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Abstract

Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such
transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret
abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover
scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find
experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a
single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover
between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to
the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both
stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium
critical phenomena to elucidate fundamental physical aspects of the shear thickening transition. © 2023 The Society of Rheology.
https://doi.org/10.1122/8.0000697

I. INTRODUCTION

Suspensions of solid particles in a liquid commonly exhibit
shear thickening, an increase in the shear viscosity with the
applied stress or strain rate [1,2]. This increase in viscosity can
span orders of magnitude and even lead to solidification, as
illustrated by people running atop vats of cornstarch [3].1 Such
strong shear thickening behavior has been attributed to the
change in the nature of particle interactions—at low stresses,
the particle interactions are dominated by the lubrication forces,
but at high stresses, the particle surfaces are forced closer
together and frictional contact interactions dominate [3–9].

Understanding the mechanism underpinning the thicken-
ing transition has led to numerous studies focused on altering
the system properties to modify the shear thickening behav-
ior. Commonly, two different strategies have been pursued
—(1) changing the interparticle friction and (2) changing the
particle microstructure or suspension packing. Changes to the
interparticle friction can be achieved by altering the particle
surface roughness [7,10–15], interparticle adhesion [16], or
hydrogen bonding [17–19]. The maximum particle packing
in the suspensions can be altered by tuning the particle shape
[20–22], size or polydispersity [23,24], or applying external
fields [25–31]. In many of these examples, even a small

change in the suspension can result in large changes to the
rheology. It has, therefore, been a major challenge to develop
a unified, suspension-independent framework to predict shear
thickening.

A major step toward developing such a framework was
proposed by Wyart and Cates [5,6], who modeled the viscos-
ity as a function of the distance to a stress-dependent
jamming volume fraction. As the stress increases, the con-
tacts between the particles become frictional and the
jamming volume fraction decreases, resulting in an increase
in the viscosity. This theory has been used to fit experimental
and simulation data with varying degrees of success
[22,23,32–34]. Others have proposed similar models to
describe shear thickening [29,32,35], and more recently, the
extent of shear thickening has also been shown to be related
to the jamming volume fraction [36], indicating that jamming
underpins the shear thickening transition. Intriguingly, it has
been shown that equilibrium statistical mechanics can be
used to study the quasistatic nonequilibrium jamming transi-
tion [37–41]. Despite these close connections between shear
thickening and jamming, however, the relationship between
the shear thickening and statistical scaling frameworks
remains unexplored. More specifically, it is yet unclear if
shear thickening can be described by the proximity to the
jamming critical point via universal scaling functions and if
jamming with and without shear are associated with the same
universality class and scaling exponents.

In this work, we adopt the idea of scaling to analyze the
experimentally observed viscosity of two different shear
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thickening suspensions and establish the relationship
between shear thickening and the associated critical points.
Since the advent of the ideas of universality and scaling in
equilibrium phase transitions [42], it has been known that
scaling analysis provides a litmus test for the presence of crit-
ical points in complex phase diagrams. This approach led to
the discovery of nonclassical exponents associated with
phase transitions, the identification of universality classes,
and the development of the renormalization group [42].
In contrast to fitting data to functional forms, scaling involves
collapsing data over a broad range of multiple control
parameters. The advantage of this approach is that it is
model-independent and often reveals the underlying physical
governing principles, the relevant variables controlling the
distance to critical points, and the associated scaling func-
tions. Here, we propose to use the same machinery to investi-
gate the critical points associated with the shear thickening
transition.

More specifically, we pursue the idea that the rheology of
shear thickening suspensions is governed by two different
critical points and that a crossover scaling framework can be
utilized to characterize this transition [42]. Crossover scaling
was originally introduced to describe transitions between
thermodynamic critical points (e.g., Heisenberg magnets
with small uniaxial anisotropy behaving like Ising models)
and has become invaluable for describing finite-temperature
behavior induced by quantum critical points [43–45], cross-
overs between universality classes in random matrix theory
[46], and fracture and depinning transitions [47]. Our analysis
shows that the same framework provides an excellent unified
description of thickening transitions.

II. RECASTING THE WYART AND CATES MODEL

We begin by recasting the Wyart and Cates [5] model, the
current state-of-the-art model used to describe shear thickening,
into the framework of crossover scaling. Briefly, the model
expresses the viscosity of the suspension in terms of a distance
to a stress-dependent jamming volume fraction, fJ(σ),

η � (fJ(σ)� f)�2: (1)

As the stress increases, the nature of the contact forces
between the particles in the suspension changes from hydro-
dynamic to frictional and the jamming volume fraction
decreases as

fJ(σ) ¼ f0(1� f (σ))þ fμ f (σ): (2)

Here, f (σ) is the fraction of frictional contacts in the system,
f0 is the jamming volume fraction in the absence of friction,
and fμ is the jamming volume fraction when all the interac-
tions between the particles are frictional (fμ , f0). f (σ) is a
sigmoidal function of the applied stress, with limits of zero at
low stress and one at high stress, and Eq. (2) defines a line of
critical points at which the viscosity diverges, leading to shear-
induced jamming at finite σ. Thus, increasing the stress acti-
vates frictional contacts, which lowers the jamming volume
fraction and increases the viscosity. Despite its simplicity, this

model does a remarkable job capturing essential features of
the flow behaviors including continuous shear thickening, dis-
continuous shear thickening, and shear jamming.

To recast this model into the crossover scaling framework,
we substitute Eq. (2) into Eq. (1) to obtain

η � (f0(1� f (σ))þ fμ f (σ)� f)�2: (3)

Pulling out a factor of (f0 � f)�2, we find that the viscosity
can be expressed as a function that only depends on a spe-
cific combination of f (σ) and f0 � f,

η(f0 � f)2 � FWC
f (σ)

f0 � f

� �
, (4)

where the crossover scaling function FWC , specific to the
Wyart and Cates model is

FWC � 1
f0 � fμ

� f (σ)
f0 � f

 !�2

: (5)

At small values of the scaling variable, xWC ¼ f (σ)=
(f0 � f), the scaling function is a constant and the system
behavior is governed by the frictionless jamming critical
point η � (f0 � f)�2 at zero shear. Crucially, however,
the crossover scaling function FWC has a divergence at
xc ¼ 1=(f0 � fμ) indicating that as xWC=xc ! 1, the system
is governed by a line of frictional jamming critical points
such that η � (xc � xWC)�2. Notably, with this form of
the crossover scaling function, the viscosity diverges with
exactly the same exponent of �2 all along the jamming line.
This recasting of the Wyart and Cates model for the thicken-
ing transition in terms of crossover scaling clearly indicates
that a major assumption in the model is that frictionless and
frictional shear jamming (at nonzero xWC) are controlled by
the same fixed point and that the only effect of friction is to
change the location of the critical point.

Practically, this formulation enables us to move beyond
merely fitting the model to viscosity data and, instead,
attempt a scaling collapse to elucidate the underlying physics
controlling this transition. More specifically, Eq. (4) suggests
that plotting η(f0 � f)2 as a function of f (σ)=(f0 � f)
should collapse the viscosity across various stresses and
volume fractions onto a universal curve, revealing the scaling
function and its singularities. This collapse will also allow us
to determine whether thickening is indeed controlled by a
unique scaling exponent.

III. EXPERIMENTAL METHODS

We test this scaling theory on two different noninertial,
low Reynolds number systems—a mixture of cornstarch in
glycerol and a mixture of hard sphere silica particles in glyc-
erol both of which show shear thickening behavior but over
different ranges of volume fractions. The samples were pre-
pared by weighing out the solutes, cornstarch (Argo) and
silica (2 μm charge stabilized spheres from Angstrom
Sphere), and the solvent, glycerol (Sigma-Aldrich). We use
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glycerol as the solvent in each of these cases because of its
low vapor pressure and the ease with which these glycerol-
based suspensions can be loaded onto the rheometer. The
cornstarch suspensions were used immediately after prepara-
tion and the silica suspensions were sonicated for 60 min
prior to use. The viscosity of the suspension is measured
using a stress-controlled method on an Anton Paar MCR 702
Rheometer. We use a 50 mm stainless steel parallel plate
geometry at a set gap of 1 mm. To prevent slip at higher
volume fractions and stresses, we used sanded plates. The
sample was presheared at a constant stress of 1 Pa for 5 min.
The suspension viscosity was then measured by performing a
descending stress ramp.

The viscosity of the cornstarch and silica suspensions of
different volume fractions as a function of the stress are
shown in Figs. 1(a) and 1(b), respectively. The low volume
fraction data [yellow and light pink data in Figs. 1(a)
and 1(b), respectively] have smaller viscosities and mild
shear thickening or continuous shear thickening (CST).

The intermediate volume fraction data [teal and purple data
in Figs. 1(a) and 1(b), respectively] have larger viscosities
and show discontinuous shear thickening (DST), where
d log (η)=d log (σ) � 1.

IV. RESULTS

To collapse the viscosity using Eq. (5), we need to deter-
mine the isotropic jamming fraction at zero shear, f0, and
the fraction of frictional contacts, f (σ). We determine f0

from the divergence of the low stress viscosity (see the sup-
plementary material for details [78]). We use the form
f (σ) ¼ e�σ*=σ for the fraction of frictional contacts, which is
consistent with fits of the Wyart and Cates model in prior lit-
erature [34,48]. We have explored a limited set of different
expressions for f (σ), none of which qualitatively change the
results reported here [see the supplementary material for
results with a different functional form of F(σ) [78]]. By
fitting the flow curves in Figs. 1(a) and 1(b) to the Wyart

FIG. 1. Viscosity versus stress measurements and scaling predictions from the Wyart and Cates model. (a) and (b) The viscosity as a function of applied stress
for (a) cornstarch suspensions with volume fractions ranging from 0.16 (yellow) to 0.54 (dark blue) and (b) silica suspensions with volume fractions ranging
from 0.4 (light pink) to 0.52 (black). These suspensions show a range of shear thickening behavior across volume fractions from weakly shear thickening to dis-
continuous shear thickening to shear jamming. The solid lines are linking data points for added ease of visualization. (c) and (d) Plots of the predicted Wyart
and Cates scaling function FWC ¼ η(f0 � f)2 versus the Wyart and Cates scaling variable xWC ¼ f (σ)=(f0 � f) for cornstarch suspensions (c) and silica sus-
pensions (d), showing promising but incomplete scaling collapse. The inset shows the zoom-in of the high xWC region. In the inset of (c), the cornstarch scaling
function diverges at �10 at low volume fractions, �6 at intermediate volume fractions, and � 10 at large volume fractions. The silica data in the inset of (d)
diverges at �10 at low volume fractions and �20 at large volume fractions.
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and Cates model, we determine σ*. Using the calculated
values of f (σ), and f0, we plot FWC ¼ η(f0 � f)2 as a func-
tion of xWC ¼ e�σ*=σ=(f0 � f) in Figs. 1(c) and 1(d). While
we find that the collapse is promising, at higher volume frac-
tions, the data diverge at different values of xWC (Fig. 1,
insets). Since this reformulation of the Wyart and Cates
model in the language of crossover scaling assumes a very
particular form of the scaling function, FWC, and the scaling
variable, xWC , we naturally ask whether relaxing these
assumptions and using the full machinery of crossover
scaling leads to better data collapse and a more accurate
description of the observed thickening transitions.

We find that using a scaling variable where the numer-
ator is both a function of stress and volume fraction,
x ¼ g(σ, f)=(f0 � f) dramatically improves the scaling
collapse (Fig. 2). To simplify the search for the function,
g(σ, f), we assume a product form, g(σ, f) ¼ C(f)f (σ).
Impressively, this single parameter, C(f), for the data set at
each volume fraction collapses both the cornstarch and silica

suspension data across all measured volume fractions onto a
single universal scaling function F as shown in Fig. 2(a)
[49]. Interestingly, these two suspensions represent a broad
range of thickening materials in many ways—cornstarch is
more dramatic, with a large discontinuous shear thickening
regime, while the equivalent regime in the “model” silica sus-
pension is much smaller. The fact that in each suspension, all
of the viscosity versus stress curves collapse onto each other,
and the fact that the curves from both suspensions collapse is
a strong indication that this scaling function F is universal.

The scaling function has several characteristic features that
are consistent with the expected behavior for shear thicken-
ing suspensions. At small x, F is a constant, and the diver-
gence in the viscosity is

η � 1

(f0 � f)2
, (6)

which is consistent with a number of previous studies

FIG. 2. Universal scaling of the suspension viscosity. (a) The scaling function F ¼ η(f0 � f)2 as a function of the scaling variable x ¼ e�σ*=σC(f)=(f0 � f)
for all the cornstarch (squares) and silica (diamond) suspensions data. We find that all the data collapse onto a single universal curve that diverges at x ¼ xc. (b)
The scaling function H ¼ ηg2(σ, f) versus j1=xc � 1=xj for all the cornstarch and silica suspensions data. This way of scaling the data clearly illustrates two
distinct regimes—a regime characterized by a power law of �2 at small x and a power law of � �3=2 at x � xc. The solid black lines indicate power laws of
�2 and �1:5, respectively. (c) The nonlinear scaling variable, g(σ, f), as a function of the stress for a range of volume fractions of the cornstarch suspensions.
We note that this parameter has the same sigmoidal shape, now well established for the fraction of frictional contacts, while C(f) dramatically affects the
overall scale. (d) The anisotropy factor C(f) as a function of the volume fraction for both silica and cornstarch. We note that C(f) is a smooth analytic function
as required by theories for scaling variables such as g(σ, f) ¼ f (σ)C(f) far from the critical point.
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[23,32,50,51]. As x increases, F also increases, until it
diverges at x ¼ xc, with an exponent δ,

F (x) � 1

(xc � x)δ
, (7)

with xc ¼ 14:5. We note that since C(f) is a multiplicative
factor, there is an overall scale that can be chosen for xc.

This divergence implies that the viscosity also diverges
with the exponent δ. Remarkably, we find that δ , 2 and is
significantly different from the exponent observed for fric-
tionless isotropic jamming (see supplementary material,
Fig. S3 [78]). To visualize this change in exponents, we
follow Cardy [42, Sec. 4.2] and write

ηg2(σ, f) � H j1=xc � 1=xjð Þ, (8)

where H is a universal scaling function. We then plot
ηg2(σ, f) as a function of j1=xc � 1=xj in Fig. 2(b). We find
excellent collapse over seven orders of magnitude in the
scaling variable with two easily distinguishable regimes each
characterized by clearly different power-law exponents.
At small x, far from xc, the behavior is governed by the fric-
tionless jamming point f0 and H � j1=xc � 1=xj�2. As x
approaches xc, we observe a clear change in the value of the
exponent from �2, with a crossover between the two regimes
at x=xc � 0.1. Our best estimate for the new exponent is
�3/2. Importantly, this change in exponent indicates that the
crossover underlying shear thickening is between critical
points that belong to different universality classes. As such,
this change in exponent is a remarkable demonstration of
frictional shear-jamming being qualitatively different from
frictionless jamming at zero shear.

Importantly, the nonlinear scaling variable that drives the
suspension toward frictional jamming, g(σ, f), depends on
both the stress and the volume fraction as shown in Fig. 2(c).
g(σ, f) is sigmoidal in the stress, similar to the fraction of

frictional contacts, f (σ), in previous works [5,23,33]. The
volume fraction dependence changes the overall scale and
indicates that the fraction of frictional contacts that contribute
to and determine the shear viscosity varies with f. The
scaling collapse of the data reveals that this functional depen-
dence, C(f), is nonmonotonic for both the silica and corn-
starch suspensions [Fig. 2(d)]. Once these material-dependent
differences in C(f) and f0 are accounted for, the collapse is
universal.

Since the scaling form [Eq. (8)] is universal and valid at
all stresses and volume fractions, we can use it to construct a
shear thickening phase diagram as shown in Fig. 3 [52].
Crucially, constructing these phase diagrams is only possible
because we have determined the full functional form of the
scaling function over seven orders of magnitude in the
scaling variable, which is not typical for other analyses. In
particular, we plot the shear jamming boundary at x ¼ xc
(border of the red region) where the system transitions from a
flowing to a jammed state. Since this border is defined by
the scaling variable xc, it is independent of the details of the
scaling function F (shape, functional form, etc.). In addition,
the boundary for discontinuous shear thickening is deter-
mined from

d log (η)
d log σ

¼ 1, (9)

which does depend on the form of the scaling function. To
obtain this boundary (blue lines), we fit H to a function con-
sisting of two power law regimes stitched together by a cross-
over region (see the supplementary material [78]) and use this
fit to compute the derivatives in Eq. (9). This boundary indi-
cates the transition from continuous to discontinuous shear
thickening regimes. Due to the form of the anisotropy factor
C(f) and differences in f0 and σ*, the phase diagrams for
cornstarch and silica are distinct and are shown in Figs. 3(a)
and 3(b), respectively. These phase diagrams are qualitatively

FIG. 3. Phase diagrams for cornstarch and silica suspensions as derived from the scaling analysis. Three distinct regions are seen in the phase diagrams for the
cornstarch (a) and silica (b) systems—continuous shear thickening (CST) in purple (light gray), discontinuous shear thickening (DST) in blue (medium gray)
and a jammed region in red (dark gray). The shear jamming line (maroon) demarcating the jammed and DST regions is determined by x ¼ xc, where
x ¼ e�σ*=σC(f)=(f0 � f) and the DST line (blue) boundary between CST and DST regions is determined by the condition d log η=d logσ ¼ 1. The vertical
dotted lines indicate the values of the frictionless jamming point, f0, and shear jammed point, fμ, and the volume fraction at which C(f) is maximum.
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similar to those obtained by previous experiments and simula-
tions [8,53,54] but are generated directly from the scaling col-
lapse of the data.

V. DISCUSSION

A. Altering the scaling variable to change material
properties

A key modification that enabled scaling collapse of the
data is the nonlinear scaling variable, g(σ, f) ¼ f (σ)C(f),
that depends on both the stress and the volume fraction.
Previous studies have interpreted f (σ) as the fraction of fric-
tional contacts. If we retain this interpretation, then the inclu-
sion of C(f) in g(σ, f) suggests that only a portion of f (σ)
contributes to the viscosity divergence. Such modulation of
f (σ) is indicative of the role of force network connectivity or
anisotropy in the viscosity divergence consistent with recent
simulations [29,55,56] and models [29,35,57]. More specifi-
cally, one hypothesis is that the function C(f) is related to
the anisotropy of the force network. We would expect the
anisotropy to be low for both low and high volume fractions.
At low volume fractions, the suspension is too sparse for
contacts to build up, while at high volume fractions, chains
along the maximal compression axis fuse into an isotropic
network. The anisotropy is expected to be high at intermedi-
ate volume fractions. Recent simulation results [29,55,56]
and proposed models that incorporate the system microstruc-
ture [29,35,57] support the inclusion of anisotropy as a
parameter governing shear thickening. Another hypothesis is
that C(f) is a measure of the connectivity of the network and
its contribution to the viscosity divergence. Initially, we
expect the connectivity of the force network to increase with
increasing volume fraction. However, at higher volume frac-
tions, not all the particles in the force network contribute to
the viscosity, leading to a decrease in C(f). In this interpreta-
tion, we could further hypothesize that the peak in C(f)
could be correlated to the emergence of the first frictional
rigid clusters of particles. This emergence has been shown to
occur before the onset of DST (dilatant shear thickening) and
at a constant volume fraction, consistent with the behavior of
C(f) measured here [58].

Interpreting g(σ, f) in this manner enables us to envision
how we can alter the shear thickening phase diagram. In par-
ticular, by modifying material properties corresponding to
changes in σ*, f0, and C(f), we can dramatically shift the
borders between the jammed and unjammed regimes and by
extension the discontinuous versus continuous shear thicken-
ing. A change in σ*, for example, indicates how easily fric-
tional interactions increase with stress and can be controlled
by altering particle roughness [7,10–15], hydrogen bonding
[17–19], or solvent-particle interactions [59]. Changes to f0

can be generated by modifying particle roughness
[10–15,60], shape [20–22], and polydispersity [23,24].
Finally, differences in C(f) may result from the constraints
governing particle displacements and rotations as well as
other perturbations to the flows [25–28,36,56,61–63]. Thus,
differences in these variables directly inform the types of
changes that one can use to influence the thickening and
jamming behaviors.

B. Exponents related to frictionless and frictional
divergence

The scaling analysis in Fig. 2(b) illustrates two distinct
power law regimes, one with an exponent of �2, associated
with frictionless at zero shear (frictionless isotropic
jamming) and the other with an exponent of �3/2 associated
with frictional shear jamming. Measurements of the diver-
gence in the viscosity associated with frictionless and fric-
tional jamming have been reported previously in a wide
range of systems. Our �2 scaling result for frictionless iso-
tropic jamming is consistent with a number of previous
studies in shear thickening suspensions [23,32,50,51].

We note that in pressure-driven suspensions there is a
claim that the scaling exponent in this regime is �2.85. This
apparent discrepancy, however, is a result of an assumption
that stress and pressure scale identically close to jamming,
which may not hold for dense suspensions. For the expert
reader, previous works have shown a scaling of
(f0 � f) � J γf , with γf ¼ 0:37 for frictionless particles
and γf ¼ 0:7 for frictional suspensions [64,65,75]. Here,
J ¼ η0 _γ=P is the viscous number, η0 is the solvent viscosity,
_γ is the shear rate and P is the applied pressure [64–67].
Assuming that P � σ close to jamming, we can invert
the equation to obtain η � (f0 � f)�1=γf ¼ (f0 � f)�2:85 in
the frictionless regime, giving an apparent discrepancy in the
scaling exponent [64]. The assumption that P � σ however,
is a conjecture and may not hold for dense suspensions.
Indeed, a recent study extending the analysis presented here
has shown that the pressure and the shear viscosities are asso-
ciated with different scaling exponents [68,69]. In these sim-
ulations, the shear viscosity exponents are consistent with
those presented here and the pressure viscosity exponents are
consistent with those presented in the pressure-driven
systems [68].

With respect to the exponent of �3/2 for the shear
jamming regime, we note that others have previously tried to
fit exponents to viscosity versus volume fraction data. Our
result is well within the range of previously obtained expo-
nents [23,32,48,70]. Moreover, here, we use scaling collapse
of the entire shear thickening transition, using a scaling vari-
able that is a function of stress and the volume fraction to
determine both exponents. This approach is more rigorous
since multiple measurements corresponding to different com-
binations of stress and volume fraction are used to determine
the value of the universal function F at each point x.

C. Renormalization group flows

Recasting the nonequilibrium thickening transition as
being governed by crossover scaling between two different
critical points suggests a renormalization group flow diagram
with two fixed points. This picture is directly analogous to
that found in equilibrium magnetic systems (e.g., Heisenberg
to Ising crossover scaling). We project the flows, obtained
from the experimentally determined scaling function, onto
the g(σ, f) and jf0 � fj plane (Fig. 4). The nonlinear
scaling variable, g(σ, f) ¼ f (σ)C(f), is associated with the
relevant direction at the frictionless jamming point with the
nonlinear terms in g(σ, f) providing analytic corrections to
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scaling [71]. The isotropic jamming fixed point has two rele-
vant directions with flows away from the fixed point. The
first is along the jf0 � fj axis (black line double arrows) and
the second is along the line of critical points on the shear-
jamming line (black line single arrow) flowing to the shear
jamming fixed point. This critical manifold separates the
jammed and the flowing states. The shear jamming fixed
point must also have a relevant variable, and the flow along
this line determines the exponent δ (drawn schematically in
green line double arrows). Finally, the crossover between the
two fixed points can be approximated by the knee in
Fig. 2(b) and is depicted in the renormalization group flow
by the dashed gray line. This diagram clearly illustrates the
deep connection between the shear thickening transition and
renormalization group flows that are the hallmark of critical
phenomena in thermodynamic systems.

VI. CONCLUSIONS

Adopting this statistical mechanics framework to describe
shear thickening opens several novel avenues for future work.
For instance, universal scaling theories and scaling functions
such as those presented have previously been used to predict a
number of physical properties in equilibrium systems, suggest-
ing that similar approaches may be used in shear thickening.
In the well-studied system of Heisenberg and Ising magnets,
for example, one can use the crossover scaling function to
determine the specific heat, correlation functions, and many
other system properties [42]. Similarly, recent studies have
investigated the scaling relations for the jamming transition
for frictionless particles, demonstrating that both static and
dynamic viscoelastic properties such as the shear stress, bulk

modulus, and shear modulus can be predicted by such a
scaling formulation [37,38,40,41,72,73,76,77]. These studies
demonstrate the power of scaling theories and universal
scaling functions, and our work suggests that analogous pre-
dictions and theories could be generated for shear thickening
and frictional jamming.
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