = A\/log(k) is still

12

quite good, as shown in figure 9(a). But the new materials of
interest have lower critical fields H.; too small to be useful;
we must run at fields H comparable to Hy,. Near Hy,, R. ~ &,
again as shown in figure 9. For disorder or defects to remove
this energy barrier, they will thus necessarily have to strongly
affect a region of volume ~ {Rcz ~ £,

To make this more quantitative, one needs to identify and
model the dominant mechanism for vortex nucleation. If the
characteristic defect size is large compared to & (e.g.,
nucleation on grain boundaries or inclusions of competing
phases), one must model and control these individual defects.
Clean grain boundaries are usually atomistically sharp (much
thinner than &) and hence do not significantly decrease the
local superconducting properties; indeed, studies of hot spots
in large grain niobium cavities show no correlation with grain
boundaries [66], and using single crystals to avoid grain
boundaries has not improved performance [67, 68]. But in
more complex materials, grain boundaries could be more
disordered, thicker, or contaminated by impurities, and a grain
boundary or grain boundary intersection with the correct
orientation with respect to the surface could provide a route to
entry. The effect of surface roughness on Bean and Living-
ston’s surface barrier has been studied in [69]. Kubo has used
the London model to investigate the effects of nano-scale
surface topography on the superheating field [70]. Perhaps
most dangerous could be inclusions of metallic or poorly
superconducting second phases, or irregularities in the surface
morphology.

If the characteristic defect size is small compared to &,
and if the defects are uncorrelated in position, then the fluc-
tuations in regions of order £3 can be quantitatively estimated
to linear order using the central limit theorem. This leads to
Gaussian random fluctuations in the superconducting prop-
erties. For example, for alloys and doped crystals there are
natural concentration fluctuations that will locally change the
superconducting transition temperature, coherence length,
condensation energy, and other properties. This is the tradi-
tional theoretical framework for field-theoretic calculations of
the effects of disorder.

Let us hypothesize a system where the critical temper-
ature is decreased due to disorder. In the context of Ginzburg—
Landau theory for a homogeneous system, a change in the
critical temperature yields a change in the coefficient
a = a(x) of 12, where v is the superconductor order para-
meter [5]. The probability of a fluctuation in a/(x) away from
its pure value oy would be proportional to

o) x exp(~ [(@() /a0 = 1?/@oHd%). @D

where o is a material-dependent constant that encapsulates the
likelihood that the dirt in the material will cause a given
fractional change o/« in the critical temperature. The con-
stant o will become larger either if there are bigger con-
centration fluctuations or if the material is particularly
sensitive to dirt. In principle, we should now calculate the
most probable three-dimensional profile a:(x) needed to flat-
ten the energy barrier and allow vortices in at a lowered field
H < Hg,, and then use II{a/(x)} in equation (21) to estimate
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Figure 10. Relative logarithmic reliability P = —(202/&))

log(P (H/Hy,)) of vortex nucleation, in a simple model of Gaussian
random disorder, for the x values of the three candidate super-
conductors. Solid curves are P;p for a semicircular vortex barrier
model (figure 8, equation (26)); dashed curves are (d/,)Pap for
pancake vortex nucleation in a 2D superconducting layer of
thickness d (section 5).

the probability per unit surface area P (H/Hy,) = I1{a(x) } of
vortex penetration.

Rather than doing this full variational calculation, we
build on the Bean—Livingston model of equation (19). In GL
theory, the characteristic lengths scale as A ~ a~! and
& ~ a~1/2. Hence we distinguish )¢, &, and k, for the pure
material ~ from  A(x) = A\o/a, &) =¢§,/Ja and
k(x) = A(x)/&(x) = ko/~Ja for the damaged region,
where a = a/«y.

What is the minimum amount of dirt that is necessary to
reduce the superheating field to a certain value? For instance,
how much dirt would it take to reduce Hg, for Nb3Sn (esti-
mated at 0.42 T in table 1) to H = 0.25 T (Hy, for niobium),
a factor H/Hy, ~ 0.6? One would need enough dirt to
‘flatten’ the surface barrier between'’ & and R.(H) ~
& Han/H = 5&,/3 along the x direction (thus allowing for
vortex penetration), as shown in the dashed line of
figure (9(a)). In general, we are interested in finding an x-
dependent parameter « = «(x) that flattens the energy barrier
from x = &, to x = x;, where x; > &;, and is defined by
G (xr) = G (&y). The solution for ar(x) is then found from the
equation G (x) = G (&) for § < x < x¢, and a(x) = ap for
x > xp, where in the left and right-hand sides we use
{A(), £(x)} and { Ay, &y} in equation (19), respectively.

Note that we are making a rough approximation here.
The magnetic fields and supercurrents surrounding the vortex
line will see a spatially varying critical temperature «(x)
whenever it is far from the surface, and properly measuring its
energy and thus the surface attraction should include the
resulting shift in energy. The depths x of importance to us are
of order the coherence length &, and thus these long distance
fields and currents are largely canceled by the image vortex a
distance 2x away. The vortex will see a depth-dependent

15 Bean and Livingston measure the barrier starting at x = £, below which
London theory is unreliable.
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disorder, but its energy will be qualitatively well described by
our model in the region H ~ H,.

Figure 9 shows a/qq as a function of x/¢ for several
values of H in the interval [H,;, Hy,). Apart from an overall
constant given by the normalization of the Gaussian, the
negative logarithm of the probability of this fluctuation as a
function of the lowered entry field H is

~log(P(H/Hy)) = T{a(x)) 22)
= [(@®/a0 = 12/ QoA (23)
_ & [ @w/ao— ndu 24)
- 202 0 0
5 pam 25)
20?2 o

a measure of the relative logarithmic reliability of the super-
conductor to disorder-induced nucleation. Here we pull out
the volume {3 of the damage zone by changing variables to
u = x/,. In a three-dimensional system with a semicircular
vortex nucleation approximation, we can use our Bean—
Livingston style methods to approximate this as a one-
dimensional integral

Pap(H/Hy) = [mu(a(u /oo = D2du.  (26)

For a vortex pancake nucleation event for a thin SIS film of
thickness d (discussed in section 5), we find

Pav(H/Ha) = @/$y) [ (@(€qw/ao = 1Pdu 27)

(see figure 10).

Clearly, the relative reliability decreases rapidly as H
approaches Hy,, by many orders of magnitude in this model
calculation. The high-~ calculation of Bean and Livingston
cannot be simply extrapolated to niobium, but there is no
reason to doubt that a similar sensitivity of the barrier to H/
Hg, is expected. Nonetheless, niobium cavities are used in
planned applications at 0.7Hy, [1, 71], suggesting realistic
values of disorder are tolerable in niobium. Indeed, the
dependence of the barrier on H/Hy, is much stronger than its
dependence on x or £ This suggests, examining figure 10,
that the factor of five to ten change in &, with the new
superconductors may not be so dangerous. The resulting two
to three orders of magnitude smaller volume for the critical
damage zone at fixed field, it would seem, could be remedied
by working not at 0.8Hy, but at perhaps 0.6Hy, (figure 10).
Manufacturing high-quality cavities from these new materials
may be challenging. What our calculation can provide is
reassurance that these materials should not be avoided
because of their shorter coherence lengths.

5. Laminates and vortex penetration

In recent years, much effort in superconducting RF has been
devoted to exploring single or multiple thin films—Ilaminated
structures hopefully tunable to optimize performance. This
section is devoted to exploring possible advantages to such
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Figure 11. Vortices in a bulk superconductor for semiloops (left).
Vortices in thin superconducting films separated by insulators form
pancakes.

laminates. The work in this section relies heavily on extensive
discussions and consultation with Alex Gurevich, whose
work prompted most of the calculations presented.

In practical terms, two of the candidate materials (NbzSn
and NbN) can be grown by deposition on Nb surfaces, so
fabricating a surface layer onto a Nb cavity leverages existing
expertize. Gurevich points out [72] that thermal conductivities
of new candidate materials are often small; since the heat
generated by the surface residual resistance at the surface
must be conducted through the cavity, keeping the thickness
of these new materials small can improve performance. (For
Nb3Sn, recent surface resistances have been small enough, at
least at low fields, that thickness may not be an issue.) Gur-
evich has also proposed [73] separating one or more super-
conducting layers by insulating layers (a SIS geometry).
Calculations show [45] that laminates do not substantially
improve the theoretical maximum superheating field in AC
applications beyond that of pure materials (or thick layers) for
the film-insulator-bulk structure,'® though adding a thin S’
layer on the bulk S superconductor may lead to an enhance-
ment of the energy barrier [77, 78].

Gurevich has suggested that the SIS geometry may have
a different advantage—reducing the impact of flux penetra-
tion. Our calculations in section (5.3) suggest that SIS films
with thickness d small compared to the London penetration
depth A will be more susceptible to vortex penetration than
bulk films; the damage zone needed for vortex nucleation at
fields below pure Hg, can be thinner by the fraction \/d,
presumably making them much more likely. Also, one would

16 A free-standing superconducting layer (or a layer surrounded by
insulators) with thickness small compared to the magnetic penetration depth
A can have an enormous superheating field (since it can remain super-
conducting without paying most of the cost of expelling the flux). In the
accelerator community, there is widespread focus on raising this ‘H,;’ for the
superconducting film [74, 75]—defined, somewhat unphysically [76] as the
minimum field needed for a vortex to be stable parallel to and inside the film.
But such an in-film stable vortex configuration demands magnetic flux on
both sides of the film. In a GHz AC application, pushing the flux through the
film twice per cycle generates unacceptable heating [76]. Besides, any such
parallel vortex would be precariously unstable to formation of two vortex
pancakes. A thin superconducting layer with a large magnetic penetration
depth atop a lower-Hg, layer with a small penetration depth can have
modestly higher superheating fields, due to the way the bottom layer modifies
the magnetic field penetration.
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Figure 12. For initial separations smaller than the impact parameter
Ximp» the pancakes annihilate (inner solid, dash, dot), but larger than
Ximp» they can wander away (dash—dot, outer solid). v = 0.2 shown.

naively expect it to be harder to grow low-defect two-layer
laminates than depositing a single layer or preparing a pure
surface. Layers thick compared to the penetration depth
would presumably behave similarly to a bulk material; vor-
tices deeper than A do not ‘feel’ the surface except insofar as
other vortices penetrating the surface push them deeper.

The dynamics after flux penetration will be substantially
different for the SIS geometry than for a simple 3D super-
conducting surface. In either case, a flaw may nucleate one to
several vortex entries when the field increases in one direc-
tion; some or all may be ‘pulled back’ as the field shifts to the
opposite direction. If the nucleation center flaws are rare and
the vortices do not build up over time, they need not cause
local heating enough to cause a quench. But since the RF
cavities operate at GHz frequencies (billions of cycles per
second), and each flaw could (or should) generate multiple
vortices per cycle, potentially billions of vortices per second
could be introduced by a single flaw if they can escape away
from the defect and avoid re-annihilation.

In three-dimensions, a vortex penetrating at a point (y, z)
on the surface will grow in the z direction pointing along the
field as it penetrates a depth of order x ~ A (figure 11 left). If
multiple vortices enter, they may push and entangle one
another; as they interact with disorder in the material they
may exhibit avalanches [79, 80]. During the field reversal, the
points where the vortices exit the material will be forced
together along the z direction (shrinking in length), and new
vortices with opposite winding number will nucleate (poten-
tially annihilating some or all of the old vortices). Even if this
process is incomplete, leaving some tangle of vortex loops, it
may enter a kind of limit cycle. Indeed, many periodically
stressed disordered dynamical systems can enter into limit
cycles at low levels of stress, with a transition to ‘turbulent’
aperiodic behavior at a critical threshold (colliding colloids in
reversing low-Reynolds number flows [81], plasticity in
vortex structures of superconductors [82—-84], etc). It is pos-
sible that the quench of RF cavities explores precisely this
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Figure 13. This figure compares Xiy,, the maximum lateral

2
<xthermal> and
(XZisorder) » the expected meandering distances due to thermal and

disorder effects, for realistic parameters given in the text. Note that
the former remains a factor of at least ten larger than the latter,
suggesting that vortex escape by these mechanisms is a 100 event.
Thus neither thermal motion nor disorder is dangerous, according to
our estimates, to prevent nucleated pancake vortices from annihi-
lating with extremely high probability at the end of every cycle.

separation resulting in impact of a vortex pair, to

kind of dynamical phase transition, separating a local hot spot
from an invading front of vortices. Apart from these brief
speculations, we will not discuss three-dimensional disloca-
tion dynamics further in this work; the remainder of this
section will focus on the SIS geometry.

In the two-dimensional SIS geometry, a vortex penetra-
tion event may end with the vortex trapped in the insulating
layer, leaving two 2D vortices penetrating the outer super-
conducting film (figure 11 right. See also footnote 15). Such
2D vortices, called pancake vortices, have been studied in
great detail [12] in the context of high temperature cuprate
superconductors, some of which are well described as nearly
decoupled 2D superconducting sheets. A vortex pair nucle-
ated by a defect at (y, z) on the surface will separate along the
z direction as the field increases, be buffeted by thermal
fluctuations, dirt, defects, and other vortices as they separate,
and then be pulled back along the z direction as the field
reverses. (Some of the other vortices will be emitted by the
same defect, once the initial pair departs and the resulting
long-range suppression of nucleation drops, see section 5.4.)
In this part we shall explore Gurevich’s suggestion that, even
after billions of cycles, this annihilation should be effective at
avoiding vortex escape (presumably preventing a buildup of
vortices which otherwise would lead to a quench).

In section 5.1, we introduce an ‘impact parameter,” the
amount of lateral vortex separation between a vortex—anti-
vortex pair that can be tolerated during a cycle while still
expecting them to annihilate, in section 5.2, we examine the
expected lateral meandering distance expected from pancake
vortices in an RF cycle, in section 5.3, we examine the
expected meandering due to disorder, and in section 5.4, we
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Figure 14. Surface disorder may cause pancake vortices to meander
away from a nucleation site and build up in a film over many RF
cycles.

briefly consider the effect of vortex—vortex interaction and the
situation of two nearby defects.

5.1. Impact parameter

How far Ax perpendicular to the field must a vortex pair
migrate before their mutual attraction ceases to be strong
enough to annihilate them at the end of a cycle? Figure 12
shows the trajectories for a pancake pair as they return at the
end of a cycle, separated by different distances x perpend-
icular to the external magnetic field, using the vortex inter-
action formulation from [85]. There is a separatrix between
trajectories which collide and trajectories which miss each
other. We will call the value of Ax at this separatrix the
impact parameter, Ximp. For perhaps credible parameters
d=730nm, A= 100nm, poHy =04 T, Xjn, ~ 20 nm.
Simulations were used to evaluate Xy, as a function of field,
and the results are plotted in figure 13.

5.2. Thermal meandering

The motion due to thermal fluctuations can be estimated using
the Einstein equation,

<-xt%1ermal> = 2Dr, (28)
where Xgermar 18 the displacement in time ¢ due to thermal
motion and D is a diffusion constant. For one RF cycle at
frequency f, t = f~!. D ~ pkgT, where kg is Boltzmann’s
constant, T is the temperature and g is the mobility of the
vortex, given by Bardeen Stephen as p, /(Hc, ¢, d), where p,
is the normal state resistivity, H., is the upper critical field
and ¢, is the flux quantum. Solving, the wandering due to
thermal motion is given by:

Jom) - [T
thermal ch d f ¢0

(29)
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Figure 15. Approximations to find an analytical expression for o.

For realistic parameters T =2K, p, = 100n{m;
toHe =30 T, f= 1.3 GHz, d=30nm, Xperma = 1.5 nm,
as shown in figure 13. From these results, we can calculate
the approximate expected rate of production of vortices
that fail to annihilate. One expects that the distribution of
final separations will be Gaussian with standard deviation
Xthermals SUggesting that the number of vortices which
do not annihilate will be given by the tail of the Gaussian.
For example, at H = 0.8Hy,, Ximp is about 22nm from
figure 13, or about 15 standard deviations, making it
extremely unlikely for vortices to escape due to thermal
meandering alone.

5.3. Disorder meandering

To calculate the wandering due to surface disorder, illustrated
in figure 14, we consider a single-cell f = 1.3 GHz niobium
SRF cavity with an SIS structure using d=30nm thick
Nb;Sn layers. Assume that the topmost S layer has a nor-
mally-distributed random array of defects over its surface. For
our geometry, we divide the L x L (where L ~ 10 cm) sur-
face area of the cavity into N a X a regions of order the
pancake vortex size, where N = L?/a?. We represent the
effect of these defects as lowering the local value of B, in a
given region. Therefore these defects will nucleate vortex
penetration, and they will attract pancake vortices in the film.
At the worst of the defects, the expected value for H. is
OH nominal, Where o is a constant between 0 and 1. At this
defect, vortices penetrate at approximately H = aHy,. We
represent the surface of the cavity with a distribution H of
values for the reduction in the square of H.. For simplicity of
analysis, and since the defects are normally distributed, we
will use the notation generally used in propagation of random
eITors.

H = HZpomina (1 — 100 £ 0)]). (30)
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Here is o is the variance of the normally distributed H?
reduction. We use absolute values because there should be no
H. values higher than the nominal value.

We can find o using our restriction that the expected
value for H, at the worst defect is ®H, nominal- TO do this, we
need to work with a normal distribution of the H> reduction in
our N regions N(0, o) = [1/(0~27)]exp[x2/ (2 o2)]. First,
we need to find ¢, the value of x above which lies just one
half of one of our N regions (one half because the absolute
value effectively doubles the number of samples in our inte-
gration).

o0 1 2 2 1 1
— e ¥/Q@dy = |1 —erf| =— || = —.
f¢> oN2m 2[ (\/50)] 2N

3D

Next, we set the expected value of the distribution in this
region to be 1 — . This sets the expected value of H, to be
aH, for the most extreme defect (we also have to normalize
for there being only one defect in our sample size). This
defines o.

I
9}

To obtain an analytical expression, instead of solving
equations (31) and (32), we can approximate. First, estimate
that ¢ ~ «a:

X . b2 1 —a?
ety = 2 1% —

(32)

oN2m 27

-
a o2

We can also use a linear approximation for the Gaussian,
so that the integral can be evaluated by calculating the area of
the triangle shown in figure 15. The equation of the line
evaluated at y = 0 determines the length Ax in the figure:

1
N’

e 2 Vdx = (33)

0= 2% 1P (Ax) + ——e 16T, (34)
27 oN2m
This gives Ax = o%/c. Evaluating the integral,
fx N N 1 BE T
a  oN2T 20427 2N
Rearranging,
a? oN
— =In—— (36)
202 av2r
. oN .
N is very large, so In s InN. Solving,
S— 37)

J2InN

Now let us consider the behavior of the cavity at a field
just above the expected vortex penetration field of the worst
defect. Let £ point into the film and 7 be aligned with the
magnetic field. In this case, pairs of pancake vortices will
form at the defect, move apart in y due to the force exerted by
the increasing magnetic field, and then move in the opposite
direction in y as the magnetic field direction reverses. In the
mean time, they will have meandered some distance in x. If
the meandering distance is very small compared to the impact
parameter (approximately 50 nm), the pancake vortex pairs
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are most likely to meet again and annihilate. However, if the
meandering distance is significant compared to the impact
parameter, vortex pairs are likely to get lost, accumulating
over the film.

For this calculation, we will not do a full simulation.
Rather, we will consider a path along y of a vortex pancake
moving from the defect at y = 0 to the extremum y =y, ..,
without any movement in x. We will, however, integrate the
force in x that the pancake would experience along its path,
and calculate what the expected meandering distance would
be from this.

The vortex will have two regions on either side of it in x
at a given time, one with H, ;, and one with H_ ,. The centers
of these two regions are separated by a distance a. The x-
component of the force experienced by the vortex can be
approximated from the gradient in condensation energy
resulting from the difference in the local H.. Magnetic energy
density is given by H?/2p,. We convert this to energy by
multiplying by the volume of a region, a’d.

H?

H? —
L1 2
¢ “2a?d.

38
s (38)

The motion of the pancake is described by Bardeen—Stephen
drag:

mwy = F./d. (39)

Here v, is the x-component of the velocity of the pancake
and 7 is the Bardeen—Stephen drag coefficient, defined by
n = Hy ¢, /p,» Where H; is the upper critical field of the film,
@, is the flux quantum, and p, is the normal resistivity of
the film.

The meandering distance Ax within a region is given by
Ax = vAt, where Ar is the time spent in that region. For
simplicity, we approximate that the vortex moves with uni-
form speed in y, spending equal time in each of the regions
that it travels through, such that Az = %y“ .

Using equation (30) and equation (3§‘)af we can describe
a distribution F, of forces that the pancake would experi-
ence. We observe that taking the difference between the
absolute values from equation (30) produces a normal dis-
tribution:

adch,nominal (O 4 O').

2

(40)

X

Between two regions that are adjacent in x, the pancake
will experience a single value of the distribution of force
values. After it travels a distance a, it will encounter a new
pair of regions and therefore a new force value. We can use
Ax = vAt and equation (39) to find /(Ax?), the rms
wandering distance traveled by the vortex over a distance a:

A = J(F AL @l
dn
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Figure 16. The effect of varying a for fixed o = 0.8 (a) and varying
« for fixed @ =4 nm (b) on the mean meandering distance of a
pancake vortex due to disorder.

Multiply by the square root of the number of steps in a
ymax

(AX?). Use equation (40).

period Neps to find the total rms wandering distance

2
adUHc,nominal ﬂ zymdx

AX?) = 42
(AX?) PR (“42)
Since At = £, from equation (39) and using F = é:—H, we
Vy 0
obtain:
At _ad _ adpy 43)
n Fy, $yAH

Here AH is the difference in magnetic field across the film.
If we are looking just above the penetration field,
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AH ~ aHgd/ ). Equation (43) can also be used to find "“7
1 _ ¢0aHsh

Ymax _

. (44)
a 2fAr - 2fnadu,
Use the definition of 7.
H.
Ymaw . Pu@Fn 4s)
a 2ch2 a>‘/~‘0
Now substitute.
(AX?) = 1 a )\ch, nominal | P, CHsh ' 46)
2VInN  ¢oH fHalp,
We then use Hc,nominal = 2\/;—2”\5
H. i P, aHsh
AX? S c,nominal - . @
B Sy Ha | faavn

We can set our region size a = £ ~ 4 nm. Hy, /H. nomina for
NbsSn is approximately 0.75. N is approximately 10'°, so
m is approximately 1072 We also use He, = 30 T,

= 10 nQm, and H, yomina = 530 mT. For a = 0.8, these

factors give /(AX?) ~ 2.1 nm. Setting this as a standard
deviation for vortex meandering and using Ximp ~ 22 nm
from above gives a result of 11 standard deviations, again
making it extremely unlikely for vortices to escape due to
disorder meandering.

Varying a and o over a reasonable range also gives a
small value for the meandering distance, as seen in figure 16.

In addition to the impact parameter and thermal mean-
dering distance, figure 13 plots the meandering distance due
to disorder using the analytical formulation above. Also
plotted in the figure is a simulation of vortex pair creation and
annihilation in the presence of disorder. In addition to forces
from the applied magnetic field and from the randomly dis-
tributed array of circular defects with radius a'’, the simula-
tion considers the forces of one vortex on the other, and finds
the maximum lateral separation between the pair during a
cycle.

5.4. Interacting vortices, interacting defects

We have presented analyses of thermal meandering and
meandering of a vortex—antivortex pair due to disorder, and
so far, nothing has caused a large buildup of vortices in the
film. We have also performed a preliminary analysis of the
nucleation of many vortices at a defect over the course of an
RF cycle, all of which interact with each other. While an
attractive force exists between vortices and antivortices,
vortices exert a repulsive force on other vortices, and anti-
vortices exert a repulsive force on other antivortices. These
repulsive forces between similar vortex types appear to result
in substantially larger lateral movement, which could lead to
higher rates of non-annihilation. An example video is

7 In the simulation, the defects pin vortices with force that increases linearly
from the defect edge where it is zero, to the center of the defect, where it is a
maximum. The maximum is set such that moving the vortex from the center
of the defect to the edge would require work equal to the condensation energy
of the volume of the vortex core.
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Figure 17. Frames from a preliminary simulation of pancake vortices
(red) and antivortices (blue) being generated at a defect (green) in a thin
film in an AC field. The repulsion between similar vortices causes a

lateral spread. Note the horizontal and vertical scales differ by over a
factor of 100. The horizontal lines are actually circular representations
of the disorder potential; the vortices drift sideways much less than they
traverse vertically. (a) Near zero field, (b) near a local maximum field,
and (c) near a return to zero field, showing the cycle-to-cycle variation.

included as supplemental material [86]; three frames of which
are shown in figure 17. Here the film thickness is 30nm,
parameters are appropriate for Nb;Sn material, and the dis-
order is modeled as 60 pinning sites randomly spread over 0.4
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square microns that exert a force of K ki p, where
Foax = BC2 Lo &d Tpin / 2, k; is a value between O and 1 that
is randomly chosen for each pinning site, and p = #ep /Hyin for
Toep < Tpin and O for 7, > ny,, Where 7, is the distance
between the vortex and the center of the pinning site and #y,
is the pinning site radius, (here chosen to be 2 nm). Note that
the maximum horizontal meandering due to disorder and
interactions is roughly eight nanometers, only a factor of three
less than the impact parameter Xy, suggesting that interac-
tions may be much more dangerous for multiple defects over
many cycles. However, further work on interactions is clearly
needed; it is possible that realistic parameters for the disorder
strength could decrease the meandering, and it is possible that
the distribution of maximum meandering distances near a
defect over multiple cycles could be sub-Gaussian. On the
other hand, it is likely that two defects that both nucleate
pancake vortices and are close enough together that the vor-
tices interact could be dangerous even in the absence of
disorder.

6. Conclusions

This article attempts to make a case for thoughtful, broad
efforts to identify and estimate fundamental physical limits of
materials in parallel with experimental efforts. Our estimates
for the superheating field of pure materials [14, 15] had a
significant impact in the SRF community, we understand, not
because it promised that Nb3Sn could be run at twice the field
of Nb. Rather, we pointed out that the ‘vortex line nucleation’
model was incorrect (see footnote 9). This model, created by
and initially trusted in the SRF community, had provided
discouraging estimates for high x materials, misleading the
field for some years. We also note that our controlled, theo-
retically grounded calculations allow one to explore questions
like materials anisotropy that cannot be gleaned reliably from
phenomenological models (or, indeed, from our own quali-
tative arguments, section 4.2).

We understand that many in the SRF community are
skeptical of the use of bulk (or thick films) of new materials
with higher x, even though the theoretical estimates suggest
significantly improved Hy, as well as lower cooling
requirements. We too were concerned until recently that the
smaller coherence lengths might make the metastable state
more susceptible to vortex penetration. But we believe that
our calculation of the effects of disorder within a particular
model clearly indicates that the reliability of the new
materials increases so rapidly away from Hy, that the effects
of lower coherence length should not be a major concern.
One must always make choices of where to focus resources
(laminates versus bulk materials, coated copper versus
niobium [87]; an interesting review has been recently
published in this special issue [74])—but informed choices
may involve consultation with experts outside the
SREF field.

We are also guardedly pessimistic about the utility of
thin laminates in increasing performance. (a) We are con-
cerned that experimentalists continue to be inspired by the
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very high parallel fields sustainable by isolated thin films
[74, section 9] (see footnote 15), even though these high
fields are irrelevant in GHz applications [76] and likely also
practically inaccessible in any AC application. (b) Dan-
gerous vortices in thin films will not typically reside par-
allel and inside the films, but penetrate in and out of the film
via pancake vortices, whose motion dissipates heat. The
maximum fields reachable without flux penetration for ideal
thin films are rather similar to those of the bulk material
[45]. The flux penetration needed to reach higher fields
produces heating per cycle comparable to that for copper
cavities [76]. (c) We explore extensively the suggestion
[73] that the insulating layers in laminates may act to trap
flux from defects, keeping flux from entering the bulk. Here
the key issue is whether the nucleated pancake vortices
escape from the vicinity of their parent flaw, or annihilate
with their partners at the end of each cycle. Modeling these
as sources for pancake vortices, we agree that neither
thermal diffusion nor disorder are dangerous, but that
interactions between vortices, and between vortices gen-
erated at separate defects, might allow for escape and
unacceptable heating—warranting experimental caution
and further theoretical study.

Finally, a word to our colleagues outside the accelerator
community. This paper is a collaboration of SRF experts from
the accelerator community (Posen, Liepe) and condensed
matter theorists, and we draw heavily on conversations with
both theorists and experimentalists inside the community
(Hasan Padamsee, Alex Gurevich, Nicholas Valles, Takayuki
Kubo, Kenji Saito). These domain-specific experts have
enormous experience in the challenges and issues relevant for
the field; we were told that superheating fields, higher &
materials, anisotropy, disorder, and laminates were the key
questions, and have been guided into studying these in the
correct limits and focusing on the right issues. We can testify
that this teamwork has led to both excellent condensed-matter
physics and efficient, targeted research to improve SRF
performance.
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