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We focus on mesoscopic dislocation patterning via a continu um dislocation dynamics the- 
ory (CDD) in three dimensions (3D). We study three distinct physically motivated dynam- 
ics which consistently lead to fractal formation in 3D with rather similar morphologies, and 
therefore we suggest that this is a general feature of the 3D collective behavior of geomet- 
rically necessar y dislocation (GND) ensembles. The striking self-similar features are mea- 
sured in terms of correlation functions of physical observables, such as the GND density,
the plastic distortion, and the crystalline orientation. Remarkably, all these correlation 
functions exhibit spatial power-law behaviors, sharing a single underlying universal criti- 
cal exponent for each type of dynamics.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

Dislocations in plastically deformed crystals, driven by their long-range interactio ns, collectively evolve into complex het- 
erogeneous structures where dislocation- rich cell walls or boundaries surround dislocation- depleted cell interiors. These 
have been observed both in single crystals (Kawasaki and Takeuchi, 1980; Mughrabi et al., 1986; Schwink, 1992 ) and poly- 
crystals (Ungár et al., 1986 ) using transmission electron microscop y (TEM). The mesosco pic cellular structures have been 
recognized as scale-free patterns through fractal analysis of TEM micrographs (Gil Sevillano et al., 1991; Gil Sevillano ,
1993; Hähner et al., 1998; Zaiser et al., 1999 ), Fig. 1(a). The complex collective behavior of dislocations has been a challenge 
for understa nding the underlying physical mechanism s responsible for the developmen t of emergent dislocation 
morphologies .

Complex dislocation microstructures , as an emergent mesoscale phenomeno n, have been previously modeled using var- 
ious theoretical and numerica l approaches (Ananthakrishn a, 2007 ). Discrete dislocation dynamics (DDD) models have pro- 
vided insights into the dislocatio n pattern formations: parallel edge dislocations in a two-dimensi onal system evolve into 
‘matrix structures’ during single slip (Bakó et al., 1999 ), and ‘fractal and cell structures’ during multiple slip (Bakó et al.,
2007; Bakó et al., 2007 ); random dislocatio ns in a three-dimensio nal system self-organi ze themselves into microstructur es 
through junction formation, cross-slip, and short-range interactions (Madec et al., 2002; Gomez-Garcia et al., 2006 ). How- 
ever, DDD simulations are limited by the computational challenges on the relevant scales of length and strain. Beyond these 
micro-scale descriptions, CDD has also been used to study complex dislocatio n structures. Simplified reaction–diffusion 
models have described persistent slip bands (Walgraef and Aifantis, 1985 ), dislocatio n cellular structures during multiple 
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Fig. 1. Experimental and simulated dislocation cellular structures. In (a), a typical TEM micrograph at a micron scale is taken from a Cu single crystal after 
[1 00] tensile deformation to a stress of 76.5 MPa (Hähner et al., 1998 ); in (b), a simulated GND density plot is shown. Note the striking morphological 
similarity between theory and experiment.
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slip (Hähner, 1996 ), and dislocation vein structures (Saxlová et al., 1997 ). Stochasticity in CDD models (Hähner et al., 1998;
Bakó et al., 1999; Groma and Bakó, 2000 ) or in the splittings and rotations of the macroscopic cells (Pantleon, 1996; Pantleon,
1998; Sethna et al., 2003 ) have been suggested as an explanation for the formation of organized dislocation structure s. The 
source of the noise in these stochastic theories is derived from either extrinsic disorder or short-length -scale fluctuations.

In a recent manuscript (Chen et al., 2010 ), we analyzed the behavior of a grossly simplified continuu m dislocation model 
for plasticity (Acharya, 2001; Roy and Acharya, 2005; Acharya and Roy, 2006; Limkumner d and Sethna, 2006; Chen et al.,
2010) – a physicist’s ‘spherical cow’ approximat ion designed to explore the minimal ingredients necessar y to explain key 
features of the dynamics of deformation. Our simplified model ignores many features known to be important for cell bound- 
ary morphology and evolution, including slip systems and crystalline anisotropy, dislocation nucleation, lock formation and 
entangleme nt, line tension, geometrical ly unnecessar y forest dislocations, etc. However, our model does encompass a real- 
istic order parameter field (the Nye-Kröner dislocatio n density tensor (Nye, 1953; Kröner, 1958 ) embodying the GNDs),
which allows detailed comparisons of local rotations and deformation s, stress, and strain. It is not a realistic model of a real 
material, but it is a model material with a physically sensible evolution law. Given these simplifications, our model exhibited 
a surprisin gly realistic evolution of cellular structure s (Fig. 1(b)). We analyzed these structures in two-dimensi onal simula- 
tions (full three-dimensio nal rotations and deformations, but uniform along the z-axis) using both the fractal box counting 
method (Gil Sevillano et al., 1991; Gil Sevillano, 1993; Hähner et al., 1998; Zaiser et al., 1999 ) and the single-length-s cale 
scaling methods (Hughes et al., 1997; Hughes et al., 1998; Mika and Dawson, 1999; Hughes and Hansen, 2001 ) used in pre- 
vious theoretical analyses of experime ntal data. Our model qualitatively reproduced the self-similar, fractal patterns found 
in the former, and the scaling behavior of the cell sizes and misorientations under strain found in the latter (power-law
refinement of the cell sizes, power-law increases in misorientati ons, and scaling collapses of the distributions).

There are many features of real materials which are not explained by our model. We do not observe distinctio ns between 
‘geometrica lly necessary’ and ‘incidental’ boundaries, which appear experimentally to scale in different ways. The fractal 
scaling observed in our model may well be cut off or modified by entanglement, slip-system physics, quantization of Burgers 
vector (Kuhlmann-Wil sdorf, 1985 ) or anisotropy – we cannot predict that real materials should have fractal cellular struc- 
tures; we only observe that our model material does so naturally. Our spherically symmetric model obviously cannot repro- 
duce the dependence of morphological evolution on the axis of applied strain (and hence the number of activated slip 
systems); indeed, the fractal patterns observed in some experiments (Hähner et al., 1998; Zaiser et al., 1999 ) could be asso- 
ciated with the high-symm etry geometry they studied (Wert et al., 2007; Hansen et al., 2011 ). While many realistic features 
of materials that we ignore may be important for cell-structure formation and evolution, our model gives clear evidence that 
these features are not essential to the formation of cellular structure s when crystals undergo plastic deformation.

In this longer manuscript, we provide an in-depth analysis of three plasticity models. We show how they (and more tra- 
ditional models) can be derived from the structures of the broken symmetries and order parameters. We extend our simu- 
lations to 3D, where the behavior is qualitatively similar with a few important changes. Here we focus our attention on 
relaxation (rather than strain), and on correlation functions (rather than fractal box counting or cell sizes and 
misorientati ons).

Studying simplified ‘spherica l cow’ models such as ours is justified if they capture some key phenomeno n, providing a
perspective or explanat ion for the emergent behavior. Under some circumstances , these simplified models can capture 
the long-waveleng th behavior precisely – the model is said to be in the same universa lity class as the observed behavior (Set-
hna, 2006, Chapter 12 ). The Ising model for magnetism, two-fluid criticality, and order–disorder transitions; self-organized 
critical models for magnetic Barkhausen noise (Sethna et al., 2001; Durin and Zapperi, 2006 ) and dislocatio n avalanch es (Zai-
ser, 2006 ) all exhibit the same type of emergent scale-invari ant behavior as observed in some experimental cellular struc- 
tures (Hähner et al., 1998 ). For all of these systems, ‘spherical cow’ models provide quantitative experimental predictions of 
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all phenomena on long length and time scales, up to overall amplitudes, relevant perturba tions, and corrections to scaling.
Other experimental cellular structure s (Hughes et al., 1998 ) have been interpreted in terms of scaling functions with a char- 
acteristic scale, analogous to those seen in crystalline grain growth. Crystalline grain growth also has a ‘universal’ descrip- 
tion, albeit one which depends upon the entire anisotropi c interfacia l energy and mobility (Rutenberg and Vollmayr-Lee,
1999) (and not just temperature and field).1 We are cautiously optimist ic that a model like ours (but with metastabil ity 
and crystalline) could indeed describe the emergent complex dislocation structure s and dynamics in real materials. Indeed, re- 
cent work on disloca tion avalanches suggests that even the yield stress may be a universa l critical point (Friedman et al., 2012 ).

Despite universality , we must justify and explain the form of the CDD model we study. In Section 2 we take the contin- 
uum, ‘hydrodynamic’ limit approach , traditionally originating with Landau in the study of systems near thermal equilibriu m
(clearly not true of deformed metals!). All degrees of freedom are assumed slaves to the order parameter, which is system- 
atically constructed from conserved quantities and broken symmetr ies (Martin, 1968; Forster, 1975; Hohenberg and Halper- 
in, 1977 ) – this is the fundamental tool used in the physics community to derive the diffusion equation , the Navier–Stokes
equation, and continuum equations for supercondu ctors, superfluids, liquid crystals, etc. Rickman and Viñals (1997) have
utilized this general approach to generate CDD theories, and in Section 2 we explain how our approach differs from theirs.

In Section 3 we explore the validity of several approximat ions in our model, starting in the engineeri ng language of state 
variables. Here local equilibration is not presumed; the state of the system depends in some arbitrarily complex way on the 
history. Conserved quantities and broken symmetries can be supplem ented by internal state variables – statistically stored 
dislocations (SSDs), yield surfaces, void fractions, etc., whose evolution laws are judged accordin g to their success in match- 
ing experimental observati ons. (Eddy viscosity theories of turbulence are particular successful examples of this framewor k.)
The ‘single-velocity’ models we use were originally developed by Acharya et al. (Acharya, 2001; Roy and Acharya, 2005 ), and 
we discuss their microscopic derivation (Acharya, 2001 ) and the correction term Lp resulting from coarse-graini ng and multi- 
ple microscopic velocities (Acharya and Roy, 2006 ). This term is usually modeled by the effects of SSDs using crystal plas- 
ticity models. We analyze experime nts to suggest that ignoring SSDs may be justified on the length-sc ales needed in our 
modeling. However , we acknowledge the near certainty that Acharya’s Lp will be important – the true coarse-grained evo- 
lution laws will incorporate multiple velocities. Our model should be viewed as a physically sensible model material, not a
rigorous continuum limit of a real material.

In this manuscr ipt, we study fractal cell structures that form upon relaxation from randomly deformed initial condition s
(Section 4.2). One might be concerned that relaxation of a randomly imposed high-stres s dislocation structure (an instanta- 
neous hammer blow) could yield qualitatively different behavior from realistic deformation s, where the dislocation struc- 
tures evolve continuously as the deformation is imposed. In Section 4.2 we note that this alternative ‘slow hammering ’
gives qualitatively the same fractal dislocation patterns. Also, the resulting cellular structures are qualitatively very similar 
to those we observe under subsequent uniform external strain (Chen et al., 2010 ), except that the relaxed structures are sta- 
tistically isotropic. We also find that cellular structures form immediatel y at small deformat ions. Cellular structure s in real 
materials emerge only after significant deformation ; presumably this feature is missing in our model because our model has 
no impedimen t to cross-slip or multiple slip, and no entangleme nt of dislocatio ns. This initial relaxation should not be 
viewed as annealing or dislocation creep. A proper description of annealing must include dislocation line tension effects,
since the driving force for annealing is the reduction in total dislocation density – our dislocations annihilate when their 
Nye Burgers vector density cancels under evolution, not because of the dislocation core energies. Creep involves dislocation 
climb, which (for two of our three models) is forbidden.

We focus here on correlation functions, rather than the methods used in previous analyses of experiments . Correlation 
functions have a long, dignified history in the study of systems exhibiting emergent scale invariance – materials at contin- 
uous thermodynam ic phase transitions (Chaikin and Lubensky, 1995 ), fully developed turbulence (L’vov, 1991; Choi et al.,
2012b; Salman and Truskinovsk y, 2012 ), and crackling noise and self-organized criticality (Sethna et al., 2001 ). We study 
not only numerical simulations of these correlations, but provide also extensive analysis of the relations between the cor- 
relation functions for different physical quantities and their (possibly universa l) power-law exponents . The decompo sition 
of the system into cells (needed for the cell-size and misorien tation distribution analyses (Hughes et al., 1997; Hughes et al.,
1998; Mika and Dawson, 1999; Hughes and Hansen, 2001 )) demands the introduction of an artificial cutoff misorien tation 
angle, and demands either laborious human work or rather sophisticated numerical algorithms (Chen et al., 2012 ). These 
sections of the current manuscript may be viewed both as a full characterizati on of the behavior of our simple model,
and as an illustration of how one can use correlation functions to analyze the complex morphologies in more realistic models 
and in experiments providing 2D or 3D real-space data. We believe that analyses that explicitly decompose structures into 
cells remain important for systems with single changing length-scale: grain boundary coarsening should be studied both 
with correlation functions and with explicit studies of grain shape and geometry evolution, and the same should apply to 
cell-structur e models and experiments that are not fractal. But our model, without such an intermediate length-scale , is best 
analyzed using correlation functions.

Our earlier work (Chen et al., 2010 ) focused on 2D. How different are our predictions in 3D? In this paper, we explore 
three different CDDs that display similar dislocation fractal formation in 3D and confirm analytica lly that correlation func- 
tions of the GND density, the plastic distortion, and the crystalline orientati on, all share a single underlying critical exponent,
1 See, however, Kacher et al. (2011) for experimental observations of bursty grain growth is incompatible with these theories.
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up to exponent relations, dependent only on the type of dynamics. Unlike our 2D simulations , where forbidding climb led to 
rather distinct critical exponents, all three dynamics in 3D share quite similar scaling behaviors.

We begin our discussion in Section 2.1 by defining the various dislocation, distortion, and orientation fields. In Section 2.2,
we derive standard local dynamical evolution laws using traditional condensed matter approach es, starting from both the 
non-conserved plastic distortion and the conserved GND densities as order parameters. Here, we also explain why these 
resulting dynamical laws are inappropriate at the mesoscale. In Section 2.3, we show how to extend this approach by defin-
ing appropriate constitutive laws for the dislocation flow velocity to build novel dynamics (Landau and Lifshitz, 1970 ). There 
are three different dynamics we study: i) isotropic climb-and-g lide dynamics (CGD) (Acharya, 2001; Acharya, 2003; Acharya,
2004; Roy and Acharya, 2005; Limkumner d and Sethna, 2006 ), ii) isotropic glide-onl y dynamics, where we define the part of 
the local dislocation density that participates in the local mobile dislocation population , keeping the local volume conserved at 
all times (GOD-MDP) (Chen et al., 2010 ), iii) isotropic glide-only dynamics, where glide is enforced by a local vacancy pressure 
due to a co-existing background of vacancies that have an infinite energy cost (GOD-LVP) (Acharya and Roy, 2006 ). All three 
types of dynamics present physically valid alternative approaches for deriving a coarse-grained continuu m model for GNDs.
In Section 3, we explore the effects of coarse-graini ng, explain our rationale for ignoring SSDs at the mesoscale, and discuss 
the single-velocity approximat ion we use. In Section 4, we discuss the details of numerical simulations in both two and three 
dimensions , and characterize the self-organized critical complex patterns in terms of correlation functions of the order 
parameter fields. In Section 5, we provide a scaling theory, derive relations among the critical exponents of these related cor- 
relation functions, study the correlation function as a scaling function of coarse-grai ning length scale, and conclude in 
Section 6.

In addition, we provide extensive details of our study in Appendices. In A, we collect useful formulas from the literature 
relating different physical quantities within traditional plasticity, while in B we show how functional derivatives and the dis- 
sipation rate can be calculated using this formalism, leading to our proof that our CDDs are strictly dissipativ e (lowering the 
appropriate free energy with time). In C, we show the flexibility of our CDDs by extending our dynamics: In particular, we 
show how to add vacancy diffusion in the structure of CDD, and also, how external disorder can be in principle incorporated 
(to be explored in future work). In D, we elaborate on numerical details – we demonstrat e the statistical convergence of our 
simulation method and also we explain how we construct the Gaussian random initial conditions. Finally, in E, we discuss 
the scaling propertie s of several correlation functions in real and Fourier spaces, including the strain-histo ry-dependent plas- 
tic deformation and distortion fields, the stress-stress correlation functions, the elastic energy density spectrum, and the 
stressful part of GND density.

2. Continuum models 

2.1. Order parameter fields

2.1.1. Conserved order parameter field
A dislocation is the topological defect of a crystal lattice. In a continuum theory, it can be described by a coarse-grained 

variable, the GND density,2 (also called the net disloca tion density or the Nye-Kröner dislocati on density), which can be defined
by the GND density tensor 
2 Dis
SSDs (w
qðxÞ ¼
X

a
ðt̂a � n̂Þn̂� badðx� naÞ; ð1Þ
so
qkmðxÞ ¼
X

a
t̂a

k ba
mdðx� naÞ; ð2Þ
measuring the sum of the net flux of dislocations a located at n, tangent to ̂t, with Burgers vector b, in the neighborho od of x,
through an infinitesimal plane with the normal direction along n̂, seen in Fig. 2. In the continuu m, the discrete sum of line 
singularities in Eqs. (1) and (2) is smeared into a continuo us (nine-component) field, just as the continuum density of a liquid 
is at root a sum of point contributions from atomic nuclei.

Since the normal unit pseudo-vec tor n̂ is equivalent to an antisymmetr ic unit bivector bE, bEij ¼ eijkn̂k, we can reformulate 
the GND density as a three-index tensor 
.ðxÞ ¼
X

a
ðt̂a � n̂ÞbE � badðx� naÞ; ð3Þ
so
.ijmðxÞ ¼
X
a
ðt̂a � n̂ÞbEijb

a
mdðx� naÞ; ð4Þ
locations which cance l at the macrosc ale may be geometrica lly nece ssary at the mesoscale. See Section 3 for our rationale for not including the effects of 
hose Burgers vectors cancel in the coarse-graining process).



Fig. 2. Representation of the crystalline line defect—dislocation. Each curved line represents a dislocation line with the tangent direction ̂t, and the Burgers 
vector b which characterizes the magnitude and direction of the distortion to the lattice. The two-index GND density qkm (Nye, 1953; Kröner, 1958 ) (Eqs. 1
and 2) is the net flux of the Burgers vector density b along êðmÞ through an infinitesimal piece of a plane with normal direction n̂ along êðkÞ. The three-index 
version .ijm (Eqs. 3 and 4) is the flux density through the plane along the axes êðiÞ and êðjÞ , with the unit bivector bE ¼ êðiÞ ^ êðjÞ .
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measuring the same sum of the net flux of dislocations in the neighborhood of x, through the infinitesimal plane indicated by 
the unit bivector bE. This three-index variant will be useful in Section 2.3.2, where we adapt the equations of Roy and Acharya 
(2005) and Limkumnerd and Sethna (2006) to forbid dislocatio n climb (GOD-MDP).

According to the definition of bE, we can find the relation between q and .
.ijmðxÞ ¼
X

a
ð̂ta

l n̂lÞeijkn̂kba
mdðx� naÞ ¼ eijkqkmðxÞ: ð5Þ
It should be noted here that dislocations cannot terminate within the crystal, implying that 
@iqijðxÞ ¼ 0; ð6Þ
or
eijk@k.ijlðxÞ ¼ 0: ð7Þ
Within plasticity theories, the gradient of the total displacemen t field u represents the compatible total distortion field
(Kröner, 1958; Kröner, 1981 ) bij ¼ @ iuj, which is the sum of the elastic and the plastic distortion fields (Kröner, 1958; Kröner,
1981), b ¼ bp þ be. Due to the presence of dislocatio n lines, both bp and be are incompatible, characteri zed by the GND den- 
sity q
qij ¼ �ilm@lb
e
mj; ð8Þ

¼ ��ilm@lb
p
mj: ð9Þ
The elastic distortion field be is the sum of its symmetr ic strain and antisymm etric rotation fields,
be ¼ �e þxe; ð10Þ
where we assume linear elasticity, ignoring the ‘geometr ic nonlinearity’ in these tensors. Substituting the sum of two tensor 
fields into the incompatibil ity relation Eq. (8) gives
qij ¼ eikl@kxe
lj þ eikl@k�e

lj: ð11Þ
The elastic rotation tensor xe can be rewritten as an axial vector, the crystalline orientation vector K
Kk ¼
1
2
eijkxe

ij; ð12Þ
or
xe
ij ¼ eijkKk: ð13Þ
Thus we can substitute Eq. (13) into Eq. (11)
qij ¼ ðdij@kKk � @jKiÞ þ eikl@k�e
lj: ð14Þ
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For a system without residual elastic stress, the GND density thus depends only on the varying crystalline orientation 
(Limkumnerd and Sethna, 2007 ).

Dynamically, the time evolution law of the GND density emerges from the conservation of the Burgers vector (Kosevich,
1979; Lazar, 2011 )
3 Cha
on the 

4 For
k ¼ 0 m
before c
@

@t
qik ¼ �eijq@jJqk; ð15Þ
or
@

@t
.ijk ¼ �eijmempq@pJqk ¼ �gijpq@pJqk; ð16Þ
where J represents the Burgers vector flux, and the symbol gijpq indicates eijmempq ¼ dipdjq � diqdjp.

2.1.2. Non-conserv ed order parameter field
The natural physicist’s order parameter field ., characterizing the incompa tibility, can be written in terms of the plastic 

distortion field bp
.ijk ¼ eijmqmk ¼ �gijls@lb
p
sk: ð17Þ
In the linear approximat ion, the alternative order parameter field bp fully specifies the local deformation u of the material,
the elastic distortion be, the internal long-range stress field rint and the crystalline orientation (the Rodrigues vector K giving
the axis and angle of rotation), as summarized in A.

It is natural, given Eqs. (9) and (15), to use the flux J of the Burgers vector density to define the dynamics of the plastic 
distortion tensor bp (Kosevich, 1979; Limkumner d and Sethna, 2006; Lazar, 2011 ):
@bp
ij

@t
¼ Jij: ð18Þ
As noted by Acharya (2004), Eqs. (9) and (15) equate a curl of bp to a curl of J, so an arbitrary divergence may be added to Eq.
(18): the evolution of the plastic distortion bp is not determined by the evolution of the GND density. Acharya (2004) resolves
this ambiguity using a Stokes–Helmholtz decompositi on of bp. In our notation, bp ¼ bp;I þ bp;H. The ‘intrinsic’ plastic distor- 
tion bp;I is divergence-fre e (@ib

p;I
ij ¼ 0, i.e., ki

ebp;I
ij ¼ 0), and determined by the GND density q. The ‘history-d ependent’3 bp;H is

curl-free (�‘ij@‘b
p;H
ij ¼ 0, �‘ijk‘ebp;H

ij ¼ 0). In Fourier space, we can do this decompo sition explicitly, as 
ebp
ijðkÞ ¼ �ieilm

kl

k2
eqmjðkÞ þ iki

ewjðkÞ � ebp;I
ij ðkÞ þ ebp;H

ij ðkÞ: ð19Þ
This decompositi on will become important to us in Section 4.3.3, where the correlation functions of bp;I and bp;H will scale 
differently with distance.

Acharya (2004) treats the evolution of the two components bp;I and bp;H separately. Because our simulations have periodic 
boundary conditions, the evolution of bp;H does not affect the evolution of q. As noted by Acharya (2004), in more general 
situations bp;H will alter the shape of the body, and hence interact with the boundary conditions.4 Hence in the simulation s
presented here, we use Eq. (18), with the warning that the plastic deformation fields shown in the figures are arbitrary up to an 
overall divergenc e. The correlation functions we study of the intrinsi c plastic distorti on bp;I are independen t of this ambiguity,
but the correlation function s of bp;H we discuss in the E.1 will depend on this choice.

In the presence of external loading, we can express the appropriate free energy F as the sum of two terms: the elastic 
interaction energy of GNDs, and the energy of interactio n with the applied stress field. The free energy functional is 
F ¼
Z

d3x
1
2
rint

ij �
e
ij � rext

ij �
p
ij

� �
: ð20Þ
Alternatively , it can be rewritten in Fourier space 
F ¼ �
Z

d3k

ð2pÞ3
1
2

MijmnðkÞebp
ijðkÞebp

mnð�kÞ þ erext
ij ðkÞebp

ijð�kÞ
� �

; ð21Þ
as discussed in B.1.
nging the initial reference state through a curl-free plastic distortion (leaving behind no dislocations) will change bp;H but not bp;I; the former depends 
history of the material and not just the current state, motivating our nomenclature.
 our simulations with external shear (Chen et al., 2010 ), the k ¼ 0 of bp;H couples to the boundary condition. We determine the plastic evolution of the 
ode explicitly in that case. For correlation functions presented here, the k ¼ 0 mode is unimportant because we subtract bp fields at different sites 
orrelating.
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2.2. Traditional dissipative continuum dynamics 

There are well known approach es for deriving continuum equations of motion for dissipativ e systems, which in this case 
produce a traditional von Mises-style theory (Rickman and Viñals, 1997 ), useful at longer scales. We begin by reproducing 
these standard equations.

For the sake of simplicity, we ignore external stress (rij simplified to rint
ij ) in the following three subsectio ns. We start by 

using the standard methods applied to the non-conser ved order parameter bp, and then turn to the conserved order param- 
eter ..

2.2.1. Dissipative dynamics built from the non-conserved order parameter field bp

The plastic distortion bp is a non-conserved order paramete r field, which is utilized by the engineering community to 
study texture evolution and plasticity of mechanically deformed structura l materials. The simplest dissipativ e dynamics 
in terms of bp minimizes the free energy by steepest descents 
@

@t
bp

ij ¼ �C
dF
dbp

ij

; ð22Þ
where C is a positive material-de pendent constant. We may rewrite it in Fourier space, giving 
@

@t
ebp

ijðkÞ ¼ �C
dF

debp
ijð�kÞ

: ð23Þ
The functional derivative dF=debp
ijð�kÞ is the negative of the long-range stress 
dF
debp

ijð�kÞ
¼ �MijmnðkÞebp

mnðkÞ � �erijðkÞ: ð24Þ
This dynamics implies a simplified version of von Mises plasticity 
@

@t
ebp

ijðkÞ ¼ CerijðkÞ: ð25Þ
2.2.2. Dissipative dynamics built from the conserved order parameter field .
We can also derive an equation of motion starting from the GND density ., as was done by Rickman and Viñals (1997). For 

this dissipative dynamics Eq. (16), the simplest expression for J is
Jqk ¼ �C0ablq@l
dF

d.abk

; ð26Þ
where the material-depen dent constant tensor C0 must be chosen to guarantee a decrease of the free energy with time.
The infinitesimal change of F with respect to the GND density . is
dF½.� ¼
Z

d3x
dF
d.ijk

d.ijk: ð27Þ
The free energy dissipation rate is thus dF=dt for d. ¼ @.
@t dt, hence 
@

@t
F½.� ¼

Z
d3x

dF
d.ijk

@.ijk

@t
: ð28Þ
Substituting Eq. (16) into Eq. (28) and integrating by parts gives 
@

@t
F½.� ¼

Z
d3x gijpq@p

dF
d.ijk

 !
Jqk: ð29Þ
Substituting Eq. (26) into Eq. (29) gives
@

@t
F½.� ¼ �

Z
d3x gijpq@p

dF
d.ijk

 !
C0ablq@l

dF
d.abk

� �
: ð30Þ
Now, to guarantee that energy never increases, we choose C0ablq ¼ Cgablq, (C is a positive material-de pendent constant), which 
yields the rate of change of energy as a negative of a perfect square 
@

@t
F½.� ¼ �

Z
d3x C

X
q;k

gablq@l
dF

d.abk

� �2

: ð31Þ
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Using Eqs. (16) and (26), we can write the dynamics in terms of .
5 In r
avalanc
@

@t
.ijk ¼ Cgijpqgablq@p@l

dF
d.abk

: ð32Þ
Substituting the functiona l derivative dF=d.abk, Eq. (B.10), derived in B.2, into Eq. (32) and comparing to Eq. (16) tells us 
@

@t
.ijkðxÞ ¼ �Cgijpq@prqkðxÞ ¼ �gijpq@pJqkðxÞ; ð33Þ
where
Jqk ¼ Crqk ð34Þ
duplicating the von Mises law (Eq. 25) of the previous subsection. The simplest dissipative dynamics of either non-conserved 
or conserved order paramete r fields thus turns out to be the traditional linear dynamics , a simplified von Mises law.

The problem with this law for us is that it allows for plastic deformation in the absence of dislocations , i.e., the Burgers 
vector flux can be induced through the elastic loading on the boundaries, even in a defect-free medium. This is appropriate 
on engineering length scales above or around a micron, where SSDs dominate the plastic deformation. (Methods to incorpo- 
rate their effects into a theory like ours have been provided by Acharya and Roy (2006), Roy and Acharya (2006) and Varad-
han et al. (2006)).

By ignoring the SSDs, our theory assumes that there is an intermediate coarse-grain length scale, large compared to the 
distance between dislocatio ns and small compared to the distance where the cancellation of dislocatio ns with different Bur- 
gers vectors dominates the dynamics, discussed in Section 3. We believe this latter length scale is given by the distance be- 
tween cell walls (as discussed in Section 4.2). The cell wall misorientations are geometrical ly necessar y. On the one hand, it is 
known (Kuhlmann-Wil sdorf and Hansen, 1991; Hughes and Hansen, 1993 ) that neighboring cell walls often have misorien- 
tations of alternating signs, so that on coarse-grain length scales just above the cell wall separation one would expect explicit 
treatment of the SSDs would be necessary. On the other hand, the density of dislocations in cell walls is high, so that a coarse- 
grain length much smaller than the interesting structures (and hence where we believe SSDs are unimportant) should be 
possible (Kiener et al., 2011 ). (Our cell structures are fractal, with no characteristic ‘cell size’; this coarse-grain length sets 
the minimum cutoff scale of the fractal, and the grain size or inhomogene ity length will set the maximum scale.) With this 
assumption, to treat the formation of cellular structure s, we turn to theories of the form given in Eq. (15), defined in terms of 
dislocation currents J that depend directly on the local GND density.

2.3. Our CDD model 

The microscopic motion of a dislocation under external strain depends upon temperature. In general, it moves quickly 
along the glide direction, and slowly (or not at all) along the climb direction where vacancy diffusion must carry away 
the atoms. The glide speed can be limited by phonon drag at higher temperature s, or can accelerate to nearly the speed 
of sound at low temperature s (Hirth and Lothe, 1982 ). It is traditional to assume that the dislocation velocity is over-damped ,
and proportional to the component of the force per unit dislocation length in the glide plane.5

To coarse-grain this microscop ics, for reasons described in Section 3, we choose a CDD model whose dislocation currents 
vanish when the GND density vanishes, without considering SSDs. Limkumnerd and Sethna (2006) derived a dislocation cur- 
rent J for this case using a closure approximat ion of the underlying microscop ics. Their work reproduced (in the case of both 
glide and climb) an earlier dynamical model proposed by Acharya et al. (Acharya, 2001; Roy and Acharya, 2005; Acharya and 
Roy, 2006 ), who also incorporate the effects of SSDs. We follow the general approach of Acharya and collaborators (Acharya,
2001, 2003, 2004; Roy and Acharya, 2005; Varadhan et al., 2006; Acharya and Roy, 2006 ) in Section 2.3.1 to derive an evo- 
lution law for dislocations allowed both to glide and climb, and then modify it to remove climb in Section 2.3.2. We derive a
second variant of glide-only dynamics in Section 2.3.3 by coupling climb to vacancies and then taking the limit of infinite
vacancy energy, which reproduces a model proposed earlier by Acharya and Roy (2006).

In our CGD and GOD-LVP dynamics (Sections 2.3.1 and 2.3.3 below), all dislocations in the infinitesimal volume at x are
moving with a common velocity vðxÞ. We discuss the validity of this single-velocity form for the equations of motion at 
length in Section 3, together with a discussion of the coarse-grai ning and the emergence of SSDs. We view our simulations 
as physically sensible ‘model materials’ – perhaps not the correct theory for any particular material, but a sensible frame- 
work to generate theories of plastic deformation and explain generic features common to many materials.

2.3.1. Climb-glid e dynamics (CGD)
We start with a model presuming (perhaps unphysicall y) that vacancy diffusion is so fast that dislocatio ns climb and glide 

with equal mobility. The elastic Peach–Koehler force due to the stress rðxÞ on the local GND density is given by 
f PK 
u ¼ rmk.umk. We assume that the velocity v / f PK , giving a local constitutive relation 
vu / rmk.umk: ð35Þ
eal materials the dislocation dynamics is intermitt ent, as dislocations bow out or depin from junctions and disorder, and engag e in complex dislocation 
hes.
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How should we determine the proportional ity constant between velocity and force? In experimental systems, this is com- 
plicated by dislocation entangleme nt and short-range forces between dislocatio ns. Ignoring these features, the velocity of 
each dislocation should depend only on the stress induced by the other dislocations , not the local density of dislocations 
(Zapperi and Zaiser, 2011 ). We can incorporate this in an approximat e way by making the proportional ity factor in Eq.
(35) inversely proportional to the GND density. We measure the latter by summing the square of all components of ., hence 

j.j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
.ijk.ijk=2

q
and vu ¼ D

j.jrmk.umk, where D is a positive material-de pendent constant. This choice has the additional 

important feature that the evolution of a sharp domain wall whose width is limited by the lattice cutoff is unchanged when 
the lattice cutoff is reduced.

The flux J of the Burgers vector is thus (Kosevich, 1979 )
Jij ¼ vu.uij ¼
D
j.jrmk.umk.uij: ð36Þ
Notice that this dynamics satisfies our criterion that J ¼ 0 when there are no GNDs (i.e., . ¼ 0). Notice also that we do not 
incorporate the effects of SSDs (Acharya’s Lp (Acharya and Roy, 2006 )); we discuss this further in Section 3.

Substituting this flux J (Eq. (36)) into the free energy dissipation rate (Eq. (B.16)) gives 
@F
@t
¼ �

Z
d3x rijJij ¼ �

Z
d3x
j.j
D

v2
6 0: ð37Þ
Details are given in B.3.
2.3.2. Glide-only dynamics: mobile dislocation population (GOD-MDP)
When the temperat ure is low enough, dislocation climb is negligible, i.e., dislocatio ns can only move in their glide planes.

Fundamental ly, dislocation glide conserves the total number of atoms, which leads to an unchanged local volume. Since the 
local volume change in time is represented by the trace Jii of the flux of the Burgers vector, conservative motion of GNDs 
demands Jii ¼ 0. Limkumnerd and Sethna (2006) derived the equation of motion for dislocation glide only, by removing 
the trace of J from Eq. (36). However, their dynamics fails to guarantee that the free energy monotonica lly decreases. Here 
we present an alternative approach.

We can remove the trace of J by modifying the first equality in Eq. (36),
J0ij ¼ v 0u .uij �
1
3

dij.ukk

� �
; ð38Þ
where .0uij ¼ .uij � 1
3 dij.ukk can be viewed as a subset of ‘mobile’ dislocations moving with velocity v 0.

Substituting the current (Eq. (38)) into the free energy dissipation rate (Eq. (B.16)) gives 
@F
@t
¼ �

Z
d3x rij v 0u.0uij

� �
: ð39Þ
If we choose the velocity v 0u / rij.0uij, the appropriate free energy monotonically decreases in time. We thus express 
v 0u ¼ D

j.j.
0
uijrij, where D is a positive material-de pendent constant, and the prefactor 1=j.j is added for the same reasons, as 

discussed in the second paragraph of Section 2.3.1.
The current J0 of the Burgers vector is thus written (Chen et al., 2010 )
J0ij ¼ v 0u.0uij ¼
D
j.jrmn .umn �

1
3

dmn.ull

� �
.uij �

1
3

dij.ukk

� �
: ð40Þ
This natural evolution law becomes much less self-evid ent when expressed in terms of the traditional two-index version q
(Eqs. (1) and (2))
J0ij¼
D
j.j rinqmnqmj�rmnqinqmj�

1
3
rmmqniqnjþ

1
3
rmmqinqnj�

dij

3
rknqmnqmk�rmnqknqmk�

1
3
rmmqnkqnkþ

1
3
rmmqknqnk

� �� �
;

ð41Þ
(which is why we introduce the three-index variant .).
This current J0 makes the free energy dissipatio n rate the negative of a perfect square in Eq. (B.18). Details are given 

in B.3.
2.3.3. Glide-only dynamics: local vacancy-i nduced pressure (GOD-LVP)
At high temperature, the fast vacancy diffusion leads to dislocation climb out of the glide direction. As the temperat ure 

decreases, vacancie s are frozen out so that dislocations only slip in the glide planes. In C.1, we present a dynamical model 
coupling the vacancy diffusion to our CDD model. Here we consider the limit of frozen-out vacancies with infinite energy 
costs, which leads to another version of glide-only dynamics.



Fig. 3. Relaxation of various CDD models. The blue dot represents the initial random plastically-deformed state; the red dots indicate the equilibrated 
stress-free states driven by different dynamics. Curve A: steepest decent dynamics leads to the trivial homogeneous equilibrated state, discussed in 
Section 2.2. Curve B: our CDD models settle the system into non-trivial stress-free states with wall-like singularities of the GND density, discussed in 
Section 2.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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According to the coupling dynamics Eq. (C.8), we write down the general form of dislocation current 
J00ij ¼
D
j.j rmn � dmnpð Þ.umn.uij; ð42Þ
where p is the local pressure due to vacancie s.
The limit of infinitely costly vacancies (a!1 in C.1) leads to the traceless current, J00ii ¼ 0. Solving this equation gives a

critical local pressure pc
pc ¼
rpq.spq.skk

.uaa.ubb

: ð43Þ
The correspondi ng current J00 of the Burgers vector in this limit is thus written 
J00ij ¼
D
j.j rmn �

rpq.spq.skk

.uaa.ubb
dmn

� �
.umn.uij; ð44Þ
reproducing the glide-onl y dynamics proposed by Acharya and Roy (2006).
Substituting the current (Eq. (44)) into the free energy dissipation rate (Eq. (B.16)) gives 
@F
@t
¼ �

Z
d3x

D
j.j f PK 

i f PK 
i �

dif PK 
i

jdj

� �2
" #

6 0; ð45Þ
where f PK 
i ¼ rmn.imn and di ¼ .ikk. The equality emerges when the force fPK is along the same direction as d.

Unlike the traditional linear dissipative models, our CDD model, coarse grained from microscopic interactions, drives the 
random plastic distortion to non-trivial stress-free states with dislocation wall singularities, as schematically illustrated in 
Fig. 3.

Our minimal CDD model, consisting of GNDs evolving under the long-ran ge interaction, provides a framework for under- 
standing dislocation morphologies at the mesoscale. Eventually, it can be extended to include vacancie s by coupling them to 
the dislocation current (as discussed in C.1, or extended to include disorder, dislocation pinning, and entangleme nt by adding 
appropriate interactio ns to the free energy functional and refining the effective stress field (as discussed in C.2). It has al- 
ready been extended to include SSDs incorporating traditional crystal plasticity theories (Varadhan et al., 2006; Acharya 
and Roy, 2006; Roy and Acharya, 2006 ).
3. Coarse graining 

The discussion in Section 2 uses the language and conceptual framework of the condensed matter physics of systems 
close to equilibrium – the generalized ‘‘hydrodynami cs’’ used to derive equations of motion for liquids and gases, liquid crys- 
tals, superfluids and supercon ductors, magnetic materials, etc. In these subjects, one takes the broken symmetries and con- 
served quantities, and systematical ly writes the most general evolution laws allowed by symmetr y, presuming that these 
quantities determine the state of the material . In that framework, the Burgers vector flux J of Eqs. (15) and (16) would normally 
be written as a general function of q and its gradients, constrained by symmetries and the necessity that the net energy de- 
creases with time. Indeed, this was the approach Limkumnerd originally took (Limkumnerd, 2006 ), but the complexi ty of the 
resulting theory and the multiplicity of terms allowed by symmetry led them to specialize (Limkumnerd and Sethna, 2006 )
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to a particular choice motivated by the Peach–Koehler force – leading to the equation of motion previously develope d by 
Acharya (2001) and Roy and Acharya (2005).

The assumpti on that the net continuum dislocation density determines the evolution, however, is an uncontrolled 6 and
probably invalid assumption . Falk and Langer (1998) have argued that the chaotic motion of dislocations may lead to a statistical 
ensembl e that could allow a systematic theory of this type to be justified, but consensus has not been reache d on whethe r this 
will indeed be possible.) The situation is less analog ous to deriving the Navier –Stokes equation (where local equilibriu m at the 
viscous length is sensible) than to deriving theories of eddy viscos ity in fully develop ed turbulence (where unavoid able uncon- 
trolled approximati ons are needed to subsume swirls on smaller scales into an effective viscos ity of the coarse-gr ained system).
Important features of how dislocati ons are arranged in a local region will not be determ ined by the net Burgers vector density,
and extra state variables embodyin g their effects are needed. In the context of dislocati on dynamics, these state variables are 
usually added as SSDs and yield surfaces – although far more complex memor y effects could in principle be envisioned.

Let us write q0 as the microscopic dislocation density (the sum of line- d functions along individual dislocations , as in Eq.
(1) and following equations). For the microscopic density, allowing both glide and climb, the dislocation current J0 is directly 
given by the velocity v0ðxÞ of the individual dislocation passing through x (see Eq. (36)):
6 The
evolutio
compon
J0
ij ¼ v0

u.
0
uij: ð46Þ
Let Fr be the microscopic quantity F0 coarse-grained density over a length-sc ale R,
FR
ij ðxÞ ¼

Z
d3yF0

ijðxþ yÞwRðyÞ; ð47Þ
where wR is a smoothing or blurring function. Typically, we use a normal or Gaussian distribution NR
wRðyÞ ¼ NRðyÞ ¼ ð2pR2Þ�3=2e�y2=ð2R2Þ: ð48Þ
For our purposes, we can define the SSD density as the difference between the coarse-grained density and the microscopic 
density (Sandfeld et al., 2010 ):
qSSDðxÞ ¼ q0ðxÞ � qRðxÞ ¼ q0ðxÞ �
Z

d3yq0ðxþ yÞwRðyÞ: ð49Þ
(Acharya (2011) calls this quantity the dislocation fluctuation tensor field.)
First, we address the question of SSDs, which we do not include in our simulations . In the past (Chen et al., 2010 ), we have 

argued that they do not contribute to the long-range stresses that drive the formation of the cell walls, and that the success- 
ful generation of cellular structures in our simplified model suggests that they are not crucial. Here we go further, and sug- 
gest that their density may be small on the relevant length-sc ales for cell-wall formation, and also that in a theory (like ours)
with scale-invariant structure s it would not be consistent to add them separately.

What is the depende nce of the SSD density on the coarse-graini ng scale? Clearly q0 contains all dislocations; clearly for a
bent single crystal of size L;qL contains only those dislocations necessary to mediate the rotation across the crystal (usually a
tiny fraction of the total density of dislocations ). As R increases past the distance between dislocations , canceling pairs of 
Burgers vectors through the same grid face will leave the GNDs and join the SSDs. If the dislocation densities were smoothly 
varying, as is often envisioned on long length scales, the SSD density would be roughly independen t of R except on micro- 
scopic scales. But, for a cellular structure with gross inhomogene ities in dislocation density, the SSD density on the mesoscale 
may be much lower than that on the macroscale. Very tangibly, if alternating cell walls separated by ‘ have opposite mis- 
orientations (as is quite commonl y observed (Kuhlmann-Wil sdorf and Hansen, 1991; Hughes and Hansen, 1993 )), then the 
SSD density for R > ‘ will include most of the dislocations incorporate d into these cell walls, while for R < ‘ the cell walls 
will be viewed as geometri cally necessary.

How does the GND density within the cell walls compare with the total dislocatio n density for a typical material? Is it 
possible that the GNDs dominate over SSDs in the regime where these cell wall patterns form? Recent simulations clearly 
suggest (see Kiener et al., 2011, Figure. 5) that the distinction between GNDs and SSDs is not clear at the length scale of a
micron, and with reasonabl e definitions GNDs dominate by at least an order of magnitud e over the residual average SSD den- 
sity. But what about the experiments? While more experime nts are necessary to clarify this issue, the existing evidence sup- 
ports that at mesoscales , SSDs at least are not necessarily dominan t. In particular , Hughes et al. (1997) observes that cell 
boundary structures exhibit Davhav=b ¼ C where Dav is the average wall spacing and hav is the average misorien tation angle 
with C � 650 for ‘geometrica lly necessary’ boundaries (GNBs) and C � 80 for ‘incidental dislocation’ boundaries (IDBs). The 
resulting dislocation density should scale as 
qGND ¼
1

Davh
¼ hav

Davb
� C

D2
av
¼ h2

av

b2C
; ð50Þ
re are two uncontrolled approximations we make. Here we assume that the continuum, coarse-grained dislocation density q ¼ qR determines the 
n: we ignore SSDs as unimpor tant on the sub-cellular length-scales of interest to us. Later, we shall further assume that the nine independent 
ents of qij all are dragged by the stress with the same velocity.
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where h is the average spacing between GNDs in the wall.7 There are some estimates availabl e from the literature . Hughes
et al. (1997) tells us for pure aluminum that Dav is often observed to be Dav ¼ 1� 5 lm which leads to roughly qGNB 

GND � 1013

�ð2:6� 65Þ=m2 and qIDB 
GND one order of magnitud e smaller. Similar estimates in Godfrey and Hughes (2000) give qGNB 

GND ¼
1014 � 6� 1015=m2 for aluminum at von Mises strains of � ¼ 0:2 and 0:6, respect ively. The larger von Mises strains, the higher 
dislocation density. Typically, in highly deformed aluminum (� � 2:7), the total dislocation density is roughly 10 16=m2 (see
Hughes et al., 1998 ). While SSDs within a cell boundary may exist, it is clearly far from true that SSDs dominat e the dynami cs 
in these experimen ts.

These TEM analyses of cell boundary sizes and misorien tations have a misorientati on cutoff h0 � 2	 (Liu, 1994 ); they ana- 
lyze the cell boundaries using a single typical length scale Dav . Our model behavior is formally much closer to the fractal 
scaling analysis that Hähner et al. (1998) used. How does one identify a cutoff in a theory exhibiting scale invariance (i.e.,
with no natural length scale)? Clearly our simulations are cut off at the numerica l grid spacing, and the scale invariant theory 
applies after a few grid spacings. Similarly, if the real materials are described by a scale-invariant morphology (still an open 
question), the cutoff to the scale invariant regime will be where the granularity of the dislocations becomes important – the 
dislocation spacing, or perhaps the annihilation length. This is precisely the length scale at which the dislocatio ns are indi- 
vidually resolved – at which there is no separate populations of SSDs and GNDs. Thus ignoring SSDs in our theory is at least 
self-consiste nt.

So, not only are the SSDs unimportan t for the long-range stresses and appear unnecessar y for our (presumably successful)
modeling of the formation of cell walls, but they also may be rare on the sub-cellular coarse-grai ning scale we use in our 
modeling, and it makes sense in our mesoscale theory for us to omit their effects.

The likelihood that we do not need to incorporate explicit SSDs in our equations of motion does not mean that our equa- 
tions are correct. The microscopic equation of motion, Eq. (46) naively looks the same as our ‘single-velo city’ equation of 
motion we use (e.g., Eq. (36)). But, as derived in Acharya and Roy (2006), the coarse-graini ng procedure (Eq. (47)) leads to 
a correction term Lp to the single-veloci ty equation s:
7 Onl
8 Mo

is of cou

�.SSDðx;x
JRij ¼ ðv0
s .

0
sijÞ

R ¼ vR
s .

R
sij þ ðv0

s .
0
sijÞ

R � vR
s .

R
sij

h i
¼ vR

s .
R
sij þ Lp

ij : ð51Þ
Acharya interprets 8 this correction term Lp as the strain rate due to SSDs (Acharya and Roy, 2006; Roy and Acharya, 2006 ), and 
later Beaudoin (Varadhan et al., 2006 ) and others (Mach et al., 2010 ) then use traditional crystal plasticity SSD evoluti on laws for 
it. Their GNDs thus move accordin g to the same single-vel ocity laws as ours do, suppleme nted by SSDs that evolve by crystal 
plasticity (and thereby contribut e changes to the GND density). This is entirely appropriate for scales large compared to the cel- 
lular structures , where most of the dislocation s are indeed SSDs.

Although we argue that SSDs are largely absent at the nanoscale where we are using our continuum theory, this does not 
mean the single-velocity form of our equation s of motion can be trusted. Unlike fluid mixtures, where momentum conser- 
vation and Galilean invariance lead to a shared mean velocity after a few collision times, the microscopic dislocations are 
subject to different resolved shear stresses and are mobile along different glide planes, so neighbori ng dislocations may well 
move in a variety of directions (Sandfeld et al., 2010 ). If so, the microscopic velocity v0 will fluctuate in concert with the 
microscopic Burgers vector density .0 on microscopic scales, and the correctio n Lp will be large. Hence Acharya’s correction 
term Lp also incorporates multiple velocities for the GND density. Our single-vel ocity approximat ion (e.g., Eq. (36)) must be 
viewed as a physically allowed equation of motion, but a second uncontrolled approximat ion – the general evolution law for 
the coarse-grained system will be more complex.

Let us be perfectly clear that our arguments, compelling on scales small compare d to the mesoscale cellular structure s,
should not be viewed as a critique of the use of SSDs on larger scales. Much of our understand ing of yield stress and work 
hardening revolves around the macroscopic dislocation density, which perforce are due to SSDs (since they dominate on 
macroscopic scales). We also admire the work of Beaudoin, Acharya, and others which supplements the GND equation s
we both study with crystal plasticity rules for the SSDs motivated by Eq. (51). Surely on macroscales the SSDs dominate 
the deformation , and using a single-veloci ty law for the GNDs is better than ignoring them altogethe r, and we have no par- 
ticular reason to believe that the contribution of multiple GND velocities in the evolution laws through Lp will be significant
or dominant.

4. Results 

4.1. Two and three dimensional simulations 

We perform simulations in 2D and 3D for the dislocatio n dynamics of Eqs. (15) and (18), with dynamical currents defined
by CGD (Eq. (36)), GOD-MDP (Eq. (40)), and GOD-LVP (Eq. (44)). We numerically observe that simulations of Eqs. (15) and 
y misorienta tion mediating dislocations are counted.
re precisely, Eq. (4) of Acharya and Roy (2006) contains two differ ent definitions for Lp; the one in Eq. (51) and Lp0

ij ¼ ðv0
s ð.0

sij � .R
sijÞ

R
h i

¼ ðv0
s .SSD 

sij Þ
R

h i
. Lp0

rse a strain rate due to SSD s, but since .R varies in space Lp0 is not equal to Lp . Acharya (2012) suggests using a two-variable version of the SSD density,

0Þ ¼ .0ðx0Þ � .RðxÞ, making the two definitions equivalent.
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(18) lead to the same results statistically (i.e., the numerica l time step approximat ions leave the physics invariant). We 
therefore focus our presentation on the results of Eq. (18), where the evolving field variable bp is unconstrained. Our CGD 
and GOD-MDP models have been quite extensively simulated in one and two dimensio ns and relevant results can be found 
in Limkumner d and Sethna (2006), Limkumner d and Sethna (2008) and Chen et al. (2010). In this paper, we concentrate on 
periodic grids of spatial extent L in both two (Chen et al., 2010 ) and three dimensions . The numerical approach we use is a
second-order central upwind scheme designed for Hamilton–Jacobi equation s (Kurganov et al., 2001 ) using finite differences.
This method is quite efficient in capturing d-shock singular structures (Choi et al., 2012b ), even though it is flexible enough to 
allow for the use of approximat e solvers near the singularities.

Our numerica l simulations show a close analogy to those of turbulent flows (Choi et al., 2012b ). As in three-dim ensional 
turbulence, defect structures lead to intermitten t transfer of morphology to short length scales. As conjectured (Pumir and 
Siggia, 1992a; Pumir and Siggia, 1992b ) for the Euler equations or the inviscid limit of Navier–Stokes equations, our 
simulations develop singularities in finite time (Limkumnerd and Sethna, 2006; Chen et al., 2010 ). Here these singularities 
are d-shocks representing grain-bou ndary-like structures emerging from the mutual interactions among mobile dislocatio ns 
(Choi et al., in preparati on ). In analogy with turbulence, where the viscosity serves to smooth out the vortex-stretchi ng sin- 
gularities of the Euler equations, we have explored the effects of adding an artificial viscosity term to our equations of motion 
(Choi et al., 2012b ). In the presence of artificial viscosity, our simulations exhibit nice numerical convergence in all 
Fig. 4. Complex dislocation structures in two dimensions (10242) for the relaxed states of an initially random distortion. Top: Dislocation climb is allowed;
Middle: Glide only using a mobile dislocation population; Bottom: Glide only using a local vacancy pressure. Left: Net GND density j.j plotted linearly in 
density with dark regions a factor � 104 more dense than the lightest visible regions. (a) When climb is allowed, the resulting morphologies are sharp,
regular, and close to the system scale. (c) When climb is forbidden using a mobile dislocation population, there is a hierarchy of walls on a variety of length 
scales, getting weaker on finer length scales. (e) When climb is removed using a local vacancy pressure, the resulting morphologies are as sharp as those (a)
allowing climb. Right: Corresponding local crystalline orientation maps, with the three components of the orientation vector K linearly mapped onto a
vector of RGB values. Notice the fuzzier cell walls (c) and (d) suggests a larger fractal dimension.
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dimensions (Choi et al., in preparation ). However, in the limit of vanishing viscosity , the solutions of our dynamics continue 
to depend on the lattice cutoff in higher dimensions , (our simulations only exhibit numerica l convergence in one dimension).
Actually, the fact that the physical system is cut off by the atomic scale leads to the conjecture that our equations are in some 
sense non-renorm alizable in the ultraviolet. These issues are discussed in detail in Choi et al. (in preparation) and Choi et al.
(2012b)). See also Acharya and Tartar (2011) for global existence and uniqueness results from an alternative regularization 
for this type of equations; it is not known whether these alternative regularizations will continue to exhibit the fractal scal- 
ing we observe.

In the vanishing viscosity limit, our simulatio ns exhibit fractal structure down to the smallest scales. When varying the 
system size continuously, the solutions of our dynamics exhibit a convergent set of correlation functions of the various order 
parameter fields, which are used to characterize the emergent self-similari ty. This statistical convergence is numerica lly 
tested in D.1.

In both two and three dimensional simulations, we relax the deformed system with and without dislocation climb in the 
absence of external loading. Here, the initial plastic distortion field bp is still a Gaussian random field with correlation length 
scale

ffiffiffi
2
p

L=5 � 0:28L and initial amplitude b0 ¼ 1. (In our earlier work (Chen et al., 2010 ), we described this length as L=5,
using a non-standard definition of correlation length scale; see D.2.) These random initial conditions are explained in D.2.
In 2D, Fig. 4 shows that CGD and GOD-LVP simulations (top and bottom) exhibit much sharper, flatter boundaries than 
GOD-MDP (middle). This difference is quantitative ly described by the large shift in the static critical exponent g in 2D for 
Fig. 5. Complex dislocation structures in three dimensions (1283) for the relaxed states of an initially random distortion. Notice these textured views on the 
surface of simulation cubes. Top: Dislocation climb is allowed; Middle: Glide only using a mobile dislocation population; Bottom: Glide only using a local 
vacancy pressure. Left: Net GND density j.j plotted linearly in density with dark regions a factor � 103 more dense than the lightest visible regions. The 
cellular structures in (a), (c), and (e) seem similarly fuzzy; our theory in three dimensions generates fractal cell walls. Right: Corresponding local crystalline 
maps, with the three components of the orientation vector K linearly mapped onto a vector of RGB values.
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Fig. 6. The elastic free energy decreases to zero as a power law in time in both two and three dimensions. In both (a) and (b), we show that the free energy F
decays monotonically in time, and goes to zero as a power law for CGD, GOD-MDP, and GOD-LVP simulations, as the system relaxes in the absence of 
external strain.
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both CGD and GOD-LVP. In our earlier work (Chen et al., 2010 ), we announced this difference as providing a sharp distinction 
between high-tem perature, non-fractal grain boundaries (for CGD), and low-temperatu re, fractal cell wall structure s (for
GOD-MDP). This appealing message did not survive the transition to 3D; Fig. 5 shows basically indistinguishab le complex 
cellular structures, for all three types of dynamics. Indeed, Table 1 shows only a small change in critical exponents , among 
CGD, GOD-MDP, and GOD-LVP. During both two and three dimensional relaxations, their appropriate free energies mono- 
tonically decay to zero as shown in Fig. 6.
4.2. Self-similarity and initial conditions 

Self-similar structures, as emergent collective phenomena, have been studied in mesoscale crystals (Chen et al., 2010 ),
human-scal e social network (Song et al., 2005 ), and the astronomical-s cale universe (Vergasso la et al., 1994 ). In some models 
(Vergassola et al., 1994 ), the self-similarity comes from scale-free initial conditions with a power-law spectrum (Peebles,
1993; Coles and Lucchin, 1995 ). In our CDD model, our simulations start from a random plastic distortion with a Gaussian 
distribution characterized by a single length scale. The scale-free dislocation structure spontaneously emerges as a result of 
the determinist ic dynamics .

Our Gaussian random initial condition is analogous to hitting a bulk material randomly with a hammer. The hammer 
head (the dent size scale) corresponds to the correlated length. We need to generate inhomogeneous deformat ions like ran- 
dom dents, because our theory is deterministic and hence uniform initial conditions under uniform loading will not develop 
patterns.

We have considered alternatives to our imposition of Gaussian random deformation fields as initial conditions. (a)
As an alternative to random initial deformation s, we could have imposed a more regular (albeit nonunifo rm)
deformation – starting with our material bent into a sinusoidal arc, and then letting it relax. Such simulatio ns produce more 
symmetric versions of the fractal patterns we see; indeed, our Gaussian random initial deformation s have correlation lengths 
‘hammer size’ comparable to the system size, so our starting deformations are almost sinusoidal (although different compo- 
nents have different phases) – see D.2. (b) To explore the effects of multiple uncorrelated random domains (multiple small 
dents), we reduce the Gaussian correlation length as shown in Fig. 7. We find that the initial-scale deformation determines 
the maximal cutoff for the fractal correlations in our model. In other systems (such as two-dimensi onal turbulence) one can 
observe an ‘inverse cascade’ with fractal structures propagating to long length scales; we observe no evidence of these here.
(c) As an alternative to imposing an initial plastic deformation field and then relaxing, we have explored deforming the mate- 
rial slowly and continuously in time. Our preliminary ‘slow hammering ’ explorati ons turn the Gaussian initial conditions bp0

into a source term, modifyin g Eq. (18) with an additional term to give @tb
p
ij ¼ Jij þ bp0

ij =s. Our early explorations suggest that 
slow hammering simulations will be qualitativ ely compatible with the relaxation of an initial rapid hammering . In this pa- 
per, to avoid the introduct ion of the hammering time scale s, we focus on the (admittedly less physically motivated) relax- 
ation behavior.

In real materials , initial grain boundaries, impurities, or sample sizes, can be viewed as analogies to our initial dents –
explaining the observation of dislocation cellular structures both in single crystals and polycrystall ine materials .

Fig. 7 shows relaxation without dislocation climb (due to the constraint of a mobile dislocatio n population) at various 
initial length scales in 2D. From Fig. 7(a) to (f), the net GND density, the net plastic distortion, and the crystalline orientation 
map, measured at two well-rela xed states evolved from different random distortions, all show fuzzy fractal structures, dis- 
tinguished only by their longest-leng th-scale features that originate from the initial conditions. In Fig. 7(g)–(i), the correla- 
tion functions of the GND density q, the intrinsic plastic distortion bp;I, and the crystalline orientati on K are applied to 
characterize the emergent self-similarity, as discussed in the following Section 4.3. They all exhibit the same power law,
albeit with different cutoffs due to the initial conditions.
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Fig. 7. Relaxation with various initial length scales in two dimensions. GNDs are not allowed to climb due to the constraint of a mobile dislocation 
population in these simulations. (a)–(c) are the net GND density map j.j, the net plastic distortion jbp j (the warmer color indicating the larger distortion),
and the crystalline orientation map in a fully-relaxed state evolved from an initial random plastic distortion with correlated length scale 0:07L. They are 
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with the longest wave length reflecting the initial distortion length scales. (g)–(i) are the scalar forms (discussed in Section 4.3) of correlation functions of 
the GND density q, the intrinsic plastic distortion bp;I , and the crystalline orientation K for well-relaxed states with initial length scales varying from 0:07L to 
0:28L. They exhibit power laws independent of the initial length scales, with cutoffs set by the initial lengths. (The scaling relation among their critical 
exponents will be discussed in Section 5.)
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4.3. Correlation functions 

Hierarchica l dislocation structures have been observed both experime ntally (Kawasaki and Takeuchi, 1980; Mughrab i et al.,
1986; Ungár et al., 1986; Schwink, 1992 ) and in our simulations (Chen et al., 2010 ). Early work analyzed experimental cellular 
structures using the fractal box counting method (Hähner et al., 1998 ) or by separating the systems into cells and analyzing 
their sizes and misorientati ons (Hughes et al., 1997; Hughes et al., 1998; Mika and Dawson, 1999; Hughes and Hansen,
2001). In our previous publication, we analyzed our simulated dislocation patterns using these two methods, and showed broad 
agreement with these experimental analyses (Chen et al., 2010 ). In fact, lack of the measureme nts of physical order parameters 
leads to incomplete characteri zation of the emergent self-simi larity.9 We will not pursue these methods here.

In our view, the emergent self-similari ty should best be exhibited by the correlation functions of the order paramete r
fields, such as the GND density q, the plastic distortion bp, and the crystalline orientation vector K. Here we focus on scalar 
invariants of the various tensor correlation functions.
9 In these analyses of TEM micrographs, the authors must use an artificial cut-off to facilitate the analysis. This arbitrar y scale obscures the scale-free nature 
behind the emergent dislocat ion patterns.
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For the vector correlation function CK
ij ðxÞ (Eq. (52)), only the sum CK

ii ðxÞ is a scalar invariant under three dimensional rota- 
tions. For the tensor fields q and bp, their two-point correlation functions are measure d in terms of a complete set of three 
independen t scalar invariants, which are indicated by ‘tot’ (total), ‘per’ (permutation), and ‘tr’ (trace). In searching for the 
explanation of the lack of scaling (Chen et al., 2010 ) for bp (see Section 4.3.3 and E.1 ), we checked whether these independen t
invariants might scale independen tly. In fact, most of them share a single underlying critical exponent, except for the trace- 
type scalar invariant of the correlation function of bp;I, which go to a constant in well-relaxed states, as discussed in 
Section 5.1.2.

4.3.1. Correlation function of crystalline orientation field
As dislocations self-organize themselves into complex structures, the relative differences of the crystalline orientati ons 

are correlated over a long length scale.
For a vector field, like the crystalline orientation K, the natural two-point correlation function is 
CK
ij ðxÞ ¼ hðKiðxÞ �Kið0ÞÞðKjðxÞ �Kjð0ÞÞi ¼ 2hKiKji � 2hKiðxÞKjð0Þi: ð52Þ
Note that we correlate changes in K between two points. Just as for the height-height correlation function in surface growth 
(Chaikin and Lubensky , 1995 ), adding a constant to KðxÞ (rotating the sample) leads to an equivalent configuration, so only 
differences in rotations can be meaningfull y correlate d.

It can be also described in Fourier space 
eCK
ij ðkÞ ¼ 2hKiKjið2pÞ3dðkÞ � 2

V
eKiðkÞeKjð�kÞ: ð53Þ
In an isotropic medium, we study the scalar invariant formed from CK
ij
CKðxÞ ¼ CK
ii ðxÞ ¼ 2hK2i � 2hKiðxÞKið0Þi: ð54Þ
Fig. 8 shows the correlation functions of crystalline orientations in both 1024 2 and 128 3 simulations. The large shift in 
critical exponents seen in 2D (Fig. 8(a)) for both CGD and GOD-LVP is not observed in the fully three dimensional simulatio ns 
(Fig. 8(b)).

4.3.2. Correlation function of GND density field
As GNDs evolve into d-shock singularities, the critical fluctuations of the GND density can be measured by the two-point 

correlation function CqðxÞ of the GND density, which decays as the separating distance between two sites increases. The com- 
plete set of rotational invariants of the correlation function of q includes three scalar forms 
CqtotðxÞ ¼ hqijðxÞqijð0Þi; ð55Þ
CqperðxÞ ¼ hqijðxÞqjið0Þi; ð56Þ
CqtrðxÞ ¼ hqiiðxÞqjjð0Þi: ð57Þ
Fig. 9 shows all the correlation functions of GND density in both 1024 2 and 128 3 simulations . These three scalar forms of 
the correlation functions of q exhibit the same critical exponent g, as listed in Table 1. Similar to the measurements of CK, the 
large shift in critical exponents seen in 2D (Fig. 9(a)) for both CGD and GOD-LVP is not observed in the fully three dimen- 
sional simulations (Fig. 9(b)).

4.3.3. Correlation function of plastic distortion field
The plastic distortion bp is a mixture of both the divergence- free bp;I and the curl-free bp;H. Fig. 10 shows that bp does not 

appear to be scale invariant, as observed in our earlier work (Chen et al., 2010 ). It is crucial to study the correlations of the 
two physical fields, bp;I and bp;H, separately.

Similarly to the crystalline orientation K, we correlate the differences between bp;I at neighboring points. The complete set 
of scalar invariants of correlation functions of bp;I thus includes the three scalar forms 
Cbp;I

tot ðxÞ ¼ hðb
p;I
ij ðxÞ � bp;I

ij ð0ÞÞðb
p;I
ij ðxÞ � bp;I

ij ð0ÞÞi ¼ 2hbp;I
ij bp;I

ij i � 2hbp;I
ij ðxÞb

p;I
ij ð0Þi; ð58Þ

Cbp;I

per ðxÞ ¼ �hðb
p;I
ij ðxÞ � bp;I

ij ð0ÞÞðb
p;I
ji ðxÞ � bp;I

ji ð0ÞÞi ¼ �2hbp;I
ij bp;I

ji i þ 2hbp;I
ij ðxÞb

p;I
ji ð0Þi; ð59Þ

Cbp;I

tr ðxÞ ¼ hðb
p;I
ii ðxÞ � bp;I

ii ð0ÞÞðb
p;I
jj ðxÞ � bp;I

jj ð0ÞÞi ¼ 2hbp;I
ii bp;I

jj i � 2hbp;I
ii ðxÞb

p;I
jj ð0Þi; ð60Þ
where an overall minus sign is added to Cbp;I

per so as to yield a positive measure.
In Fig. 11 , the correlation functions of the intrinsic plastic distortion bp;I in both 1024 2 and 128 3 simulations exhibit a crit- 

ical exponent r0. These measured critical exponents are shown in Table 1. We discuss the less physically relevant case of bp;H

in E.1, Fig. D.17 .
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5. Scaling theory 

The emergent self-similar dislocation morphologi es are characterized by the rotational invariant s of correlation functions 
of physical observables, such as the GND density q, the crystalline orientation K, and the intrinsic plastic distortion bp;I. Here 
we derive the relations expected between these correlation functions, and show that their critical exponents collapse into a
single underlyin g one through a generic scaling theory.
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Fig. 11. Correlation functions of bp;I in both two and three dimensions. In (a) and (b), the correlation functions of the intrinsic part of plastic distortion field
are shown. Left: (a) is measured in relaxed, unstrained 1024 2 systems; Right: (b) is measured in in relaxed, unstrained 128 3 systems. All dashed lines show 
estimated power laws quoted in Table 1. Notice that we omit the correlation functions of Cbp;I

tr , which are independent of distance, and unrelated to the 
emergent self-similarity, as shown in Section 5.1.2.

Table 1
Critical exponents for correlation functions at stress-free states. (C.F. and S.T. represent ‘Correlation Functions’ and ‘Scaling Theory ’, respectively.)

C.F. S.T. Simulations 

Climb and glide Glide only (MDP) LVP glide only (LVP)

2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ

Cqtot g 0:80
 0:30 0:55
 0:05 0:45
 0:25 0:60
 0:20 0:80
 0:30 0:55
 0:05

Cqper g 0:80
 0:20 0:55
 0:05 0:45
 0:20 0:60
 0:20 0:70
 0:30 0:50
 0:05

Cqtr g 0:80
 0:20 0:55
 0:05 0:45
 0:20 0:60
 0:10 0:70
 0:30 0:45
 0:05

CK 2� g 1:10
 0:65 1:45
 0:25 1:50
 0:30 1:35
 0:25 1:10
 0:65 1:50
 0:25

Cb
p;I

tot
2� g 1:10
 0:60 1:45
 0:15 1:45
 0:25 1:30
 0:20 1:10
 0:60 1:50
 0:20

Cb
p;I

per
2� g 1:15
 0:45 1:50
 0:25 1:45
 0:25 1:50
 0:50 1:20
 0:45 1:55
 0:25
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In our model, the initial elastic stresses are relaxed via dislocation motion, leading to the formatio n of cellular structures.
In the limit of slow imposed deformat ions, the elastic stress goes to zero in our model. We will use the absence of external 
stress to simplify our correlation function relations. (Some relations can be valid regardless of the existence of residual 
stress.) Those relations that hold only in stress-free states will be labeled ‘sf’; they will be applicabl e in analyzing experi- 
ments only insofar as residual stresses are small.
5.1. Relations between correlation functions 

5.1.1. Cq and CK

For a stress-free state, we thus ignore the elastic strain term in Eq. (14) and write in Fourier space 
eqijðkÞ¼
sf �ikj

eKiðkÞ þ idijkk
eKkðkÞ: ð61Þ
First, we can substitut e Eq. (61) into the Fourier-t ransformed form of the correlation function Eq. (55)
eCq
totðkÞ¼

sf 1
V
�ikj

eKiðkÞ þ idijkk
eKkðkÞ

� �
ikj
eKið�kÞ � idijkm

eKmð�kÞ
� �

¼sf 1
V
ðdijk

2 þ kikjÞeKiðkÞeKjð�kÞ: ð62Þ
Multiplying both sides of Eq. (53) by ðdijk
2 þ kikjÞ gives
ðdijk
2 þ kikjÞeCK

ij ðkÞ¼
sf � 2

V
ðdijk

2 þ kikjÞeKiðkÞeKjð�kÞ: ð63Þ
Comparing Eq. (63) and Eq. (62), we may write eCq
tot in terms of eCK

ij as
eCq
totðkÞ¼

sf �1
2
ðdijk

2 þ kikjÞeCK
ij ðkÞ: ð64Þ
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Second, we can substitute Eq. (61) into the Fourier-transfo rmed form of the correlation function Eq. (56)
eCq
perðkÞ¼

sf 2
V

kikj
eKiðkÞeKjð�kÞ: ð65Þ
Multiplying both sides of Eq. (53) by kikj and comparing with Eq. (65) gives
eCq
perðkÞ¼

sf �kikj
eCK

ij ðkÞ: ð66Þ
Finally, we substitute Eq. (61) into the Fourier-transfo rmed form of the correlation function Eq. (57)
eCq
trðkÞ¼

sf 4
V

kikj
eKiðkÞeKjð�kÞ: ð67Þ
Repeating the same procedure of deriving eCq
per , we write eCq

tr in terms of eCK
ij as
eCq
trðkÞ¼

sf �2kikj
eCK

ij ðkÞ: ð68Þ
Through an inverse Fourier transform, we convert Eqs. (64), (66), and (68) back to real space to find
CqtotðxÞ¼
sf 1

2
@2CKðxÞ þ 1

2
@i@jCK

ij ðxÞ; ð69Þ

CqperðxÞ¼
sf
@i@ jCK

ij ðxÞ; ð70Þ

CqtrðxÞ¼
sf 2@i@jCK

ij ðxÞ: ð71Þ
5.1.2. Cbp;I
and CK

The intrinsic part of the plastic distortion field is directly related to the GND density field. In stress-free states, the crys- 
talline orientati on vector can fully describe the GND density. We thus can connect Cbp;I

to CK.
First, substituting ebp;I

ij ¼ �ieilmkleqmj=k2 into the Fourier-transfo rmed form of Eq. (58) gives
eCbp;I

tot ðkÞ ¼ 2 bp;I
ij bp;I

ij

D E
ð2pÞ3dðkÞ � 2

V
�i�ilm

kl

k2
eqmjðkÞ

� �
i�ist

ks

k2
eqtjð�kÞ

� �
¼ 2 bp;I

ij bp;I
ij

D E
ð2pÞ3dðkÞ � 2

k2

1
V
eqmjðkÞeqmjð�kÞ

� �
: ð72Þ
During this derivation, some terms vanish due to the geometrical constraint on q, Eq. (6). Multiply ing �k2
=2 on both sides of 

Eq. (72) and applying the Fourier-tran sformed form of Eq. (55) gives
� k2

2
eCbp;I

tot ðkÞ ¼ eCq
totðkÞ: ð73Þ
In stress-free states, we can substitute Eq. (64) into Eq. (73)
� k2

2
eCbp;I

tot ðkÞ¼
sf eCq;sf 

tot ðkÞ ¼ �
1
2

dijk
2 þ kikj

� �eCK
ij ðkÞ; ð74Þ
which is rewritten after multiplyi ng �2=k2 on both sides 
eCbp;I

tot ðkÞ¼
sf eCKðkÞ þ kikj

k2
eCK

ij ðkÞ: ð75Þ
Second, substitut ing ebp;I
ij ¼ �ieilmkleqmj=k2 into the Fourier-tran sformed form of Eq. (59) gives
eCbp;I

per ðkÞ ¼ �2 bp;I
ij bp;I

ji

D E
ð2pÞ3dðkÞ þ 2

V
�i�ilm

kl

k2
eqmjðkÞ

� �
i�jst

ks

k2
eqtið�kÞ

� �
¼ �2 bp;I

ij bp;I
ji

D E
ð2pÞ3dðkÞ � 2

Vk4 kikjeqmjðkÞeqmið�kÞ þ 2

k2
eCq

totðkÞ �
2

k2
eCq

trðkÞ; ð76Þ
where we skip straightforw ard but tedious expansions and the geometri cal constraint on q, Eq. (6). Notice that this relation 
is correct even in the presence of stress.

In stress-free states, we substitute Eqs. (61), (64), (68) into Eq. (76), and ignore the constant zero wavelength term 
eCbp;I

per ðkÞ¼
sf �2kikj

Vk4 �ikj
eKmðkÞ þ idmjkk

eKkðkÞ
� �

iki
eKmð�kÞ � idmikn

eKnð�kÞ
� �

� 1

k2 ðk
2dij þ kikjÞeCK

ij ðkÞ þ
4

k2 kikj
eCK

ij ðkÞ

� ¼sf 2
kikj

k2
eCK

ij ðkÞ: ð77Þ
Finally, substitut ing ebp;I
ij ¼ �ieilmkleqmj=k2 into the Fourier-tran sformed form of Eq. (60) gives
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eCbp;I

tr ðkÞ ¼ 2hbp;I
ii bp;I

jj ið2pÞ3dðkÞ � 2
V
�i�ilm

kl

k2
eqmiðkÞ

� �
i�jst

ks

k2
eqtjð�kÞ

� �
¼ 2 bp;I

ii bp;I
jj

D E
ð2pÞ3dðkÞ þ 2

Vk4 kikjeqmiðkÞeqmjð�kÞ � 2

k2
eCq

totðkÞ þ
2

k2
eCq

perðkÞ; ð78Þ
valid in the presence of stress. Here we repeat a similar procedure as was used to derive in Eq. (76).
In stress-free states, we substitute Eqs. (61), (64), (66) into Eq. (78)
eCbp;I

tr ðkÞ¼
sf 2hbp;I

ii bp;I
jj ið2pÞ

3dðkÞ þ 1

k2 ðk
2dij þ kikjÞeCK

ij ðkÞ �
2

k2 kikj
eCK

ij ðkÞ

þ 2kikj

Vk4 �iki
eKmðkÞ þ idmikk

eKkðkÞ
� �

ikj
eKmð�kÞ � idmjkn

eKnð�kÞ
� �

¼sf 2hbp;I
ii bp;I

jj ið2pÞ3dðkÞ; ð79Þ
which is a trivial constant in space.
Through an inverse Fourier transform, Eqs. (75), (77), and (79) can be converted back to real space, giving 
Cbp;I

tot ðxÞ¼
sf CKðxÞ þ 1

4p

Z
d3x0

dij

R3 � 3
RiRj

R5

� �
CK

ij ðx0Þ; ð80Þ

Cbp;I

per ðxÞ¼
sf 1

2p

Z
d3x0

dij

R3 � 3
RiRj

R5

� �
CK

ij ðx0Þ; ð81Þ

Cbp;I

tr ðxÞ¼
sf 2
Z

d3x0bp;I
ii ðx

0Þbp;I
jj ðx

0Þ ¼ 2 bp;I
ii bp;I

jj

D E
; ð82Þ
where R ¼ x0 � x. According to Eqs. (75) and (77), we can extract a relation 
Cbp;I

per ðxÞ � 2Cbp;I

tot ðxÞ þ 2CKðxÞ¼sf
const: ð83Þ
We can convert Eq. (73) through an inverse Fourier transform 
CqtotðxÞ ¼
1
2
@2Cbp;I

tot ðxÞ; ð84Þ
or
Cbp;I

tot ðxÞ ¼ �
1

2p

Z
d3x0
Cqtotðx0Þ

R
; ð85Þ
valid in the presence of residual stress.

5.2. Critical exponent relations 

When the self-similar dislocation structures emerge, the correlation functions of all physical quantities are expected to 
exhibit scale-free power laws. We consider the simplest possible scenario, where single variable scaling is present to reveal 
the minimal number of underlying critical exponents.

First, we define the critical exponent g as the power law describin g the asymptotic decay of CqtotðxÞ � jxj
�g, one of the cor- 

relation functions for the GND density tensor (summed over components). If we rescale the spatial variable x by a factor b,
the correlation function Cq is rescaled by the power law as 
CqtotðbxÞ ¼ b�gCqtotðxÞ: ð86Þ
Similarly, the correlation function of the crystalline orientation field K is described by a power law, CKðxÞ � jxjr, where r
is its critical exponent. We repeat the rescaling by the same factor b
CKðbxÞ ¼ brCKðxÞ: ð87Þ
Since Cqtot can be written in terms of CK, Eq. (69), we rescale this relation by the same factor b
CqtotðbxÞ¼sf 1
2
@

b

� �2

CKðbxÞ þ 1
2
@i

b

� �
@j

b

� �
CK

ij ðbxÞ: ð88Þ
Substituting Eq. (87) into Eq. (88) gives
CqtotðbxÞ ¼sf
br�2 1

2
@2CKðxÞ þ 1

2
@ i@jCK

ij ðxÞ
� �

¼sf
br�2CqtotðxÞ: ð89Þ
Comparing with Eq. (86) gives a relation between r and g
r ¼ 2� g: ð90Þ
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We can repeat the same renormalization group procedure to analyze the critical exponents of the other two scalar forms 
of the correlation functions of the GND density field. Clearly, Cqper and Cqtr share the same critical exponent g with Cqtot .

Also, we can define the critical exponent r0 as the power law describing the asymptotic growth of Cbp;I

tot ðxÞ � jxj
r0,

one of the correlation functions for the intrinsic part of the plastic distortion field. We can rescale the correlation func- 

tion Cbp;I
Cbp;I

tot ðbxÞ ¼ br0Cbp;I

tot ðxÞ: ð91Þ
We rescale the relation Eq. (84) by the same factor b, and substitute Eq. (91) into it 
CqtotðbxÞ ¼ 1
2
@

b

� �2

Cbp;I

tot ðbxÞ ¼ br0�2 1
2
@2Cbp;I

tot ðxÞ
� �

¼ br0�2CqtotðxÞ: ð92Þ
Comparing with Eq. (86) also gives a relation between r0 and g
r0 ¼ 2� g: ð93Þ
Since both Cbp;I

tot and CK share the same critical exponent 2� g, it is clear that Cbp;I

per , the other scalar form of the correlation 
functions of the intrinsic plastic distortion field, also shares this critical exponent, according to Eq. (83).

Thus the correlation functions of three physical quantities (the GND density q, the crystalline orientation K, and the 
intrinsic plastic distortion bp;I) all share the same underlying universa l critical exponent g for self-simi lar morphologies ,
in the case of zero residual stress, and still hold in the limit of slow imposed deformat ion. Table 1 verifies the exis- 
tence of single underlying critical exponent in both two and three dimensional simulations for each type of dynamics.
Imposed strain, studied in Chen et al., 2010 , could in principle change g, but the scaling relations derived here should 
still apply. The strain, of course, breaks the isotropic symmetry, allowing even more allowed correlation functions to be 
measured.

5.3. Coarse graining, correlatio n functions, and cutoffs 

Our dislocation density q, as discussed in Section 3, is a coarse-grained average over some distance R – taking the discrete 
microscopic dislocations and yielding a continuum field expressing their flux in different directions. Our power laws and 
scaling will be cut off in some way at this coarse-graini ng scale. For our simulations, the correlation functions extend down 
to a few times the numerical grid spacing (depending on the numerical diffusion in the algorithm we use). For experiments ,
the correlation functions will be cut off in ways that are determined by the instrumental resolution. Since the process of 
coarse-graini ng is at the heart of the renormalization- group methods we rely upon to explain the emergent scale invariance 
in our model, we make an initial exploration here of how coarse-graini ng by the Gaussian blur of Eq. (47) and Eq. (48) affects
the qR � qR correlation function.

Following Eq. (47),
Cq
R

totðxÞ ¼ qR
ij ðxÞqR

ij ð0Þ
D E

¼ 1
V

1

ð2pR2Þ3
Z

d3y
Z

d3zq0
ijðy þ zÞe�z2=ð2R2Þ

Z
d3z0q0

ijðy þ xþ z0Þe�z02=ð2R2Þ: ð94Þ
By changing variables s ¼ y þ z and D ¼ z0 � z, we integrate out the variable z of Eq. (94),
Cq
R

totðxÞ ¼
1

8p3=2R3

1
V

Z
d3D

Z
d3sq0

ijðsÞq0
ijðsþ Dþ xÞe�D2=ð4R2Þ ¼ 1

8p3=2R3

Z
d3DCq

0

totðxþ DÞe�D2=ð4R2Þ: ð95Þ
In our simulating system, the correlation functions of GND density can be described by a power-law Eq. (86),
CqtotðxÞ ¼ gjxj�g, where g is a constant. Thus, Eq. (95) is
Cq
R

totðxÞ ¼
g

8p3=2R3

Z
d3Djxþ Dj�ge�D2=ð4R2Þ: ð96Þ
This correlation function of the coarse-grained GND density at the given scale R is a power-law smeared by a Gaussian 
distribution .

Since the scalar field of the coarse-grained correlation function is rotational invariant, we assume that x is aligned along 
the x axis, x ¼ ðx;0;0Þ. Then we could evaluate the integral of Eq. (96) in cylindrical coordinates D ¼ ðX; r; hÞ
Cq
R

totðx;RÞ ¼
g

8p3=2R3

Z 1

0
2prdr

Z 1

�1
dXjðxþ XÞ2 þ r2j�g=2e�ðX

2þr2Þ=ð4R2Þ

¼ g

21þgp1=2
R�g�1

Z 1

�1
dXeðX

2þ2xXÞ=ð4R2ÞC 1� g=2; ðxþ XÞ2=ð4R2Þ
� �

: ð97Þ
We can rewrite this coarse-grained correlation functions Eq. (97) as a power-law multiplied by a scaling function 
Cq
R

totðx;RÞ ¼ gjxj�gWðx=RÞ; ð98Þ
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Fig. 12. Scaling function of the correlation function of coarse-grained GND density qR . We calculate the correlation function of the coarse-grained GND 
density at the given scale R. Theoretically, its scaling function remains a power-law at the small coarse-graining length scale, and flattens out to be 1 as the 
correlation length of the system is far larger than the coarse-graining scale.
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where the scaling function Wð�Þ (Fig. 12 ) equals 
Wð/Þ ¼ 1

21þgp1=2
j/jg

Z 1

�1
dsesðsþ2/Þ=4C 1� g=2; ðsþ /Þ2=4

� �
: ð99Þ
6. Conclusion 

In our earlier works (Limkumnerd and Sethna, 2006; Chen et al., 2010; Choi et al., 2012b ), we have proposed a flexible
framework of CDD to study complex mesoscale phenomena of collective dislocation motion. Traditionall y, determini stic 
CDDs have missed the experime ntally ubiquitous feature of cellular pattern formation. Our CDD models have made progress 
in that respect. In the beginning, we focused our efforts on describing coarse-grained dislocatio ns that naturally develop dis- 
location cellular structures in ways that are consistent with experimental observations of scale invariance and fractality, a
target achieved in Chen et al. (2010). However, that paper studied only 2D, instead of the more realistic 3D.

In this manuscr ipt, we go further in many aspects of the theory extending the results of our previous work:
We provide a derivation of our theory that explains the differenc es with traditional theories of plasticity. In addition to 

our previously studied climb-glide (CGD) and glide-onl y (GOD-MDP) models, we extend our construction in order to incor- 
porate vacancies, and re-derive (Acharya and Roy, 2006 ) a different glide-only dynamics (GOD-LVP) which we show exhibits 
very similar behavior in 2D to our CGD model. It is worth mentioning that in this way, the GOD-LVP and the CGD dynamics 
become statistical ly similar in 2D, while the previously studied, less physical, GOD-MDP model provides rather different 
behavior in 2D (Chen et al., 2010 ).

We present 3D simulation results here for the first time, showing qualitatively different behavior from that of 2D. In 3D,
all three types of dynamics – CGD, GOD-MDP and GOD-LVP – show similar non-trivial fractal patterns and scaling dimen- 
sions. Thus our 3D analysis shows that the flatter ‘grain boundari es’ we observe in the 2D simulatio ns are not intrinsic to 
our dynamics, but are an artifact of the artificial z-independent initial conditions. Experime ntally, grain boundaries are in- 
deed flatter and cleaner than cell walls, and our theory no longer provides a new explanation for this distinction. We expect 
that the dislocation core energies left out of our model would flatten the walls, and that adding disorder or entanglement 
would prevent the low-temperatu re glide-only dynamics from flattening as much.

We also fully describe, in a statistical sense, multiple correlation functions – the local orientation, the plastic distortion,
the GND density – their symmetries and their mutual scaling relations. Correlation functions of important physical quanti- 
ties are categorized and analytica lly shown to share one stress-free exponent. The anomaly in the correlation functions of bp,
which was left as a question in our previous publication (Chen et al., 2010 ), has been discussed and explained. All of these 
correlation functions and properties are verified with the numerica l results of the dynamics that we extensively discussed.

As discussed in Section 1, our model is an immensely simplified caricature of the deformation of real materials . How does 
it connect to reality? 

First, we show that a model for which the dynamics is driven only by elastic strain produces realistic cell wall structures 
even while ignoring slip systems, crystalline anisotropy (Hughes et al., 1998 ), pinning, junction formatio n, and SSDs. The fact 
that low-ener gy dislocation structures (LEDS) provides natural explanation s for many propertie s of these structures has long 
been emphasized by Kuhlmann-Wi lsdorf (1987). Intermittent flow, forest interactions, and pinning will in general impede 
access to low energy states. These real-worl d features, our model suggests, can be important for the morphology of the cell 
wall structures but are not the root cause of their formation nor of their evolution under stress (discussed in previous work 
(Chen et al., 2010 )).

One must note, however, that strain energy minimization does not provide the explanat ion for wall structures in our 
model material. Indeed, there is an immense space of dislocation densities which make the strain energy zero (Limkumner d
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and Sethna, 2007 ), including many continuo us densities. Our dynamics relaxes into a small subset of these allowed struc- 
tures – it is the dynamics that leads to cell structure formation here, not purely the energy. In discrete dislocation simula- 
tions and real materials, the quantization of the Burgers vector leads to a weak logarithmic energetic preferenc e for sharp 
walls. This �lb=ð4pð1� mÞÞh log h energy of low-angle grain boundaries yields a log 2 preference for one wall of angle h
rather than two walls of angle h=2. This leads to a ‘zipping’ together of low angle grain boundaries. Since b ! 0 in a con- 
tinuum theory, this preference is missing from our model. Yet, we still find cell wall formation suggestin g that such mech- 
anisms are not central to cell wall formation.

Second, how should we connect our fractal cell wall structures with those (fractal or non-fractal) seen in experiments? 
Many qualitatively different kinds of cellular structures are seen in experiments – variously termed cell block structure s, mo- 
saic structures, ordinary cellular structures,. . .Hansen et al. (2011) recently categorized these structures into three types, and 
argue that the orientation of the stress with respect to the crystalline axes largely determines which morphology is exhib- 
ited. The cellular structures in our model, which ignores crystalline anisotropy, likely are the theoretical progenitors of all of 
these morphologies. In particular, Hansen’s type 1 and type 3 structures incorporate both ‘geometr ically necessary’ and ‘inci- 
dental dislocation’ boundaries (GNBs and IDBs), while type 2 structure s incorporate only the latter. Our simulations cannot 
distinguish between these two types, and indeed qualitatively look similar to Hansen’s type 2 structures. One should note 
that the names of these boundaries are misleading – the ‘incidental’ boundaries do mediate geometrical rotations, with 
the type 2 boundari es at a given strain having similar average misorientati ons to the geometrically necessary boundaries 
of type 1 structure s (Hansen et al., 2011 , Fig. 8). It is commonly asserted that the IDBs are formed by statistical trapping 
of stored dislocations; our model suggests that stochasticity is not necessar y for their formation.

Third, how is our model compatib le with traditional plasticity, which focuses on the total density of dislocation lines? Our 
model evolves the net dislocation density, ignoring the geometricall y unnecessary or statistically stored dislocations with can- 
celing Burgers vectors. These latter dislocatio ns are important for yield stress and work hardenin g on macrosca les, but are 
invisible to our theory (since they do not generate stress). Insofar as the cancelation of Burgers vectors on the macroscale is 
due to cell walls of opposing misorientati ons on the mesoscale, there needs to be no conflict here. Also our model remains 
agnostic about whether cell boundari es include significant components of geometrical ly unnecessary dislocations . However,
our model does assume that the driving force for cell boundary formatio n is the motion of GNDs, as opposed to (for example)
inhomogene ous flows of SSDs.

There still remain many fascinating mesoscale experiments, such as dislocatio n avalanches (Miguel et al., 2001; Dimiduk 
et al., 2006 ), size-depend ent hardness (smaller is stronger) (Uchic et al., 2004 ), and complex anisotropic loading (Schmitt
et al., 1991; Lopes et al., 2003 ), that we hope to emulate. We intend in the future to include several relevant additional ingre- 
dients to our dynamics , such as vacancies (C.1), impurities (C.2), immobile dislocations /SSDs and slip systems, to reflect real 
materials.
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Appendix A. Physical quantities in terms of the plastic distortion tensor bp

In an isotropic infinitely large medium, the local deformat ion u, the elastic distortion be and the internal long-ran ge stress 
rint can be expressed (Mura, 1991; Limkumner d and Sethna, 2006 ) in terms of the plastic distortion field bp in Fourier space:
euiðkÞ ¼ NiklðkÞebp
klðkÞ;

NiklðkÞ ¼ �
i

k2 ðkkdil þ kldikÞ � i
mkidkl

ð1� mÞk2 þ i
kikkkl

ð1� mÞk4 ; ðA:1Þ

ebe
ijðkÞ ¼ TijklðkÞebp

klðkÞ;

TijklðkÞ ¼
1

k2 ðkikkdjl þ kikldjk � k2dikdjlÞ þ
kikj

ð1� mÞk4 ðmk2dkl � kkklÞ; ðA:2Þ

erint
ij ðkÞ ¼ MijmnðkÞebp

mnðkÞ;

MijmnðkÞ ¼
2um

1� m
kmkndij þ kikjdmn

k2 � dijdmn

� �
þ u

kikm

k2 djn þ
kjkn

k2 dim � dimdjn

� �
þ u

kf ikn

k2 djm þ
kjkm

k2 din � dindjm

� �
� 2u

1� m
kikjkmkn

k4 : ðA:3Þ
All these expressions are valid for systems with periodic boundary conditions.
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According to the definition Eq. (12) of the crystalline orientation K, we can replace xe with be and �e by using the elastic 
distortion tensor decompo sition Eq. (A.2)
Ki ¼
1
2
eijkðbe

jk � �e
jkÞ: ðA:4Þ
Here the permutation factor acting on the symmetr ic elastic strain tensor gives zero. Hence we can express the crystalline 
orientation vector K in terms of bp by using Eq. (A.2)
eKiðkÞ ¼
1
2
eijk

1

k2 ðkjksdkt þ kjktdks � k2djsdktÞ þ
kjkk

ð1� mÞk4 ðmk2dst � ksktÞ
( )ebp

stðkÞ

¼ 1

2k2 ðeijtkjks þ eijskjkt � k2eistÞebp
stðkÞ: ðA:5Þ
Appendix B. Energy dissipation rate 

B.1. Free energy in Fourier space 

In the absence of external stress, the free energy F is the elastic energy caused by the internal long-ran ge stress 
F ¼
Z

d3x
1
2
rint

ij �
e
ij ¼

Z
d3x

1
2

Cijmn�e
ij�

e
mn; ðB:1Þ
where the stress is rint
ij ¼ Cijmn�e

mn, with Cijmn the stiffness tensor.
Using the symmetr y of Cijmn and ignoring large rotations, �e

ij ¼ ðb
e
ij þ be

jiÞ=2, we can rewrite the elastic energy F in terms of 
be
F ¼
Z

d3x
1
2

Cijmnb
e
ijb

e
mn: ðB:2Þ
Performing a Fourier transform on both bp
ij and bp

mn simultaneou sly gives 
F ¼
Z

d3x
Z

d3k

ð2pÞ3
Z

d3k0

ð2pÞ3
eiðkþk0 Þx 1

2
Cijmn

ebe
ijðkÞebe

mnðk
0Þ

� �
: ðB:3Þ
Integrating out the spatial variable x leaves a d�function dðkþ k0Þ in Eq. (B.3). We hence integrate out the k-space variable k0
F ¼
Z

d3k

ð2pÞ3
1
2

Cijmn
ebe

ijðkÞebe
mnð�kÞ: ðB:4Þ
Substituting Eq. (A.2) into Eq. (B.4) gives
F ¼
Z

d3k

ð2pÞ3
1
2

CijmnTijpqðkÞTmnstð�kÞ
	 
ebp

pqðkÞebp
stð�kÞ ¼ �

Z
d3k

ð2pÞ3
1
2

MpqstðkÞebp
pqðkÞebp

stð�kÞ; ðB:5Þ
where we skip straightforwar d but tedious simplifications.
When turning on the external stress, we repeat the same procedure used in Eq. (B.3), yielding 
F ext ¼ �
Z

d3x rext
ij bp

ij ¼ �
Z

d3k

ð2pÞ3
erext

ij ðkÞebp
ijð�kÞ: ðB:6Þ
B.2. Calculation of energy functional derivative with respect to the GND density .

According to Eq. (17), the infinitesimal change of the variable d. is given in terms of dbp
d.ijk ¼ �gijls@l dbp
sk

	 

: ðB:7Þ
Substituting Eq. (B.7) into Eq. (27) and applying integration by parts, the infinitesimal change of F is hence rewritten in 
terms of bp
dF½bp� ¼
Z

d3x gijls@l

 
dF
d.ijk

!
dbp

sk: ðB:8Þ
According to Eq. (24), it suggests 
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dF½bp� ¼
Z

d3x
dF
dbp

sk

dbp
sk ¼

Z
d3x ð�rskÞdbp

sk: ðB:9Þ
Comparing Eq. (B.8) and Eq. (B.9) implies
gijls@l

 
dF
d.ijk

!
¼ �rsk; ðB:10Þ
up to a total derivative which we ignore due to the use of periodic boundary conditions.

B.3. Derivation of energy dissipation rate 

We can apply variation al methods to calculate the dissipation rate of the free energy. As is well known, the gen- 
eral elastic energy E in a crystal can be expresse d as E ¼ 1

2

R
d3x rij�e

ij, with �e
ij the elastic strain. An infinitesimal

change of E is:
dE ¼ 1
2

Z
d3x rijd�e

ij þ
1
2

Z
d3x drij�e

ij ¼
Z

d3x rijd�e
ij; ðB:11Þ
where we use rijd�e
ij ¼ Cijkl�e

kld�
e
ij ¼ drij�e

ij.
So the infinitesimal change of the free energy Eq. (20) is
dF ¼
Z

d3x rint
ij d�e

ij � rext
ij d�p

ij

� �
: ðB:12Þ
We apply the relation �e ¼ �� �p, where �p is the plastic strain and � is the total strain:
dF ¼
Z

d3x rint
ij d�ij � rint

ij d�p
ij � rext

ij d�p
� �

: ðB:13Þ
Using the symmetry of rij and ignoring large rotations , �ij ¼ 1
2 ð@iuj þ @juiÞ, we can rewrite the first term of Eq. (B.13) asR

d3x rint
ij dð@ iujÞ. Integrating by parts yields 

R
d3x @iðdujrint

ij Þ � duj@ irint
ij

� �
. We can convert the first volume integral to a sur- 

face integral, which vanishes for an infinitely large system. Hence 
dF ¼
Z

d3x @irint
ij duj � ðrint

ij þ rext
ij Þd�

p
ij

� �
: ðB:14Þ
The first term of Eq. (B.14) is zero assuming instantaneo us elastic relaxation due to the local force equilibrium condition,
dF ¼ �
Z

d3x ðrint
ij þ rext

ij Þdbp
ij; ðB:15Þ
using the symmetry of rij and �p
ij ¼ 1

2 ðb
p
ij þ bp

jiÞ.
The free energy dissipation rate is thus dF=dt for dbp

ij ¼
@bp

@t dt, hence 
@F
@t
¼ �

Z
d3x ðrint

ij þ rext
ij Þ

@bp
ij

@t
¼ �

Z
d3x ðrint

ij þ rext
ij ÞJij: ðB:16Þ
When dislocations are allowed to climb, substituting the CGD current Eq. (36) into Eq. (B.16) implies that the free energy 
dissipation rate is strictly negative 
@F
@t
¼ �

Z
d3x ðrint

ij þ rext
ij Þ v l.lij

h i
¼ �

Z
d3x
j.j
D

v2
6 0: ðB:17Þ
When removing dislocation climb by considering the mobile dislocation population, we substitut e Eq. (40) into Eq. (B.16) to
guarantee that the rate of the change of the free energy density is also the negative of a perfect square 
@F
@t
¼ �

Z
d3xðrint

ij þ rext
ij Þ v 0l .lij �

1
3

dij.lkk

� �� �
¼ �

Z
d3x
j.j
D

v 02 6 0: ðB:18Þ
Appendix C. Model Extension s: Adding vacancies and disorder to CDD 

C.1. Coupling vacancy diffusion to CDD 

In plastically deformed crystals at low temperature, dislocatio ns usually move only in the glide plane because vacancy 
diffusion is almost frozen out. When temperature increases, vacancy diffusion leads to dislocatio n climb out of the glide 
plane. At intermediate temperature s, slow vacancy diffusion can enable local creep. The resulting dynamics should couple 
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the vacancy and dislocation fields in non-trivial ways. Here we couple the vacancy diffusion to the dislocation motion in our 
CDD model.

We introduce an order parameter field cðxÞ, indicating the vacancy concentratio n density at the point x. The free energy F
is thus expressed 
F ¼ FDis þ F Vac ¼
Z

d3x
1
2
rij�e

ij þ
1
2
aðc � c0Þ2

� �
; ðC:1Þ
where a is a positive material paramete r related to the vacancy creation energy, and c0 is the overall equilibrium vacancy 
concentratio n density.

Assuming that GNDs share the velocity v in an infinitesimal volume, we write the current J for GNDs 
Jij ¼ vu.uij: ðC:2Þ
The current trace Jii describes the rate of volume change, which acts as a source and sink of vacancie s. The coupling dynamics 
for vacancies is thus given as 
@tc ¼ cr2c þ Jii; ðC:3Þ
where c is a positive vacancy diffusion constant.
The infinitesimal change of the free energy F (Eq. C.1) is 
dF ¼
Z

d3x
dFDis

dbp
ij

dbp
ij þ

dF Vac

dc
dc

 !
: ðC:4Þ
We apply Eq. (B.15) and dF Vac=dc ¼ aðc � c0Þ
dF ¼
Z

d3x �rijdbp
ij þ aðc � c0Þdc

� �
: ðC:5Þ
The free energy dissipation rate is thus dF=dt for dbp
ij ¼

@bp

@t dt and dc ¼ @c
@t dc, hence 
@F
@t
¼ �

Z
d3x rij

@bp
ij

@t
� aðc � c0Þ

@c
@t

 !
: ðC:6Þ
Substituting the current J (Eq. C.2) and and Eq. (C.3) into Eq. (C.6) gives
@F
@t
¼ �

Z
d3x rijðvu.uijÞ � aðc � c0Þðcr2c þ vu.uiiÞ
� �

¼ �
Z

d3x ðrij � aðc � c0ÞdijÞ.uij

� �
vu �

Z
d3xacðrcÞ2; ðC:7Þ
where we integrate by parts by assuming an infinitely large system.
If we choose the velocity vu ¼ D

j.j rij � aðc � c0Þdij
	 


.uij, (D is a positive material dependent constant and 1=j.j is added for 
the same reasons as discussed in Section 2.3.1), the free energy is guaranteed to decrease monotonica lly. The coupling 
dynamics for both GNDs and vacancies is thus 
@tb
p
ij ¼ D

j.j rmn � aðc � c0Þdmnð Þ.umn.uij;

@tc ¼ cr2c þ D
j.j rmn � aðc � c0Þdmnð Þ.umn.ukk:

(
ðC:8Þ
This dynamics gives us a clear picture of the underlying physical mechanis m: the vacancies contribute an extra hydrostatic 
pressure p ¼ �aðc � c0Þ.

C.2. Coupling disorder to CDD 

In real crystals, the presence of precipita tes or impurities results in a force pinning nearby dislocations . We can mimic this 
effect by incorporating a spatially varying random potential field VðxÞ. In our CDD model, we can add the interaction energy 
between GNDs and random disorder into the free energy F (Eq. (C.6))
F ¼ F E þ F I ¼
Z

d3x
1
2
rint

ij �
e
ij � rext

ij �
p
ij þ VðxÞj.j

� �
; ðC:9Þ
where F E indicates the elastic free energy correspondi ng to the integral of the first two terms, and F I indicates the interac- 
tion energy, the integral of the last term.

An infinitesimal change of the free energy is written 
dF ¼ dF E þ dF I ¼
Z

d3x
dF E

dbp
ij

dbp
ij þ

dF I

dbp
sk

dbp
sk

 !
: ðC:10Þ
In an infinitely large system, Eq. (B.15) gives



R
C

ρ (R
)

η

(a)

(d

Fig. C.1
relaxed
laws in
The bla

Y.S. Chen et al. / International Journal of Plasticity 46 (2013) 94–129 121
dF E

dbp
ij

¼ �ðrint
ij þ rext

ij Þ; ðC:11Þ
and Eq. (B.8) implies
dF I ¼
Z

d3xgijls@l
dF I

d.ijk

 !
dbp

sk ¼
Z

d3xgijls@ l VðxÞ
.ijk

j.j

� �
dbp

sk: ðC:12Þ
Substituting Eq. (C.11) and Eq. (C.12) into Eq. (C.10) gives
dF ¼ �
Z

d3x rint
ij þ rext

ij � gmnli@l VðxÞ
.mnj

j.j

� �� �
dbp

ij ¼ �
Z

d3xreff
ij dbp

ij; ðC:13Þ
where the effective stress field is reff
ij ¼ rint

ij þ rext
ij � gmnli@l VðxÞ .mnj

j.j

� �
.

By replacing rij with reff
ij in the equation of motion of either allowing climb (Eq. 36) or removing climb (Eqs. 40 and 44 ),

we achieve the new CDD model that models GNDs interacting with disorder.

Appendix D. Details of the Simulations 

D.1. Finite size effects 

Although we suspect that our simulations don’t have weak solutions (Choi et al., in preparati on ), we can show that these 
solutions converge statistical ly. We use two ways to exhibit the statistical convergence.

When we continue to decrease the grid spacing to zero (the continuu m limit), we show the statistical convergence of cor- 
relation functions of q;K, and bp;I , with a slow expected drift of apparent exponents with system size, see Fig. C.13 .

We can also decrease the initial correlated length scales in a large two dimensio nal simulation. Since the emergent self- 
similar structures are always developed below the initial correlated lengths, as discussed in Section 4.2, this is similar to 
decreasing the system size by reducing the initial correlated lengths. In Fig. C.14 , the correlation functions of q;K, and bp;I

collapse into a single scaling curve, using finite size scaling.

D.2. Gaussian random initial conditions 

Gaussian random fields are extensively used in physical modelings to mimic stochastic fluctuations with a correlate d
length scale. In our simulations , we construct an initially random plastic distortion , a nine-component tensor field, where 
every component is an independen t Gaussian random field sharing a underlying length scale.
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We define a Gaussian random field f with correlation length r0 by convolving white noise hnðxÞnðx0Þi ¼ dðx� x0Þ with a
Gaussian of width r0:
f ðxÞ ¼
Z

d3x0nðx0Þe�ðx�x0 Þ2=r2
0 : ðD:1Þ
In Fourier space, this can be done as a multiplication:
ef ðkÞ ¼ e�r
2
0k2=4enðkÞ: ðD:2Þ
The square ef ðkÞef ð�kÞ ¼ e�r2
0k2=2 implies that the correlation function hf ðxÞf ðx0Þi ¼ ð2pr2

0Þ
�3=2e�ðx�x0 Þ2=ð2r2

0Þ.
In our simulations, the initial plastic distortion tensor field bp is constructed in Fourier space 
ebp

ijðkÞ ¼ e�r
2
0k2=4efijðkÞ; ðD:3Þ
where the white noise signal f is characteri zed as hfði;jÞðxÞfði;jÞðx0Þi ¼ Aði;jÞdðx� x0Þ, and in Fourier space 1
V
efði;jÞðkÞefði;jÞð�kÞ ¼ Aði;jÞ.

(We use ði; jÞ to indicate a component of the tensor field, to avoid the Einstein summation rule.) The correlation function of 
each component of bp;I is thus expresse d in Fourier space 
eCbp;I

ði;jÞ ¼ 2hbp;I
ði;jÞb

p;I
ði;jÞið2pÞ3dðkÞ � 2

V
ebp
ði;jÞðkÞebp

ði;jÞð�kÞ ¼ 2hbp;I
ði;jÞb

p;I
ði;jÞið2pÞ

3dðkÞ � 2Aði;jÞe�r2
0k2=2; ðD:4Þ
where the Gaussian kernel width r0, as a standard length scale, defines the correlation length of our simulation. (In our ear- 
lier work, we use a non-stand ard definition for the correlation length, so our r0 equals the old length scale times 

ffiffiffi
2
p

.)
According to Eq. (9) and Eq. (D.3), we can express the initial GND density field q in Fourier space 
eqijðkÞ ¼ �ieilme�r
2
0k2=4kl

efmjðkÞ: ðD:5Þ
The scalar invariant Cqtot of the correlation function of q is thus expresse d in Fourier space 
CqtotðkÞ ¼
1
V
eqijðkÞeqijð�kÞ ¼ 1

V
e�r2

0k2=2 k2dmn � kmkn

� �efmjðkÞefnjð�kÞ: ðD:6Þ
The resulting initial GND density is not Gaussian correlated, unlike the initial plastic distortion . Fig. D.15 exhibits the ini- 
tial GND density map due to the Gaussian random plastic distortions with the correlation length 0:28L, and its correlation 
function. We compare the latter to the correlation functions of both a sinusoidal wave and a single periodic superposition of 
Gaussian peaks. The similarity of the three curves shows that our Gaussian random initial condition at r0 � 0:28L ap-
proaches the largest effective correlation length possible for periodic boundary conditions.

Appendix E. Other correlation function s unrelated to static scaling theory 

E.1. Correlation functions of the strain-history-dep endent plastic deformation and distortion fields

The curl-free strain-history- dependent part of the plastic distortion field, as shown in Fig. D.16 (a), (c), and (e), exhibits 
structures reminiscent of self-simi lar morphology. We correlate their differences at neighboring points 
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Fig. D.15. Gaussian random initial conditions with the correlated length scale 0:28L in two dimensions. (a) shows the initial net GND density map; (b)
exhibits the correlation functions of q under various initial conditions, where we compare the Gaussian random field to both a sinusoidal wave and a single 
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Cbp;H

tot ðxÞ ¼ hðb
p;H
ij ðxÞ � bp;H

ij ð0ÞÞðb
p;H
ij ðxÞ � bp;H

ij ð0ÞÞi; ðE:1Þ

Cbp;H

per ðxÞ ¼ hðb
p;H
ij ðxÞ � bp;H

ij ð0ÞÞðb
p;H
ji ðxÞ � bp;H

ji ð0ÞÞi; ðE:2Þ

Cbp;H

tr ðxÞ ¼ hðb
p;H
ii ðxÞ � bp;H

ii ð0ÞÞðb
p;H
jj ðxÞ � bp;H

jj ð0ÞÞi: ðE:3Þ
Consider also the deformation field w (shown in Fig. D.16 of Eq. (19) whose gradient gives the strain-hi story-depende nt 
plastic deformation bp;H. Similarly to the crystalline orientation K, we correlate differences of w. The unique rotational invari- 
ant of its two-point correlation functions is written 
CwðxÞ ¼ 2hw2i � 2hwiðxÞwið0Þi: ðE:4Þ
In Fig. D.17 , the correlation functions of the strain-histo ry-dependent plastic distortion bp;H in both 1024 2 and 128 3 sim-
ulations show critical exponents s and s0. Although apparently unrelated to the previous underlyin g critical exponent g, this 
exponents s and s0 quantify the fractality of the strain-hi story-depende nt plastic distortion. Fig. D.18 shows the correlation 
functions of the strain-history- dependent deformat ion w, with the critical exponent s00 close to 2, which implies a smooth 
non-fractal field, shown in Fig. D.16 (c) and (d). All measured critical exponents are listed in Table D.2 .

Fig. D.17 shows the power-law depende nce of the rotational invariant s Cbp;H

per and Cbp;H

tr (they overlap). According to the def- 
inition ebp;H

ij ¼ iki
ewj, we can write down the Fourier-transfo rmed forms of Eq. (E.2) and Eq. (E.3) respectivel y
eCbp;H

per ðkÞ ¼ 2 bp;H
ij bp;H

ji

D E
ð2pÞ3dðkÞ � 2

V
kikj

ewjðkÞewið�kÞ; ðE:5Þ

eCbp;H

tr ðkÞ ¼ 2 bp;H
ii bp;H

jj

D E
ð2pÞ3dðkÞ � 2

V
kikj

ewiðkÞewjð�kÞ: ðE:6Þ
Except the zero-waveleng th terms, the same functiona l forms shared by these two rotational scalars explain the observed 
overlapping power laws.
E.2. Stress-stress correlation functions 

As the system relaxes to its final stress-free state, we can measure the fluctuations of the internal elastic stress fields,
using a complete set of two rotational invariants of correlation functions (Fig. E.19 (a,b)):
CrtotðxÞ ¼ rint
ij ðxÞrint

ij ð0Þ
D E

; ðE:7Þ

CrtrðxÞ ¼ rint
ii ðxÞrint

jj ð0Þ
D E

; ðE:8Þ
and in Fourier space 
eCr
totðkÞ ¼

1
V
erint

ij ðkÞerint
ij ð�kÞ; ðE:9Þ

eCr
trðkÞ ¼

1
V
erint

ii ðkÞerint
jj ð�kÞ: ðE:10Þ
Because rij is symmetric, these two correlation functions form a complete set of linear invariant s under rotational 
transformat ions.



Fig. D.16. Strain-history-dependent fields bp;H and w in two dimensions for the relaxed states. Top: Dislocation climb is allowed; Middle: Glide-only using a
mobile dislocation population; Bottom: Glide-only using a local vacancy pressure. Left: The strain-history-dependent plastic distortion jbp;Hj. (a), (c), and (e)
exhibit patterns reminiscent of self-similar dislocation structures. Right: The strain-history-dependent plastic deformation jwj. (b), (d), and (f) exhibit 
smooth patterns with a little distortion, which are not fractal.
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Fig. D.17. Correlation functions of bp;H in both two and three dimensions. In both (a) and (b), the correlation functions of the strain-history-dependent part 
of the plastic distortion bp;H are shown. Left: (a) is measured in relaxed, unstrained 1024 2 systems; Right: (b) is measured in relaxed, unstrained 128 3

systems. All dashed lines show estimated power laws quoted in Table D.2 .
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Table D.2 
Critical exponents for correlation functions of strain-history-dependent fields at stress-free states. (C.F. and Exp. represent ‘Correlation Functions ’ and 
‘Exponents’, respectively.)

C.F. S.T. Simulations 

Climb and glide Glide only (MDP) LVP glide only (LVP)

2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ

Cb
p;H

tot
s 0:65
 1:00 1:05
 0:65 1:25
 0:60 1:20
 0:50 0:55
 1:10 1:05
 0:65

Cb
p;H

per
s0 0:70
 0:95 1:10
 0:60 1:95
 0:05 1:75
 0:15 0:50
 1:15 1:05
 0:70

Cb
p;H

tr
s0 0:70
 0:95 1:10
 0:60 1:95
 0:05 1:75
 0:15 0:50
 1:15 1:05
 0:70

Cw s00 1:90
 0:10 1:85
 0:15 1:95
 0:05 1:90
 0:10 1:95
 0:05 1:90
 0:10
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E.3. Energy density spectrum 

The average internal elastic energy E is written 
E ¼ 1
V

Z
ddx

1
2
rint

ij �
e
ij

� �
¼ 1

V

Z
ddx

1
4l

rint
ij rint

ij �
m

1þ m
rint

ii rint
jj

� �
; ðE:11Þ
where, in an isotropic bulk medium, the elastic strain �e is expressed in terms of rint,
�e
ij ¼

1
2l

rint
ij �

m
1þ m

dijrint
kk

� �
: ðE:12Þ
We can rewrite Eq. (E.11) in Fourier space 
E ¼ 1
V

Z
ddk

ð2pÞd
1

4l
erint

ij ðkÞerint
ij ð�kÞ � m

1þ m
erint

ii ðkÞerint
jj ð�kÞ

� �
: ðE:13Þ
Substituting Eq. (E.9) and Eq. (E.10) into Eq. (E.13) gives
E ¼
Z

ddk

2dþ2pd

1
l
eCr

totðkÞ �
m

1þ m
eCr

trðkÞ
� �

ðE:14Þ
If the stress-stress correlation functions are isotropic, we can integrate out the angle variable of Eq. (E.14)
E ¼
Z 1

0
dk

f ðdÞ
l

kd�1 eCr
totðkÞ �

m
1þ m

eCr
trðkÞ

� �
; ðE:15Þ
where f ðdÞ is a constant function over the dimension d,
f ðdÞ ¼
1=ð8pÞ d ¼ 2;
1=ð8p2Þ d ¼ 3:

�
ðE:16Þ
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Fig. E.19. Stress-stress correlation functions eCrðkÞ, elastic energy spectrum EðkÞ, correlation functions of the stress-full part of GND density eCqE ðkÞ. Red,
blue, and green lines indicate CGD, GOD-MDP, and GOD-LVP, respectively. All dashed lines show estimated power laws quoted in Table E.3 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Writing the elastic energy density in terms of the energy density spectrum EðtÞ ¼
R1

0 Eðk; tÞdk implies (Fig. E.19 (c,d))
EðkÞ ¼ f ðdÞ
l

kd�1 eCr
totðkÞ �

m
1þ m

eCr
trðkÞ

� �
: ðE:17Þ
E.4. Correlation function of the stressful part of GND density 

According to Eq. (14), the stressful part of GND density is defined as 
qE
ij ðxÞ ¼ eisl@s�e

ljðxÞ: ðE:18Þ
Substituting Eq. (E.12) into Eq. (E.18) gives
qE
ij ¼

1
2l

eisl@s rint
lj �

m
1þ m

dljrint
mm

� �
: ðE:19Þ
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The complete set of rotational invariant s of the correlation function of qE includes three scalar forms(Fig. E.19 (e,f)):
Table E
Power-l
respect

C.F.

eCr
totðeCr
trðk

EðkÞeCqE

totðeCqE

perð
Cq
E

totðxÞ ¼ hqE
ij ðxÞqE

ij ð0Þi; ðE:20Þ

CqE

perðxÞ ¼ hqE
ij ðxÞqE

ji ð0Þi; ðE:21Þ

Cq
E

tr ðxÞ ¼ hqE
iiðxÞqE

jjð0Þi; ðE:22Þ
where Cq
E

tr ðxÞ is always zero due to qE
ii ¼ 0.

Substituting Eq. (E.19) into both Eqs. (E.20) and (E.21) and applying the Fourier transform gives 
eCqE

totðkÞ ¼
1

4l2V
eislðiksÞ erint

lj ðkÞ �
m

1þ m
dlj erint

mmðkÞ
� �

� eipqð�ikpÞ erint
qj ð�kÞ � m

1þ m
dqj erint

nn ð�kÞ
� �

¼ k2

4l2

1
V
erint

lj ðkÞerint
lj ð�kÞ

� �
� mk2

2l2ð1þ mÞ2
1
V
erint

mmðkÞerint
nn ð�kÞ

� �
; ðE:23Þ

eCqE

perðkÞ ¼
1

4l2V
eislðiksÞ erint

lj ðkÞ �
m

1þ m
dlj erint

mmðkÞ
� �

� ejpqð�ikpÞ erint
qi ð�kÞ � m

1þ m
dqi erint

nn ð�kÞ
� �

¼ k2

4l2

1
V
erint

lj ðkÞerint
lj ð�kÞ

� �
� ð1þ m2Þk2

4l2ð1þ mÞ2
1
V
erint

mmðkÞerint
nn ð�kÞ

� �
; ðE:24Þ
where we make use of the equilibriu m condition @ irij ¼ 0 and thus ki erij ¼ 0. Substituting Eqs. (E.9) and (E.10) into Eqs. (E.23)
and (E.24)
eCqE

totðkÞ ¼
k2

4l2
eCr

totðkÞ �
2m

ð1þ mÞ2
eCr

trðkÞ
" #

; ðE:25Þ

eCqE

perðkÞ ¼
k2

4l2
eCr

totðkÞ �
1þ m2

ð1þ mÞ2
eCr

trðkÞ
" #

: ðE:26Þ
Here we can ignore the angle dependence if the stress-stress correlation functions are isotropic.

E.5. Scaling relations 

According to Eq. (E.17), the term kd�1 suggests that the power-law exponent relation between E and eCr is
c0 ¼ cþ d� 1: ðE:27Þ
Again, both Eqs. (E.23) and (E.24) imply that the power-law exponent relation between eCqE and eCr is
c00 ¼ cþ 2; ðE:28Þ
regardless of the dimension.
Table E.3 shows a nice agreement between predicted scaling and numerical measure ments for power-law exponents of eCr; E, and eCqE . These relations are valid in the presence of residual stress.
During the relaxation processes , the elastic free energy follows a power-law decay in time asymptotical ly, seen in Fig. 6.

All the above measure d correlation functions of elastic quantities share the same power laws in Fourier space, albeit with 
decaying magnitud es in time.
.3 
aws relations among eCrðkÞ; EðkÞ, and eCqE ðkÞ. (d represents the dimension; P.Q. and S.T. represent ‘Physical Quantities’ and ‘Scaling Theory’,

ively.)

S.T. Simulations 

Climb and glide Glide only (MDP) LVP glide only (LVP)

2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ 2D ð10242Þ 3D ð1283Þ

kÞ c �2:65 �3:1 �1:65 �3:0 �1:95 �3:1

Þ c �2:65 �2:9 �1:65 �3:0 �1:95 �2:9

cþ d� 1 �1:65 �1:1 �0:65 �1:0 �0:95 �1:1

kÞ cþ 2 �0:65 �1:0 0:45 �1:0 �0:05 �1:0

kÞ cþ 2 �0:65 �1:0 0:45 �1:0 �0:05 �0:9
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