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The technologically important viscoelastic structural properties of glasses are largely determined at
the glass transition, where the supercooled liquid falls out of equilibrium. We examine recent experi-
mental evidence that there is a thermodynamic critical point underlying this transition. We argue that
the behavior of glasses can be understood using static and dynamical scaling about this critical point.
We propose a scaling theory of the glass-transition critical point.

I. INTRODUCTION

Why are glasses solid? Crystals are solid because they
have a regular lattice of atoms; crystalline lattices cannot
rearrange except through motions of line dislocations,
which are not present in thermal equilibrium. Glasses
have no obvious long-range order; structurally they ap-
pear much closer to the corresponding liquid phase than
to the crystal. Why they respond rigidly to external
shear remains one of the profound mysteries in
condensed-matter physics.

Glasses respond to external stresses differently then
crystals do. In a crystal, a small external force induces an
elastic response on an acoustic time scale; larger forces
on a crystal produces plastic deformations mediated by
line dislocations nucleated at defects. Glasses appear to
have no plastic flow regime:! since line dislocations have
no meaning in glasses, this is not terribly surprising. On
the other hand, glasses respond elastically on an enor-
mous range of time scales. How rigid a glass is depends
drastically on the frequency of the experimental probe. It
has been known since the middle of the past century? that
glasses under load continue to stretch (roughly logarith-
mically in time) for years, and slowly return to their orig-
inal size when the load is removed. There are similar
responses to temperature shifts and dielectric probes:
unlike liquids and crystals, glasses have internal rear-
rangements occurring on time scales ranging from the
microscopic to the cosmic.

It is becoming clear that explaining the dynamical re-
laxation in glasses will also involve answering the funda-
mental question of why glasses are solid. There will be
two main elements of the final theory. First, and the sub-
ject of this paper, will be understanding the equilibrium
properties of the supercooled liquid.* Many of the
dynamical response properties of glasses have their pre-
cursors in the supercooled liquids: the melt looks like a
glass when measured at high frequencies. The second ele-
ment will be a quantitative theory of how glass-formers
fall out of equilibrium as they are cooled. While it is no
longer believed that the glass has the same properties as
the liquid at a single “fictive temperature,” the properties
are largely set by the history of the glass in a narrow re-
gion of temperature. We are working on the fall from
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equilibrium separately.>® Understanding the glass
transition—the point where the liquid melt falls out of
equilibrium and becomes glassy—demands understand-
ing why the liquid becomes sticky in equilibrium as well
as how it falls out of equilibrium. The glass transition
should provide the key to the dynamic and history-
dependent behavior throughout the glassy phase.

Much of the recent theoretical focus’ on the glass tran-
sition has attempted a purely dynamical explanation of
freezing. This began by the efforts of several groups to
develop a self-consistent mode-coupling theory.2 10 In
these theories, nonlinear terms involving the hydro-
dynamic viscosity act to increase the effective viscosity:
the resulting feedback leads to a theoretical temperature
at which the viscosity diverges. It is no longer believed
that mode-coupling theories can describe the freezing
transition itself,” although the theories may be applicable
to glass-forming liquids at temperatures well above the
experimental glass transition.!® Second, there has been a
flurry of simple models that exhibit a dynamical transi-
tion.!!'™13 These models also provide explanations for the
frequency response at fixed temperature (the “stretched-
exponential” relaxation found experimentally in glasses).
Mode-coupling theory will remain a valuable tool at high
temperatures; the simple models will continue to have ex-
planatory power for the ac response in supercooled
liquids. It is however the view of the authors, especially
considering recent experimental work!*!® discussed in
Sec. II, that the transition is a traditional second-order
phase transition with a static as well as a dynamic com-
ponent.

Our theoretical approach to the subject, reported in a
preliminary form in an earlier publication,!® reflects a re-
turn to older, more traditional pictures. First, several
years before second-order phase transitions were under-
stood in any detail, Adam and Gibbs!’ presented a theory
of the glass transition with a diverging correlation length,
driven by the vanishing of configurational entropy. The
“configurational entropy” is given by the number of
metastable glassy atomic networks (as opposed to the vi-
brational entropy of small oscillations within the net-
work). It is usually equated to the “‘excess entropy”: the
difference between the entropy in the supercooled liquid
and in the corresponding simple crystalline phase. Adam
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and Gibbs noted that relaxation in the supercooled liquid
should necessarily involve rearranging a volume with at
least kzln2 worth of configurational entropy, allowing for
two states between which to shift. As the configurational
entropy vanishes this volume diverges; they argued then
that the barrier to relaxation grows with the volume and
thus they explained the diverging viscosity. This picture
has been supported by the rough correspondence, in a
wide variety of systems, between the Kauzmann tempera-
ture Ty where the excess entropy extrapolates to zero
and the temperature!® T, where the viscosity extrapolates
to infinity.

We are inspired by this picture, but need to refine it.
Clearly, the diverging length in the Adam-Gibbs picture
is indicative of a second-order phase transition. The con-
temporary understanding says that fluctuations are im-
portant on both sides of such a transition: the
configurational entropy should already build up below
the transition temperature. In particular, in our theory
the specific heat will not simply have a discontinuity at
the transition, but will have a cusp: the configurational
entropy AS = f ¢/T dT at the transition will be deter-
mined in part by the ratio of the amplitudes of the cusp
above and below the transition. Also, the cusp will not
be correctly incorporated in typical extrapolations of the
excess entropy from the liquid side. Thus in our work
there is no natural relationship between Ty and T,.

The second traditional picture'® on which we draw was
inspired by the freezing of hard-sphere liquids, and ex-
plained the glass transition as a vanishing of “free
volume.” Early versions of the theory had a sharp transi-
tion; later versions had a crossover back to Arrhenius be-
havior. This theory had semiquantitative predictive
power in some systems; on the other hand, no upswelling
of experimental density anomalies has occurred, and it is
hard to see how the free-volume theory could be applic-
able in detail to most glasses. In both the entropy and
the free-volume theories, the sluggish behavior of glasses
was attributed to the vanishing of an equilibrium order
parameter, and larger and larger regions were involved in
an elementary relaxation process.

The critical phenomena approach to the glass transi-
tion was not ignored in the following years. There have
been a variety of approaches attempting to explain the
diverging viscosity and slow growth of correlations in
terms of an underlying phase transition. To mention a
few, Kléman has a theory of interacting line disloca-
tions,?® Safran has a theory of competing polymorphic
phases,21 Kirkpatrick, Thirumalai, and Wolynes have a
replica mode-coupling theory,?? Palmer and Stein have a
first-order renormalization-group theory,?® and Goldbart
and Goldenfeld have a glassy theory of rubberization.?*
We find some of these ideas appealing on theoretical and
experimental grounds, but in this paper we try to discuss
scaling behavior motivated by experimental data, in-
dependent of any detailed mechanism. Souletie? has re-
cently proposed an alternative scaling analysis, based on
traditional power-law critical-slowing-down rather than
thermally activated transitions. We discuss in Sec. II our
experimental reasons for believing in thermal activation,
although clearly the dust remains unsettled.
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In Sec. II, we summarize both old and new experimen-
tal work on the glass transition, and interpret it within
our theoretical framework. We discuss in detail the re-
cent work on FeEr,H,, by Fecht, Fu, and Johnson,'*
which managed to show a cusp in the specific heat by
raising the temperature of a complex crystalline phase
until it became amorphous. We interpret their experi-
ment as having approached our proposed second-order
transition from below. We argue (with hindsight) that
heating from the solid phase can allow the transition to
be approached much more effectively than cooling from
the liquid side. We discuss the diverging viscosity in the
supercooled liquid, the range of behaviors found in vari-
ous systems (from strong to fragile), and recent work by
Dixon et al.’> showing that the diverging relaxation
times do not cross over back to an Arrhenius law. Our
theory is that the supercooled liquid is approaching a
second-order transition into a solid phase, perhaps a crys-
talline or quasicrystalline phase. This new critical point
is unusual mostly in that the dynamics is apparently not
diffusive (time scales diverging with power laws near T,)
but rather is activated (with exponentially diverging time
scales because of diverging barrier heights).

In Sec. III we outline a renormalization-group (RG)
framework for understanding the glass transition.
Within the framework of second-order phase transitions
we have attempted to form the simplest theory which is
compatible with the observed behavior. We begin by re-
viewing the ordinary RG description of the ordered
phase. Flipping the magnetization in a low-temperature
ferromagnet, for example, demands crossing an energy
barrier which diverges in the thermodynamic limit: the
zero-temperature RG fixed point describing the fer-
romagnetic phase has singular dynamics. We propose
that the glass transition can be understood as a finite-
temperature transition dominated by a zero-temperature
RG critical point. Just as in the ordered phase of a fer-
romagnet, thermal fluctuations are less and less impor-
tant as the lengths get longer, and barrier heights diverge
as the correlation length grows.

II. SCALING NEAR THE GLASS TRANSITION

A large variety of liquids will form glasses when cooled
quickly enough to avoid crystallization.?® Covalent
glasses (windows), polymer glasses (Plexiglass), metallic
glasses quenched on rotating copper drums, and organic
molecular glasses (hard candy) all share the same behav-
ior on cooling from the melt: The viscosity diverges rap-
idly, the material falls out of equilibrium and freezes into
a molecular configuration typical of the supercooled
liquid.?’

Our work on this problem in the past few years'® has
been based upon the assumption that there is a common
explanation for these translations, and that the glass tran-
sition reflects an underlying second-order phase transi-
tion from the liquid to some rigid phase. Last April, Fig.
1 appeared in the literature: Fecht, Fu, and Johnson'*
had measured a cusp in the specific heat on heating from
a crystal to an amorphous, glassy state. The classic sig-
nature of second-order phase transitions are cusps
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(power-law or logarithmic singularities) in the specific
heat, susceptibility, or other thermodynamic functions.
The experimentalists convincingly associated the cusp
with the destruction of the crystalline Bragg peaks.

Our interpretation of this experiment is, of course, not
the only one. Fecht, Fu, and Johnson interpret it as a
transition between a crystal and an ideal glass state. We
interpret the high temperature phase as a sluggish liquid.
A stronger objection is that the whole connection with
the glass transition may be missing. The system could be-
come amorphous through a simple instability of the com-
plex crystalline configuration, rather than a competition
between entropy and energy. The peak could be a per-
versely smeared first-order transition. The rapid increas-
ing partial pressure of hydrogen could be dynamically
disordering the system (the constant-concentration sam-
ple shown in Fig. 1 apparently blew up somewhere near
where the data ends). Finally, one must note that it is
suspicious that a similar specific heat cusp has not been
seen in other materials.

More experimental work is needed, but this data clear-
ly provides tentative support for our assumption of a
second-order transition, at least for Fe,ErH,. Why is it
such a surprise? Consider Fig. 2, a tabulation of specific
heats measured on cooling through the glass transition.?8
On the one hand, one can see that the specific heat drops
substantially as each material falls out of equilibrium. As
the molecular configurations freeze in, the contribution
to the specific heat from their rearrangements disappears,
and the specific heat falls to roughly that of a crystal. On
the other hand, there is no indication of a cusp or singu-
larity in the specific heats in Fig. 2.%° Until Fecht, Fu,
and Johnson there has been little convincing indication of
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FIG. 1. The specific heat of Fe,ErH; 4, measured on heating,
during the transition from a crystal to a glass, from Fecht, Fu,
and Johnson (Ref. 14). The Laves phase Fe,Er crystal was
doped with hydrogen and then heated at a scanning rate of 20
K/min. On cooling, the transition is “kinetically sluggish” and
smeared. The peak can be shifted down 5 K by preannealing.
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static critical fluctuations in any glass transition: no
diverging length scales and no power laws.

We suggest in this paper that the critical point under-
lying the glass transition is a second-order melting transi-
tion of a rigid phase, crystal or quasicrystal. Figure 3
shows our proposed phase diagram, where the vertical
axis represents increasing temperature 7 and the horizon-
tal axis represents the increase of a second control pa-
rameter F. The parameter F might represent a tunable
frustration in a theoretical model; it represents hydrogen
concentration in Fe,ErH, .

There is an argument due to Landau® that transitions
from liquids to crystals should be first order. The argu-
ment starts by generating a Taylor expansion for the
coarse-grained free energy of the system, and continues
by showing that a third-order term in the amplitude of
the crystalline order is allowed by symmetry. This leads
immediately to a temperature range in which local mini-
ma in the free energy exist with both liquid and crystal-
line order: a first-order transition. However, Landau’s
argument ignores the possible importance of fluctuations.
Thermal fluctuations will be important on short length
scales; the effective free energy at long length scales can
be renormalized in singular ways by the short length fluc-
tuations. Indeed, the Landau criterion is known to break
down in several models.

In particular, crystalline melting in two dimensions is
thought, like Fig. 3, to have both a first-order and a con-
tinuous region. The continuous melting transition
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FIG. 2. The specific heat, measured on cooling, shows little
indication of an impending second-order phase transition. Here
is compiled the specific heats for a few glass-forming materials,
measured on cooling. The horizontal axis is in units of T, the
temperature at which the viscosity diverges in the Vogel-
Fulcher fit. The vertical axis gives the specific heat scaled by its
value at Ty. 32 : B,0; & : 0.6KNO;—0.4Ca(NO;),. X: o-
Terphenyl. The breaks in the curves occur when the materials
fall out of equilibrium; SiO, (not shown) falls out of equilibrium
around T/T,=5.4 (Ref. 28).



4946

proceeds in two stages, with an intermediate hexatic
phase.3! The control parameter corresponding to F for
two-dimensional (2D) melting is the core energy of the
defects mediating the transition.>? The transitions are in
the Kosterlitz-Thouless universality class, and have rath-
er unusual critical properties. Two dimensions teaches us
that continuous melting is possible; however, it also re-
minds us that the simplest scenario is not always the
correct one. Nonetheless, in this paper, we confine our-
selves to the simplest picture.

While the static behavior of a glass may not show criti-
cal fluctuations when cooled through the glass transition,
the dynamic behavior is striking. The most obvious
property about liquids as they cool into glasses is the
dramatic rise in their viscosities. Figure 4 shows the
viscosity of a variety of glass-forming liquids.?® Notice
first the 17 order-of-magnitude vertical scale: the viscosi-
ty is growing exponentially as we reduce the temperature.
This diverging viscosity is characteristic of glass-forming
liquids. Seen another way, it is because the relaxation in
these liquids becomes so sluggish that they fall out of

A Liquid
Glass Quench
S~
~O
T \é\\\ .—Tg
Fecht et al. SO
> iy N
\,
\
\\
Crystal \\
\

|

frustration (or <H>)

FIG. 3. Proposed phase diagram for glass-forming materials.
The vertical axis is temperature; the horizontal axis represents
some parameter which varies the frustration in the material (hy-
drogen concentration for Fecht, Fu, and Johnson, Ref. 14). The
solid boundary between the crystal and liquid phases represents
an ordinary first-order transition line. The dashed boundary
represents a hypothetical second-order crystal-liquid transition
line. The dynamics in these materials should be exponentially
slow as the transition is approached. Approaching the transi-
tion from above (glass quench) inevitably leads to the system fal-
ling out of equilibrium at rather short correlation lengths, thus
forming a glass rather than a crystal or a quasicrystal. We be-
lieve that Fecht, Fu, and Johnson managed to approach the
transition from below; the dynamics is also sluggish, but the
liquid phase must eventually be formed. Note that the “crystal-
line”” low-temperature phase depicted here probably is unrelated
to the simple equilibrium crystal phase formed at high tempera-
tures if the system is not supercooled. We imagine the transi-
tion is to a complex crystalline or quasicrystalline phase, and
that the simple crystal is dynamically inaccessible and unimpor-
tant to the glassy behavior.
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equilibrium and form glasses.

The natural explanation for exponential dependence on
temperature is activated transport. Figure 4 is an Ar-
rhenius plot, for which thermally activated relaxation
n<ef/kT leads to a straight line. Silicon dioxide does,
indeed, form a straight line; however, the other materials
clearly form a continuous family of glass-forming liquids
with increasing curvature. The most straightforward in-
terpretation of this curvature is that the barrier E(7T) is
growing as the temperature decreases.>> This interpreta-
tion is supported by the behavior of the viscosity after the
liquid falls out of equilibrium (most easily measured by
increasing the cooling rate). The viscosity of a rapidly
cooled liquid falls below its equilibrium form and
straightens on the Arrhenius plot, consistent with a bar-
rier height which freezes in when the liquid falls out of
equilibrium. In addition, it is thought that this low-
temperature slope on the Arrhenius plot for the glass
grows steeper with decreasing cooling rate, indicating
that the barriers of the equilibrium fluid are growing with
decreasing temperature.36

Given that this picture is correct, an obvious question
to ask is how large the barriers are where the system falls
out of equilibrium near T,. It is an easy exercise to show
that the energy barrier at a temperature T is given by
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FIG. 4. Viscosity 7, in poise, for liquids above the glass tran-
sition (Ref. 28). The vertical axis is log;o(7); the glass transition
T, on the right is defined as the temperature at which the
viscosity equals 10! poise (at which point it takes 2.5 h for an
artifically strained liquid to relax to 10% of the strain) (Ref. 33).
The solid lines are fits to the Vogel-Fulcher law in the form
In(n)=DT,/(T —Ty)+b. O Si0,, T,/To=5.4. =
Na,0—28i0,, T, /T;=1.63. +: Propanol, T, /T;=1.44. X
CaAl,Si,0g, T, /Ty=1.32. 0O: 69ZnCl,-31PyHCI,
T,/Ty=1.08. &: Propylene carbonate, T,/T(=1.14. &
0.6KNO3;—0.4Ca(NO;),, T,/T;=1.10. X: o-terphenyl,
T, /To=1.14. The materials like o-terphenyl with large curva-
tures on this plot are characterized in the literature as “fragile,”
the materials like vitreous silica SiO, with nearly Arrhenous be-
havior are called “strong.” (Ref. 34).
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E(T)=kyT{In[n(T)]—In[n(T=w)]} .

If we examine the ratio of the energy barriers at T, to
those at T = «, we discover that even for the materials
like o-terphenyl which show the most curvature in Fig. 4,
the barriers have increased by the rather modest factor of
about 5 or 6. Thus, the barriers, though increasing, have
not gotten very large.

Viscosities of glass-forming liquids are usually fit phe-
nomenologically to the Vogel-Fulcher’” form,*® which
corresponds’® to
T—1, |

E{(T)=DTo | ——

(1)

Here D is a dimensionless parameter which characterizes
the curvature of the Arrhenius plot; D in Fig. 4 varies
from 164 (for SiO,) to 4.3 [for 0.6KNO;—0.4Ca(NO;),].
If we identify T, with an underlying critical point, we
discover that we never get very close to it: reduced tem-
peratures (T, —T;) /T, vary from 0.8 to 0.07. Good ex-
periments on traditional second-order phase transitions
must span several decades of reduced temperature (e.g.,
1071-107%. Thus it is not surprising that compelling
evidence for compelling evidence for critical fluctuations
and diverging length scales have (until Fecht, Fu, and
Johnson'*) never been seen in glasses: the atoms get
frozen into position far from the critical point while the
correlation length is still short.

Properties with power-law singularities are typical of
second-order phase transitions. In ordinary dynamical
critical phenomena, the time scale diverges with a critical
exponent z:

T - TO ‘

T (2)

T==T,

The critical exponent is universal, but the prefactor 7, de-
pends on the material. The Vogel-Fulcher law form for
the barrier heights (1) has the same properties: the pre-
factor D depends upon the material, while the exponent is
assumed to be universally — 1. The time-scale divergence
for ordinary critical points is weak enough that experi-
mentalists with patience can keep their systems in equi-
librium until quite large correlations have developed; the
divergence at the glass transition makes patience ir-
relevant.

Have phase transitions with diverging barrier heights
been studied in the past? Not until recently. There are
two reasons for this: one theoretical and one practical.
Theoretically, ‘“ordinary” renormalization-group fixed
points do not allow the energies to be singular. It is the
singular part of the free energy which is assumed to reach
a fixed point as the system is coarse grained: other quan-
tities will diverge, but the free energy contained in a
correlated region will reach a scaling limit of order kT.
This results in the hyperscaling exponent relation, which
will be discussed in more detail in the next section.
Hyperscaling is indeed a typical feature of most known
transitions, but it is violated, for example, by the Ising
model in spatial dimensions greater than four. Systems
which violate hyperscaling are awkward to discuss
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theoretically; one must introduce singular scaling func-
tions and “dangerous irrelevant variables.”* (It is also
possible that our transition might obey hyperscaling for
equilibrium energy fluctuations, but that the barriers to
relaxation might diverge.*!)

The practical reason these transitions have not been
studied is that phase transitions with diverging barrier
heights are almost impossible to observe. Diverging bar-
riers have cropped up in the study of randomly disor-
dered systems, in particular in the random-field Ising
model.*»* The random-field Ising model had such slow
relaxation that a rigorous proof** was necessary to con-
vince some investigators that the ground state in three di-
mensions was ferromagnetic. The anthropic principle in
cosmology states that universes whose fundamental con-
stants are incompatible with intelligent life never get
studied. The same principle appears to apply to critical
phenomena. Phase transitions with diverging barrier
heights have exponentially slow relaxation; in any experi-
ment on human time scales they fall out of equilibrium
far above their critical points into glassy states. Thus,
most recognized phase transitions have nonsingular bar-
riers to relaxation.

There is no particular reason to believe that the critical
exponent for the divergence of barrier heights in glasses
is —1 [assumed in the Vogel-Fulcher law (1)]. In the
renormalization-group analysis of the next section, we
will show that this exponent should have a universal
value: E(T)=|(T —T,)/T| ™%, independent of material.
In Fig. 5 we replot the viscosity data on a scale which
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FIG. 5. The viscosity data of Fig. 4 replotted here with a
different x axis, to test the assumption that the barrier height
scales with reduced temperature with the exponent —6v=—1.
The straight lines are fits by the Vogel-Fulcher form
In(9)=DTy/(T —Ty)+b. One can notice in the lowest two
curves (X and # ) that the data systematically oscillates
around the best fit.
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makes the dependence (1) into a straight line. There
seems a hint of a systematic bias in the bottom two
curves (which get closest to the critical point); the devia-
tions suggest higher critical exponents and even lower
transition temperatures. The fits, however, appear good,
and one should hesitate to draw any strong conclusions
using data so far from the critical point.

One imagines that the underlying critical point might
be at zero temperature. In Fig. 6 we attempt to fit the
data allowing a variable critical exponent but forcing the
transition temperature to zero. The necessary critical ex-
ponents range from one to eight. While it is not impossi-
ble that we have many universality classes, T, =0 seems
an unpromising direction for exploration.

If the relaxation near the glass transition is so sluggish,
how do we explain the observed cusp in the specific heat
of Fecht, Fu, and Johnson shown in Fig. 1?7 Surely they
should have fallen out of equilibrium as well. Most
second-order phase transitions show critical fluctuations
that are rather symmetric around 7,. Why is heating
better than cooling in the approach to the glass transi-
tion?

Fecht, Fu, and Johnson are indeed far out of equilibri-
um at their measured T,. Their measured cusp is not an
equilibrium measurement of the specific heat. It is not
reversible; on cooling, the transition is ‘“kinetically slug-
gish and smeared over the entire temperature range.”'*
Of course if this had not happened it wouldn’t have been
a glass. More important, on annealing just below T,
(measured), cooling to room temperature, and reheating,
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FIG. 6. The viscosity data of Fig. 4 replotted here with a
different x axis, to test whether a critical point underlying the
glass transition might occur at 73 =0. Given the limited range
of temperatures and the distance from the critical point, the
viscosity data for each material can be fit by a power law
Inp< A +C/T2 B =4 would be a straight line on this plot.
The exponents range from one to eight, as shown by the upward
and downward curvatures on this plot. It would seem that a
nonzero critical temperature is indicated.
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the cusp reappears at a new temperature shifted down-
ward by 5 K. Equilibrium phase transitions are by
definition not history dependent. However, out of equi-
librium does not mean unimportant: their measurement
clearly indicates strong fluctuation precursors in the crys-
talline phase. Such precursors are not observed in ordi-
nary first-order melting, even if the crystal is superheat-
ed.

Why is heating from the crystal better than cooling
from the melt? The key difference is that the system
must eventually melt on heating, but need not ever crys-
tallize on cooling. More formally, the high temperature
phase has no broken symmetry: all liquidlike fluctuations
in the crystalline phase can join smoothly into the final
liquid phase. The crystalline phase has both broken
translational symmetry and broken rotational symmetry.
Various crystalline fluctuations in the liquid will need to
reorient to join into a single crystal (Fig. 7).

The picture we are presenting, of crystalline fluctua-
tions freezing into a glass, demands an immediate defense
on three fronts. First, microcrystalline models for glasses

108 sec
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T/To

FIG. 7. Relaxation times around the glass transition, as given
by the primitive fictive temperature model described in the text.
The dotted curve shows the equilibrium relaxation times for the
fictive temperature model. The equilibrium relaxation in the
rigid phase involves only small fluctuating regions inside a sys-
tem with long-range order, as illustrated by the first inset (a).
The solid curve gives the relaxation times on heating: there is a
lag, but eventually the system must melt into the uniform liquid
phase with only small regions of local order [inset (c)]. The
dashed curve shows the relaxation times on cooling. As shown
by inset (b), our picture of the glass is one of small domains with
various broken symmetries. The barriers to relaxation are those
needed to reorient these domains to match one another. They
are given not by the equilibrium properties at the current tem-
perature, but rather by the barrier heights at the temperature
T at which the system fell out of equilibrium. The net result is
that heating from the crystal takes us from equilibrium state (a)
to equilibrium state (c), but cooling from the melt takes us from
(c) to the nonequilibrium glassy state (b).
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were abandoned years ago on structural grounds.*’ At
least for network glasses, any microcrystals would have
to be rather small and strained to be compatible with the
structural probes. Indeed, the simple network glasses are
typically “‘strong” (Fig. 4), falling out of equilibrium par-
ticularly far from the transition where their correlation
lengths ought to be on atomic length scales. We are not
proposing microcrystals as a practical structural descrip-
tion; indeed, we would not dignify our tiny correlated re-
gions with the term. Our emphasis is not on structure,
but on finding the underlying explanation for the transi-
tion.

Second, although second-order phase transitions suffer
critical slowing down near T,, they often speed up again
in the low-temperature broken symmetry phase. The
various broken symmetry regions coarsen into larger and
larger clusters. This coarsening process can be fairly
sluggish, but is certainly not compatible with the ex-
tremely sluggish relaxation in glasses.*® In the traditional
system, there are no barriers which diverge with the coar-
sening length scale in the low-temperature phase: the
power-law growth of the length scale with time is con-
trolled by the diffusive motion of interfaces. It is thought
in spin glasses*’ that the dynamics in the low-temperature
phase has barriers which diverge with the length scale.
We have results*® indicating that similar diverging bar-
riers also occur during domain coarsening in the low-
temperature phase of the Ising model with weak antifer-
romagnetic second-neighbor interactions. We believe
that the low-temperature phases of many models—
including glasses—will show such sluggish coarsening.
(We discuss the singular dynamics of the low-temperature
phase more fully in the next section.) Thus the dynamics
can stay slow even at temperatures well below the transi-
tion temperature.

Third, first-order transitions have broken orientational
symmetries, but large single crystals can be grown. Why
is the low-temperature phase in glasses so much more
elusive? At a first-order transition, large single crystals
are typically grown by placing a small seed crystal inside
a supercooled melt. This method depends completely on
the nucleation and growth patterns typical of first-order
transitions: fluctuations in the melt are rare, so by hav-
ing only one crystalline nucleus later reorientations are
avoided. Indeed, if one quenches through a first-order
transition, one does get microcrystalline patterns which
do not coarsen substantially after they are formed.*

Let us return now to the experiment. How can we test
our ideas of diverging barrier heights and broken sym-
metries against the data in Fig. 1? Unfortunately, we do
not have a statistical mechanical model for the glass tran-
sition yet. We would be delighted to have a model with
many degrees of freedom exhibiting a phase transition
with diverging barrier heights, to compare with the ex-
periment. For now, we can only see if the crude picture
is applicable, placing the ingredients in by hand.

We are inspired by the partial success of the fictive
temperature theories of glassy behavior.’”® In these
theories, the properties of the glass are described as the
equilibrium properties of the liquid at a temperature T,
roughly where the melt fell out of equilibrium. The com-
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plicated behavior under annealing and under various
external conditions during the quench are presumed to be
described as shifts in this single parameter. While this is
surely not correct, it does capture some of the behavior
rather well.

In our approach, T will describe the critical proper-
ties both on heating and on cooling: T < T, < T will de-
scribe a superheated crystalline system,’! while
T < Ty, < Tg will describe a glass. T will lag behind the
real temperature 7, and will drift toward T with a rate
constant which is thermally activated over a barrier
E(T,Tp):

*E(T,TF)/kBT(T_TF) ‘ 3)

Tr=70e
In equilibrium, the barrier height to relaxation E (T)
will diverge at a critical point T,. We assume a Vogel-
Fulcher form (1):
-1
T—T,

Eo(T)=DTy | ———

on both sides of the transition.’> The actual barrier
height to relaxation depends on the current nonequilibri-
um structure (represented by Ty) as well as the equilibri-
um structure for the current temperature 7.%° Here is
where the asymmetry between the two phases comes in.
In the low-temperature glass where T < T}, relaxation
can only occur if regions of size given by T can reorient:
the barrier is

E(T,Tp)=E(Tp), T<Tp.

In the superheated crystal, local regions can melt when-
ever they are bigger either than the equilibrium or the
fictive correlation length, so

E(T,Tp)=min(E (T),E(Tf)), T>Tx .

Thus when the temperature happens to be near T, but
the fictive temperature has been left at a lower tempera-
ture, the local melted regions are still small, and the bar-
rier is given by E. (Tp). When the fictive temperature is
near T, but the real temperature is much higher, the
large correlated regions need not cooperate to melt, as
smaller domains can melt independently, and the barrier
is given by E (7).

Finally, we need to introduce the equilibrium specific
heat by hand. It will have a component ¢y ationat Which
is unrelated to the glass transition, and a singular piece
with the form

-—a

T—TO
—2| +B, T>T,,

TO
Cal D= ) 7a+B' T<T
T, ’ o

This form is standard in critical phenomena; the ex-
ponent a and the amplitude ratio 4’/ A are universal (in-
dependent of which material is undergoing the phase
transition).”® We follow Fecht, Fu, and Johnson in
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using a logarithm, which is formally given as the limit
a—0. [Thus for T>T, we write c(T)
=—AIn|(T—T,)/Ty|+B.] In the spirit of the fictive
temperature approximation, the singular part of the
specific heat will enter and leave the sample not as the
temperature changes, but as the fictive temperature
changes. The measured specific heat is the rate of energy
flow per unit temperature, which thus is given by

cmeasured( T) = ceq( TF X TF /T) + Cvibrational *

This will obviously force a cusp when T,=T, on heat-
ing; in real systems, the buildup of large-scale sluggish
fluctuations will be cut off as the system melts locally,
and the cusp will be rounded.

What do we learn from this exercise (Fig. 8)? First, it
illustrates the asymmetry between heating and cooling:
one never reaches the transition when cooling, while on
heating one does melt, albeit at an elevated temperature.
Second, the measured singular contribution to the
specific heat on cooling (multiplied by 10 in Fig. 8) is
small. The system falls out of equilibrium long before the
transition: there is a drop in the specific heat on cooling,
but no visible cusp. The exercise thus reconciles us to the
differences between Figs. 1 and 2. Measured on heating,
we expect a cusp as the crystal melts; measured on cool-
ing, we expect a drop without a cusp.

In the next section we sketch a proposed
renormalization-group description of the critical point
underlying the glass transition.

O "7 T T T T T T T T

40 — —

Specific heat (arb. units)

FIG. 8. “Specific heat,” for the one-parameter fictive temper-
ature model described in the text. The dotted curve is the equi-
librium specific heat [Eq. (3)]. The dashed curve is the predicted
specific heat on cooling; the system becomes trapped at a fictive
temperature Tp=1.17T, and no cusp is observed. The solid
curve is that predicted on heating at a dimensionless rate of
v /7o=10713; the cusp is larger and narrower than the equilibri-
um one and is shifted upward in temperature to 7,
(measured)=1.19T,. The parameters were chosen arbitrarily as
D =35, w,=10", =0 (log), and 4 = A'=B =B’'=1. Only the
singular (configurational) part of the specific heat is plotted:
there will be a vibrational background which remains in equilib-
rium and does not depend on T /T.
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III. TOWARD A THEORY OF THE GLASS TRANSITION

Suppose that we accept that the nonequilibrium forma-
tion of glasses reflects an underlying equilibrium second-
order phase transition. We now should search for a
tractable model that describes the universal features of
the glass transition. What properties should this model
have? Two properties are self-evident.

(1) No disorder. Much progress has been made in the
study of systems with externally imposed disorder. Lo-
calization in doped semiconductors is a good example:
the dopant atoms are implanted at random, and the con-
ductivity depends on the competition between hopping
and a fixed impurity potential. Glasses have no disorder
in their Hamiltonians: the disorder is frozen in as the sys-
tem falls out of equilibrium. Many disordered systems
have ‘“‘glass transitions” as some parameter is varied: spin
glasses and random-field models freeze as the tempera-
ture is lowered, charge-density waves stop sliding as the
external field is lowered, disordered electrons stop con-
ducting as the Fermi energy is lowered through the mo-
bility edge, and networks fall apart as the fraction of
bonds is lowered through the percolation threshold.
These thresholds, although superficially sharing many
features with the glass transition, are all driven by an
external disordering field. We must find a different mech-
anism for real glasses.

(2) Small correlation lengths. Glasses fall out of equi-
librium quickly. While there have been occasional re-
ports of glass experiments showing intermediate-range
correlations, the distinctive property of glasses is that
their structures look much like the supercooled liquid.>
Thus if the equilibrium theory involves diverging correla-
tion lengths, it must also provide a qualitative explana-
tion of why the correlation length in glasses never grows
to observable size when cooled on laboratory time scales.
A useful theory of glasses will also need to deal with the
fall from equilibrium and the history-dependent proper-
ties.>®

Two necessary features of the eventual model were ex-
tracted from experimental evidence, as presented in the
last section.

(3) Growing barriers to relaxation. The relaxation
times in glasses (as measured by ultrasonic attenuation,
dielectric loss, viscosity, and specific heat) change by over
14 orders of magnitude within a factor of 2 in tempera-
ture (Fig. 4). As noted in the last section, this is naturally
attributed to thermal activation, except that the barriers
to relaxation are growing as the temperature is lowered.
In ordinary critical phenomena, just as there is only one
diverging length scale, there is only one energy scale—
the temperature. There is something different about the
critical point in glasses that allows an energy scale to
diverge at the critical temperature.

(4) Phase transition at a nonzero temperature. As
shown in Fig. 6, the experimental data is not consistent
with a divergence with a critical temperature of T, =0.

Finally, there is a feature which has been central to
theoretical approaches to metallic glasses’®>’ and other
glassy materials*®>® in the past decade and a half.

(5) Frustration. Frustrated systems have local low-
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energy structures which cannot be fit together to fill
space. The classic example is fivefold symmetry.*’ Fig-
ure 9(a) shows a hypothetical two-dimensional liquid
where fivefold rings are energetically favored. At the

OO

@,

FIG. 9. (a) Sketch of the traditional picture of frustration in
glass formation. In this two-dimensional representation, the
glass is trying to form fivefold symmetric structure. Atoms in
low-energy local configurations are drawn more darkly. Be-
cause the low-energy local structure cannot be repeated over all
space, strains build up, inhibiting the growth of the local struc-
tures. This does not prevent these tightly ordered regions from
gaining energy by grouping into larger clusters. The frustration
means, however, that there will be less energy gained by increas-
ing the size of an ordered region. This means the outermost
atoms are held more loosely, and thus that the interactions be-
tween the ordered regions become smaller. The system can con-
tinue to order by forming larger associations of more and more
weakly interacting regions. (b) Our picture of the same local re-
gion as in (a), after the correlation length has doubled. Notice
the central upper fivefold cluster in (a) had to be disrupted in or-
der to allow the other three regions to associate more closely.
Since this cluster was initially tightly ordered, we imagine that
destroying it necessarily involves an energy cost. That is, while
there is a net gain in energy in going from (a) to (b), there is a
necessary intermediate configuration in which the tightly or-
dered cluster energy is lost and the longer-range ordering ener-
gy has not yet been regained. Furthermore, as the correlation
length increases, the size of the ordered regions which must be
destroyed becomes larger and so the barrier heights increase.

temperature shown, the dark rings are to be considered-
energetically quite stable. The bulk of the material
remains disordered because the existing fivefold rings in-
terfere with the formation of new ones. The frustration is
embodied in the fact that no arrangement of atoms allows
all bonds to be part of fivefold rings.

There are a number of models which have several of
the above properties. The Frenkel-Kontorova model in
one dimension®! and the XY model in two dimensions,®
when incommensurately frustrated, have short correla-
tion lengths when cooled at a finite rate; however, they
have their critical points at T;=0. (For the Frenkel-
Kontorova model, the correlation £ grows with decreas-
ing cooling rate ¥ only as £~In[In(1/y)]. This incredi-
bly slow growth is a result of the fact that the energies of
the equilibrium defects present at a given correlation
length get very small as the correlation length increases,
while the energy barriers to relaxation remain roughly
fixed.®! Such a separation of energy scales between equi-
librium energy differences and energy barriers is a crucial
ingredient in our picture of glasses.) The three-
dimensional random-field Ising model has frustration, a
small correlation length, diverging barriers to relaxation,
and a nonzero phase transition to an ordered ferromag-
netic state; however, it has externally imposed disorder.

One must note that frustrated spin models without ran-
domness have been extensively studied®® and, apart from
our recent work to be discussed below, none have shown
glassy dynamics or diverging barriers to relaxation. We
believe this is because these models, although frustrated
at the microscopic level, lose this frustration upon coarse
graining: After the local degrees of freedom work out
their uneasy compromise, the blocks assemble happily
into regular structures. Frustrated one-dimensional con-
tinuum models®® have shown glassy behavior in their
low-energy excitations, but no extremely long time scales
have been reported. To understand glasses we propose to
look for models closer in spirit to the inflation models of
quasicrystals, where the frustration is maintained (albeit
renormalized) when the system is inflated.

We have recently*® found a very simple frustrated spin
model—the three-dimensional Ising model on a cubic
lattice with added weak antiferromagnetic next-nearest-
neighbor bonds—which does exhibit glassy dynamics
due to energy barriers that diverge with length scale.
This system still differs from our picture of a glass in that
the slow dynamics do not occur as one approaches a criti-
cal point and the diverging length scale is not the equilib-
rium correlation length. Rather, they occur only when
the system is far out of equilibrium, during the coarsen-
ing process, and the diverging length scale is the charac-
teristic size of the domains in this coarsening system.
Specifically, we find that the size of the ordered domains
increases only logarithmically in time during the coarsen-
ing process following a quench from high to low tempera-
tures, provided the final temperature is below a “corner-
rounding” temperature which is proportional to the
amount of frustration (i.e., the strength of the next-
nearest-neighbor bonds).

There are well established models for metallic
glasses®® 5 which could have all of the above five proper-
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ties. The physical origin of the frustration is the natural
tendency for metallic liquids to form icosahedral local
clusters. These icosahedral clusters cannot pack to fill
space (quasicrystals have at least two different local clus-
ters). The frustration can be neatly parametrized by a
curvature: the atoms would pack into a regular Euclidean
solid on the surface of a hypersphere in four dimensions
of the appropriate curvature. Substantial progress has
been made in describing the local order in metallic glasses
using these ideas.®® Nonetheless, their glass transitions,
remain intractible (see, however, Ref. 67). Related
ideas®® have been proposed for tetrahedrally bonded
amorphous semiconductors, again with the curvature as
the controlling frustration. What connection one can
draw with the Laves phase Fe,ErH,,!* apart from com-
plexity, is yet to be seen.

Frustration can provide, at least on a qualitative level,
an explanation for the diverging barriers to relaxation.
Figure 9(b) shows the same system as Fig. 9(a), at a lower
temperature where the correlated regions have grown to
roughly double their original volume. Notice that the or-
dering is necessarily inhomogeneous, with tightly knit
low-energy clusters interacting weakly with one another.
The growth of three of the dark regions in Fig. 9(a)
demanded that the fourth, in the upper center, be dis-
mantled. The net energy gain presumably occurs after an
initial cost for breaking up the low-energy cluster. More
formally, since the energy density is inhomogeneous, the

FIG. 10. Singular dynamics at the ordinary zero-temperature
fixed point. This figure shows a finite-sized L XL XL Ising
model, attempting to make the transition from a mostly spin-up
state to a mostly spin-down state. In the process, a domain wall
of area at least L XL must form, costing free energy
F(L)=0(T)L? Thus the dynamics of finite-sized Ising models
involves crossing barrier heights which diverge with the length.
In an infinite system, the well-known fact that the different bro-
ken symmetry states are mutually inaccessible is due precisely
to this diverging barrier. When weak next-nearest-neighbor an-
tiferromagnetic bonds are added to the Ising model, a similar
diverging barrier exists even for flipping a finite cluster of up
spins, of linear dimension L, embedded in a sea of down spins.
Simulations show that this results in glassy coarsening when
such a system is quenched (Ref. 48).
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domain walls between regions of different broken sym-
metries will be pinned in the low-energy “defective” re-
gions. As the correlated regions become larger and better
ordered, the barriers to dismantling them (or to sweeping
domain walls across them) will diverge.

Barrier heights which diverge with diverging lengths
are not new. Indeed, they form the basis of the field of
phase transitions. Broken symmetries only occur in the
thermodynamic limit: any finite-sized sample will even-
tually explore all possible states. Different broken sym-
metry phases become mutually inaccessible as the system
size gets large. In Fig. 10 we see a finite-sized chunk of
an Ising model, say with free boundary conditions.
Below the ferromagnetic phase transition temperature
T., the system will have two states of rather low free en-
ergy, consisting of mostly spin up, and mostly down. Be-
cause the system is finite, it will spend roughly half of its
time in each of these two states. However, the transitions
between these states will be rare. In particular, to go
from up to down the system must pass through a state
with nearly zero magnetization, which is most economi-
cally realized by having a domain wall halfway through
the system. Below T, this domain wall has a surface-free
energy per unit area o(7)>0. The barrier between the
up and down states will diverge as o(T)L? as L — 0.
Transitions between these two states will occur with an
activated time scale 7(T)=~exp[o(T)L?/kT]. Thus the
transition rate goes to zero in a singular way as the length
scale of the finite cluster goes to infinity. The singular
dynamics we need to explain glasses is already present in
every low-temperature broken-symmetry phase: we just
need to find it at a critical point.

This example can be fleshed out into a
renormalization-group  picture.® Consider  the
renormalization-group flow diagram for the Ising model,
shown schematically in Fig. 11. The space is meant to
represent an infinite-dimensional Hamiltonian space of
Ising-like models with various nth-neighbor interactions.
The renormalization group is a transformation R of
Hamiltonian space into itself, illustrated in Fig. 12. It re-
places a Hamiltonian H acting on L¢ sites with an
effective Hamiltonian R (H) acting on (L /2)? coarse-
grained “block” spins, each representing a 2¢ block of old
spins. Tracing over the internal degrees of freedom
within each 2¢ region introduces more complicated
effective couplings between spins. The arrows in Fig. 11
represent the action of coarse graining, connecting H to
R(H).

In Fig. 11 the vertical axis represents the temperature.
(Equivalently, the Hamiltonians can be assumed all to be
at a fixed temperature, and the vertical axis represents de-
creasing bond strength.) Hamiltonians in the upper re-
gion of the diagram are above their critical temperature,
and are in the paramagnetic phase. On a local level,
spins tend to be aligned, but this correlation quickly dies
away with distance. The coarse-grained Hamiltonian
JR(H) has correlations that die away twice as quickly with
distance, and is effectively at a higher temperature: the
Hamiltonians in the upper region flow toward the infinite
temperature, disordered, paramagnetic fixed point.

The horizontal curve in Fig. 11 represents the critical
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surface. A given Ising model will pass through its T,
when it crosses this surface. Points on the critical surface
must be mapped onto one another by the
renormalization-group transformation: if H is at T, then
JR(H) must be too. The fact that all Ising models have
the same long-wavelength behavior near T, stems from
the existence of a critical fixed point, toward which the
entire critical surface is attracted.®®> A Hamiltonian just
above its critical temperature will be renormalized near
to the critical fixed point before turning upward. There
will be a range of coarse-grained length scales in which
the system will have correlations which look much like
those of the critical point. The scaling properties of the
Ising transition can be deduced from the behavior of
near the critical fixed point. For example, the universal
critical exponents are given by the eigenvalues of the
linearization of 7 at that point.

The bottom region in Fig. 11 flows toward zero tem-
perature. This is the region of most interest to us. An Is-
ing model in equilibrium below T, will have an average
magnetization M, with local fluctuations whose range will
decrease with decreasing temperature. Coarse graining
this mottled pattern of up and down spins quickly con-
verges to a uniform shade of grey. Thus thermal fluctua-
tions are not important at long length scales in the low-
temperature phase. The ferromagnetic phase, at all tem-

Paramagnetic T=00
Fixed Point
Critical
Fixed Point

Ferromagnetic
Zero-Temperature
Fixed Point

FIG. 11. The ordinary zero-temperature fixed point. This is
the renormalization-group flow for a traditional critical point
(e.g., for the Ising model in spatial dimensions greater than one).
As we coarse grain to larger and larger length scales, systems in-
itially below the critical temperature (the horizontal curve) scale
toward the zero-temperature ordered fixed point (Ref. 69). This
fixed point describes a uniformly ordered system without
thermal fluctuations. The entire ordered phase is thus charac-
terized by thermal fluctuations which only occur on short
length scales. The ordered phase at finite temperature is de-
scribed by the zero-temperature fixed point.
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peratures below T, is described by a zero-temperature
fixed point, with no thermal fluctuations.

More specifically, as shown in Fig. 12, the effective
coupling strength at low temperatures of two block spins
in R(H) is four times larger than that for H. If we rescale
the energies to keep the bond strengths fixed, this implies
that the effective temperature decreases by a factor of 4.
At the ferromagnetic zero-temperature fixed point, if we
linearize 7R, the eigenvalue corresponding to the tempera-
ture direction is Ar=1%. Thus near the zero-temperature
fixed point, the characteristic time - for flipping a
(2L)X L XL block, exp[ HL,T)/T], must be equal (Fig.
12) to the time for flipping the coarse-grained
L X(L/2)X(L/2) system. The Hamiltonian for the
coarse-grained system is the same as that for the original
system (because we are near the fixed point), except that
the effective temperature is down by a factor of 4.
Thus the free-energy barrier & satisfies FL/T)/T
=L /2,T/4)/(T /4). Repeating this argument, we find
the barrier to flipping the domain approaches
L™ 7(1,0)< L2 F1,0) is the nearest-neighbor
bond strength; thus the surface tension o(7) is given by
the renormalized bond strength at the fixed point. The
“universal” fact that the interfacial energies between up
and down-spin regions scales with the area of contact L2
thus can be deduced from the eigenvalue 1 in the temper-
ature direction at the fixed point.

FIG. 12. Block-spin renormalization group. We can get a
simple picture of the renormalization-group flows near the ordi-
nary low-temperature fixed point by using Kadanoff’s block-
spin renormalization group. We want an effective coarse-
grained Hamiltonian describing the energy of a domain wall in
the ordered phase. Imagine clumping together groups of 2¢
spins together and describing them as a single spin. If we are
near the critical point, these clumps will have large fluctuations
in their magnetizations, and the effective coupling between them
will grow according to the renormalization-group flows near the
critical fixed point shown in Fig. 11, with the effective tempera-
ture slowly decreasing. If we are at a low temperature, or have
coarse grained to a low effective temperature, then the spins in
our clump will mostly all be aligned with one another. The
effective coupling between the -clumps of spins will be 297!
times the coupling between the original spins, because that is
the number of original bonds connecting the two clumps. This
immediately predicts that the domain wall energy across a finite
system of length L will scale as L¢ ™. As discussed in the text,
this can be interpreted either as a diverging coupling energy or,
alternatively, as a decreasing effective temperature.
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Returning to the singular dynamics in the ferromag-
netic phase, we now have two equivalent descriptions.
The first is activation over a diverging barrier:
T=exp[E (L)/T], with E (L) diverging as the length scale
grows. The second is a description in terms of a length-
dependent effective temperature: 7=exp[E /T (L)], with
the coarse-grained temperature going to zero as the
length scale increases. Thus we see that energy barriers
which diverge with length can happen in a renormaliza-
tion group with a zero-temperature fixed point.”

What we need is a phase transition, not a low-
temperature phase, with diverging barriers. The simplest
scenario for a finite-temperature phase transition
governed by a zero-temperature fixed point is drawn in
Fig. 13. A glassy system cooled from the fluid phase,
were it able to remain in equilibrium, would develop
long-range solid order at a temperature 7. After coarse
graining the system, the effective temperature decreases
and the effective frustration level increases. At longer
and longer length scales, the glass near T, looks more

1i Fluid

Zero-
Temperature
Critical
Fixed Point

effective frustration

FIG. 13. Proposed renormalization-group flows for the glass
transition. We propose that the critical point underlying the
glass transition is a zero temperature critical fixed point. The
vertical axis denotes the temperature; the horizontal axis
denotes frustration (compare with Fig. 3). A hypothetical sys-
tem in equilibrium at the phase transition would flow, as we
coarse grain the system, toward lower effective temperatures
and higher frustration. At long length scales the effective tem-
perature goes to zero, and the relevant parameter driving the
transition is the frustration. Do not be confused by the
language: the critical point happens at finite temperature (Fig.
6), it is the RG fixed point governing the critical properties that
lies at zero temperature. (This is analogous to the way the
finite-temperature ferromagnet is described by the zero-
temperature ordered fixed point.) We believe that at long length
scales near the critical point, the energy scales become large
compared to the temperature. The thermal fluctuations can
keep the phase fluid only because of the delicate balancing of
competing energies produced by the frustration (Fig. 9). A re-
normalization group designed to find the fixed-point Hamiltoni-
an describing the barriers to relaxation must therefore have an
effective temperature which decreases as we coarse grain.
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frustrated but has less thermal fluctuation. Although
temperature is the control parameter, it is not controlling
the transition directly. Rather, the important effect of
changing the experimental temperature is to change the
effective frustration at long length scales.

The glass transition occurs when the long-wavelength
frustration reaches a critical value. Consider the zero-
temperature axis on Fig. 13. Frustration less than the
critical value will decrease as the length scale of observa-
tion grows: the local regions, after struggling with one
another on short distances, will finally find a regular pat-
tern that they can compromise on, and form an ordered
solid. Frustration greater than this value increases with
length scale: the free energy gained by grouping larger
clusters together becomes less important, and the system
stays disordered.

Below T, the glass-former flows into the ordered fixed
point, and becomes a solid, perhaps a crystal. At T, it

Disordered
Fixed Point

Teﬂ
Solid
- ‘//
Ordered Critical
Fixed Point Fixed Point

FIG. 14. The complete flow diagram for the glass transition.
Here we sketch the flow trajectories for the equilibrium behav-
ior of glass-forming materials above and below their transition
temperatures T,. Systems near their phase transition tempera-
tures T~ T, have critical fluctuations on length scales up to
their correlation lengths &(7): this is reflected in the initial
renormalization-group flow of these systems toward the critical
fixed point. Insofar as the effective temperature in this part of
the trajectory approaches zero, these thermally activated criti-
cal fluctuations will be exponentially sluggish. As the coarse-
graining length becomes larger than £(7), the trajectories bend
away from the zero-temperature critical fixed point. If the tem-
perature is below T, the equilibrium trajectory flows toward
the ordinary zero-temperature fixed point describing the solid
phase. If one can prepare the glassy material in equilibrium in
the rigid phase, the effective temperature would decrease with
coarse graining, and the thermal fluctuations would die away.
Normally, when cooled from the melt, the ordered domains in
the glass cannot equilibrate; the rate of domain growth contin-
ues to decrease as the effective temperature decreases. The re-
sult is a glass, where the configurational relaxation grinds to a
halt and the system falls out of equilibrium in a liquidlike
configuration. If the temperature is above T, the trajectory
turns to higher effective frustration. The effective temperature
continues to decrease for a while, but can, in principle, turn
around again and flow toward a high-temperature fluid fixed
point.
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flows into the critical fixed point, and becomes frustrated
on all length scales. Above T, naturally, it must flow to-
ward the disordered, infinite temperature fixed point.
Figure 14 shows a plausible sketch of the relevant
renormalization-group trajectories. Although tempera-
ture is shrinking under renormalization near the critical
fixed point, it can grow under renormalization for larger
values of the frustration. Thus a system just above T,
will have extremely little in the way of thermal fluctua-
tions in a range of length scales; however, on the largest
length scales it will look thermally melted (albeit slug-
gish).”!

The renormalization-group analysis of this zero-
temperature critical fixed point is precisely the same as
that for the random-field Ising model.”>**7® The
difference is the mechanism: we replace the external ran-
dom field with a uniform frustration. We will repeat this
analysis in our own words.

First, let us set up some notation. We continue to use
the variable t =(T —T,) /T to represent the experimen-
tal reduced temperature. The fixed point is at the
effective frustration and temperature (F*,T*=0). We
use 7=T to represent the distance in the temperature
direction to the zero-temperature fixed point, and
f=(F—F*)/F* to represent the dimensionless distance
in the frustration variable to the fixed point. The impor-
tant eigenvalues of the renormalization-group transfor-
mation, linearized about the zero-temperature fixed
point, are A and Ag.

Second, let us analyze the behavior near the critical
fixed point, at (F*,T*=0). A represents the fact that
deviations from the critical frustration level grow under
the renormalization-group transformation. If we imagine
each transformation as a doubling of the lattice constant
(as depicted in Fig. 14), then a zero-temperature Hamil-
tonian H with reduced frustration f will decimate to
FR(H) with frustration Apf, with A > 1. As we approach
the critical surface, the correlation length & will diverge.
Since £ is divided by two under a coarse-graining step, it

must double each time we decrease F —F* EY ia/ lf%ctor of
Ap. This immediately implies £~|F —F*| " "F. We

define v=In2/InAz, so £~ |F —F*| 7V~ |f| ™"

The  other important eigenvalue of  the
renormalization-group transformation near the critical
fixed point, A <1, describes the decrease in the effective
temperature with each coarse-graining step. Let the
free-energy barrier to relaxation be F; the relaxation time
7 at (f,D will be thermally activated over the barrier, so
r~exp[ A f,T)/T]. This time is preserved under coarse
graining. Thus, just as for the Ising model, near the criti-
cal fixed point we will have

= A e 1,0) /F

=flnAT/lnAF7( 1’0)/? )
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The free energy barrier #(1,0) is a barrier height at zero
temperature at a fixed frustration level far from criticali-
ty; we imagine it to be a characteristic energy scale for an
atomic  rearrangement. Defining the exponent
6= —InAr/In2, we see that F~ |F —F*| "%~ ¢,

Third, let us ask what happens to an experiment run
far from the fixed point (as shown in Fig. 13). What does
the scaling near the fixed point, in £ and 7, imply about
the behavior as —0? Near ¢t =0, the experimental Ham-
iltonian will flow toward the fixed point under coarse
graining. As shown by the grids in Fig. 13, changing the
experimental reduced temperature ¢ not only changes the
component 7 of the coarse-grained system, it also changes
the component f along the frustration eigendirection.
The renormalization-group transformation & rotates the
frustration and temperature axes as the Hamiltonian
flows toward the fixed point; the action of ¢ is to change
the effective coarse-grained frustration f. Thus, as ¢ goes
to zero, the correlation length will diverge as

E=|t| ™"
and the barriers to relaxation will diverge as
E/T=|t] %=~gv

Thus a zero-temperature critical fixed point allows us to
have a diverging barrier height’* within a
renormalization-group description.

IV. CONCLUSIONS

The viscosities and time scales for relaxation in glass-
forming liquids rise exponentially as they are cooled.
Based on analysis of the experimental evidence, we argue
that this is due to a free barrier which grows with de-
creasing temperature. We attribute this diverging energy
scale to an underlying, finite temperature second-order
phase transition into an ordered, rigid phase, probably a
crystal or a quasicrystal.

We are looking for a model of this underlying transi-
tion. It must have no intrinsic disorder, must get stuck
with small correlation lengths at realistic cooling rates,
must have energy barriers which grow with power laws
near a nonzero transition temperature, and must have
frustration. We expect it to be described by a renormal-
ization group with a zero-temperature critical fixed point.
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