
FRACTURE IN DISORDERED BRITTLE MEDIA

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ashivni Shekhawat

May 2013



c© 2013 Ashivni Shekhawat

ALL RIGHTS RESERVED



FRACTURE IN DISORDERED BRITTLE MEDIA

Ashivni Shekhawat, Ph.D.

Cornell University 2013

This thesis consists of three main chapters, an introduction, and an appendix.

The introduction (chapter 1) gives a general historical introduction to the prob-

lem of brittle fracture in disordered media. Chapters 2 and 4 are concerned with

various aspects of fracture in disordered fuse networks. Chapter 2 investigates

the asymptotic properties of fracture strength distributions, and explores their

relation with extreme value statistics. Chapter 4 deals with critical phenomena

in brittle fracture. This chapter introduces the concept of finite-sized critical-

ity as a means to explain how fracture can have mixed properties of abrupt

and continuous phase transitions. Chapter 3 describes the collective dynamics

at the non equilibrium metal insulator transition. The phenomenon of dielec-

tric breakdown at the metal insulator transition shares several characteristics

with fracture, and provides a suitable build up to the development presented in

chapter 4.

The first three parts of the appendix provide an introduction to the various

mathematical tools required in order to better appreciate the content of this the-

sis. Appendix A.1 discusses the basics of extreme value theory, while A.2 and

A.3 provide a light introduction to linear elastic fracture mechanics. Appendix

A.4 summaries some results on crack propagation in graphene that are not suf-

ficiently well developed to merit a chapter, and yet are developed enough to

merit a mention.
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CHAPTER 1

INTRODUCTION

This is a thesis about fracture or how and why things break. Fracture, or the act

of breaking of an object, is more important in our lives than we might think.

A violent fracture in earth’s crust can lead to terrible earthquakes, while slow

creep in earth’s crust leads to the formation ofmountain ranges andmigration of

entire continents. Uncontrolled crack growth and fracture can lead to dangerous

industrial accidents, while controlled fracture and removal of material is central

to all metal working and several other industrial processes. In fact, one of the

central technological challenges of our civilization is to make materials with

superior strength and fracture characteristics.

This thesis is primarily concernedwith statistical models of fracture, the only

exception being appendix A.4, which discusses criteria for crack path predic-

tion. The goal of this chapter is to provide a brief literature and historical re-

view, and to discuss the scope of this thesis and make clear the problems that it

tries to address. Throughout this thesis it is assumed that the reader has a basic

level of familiarity with concepts of probability, statistics, extreme value statis-

tics, linear elasticity, linear elastic fracture mechanics, critical phenomena and

the renormalization group. There are a great many references and books that

the reader might use to gain an adequate knowledge of these topics; I would

suggest reading the book by Sheldon and Ross on probability [1], the book by

Casella and Berger on statistical inference [2], the book by Resnick [3] and the

book by Leadbetter et al. [4] on extreme value statistics, the book by Zehnder [5]

and the book by Gross and Thomas [6] on fracture mechanics, and the books by

Cardy [7] and Sethna [8] on critical phenomena and the renormalization group.
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Appendix A.1 gives a very brief introduction to some important results in ex-

treme value statistics, and appendix A.2 gives a brief introduction to linear elas-

tic fracture mechanics.

1.1 Literature and Historical Review

The subject of fracture and failure in materials is very broad and has been de-

veloped by several different communities. The continuum theory of fracture,

or linear elastic fracture mechanics (LEFM), has occupied the center stage in

the development of this discipline. LEFM has been extended to include plastic-

ity, nonlinearity, and dynamic effects. Indeed, most of the industrial safety and

fracture related design is based on principles of LEFM. More recently, the avail-

ability of sophisticated computers and experimental equipment has enabled the

study of fracture at scales smaller than the continuum scale. Computer simula-

tions have shed light on the molecular level mechanisms of fracture. These sim-

ulations have also illuminated several interesting phenomena that are hard to

study experimentally, such as the dissipative processes at the atomic scale, frac-

tal like roughness of fracture surfaces (measured by, for example, a roughness

exponent, see Ref. [9]), and the dynamic crack tip instability. Recent develop-

ments in density functional theory have started to enable first principle studies

of fracture, a field that I believe will be very exciting as it develops and matures.

Historically, statistical models of fracture have not been studied in main-

stream fracture mechanics. These models have been largely developed by statis-

ticians and statistical physicists. The fiber bundle and the fuse network are the

two most prominent statistical models of fracture. The fiber bundle has been

2



Figure 1.1: A reproduction of Leonardo da Vinci’s experimental apparatus for
testing the tensile strength of wires of varying length and thickness,
based on his drawings in his notebook Codex Atlanticus, sheet 222
1486-1490. The apparatus consists a container to hold sand, and pour
it slowly into a bucket suspended by a wire. The weight of sand at
which the wire broke would characterize the strength of the wire.
Image copyright: 2013 Museo Nazionale della Scienza e della Tec-
nologia “Leonardo da Vinci” all rights reserved.

studied for almost a century now, however the study of fuse networks pro-

liferated only after the advent of fast computers. These models have greatly

improved our understanding of the interplay between disorder and fracture, a

subject where LEFM is most lacking. I will review the literature and develop-

ment of LEFM and the statistical models of fracture in the next few sections of

this chapter.

Historically, the first documented studies of fracture are perhaps due to
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Leonardo da Vinci. In his experiments da Vinci used a device similar to the

one depicted in figure 1.1. The device would load metallic wires slowly, allow-

ing da Vinci to note the weight of sand that the wire broke at. He observed that

shorter wires were stronger, which was perhaps the first scientific study of the

“smaller is stronger” size effect.

The modern development of fracture mechanics has been largely motivated

by practical industrial applications. In 1920, A. A. Griffith of the Royal Aircraft

Establishment [10], developed a theory of fracture in brittle materials in order to

understand the effect of surface treatment on the strength of metallic machine

parts subject to repeated loading. Even though the subject of repeated loading,

or fatigue, is not understood in detail even today, the theory of brittle fracture is

well established, and has not changed substantially in spirit from what Griffith

proposed. In 1926 F. T. Peirce [11] studied the strength of ‘fiber bundles’ in order

to understand the strength related properties of cotton yarns and other related

materials. Thework of Peirce has developed into the field of statistical models of

fracture, and the fiber bundle is still an active topic of research. The research for

understanding the fracture properties of specific material systems was perhaps

accelerated in a large measure by the developments surrounding the Liberty

Ships in the World War II. Figure 1.2 shows the S S Schenectady, one of the

several Liberty Ships that suffered catastrophic failure due to unexpected hull

fracture. It was later discovered that the incidents were due to the embrittlement

of low grade steel in icy waters. Fracture mechanics is thus a most interesting

field, its history rich with lore, and its theory deep, and yet evolving.
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Figure 1.2: The S S Schenectady was a T2-SE-A1 tanker built during World War
II. During its maiden voyage into the Pacific ocean, its hull cracked
into two.

1.1.1 Continuum Fracture Mechanics

The modern theory of fracture mechanics began with a landmark paper written

by C. E. Inglis in 1913 [12]. Inglis derived an analytical solution for the state

of stress in a plate with an elliptical hole. He used the limit of thin ellipses to

investigate the behavior of sharp cracks and observed the characteristic stress

concentrations at the tip of the thin ellipses. He also noticed the characteris-

tic 1/
√

r singularity at the crack tip. In 1920 Griffith used the Inglis solution

to derive a thermodynamic criteria for crack propagation in brittle materials.

This criteria has since been called the Griffith criteria for crack propagation.

Griffith argued that if the net potential energy of the system decreased by in-

creasing the crack size, then the crack growth would be energetically favorable
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and spontaneous. By using the Inglis solution to do exact calculations, Griffith

found that the stress needed to grow a defect of length 2a was proportional to
√

γY/a, where γ is the energy need to create a unit area of material surface, and

Y is the generalized modulus of elasticity. This result has been a cornerstone

of fracture mechanics, and is derived in some detail in appendix A.3. The next

major development in LEFM is due to H. M. Westergaard, who in 1939 solved

the exact problem of a crack in an elastic material by using the theory of ana-

lytic functions [13] ; his approach is discussed in appendix A.2. Westergaard’s

solutions were ‘better’ than the Inglis solution insomuch as they did not approx-

imate a sharp crack with a thin ellipse, but rather developed the mathematics

needed to deal with the sharp crack singularity. Westergaard used a formula-

tion of elasticity wherein any stress state could be represented by the means of

two analytic functions or potentials. Later, Muskhelishvili [14] made some im-

provements to the potential functions that had some technical advantages over

the representation used by Westergaard. In 1957 Irwin wrote a landmark pa-

per where he introduced the celebrated “K-field” concept [15]. These and other

ideas were developed by him and Eshelby in a series of related papers around

that time [16–21]. The ideas of cohesive zone models of fracture were soon in-

troduced in the works of Dugdale and Barenblatt [22, 23], and have since been

used extensively, particularly in FEM modeling [24–35]. Most of the develop-

ment so far dealt only with linear elasticity. This deficiency was overcome to

some extent by the formulation of the so-called J-integral by J. R. Rice [36, 37],

which produced a path-independent integral valid for linear as well as nonlin-

ear material behavior. Even though this formulation is generally attributed to

Rice, it was derived earlier by Eshelby [19]. The theory of LEFMwas well estab-

lished in its modern form by the late 1960’s to the early 1970’s, and has changed

6



only incrementally since then. It is worth mentioning that another approach to

modeling cracks is by the use of a continuous distribution of dislocations [38].

This approach has been developed and used by several authors to calculate the

energy release rates of kinked or branched cracks [39, 40].

No summary of fracture mechanics can be complete without the mention of

the fascinating phenomena in dynamic fracture [41–46]. Even though this the-

sis does not address any questions related to dynamic effects, I provide a brief

history of the field for the interested reader. In 1948 N. F. Mott provided the

first framework for including inertial effects in fracture [47,48]. He realized that

inertial effects can become significant at the high speeds that cracks propagate

at. He assumed that cracks reached a steady state, and provided an analysis

for this state. In 1951 Yoffe wrote about the dynamics of a moving crack in an

elastic medium [49]. Around the same time Irwin used his K-field concept to

analyze dynamic fracture [15, 16, 50]. Irwin realized the key fact that the contri-

bution of surface energy to the resistance to fracture in metals is much smaller

than the resistance due to plastic effects. This plays a particularly important

role in dynamic fracture since a crack needs a lot more energy to propagate sta-

bly in presence of dissipation due to plastic effects. Hall conducted a series of

experiments on metals that proved that the dominant mechanism that resisted

fracture in metals was indeed plasticity [51]. This idea was used by Orowan

to propose a fracture criteria for steels [52]. Wells and others developed pho-

toelastic techniques that helped in generating experimental data for dynamic

effects [53–55]. More recently, Chandra and Knauss investigated the dynamics

of propagating cracks in a series of papers published in 1984 [56–59]. They ob-

served the well known crack branching instability, which was further studied

in a series of experimental and computational papers by Marder, Fineberg and
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co-workers [60–71]. Ramanathan [72–74] and Bouchaud [75] have attempted to

explain the properties of dynamic fracture, such as crack surface roughening, by

using a renormalization group and statistical mechanics based approach. The

subject of dynamic fracture, particularly the crack tip instability, is not under-

stood well and remains an open topic for research.

It is an interesting question whether the prediction of crack paths is in the

scope of LEFM. In a crystalline material crack growth happens at the atomic

scale, and the processes leading to crack growth are inside the nonlinear process

zone almost by definition. Thus, it is expected that continuum theories will not

have the power to predict the direction of crack growth unless there is an emer-

gent symmetry or a very large correlation length in the problem. This argument

not withstanding, several “principles” for crack growth have been suggested.

The most celebrated of these is the principle of local symmetry. The other prin-

ciples include the principle of maximum energy release rate, the principle of

maximum hoop stress, and the principle of minimum strain energy density.

Griffith-type arguments claim that cracks propagate along the cleavage plane

with the minimum surface energy; however, BCC iron cleaves along the {100}

plane even though at 1000◦C both the {111} and {110} planes have lower sur-

face energy [76]; similar effects have been observed in numerical simulations

as well [77]. It has also been speculated that anisotropy in linear [78] or non-

linear [77] elastic constants can determine the direction of crack growth; in the

second case, later work using a potential tuned to isotropic nonlinear elasticity

showed the same anomalous behavior [79]. Furthermore, even on a given plane,

there is significant anisotropic dependence of the crack growth direction [80,81].

Several authors have either calculated the crack path by assuming local symme-

try or maximum energy release [39, 82–88]. Sethna and Hodgdon have showed
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that in absence of crystalline anisotropy, symmetry arguments alone imply that

after a quick transient, the growth direction aligns with the direction of local

symmetry [89]. However, none of the criteria give consistent predictions for

crystalline materials. In this thesis I will study some aspects of crack propa-

gation in graphene, a two dimensional crystalline material, by using molecular

dynamics simulations. I will interpret the results in the framework of the vari-

ous theories mentioned earlier.
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1.1.2 Statistical Models

The treatment of fracture in the linear elastic theory assumes that the crack ex-

ists in an otherwise homogeneous material. This is not always the case, as real

materials have defects and disorder. While there have been efforts to model

disorder within elastic theory, the statistical models of fracture provide a much

more elegant approach. F. T. Peirce introduced the first such model in his stud-

ies of cotton yarns and other textile oriented materials [11]. His model has since

been called the fiber bundle model. The model essentially considers a bundle of

fibers that have been clamped at both ends and are subjected to increasing load

(or extension, see Fig. 1.3). The individual fibers have a strength that is drawn

from a known distribution. The dynamics of failure of the bundle and the distri-

bution of this strength are the topic of study. The dynamics and distribution of

strength varywidelywith the load sharing rule. The simplest rule is perhaps the

democratic load sharing. In this rule when a fiber breaks, its load is distributed

uniformly over all surviving fibers. Thus, at any given time all fibers support

the same amount of load. In 1945 H. E. Daniels proved that for the democratic

fiber bundle the asymptotic distribution of strength (for large number of fibers)

is given by a Gaussian distribution [90]. The local load sharing rules mimic the

stress concentration effects better. In such rules when a fiber breaks, its load is

distributed in some manner over its neighbors, say each nearest neighbor takes

half the load or each two nearest neighbors take fourth the load, etc. In a series

of papers beginning in the early 1970’s S. L. Phoenix and co-workers have pro-

duced a series of mathematically rigorous results for the distribution of failure

strength for various local load sharing rules [91–101]. Harlow and Phoenix in-

troduced a transition matrix approach, which was used later by Duxbury and

Leath to formulate an eigenvalue problem to study the strength distribution of a

10



Figure 1.4: (Left) A disordered fuse network with some fuses removed at ran-
dom. The fuse network has a distinguishable ‘crack’ in the center.
(Right) The current distribution in a fuse network with a few flaws
(not the same as the fuse network shown on the left). Notice the
stress concentrations at the crack tips and the long ranged stress
fields of the cracks.

class of related models asymptotically [102]. It is interesting to note that almost

all exact results indicate an logarithmic size effect, i.e., the mean failure stress

〈σ〉 decays logarithmically with the size of the bundle L, or 〈σ〉 ∼ 1/(logL)α

(α = 2 for the randomly diluted fuse network, see Chapter 2, Fig. 2.3). The re-

view paper [103] and the references therein discuss several aspects of the fiber

bundle model in much greater detail.

One of the greatest criticisms of the fiber bundle model is its lack of real-

istic physics in load redistribution. Fracture in real materials is mediated by

cracks, which have very complex load redistribution in the form of crack tip

stress concentration, and the long range dipolar stress field. In order to remedy

this deficiency, Arcangelis et al. introduced the random fuse model in 1985 [104]

(Fig 1.4). This model can be thought of as a discrete coarse grained model of

a disordered elastic material. In the random fuse model each fuse represents a

material domain with a certain strength. The fuse can burn (just as the mate-

11



rial domain can break or fracture) when the current through it exceeds a certain

threshold, at which point it becomes insulating and does not carry any more

current. Thus, current is analogous to stress, where a material domain ruptures

when the stress that it carries exceeds a threshold value, beyond which it can-

not support any further stress. Such a model was discussed in spirit in some

previous works [105, 106], however, it could be realized only after the advent

of fast computers. It can be shown analytically that in a certain limit the two

dimensional version of this model maps on to the anti-plane shear problem of

fracture. Various variants of this model can be created by introducing different

kinds of disorder. The most studied version of this model is based on percola-

tion type disorder, where in each realization of the network, a fraction of bonds

are removed with probability p. As the current is ramped up, fuses burn until

there is no longer a conducting path in the network and it cannot support any

further current (stress). At this point the network is said to be fractured. In a

series of papers starting in 1986, Duxbury and co-workers have analyzed this

model and solved it in the limit of small disorder [107–111]. They derived a

distribution of failure strength based on nucleation theory which is sometimes

called the Duxbury distribution. Kahng et al. studied a slightly different model

in which fuses were not removed at random, rather they were given a random

strength threshold taken from a known distribution [112]. In their model they

used a uniform distribution with a gap at the origin. In this model they were

able to observe a transition that was reminiscent of the brittle-ductile transition;

however this analogy should be interpreted carefully as there are no plasticity or

dislocation mechanisms in fuse network models. Similar effects were observed

by Curtin [113, 114].

One aspect of fracture that is almost completely divorced from the contin-

12



uum description is that of avalanches and criticality. Experimental studies in

fracture of diverse materials such as paper, glass, rocks and wood clearly sug-

gest the existence of avalanches and critical fluctuations [115–120]. Both the

statistical models of fracture, the fiber bundle [103, 121–130], and the fuse net-

work capture this effect [131–144, 144–146]. Hansen and Hemmer solved the

avalanche size distribution for the democratic fiber bundle exactly and found

that the size distribution is a power law P(s) ∼ s−τ, where τ is a universal crit-

ical exponent [121]. They found τ = 2.5 for the integrated size distribution if

avalanches within larger avalanches were not counted individually, and τ = 2.0

otherwise. This result indicated that the democratic fiber bundle is in the mean

field universality class, as onewould expect. Zapperi et al. studied the avalanche

size distribution in disordered fuse network and found an exponent close to

the mean field value of 2.5 [136]. They also noticed that after considerable dif-

fuse damage and avalanches, the fuse network broke in a giant avalanche, an

event that resembled the nucleation and growth of an unstable crack. They in-

terpreted this as a spinodal mode. Hansen and co-workers show that in the

limit of infinite disorder, the fuse network problems maps to loopless percola-

tion. They used this connection to argue that the universal crack roughness is

due to percolation effects [9]. However, the idea that critical fluctuations which

are characteristic of continuous phase transitions, can lead to fracture which is

thought of as an abrupt transition, is strange. Sornette and co-workers have

studied this problem in detail, and concluded that in a wide class of problems

fracture is a true critical point [147–149], their functional renormalization group

based analysis of another model of fracture is also worth noting [150].

Historically, the distribution of fracture strengths are studied under Weibull

theory [151–174]. In a landmark paper in 1939 Weibull proposed a distribu-
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tion for fracture strengths that fit a variety of data to remarkable accuracy [151].

Weibull’s basic argument was that of the weakest link hypothesis. This hypoth-

esis states that a large object is made up of several independent sub-volumes,

and it breaks as soon as its weakest constituent breaks. This leads to the math-

ematical structure of statistics of extremes. Fisher and Tippett started the study

of distribution of extremes in their landmark paper in 1928 [175]. The work of

Fisher, Tippett and several other authors culminated in the 1943 paper by Gne-

denko that established the mathematical foundations of extreme value statis-

tics [176]. His work proved that in the limit of large samples, the distribution of

extremes can take only three forms1, the Weibull distribution being one of them.

This subject was further developed in the works of several authors, the most

prominent of them being E. J. Gumbel [152, 177–179, 179, 180].

There are three important questions that bring the use of Weibull theory

into question. First, the mathematics of extreme provides for three limit forms,

namely, the Weibull distribution, the Gumbel distribution, and the Fréchet dis-

tribution. Of these, the Fréchet distribution is not of relevance to fracture. How-

ever, there is no fundamental reason that prevents the Gumbel distribution to

be the suitable limit distribution for fracture. In his analysis Weibull assumed a

power law dependence of fracture probability on the applied stress, and thus he

did not get a Gumbel distribution as the limit form; however, this assumption

is questionable. Second, it is well known that the convergence to extreme value

forms can be arbitrarily slow [3,175,181–183]. Given this slow convergence is it

suitable to use the limit form for analyzing small data sets? And third, the math-

ematical structure of extreme values assumes uncorrelated variables, while in

1In extreme value theory the limit distributions are found under affine transformations of

the arguments, and even so the limit does not always exist. See appendix A.1 for some details.
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reality the fracture strengths of various regions in a material can be correlated.

Does this effect the convergence or the rate of convergence to the limit forms?

This thesis attempts to tackle some of these questions. It is worth mentioning

that some recent developments have provided us with a fresh new way of look-

ing at the classical extreme value statistics. In particular, the work of Györgyi

et al. has developed a renormalization group based interpretation for extreme

value statistics [184, 185], and the work of Bertin and Clusel has formulated the

extreme value problem as a sum of correlated random variables [186]. I think

that the mapping to the correlated sum has the potential to provide insights into

the behavior of extremes of correlated random variables.

1.2 Arrangement of this Thesis

This thesis is primarily concerned with statistical models of fracture. The dis-

ordered fuse network is the primary model that is studied here. The ongoing

work presented in appendix A.4 is the only place where I deal with continuum

theories and atomistic models of fracture. There are two questions that are at

the heart of this thesis. First is regarding the asymptotic distribution of frac-

ture strength. Is the use of Weibull theory justified? Is the convergence to the

extreme value forms rapid enough to justify their widespread use? Can we do

better than using the Weibull distribution? Second concerns the understanding

of fracture as a phase transition. How dowe reconcile the fact that there are scale

free distribution of avalanches and damage cluster in fracture, which is other-

wise thought of as an abrupt first order transition? How do we understand the

role of disorder in fracture? Another important question, though not addressed

in this thesis, is that if one has to use the Weibull distribution to model fracture
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strengths, then what is the optimal way of estimating the parameters?

Chapter 2 of the thesis addresses some issues of fracture strength distribu-

tions including their asymptotic properties and convergence rates. Chapter 3

presents our work on dielectric breakdown. Even though dielectric breakdown

is not the same as fracture, it is closely related. We tackle several issues in this

chapter that form a basis for our treatment of fracture in a later chapter. In

particular, this chapter is a good buildup to our use of scaling functions and

our treatment of critical points in the chapter concerning fracture. Chapter 4

sheds some light on the nature of the phase transition and critical properties

associated with fracture. In this chapter we present a unified theory that uses

renormalization group ideas to show how fracture can have properties of both

abrupt and continuous phase transitions. We also introduce the novel concept

of finite-sized criticality in this chapter. The appendices provides an introduction

to the some of the mathematical tools that are central to understanding the con-

tent of this thesis. They also presents ongoing work on crack propagation that

is not mature enough to merit a chapter yet. Appendix A.1 presents the basic

results of extreme value statistics. Appendix A.2 discusses the basic theory of

linear elastic fracture mechanics, while appendix A.3 presents a minimal dis-

cussion of Griffith’s theory of fracture. Finally, appendix A.4 presents our work

on crack paths in graphene.
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CHAPTER 2

STRENGTH OF DISORDERED BRITTLE MATERIALS

2.1 Abstract1

We study the asymptotic properties of fracture strength distributions of disor-

dered elastic media by a combination of renormalization group, extreme value

theory, and numerical simulation. We investigate the validity of the ‘weakest-

link hypothesis’ in the presence of realistic long-ranged interactions in the ran-

dom fuse model. Numerical simulations indicate that the fracture strength is

well described by the Duxbury-Leath-Beale (DLB) distribution which is shown

to flow asymptotically to the Gumbel distribution. We explore the relation be-

tween the extreme value distributions and the DLB type asymptotic distribu-

tions, and show that the universal extreme value forms may not be appropriate

to describe the non-universal low-strength tail.

2.2 Introduction

It has been known for centuries that larger bodies have lower fracture strength.

The traditional explanation of this size effect is the ‘weakest link’ hypothesis:

the sample is envisaged as a set of non-interacting sub-volumes with different

failure thresholds, and its strength is determined by the failure of the weakest

region. If the sub-volume threshold distribution has a power law tail near zero

1This chapter is published as Phys. Rev. Lett. 108, 065504 (2012)with co-authors C. Manzato,

P. K. V. V. Nukala, M. J. Alava, J. P. Sethna, and S. Zapperi. I focussed on sections 2.3 and 2.5,

and developed the software that was used for the simulations with minor modifications.
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then the strength distribution can be shown to converge to the universal Weibull

distribution for large sample sizes [151], an early application of extreme value

theory (EVT) [179].

Often failure occurs due to the presence and growth of micro-cracks whose

long-range interactions call the notion of independent sub-volumes into ques-

tion. There have been two broad approaches to address such interactions: fiber

bundle models and fracture network models [187]. Fiber bundles transfer load

by various rules as individual fibers fail; in some particular cases exact asymp-

totic results for the failure distribution have been derived [188], and do not ex-

plicitly fall into any of the extreme value statistics universal forms. Fracture

network models consider networks of elastic elements with realistic long-range

interactions and disorder. A particularly simple approach is based on the ran-

dom fuse model (RFM) [104,187], where one approximates continuum elasticity

with a discretized scalar representation. It has been suggested that in the weak

disorder limit, fracture would be ruled by the longest micro-crack present in the

system [105,108,135,189]. This argument yields results that are accurate up to a

prefactor; Phoenix and Beyerlein have given an exact calculation that computes

the prefactor for the case of fiber bundles [188]. By using critical droplet theory

type arguments, one can show that an exponential distribution of micro-cracks

leads to the DLB distribution of failure strengths (up to a prefactor) [108], which

again does not explicitly have an extreme value form.

These studies raise three important questions. First, what is the importance

of elastic interactions in determining the strength distributions, and does the

weakest link hypothesis hold in presence of such interactions? Second, what

is the relation between the DLB type asymptotic strength distributions and the
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universal forms predicted by EVT? Third, how should one best extrapolate from

measured strength distributions to predict the probability of rare catastrophic

events? We use renormalization group (RG) ideas, EVT, and simulations of

the two dimensional RFM to explore these questions. We conclude that (i) the

weakest link hypothesis is valid for large samples even in the presence of long-

ranged elastic interactions, (ii) the asymptotic forms of the strength distribu-

tion for these interacting models is compatible in disguise with EVT, but of the

Gumbel form rather than the Weibull form, and, (iii) the use of extreme value

distributions to estimate the probability of rare events, though common in the

experimental literature, is not always justified theoretically. DLB type asymp-

totic distributions (or those derived by Phoenix and Beyerlein [188]) which de-

pend on the details of the material are necessary to safely extrapolate deep into

the tails of the failure distribution.

2.3 Asymptotic Distributions of Fracture Strengths

The RG and the EVT present two equivalent, yet contrasting, approaches to the

study of the universal aspects of extreme value distributions in general [185],

and fracture strengths in particular. The natural framework to investigate the

role of interactions and the corrections to scaling that emerge as the system size

is changed is provided by the RG theory. In contrast, the EVT facilitates the

study of domains of attraction and convergence issues. The non-universal, yet

important, behavior of the low reliability tail of the distribution is not described

adequately by either the RG or the EVT. To study such non-universal features

one needs to develop DLB type asymptotic theories.

19



Typically, a RG transformation proceeds in two steps: in the first step the

system is coarse-grained by eliminating short length-scale degrees of freedom,

and then the resulting system is rescaled. The RG coarse-graining for fracture is

equivalent to the weakest link hypothesis: a system of size L in d = 2dimensions

survives at a stress σ if its 4 (= 2d) sub-systems of size L/2 survive at the same

stress. This coarse-graining leads to the following recursion relation for S L(σ)

— the probability that a system of size L does not fail under a stress σ:

S L(σ) =
[

S L/2(σ)
]4
. (2.1)

The second step of the RG transformation is to re-scale the stress suitably and

look for a fixed point distribution S ∗ that is invariant under RG

S ∗(σ) = R[S ∗(σ)] = [S ∗(aσ + b)]4
. (2.2)

Instead of applying Eq. 2.1 iteratively like the RG, the EVT formulation consider

the large length-scale limit directly

S ∗(σ) = lim
L→∞

[S L0(ALσ + BL)](L/L0)d
, (2.3)

where L0 is a characteristic length-scale.

The functional equations 2.2, 2.3 are known to have only three solutions: the

Gumbel, the Weibull, and the Fréchet distributions. Of these, only the Gumbel

S ∗(σ) = Λ(σ) ≡ exp[−eσ], σ ∈ ℜ, a = 1, b = log 4, (2.4)

and the Weibull

S ∗(σ) = Ψα(σ) ≡ e−σ
α

, σ, α > 0, a = 4(−1/α), b = 0, (2.5)

distributions are relevant for fracture. The large length norming constants,

AL, BL, satisfy the following asymptotic relations A2L/AL → 1/a, |B2L − BL|/AL →
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b/a. As discussed in appendix A.1, given the microscopic distribution S L0(σ),

the fixed point of defined by Eq. 2.3, if it exists, is unique; and it is of one of the

three forms discussed earlier. Details about the choice of the norming constants

AL, BL can change the approach to the fixed point, but not the fixed point itself.

Roughly speaking, the Weibull fixed point is approached if the tail of S L0(σ) de-

cays as a power law at a finite “left end”2 of S L0(σ), the Fréchet distribution is

approached if the tail decays as a power law but the left end is not finite, and

finally the Gumbel distribution is approached if the tail decays faster than any

power law at either a finite or an infinite left end.

2.4 Numerical Validation

To test the validity of the weakest link hypothesis (Eq. 2.1) in presence of

long-range elastic interactions, we perform large scale simulations of the RFM

[104, 187], considering a tilted square lattice (diamond lattice) with L × L bonds

of unit conductance. Initially we remove a fraction 1− p of the fuses at random,

where p is varied between 1− p = 0.05and 1− p = 0.35 (the percolation thresh-

old for this model is at p = 1/2). Periodic boundary conditions are imposed in

the horizontal direction and a constant voltage difference, V , is applied between

the top and the bottom of lattice system bus bars. The Kirchhoff equations are

solved to determine the current distribution on the lattice. A fuse breaks irre-

versibly whenever the local current exceed a threshold that we set to one. Each

time a fuse is broken, we re-calculate the currents in the lattice and find the next

fuse to break. The process is repeated until the system is disconnected. In the

present simulations, we have considered system sizes from L = 16 to L = 1024

2The “left end” of the distribution is defined as the largest σ such that S L0(σ) = 1
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Figure 2.1: Testing the weakest link hypothesis. Comparing the survival prob-
ability S L(σ) for a L × L network (solid lines) with that predicted by
the weakest link hypothesis, S L/2(σ)4, (dotted lines) for 1− p = 0.10.
Note the excellent agreement even for moderate system sizes.

and various values of p. To explore the low strength tail which is beyond the

accessible range of most experiments, we typically average our results over 105

realizations of the initial disorder. The fuse model is equivalent to a scalar elastic

problem. Using this equivalence, the strain is defined as ǫ = V/L and the stress

is given by σ = I/L, where I is the current flowing in the lattice. The fracture

strength is defined as the maximum value of σ during the simulation.

The RG coarse-graining step (Eq. 2.1) produces a natural test for the weakest

link hypothesis. In Fig. 2.1 we report the survival probability S L(σ) for different

system sizes L, compared with those for systems of size L/2, rescaled according

to Eq. 2.1. The agreement between the two distributions is almost perfect for
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Figure 2.2: Crack width distributions at peak load with 1− p = 0.10. The initial
distribution of micro-crack widths (N(w) is the number of clusters of
width w), is exponential with (dotted line, slope ≈ − log 2(1− p)). As
the system is loaded, a few bonds break before catastrophic failure;
these bonds usually connect smaller clusters, producing extra cracks
at large widths. The resulting crack width distribution at the peak
load exhibits a size-dependent crossover to a different exponential
slope. Solid lines represent fits to an exponential.

L/2 ≥ 32, indicating that Eq. 2.1 is satisfied asymptotically. Corrections to scal-

ing due to the effect of distant micro-cracks are expected to decay as 1/L2, as can

be shown by a direct calculation, but are too small for us to detect in simulations

(Fig. 2.1). We also tested wide rectangular systems with Lx = 2Ly, finding larger

corrections, scaling roughly as 1/L, which are still irrelevant in the large system

size limit.

Duxbury et al. related the survival distribution to the distribution of micro-

crack widths w [108]. At the beginning of the simulation the ‘per-site’ prob-
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ability distribution of a crack of width w is P(w < w′) = 1 − e−w′/w0, where

w0 ∼ −1/ log 2(1− p). The factor 2 in w0 ∼ −1/ log 2(1− p) is due to the fact

that, on the diamond lattice, there are 2w crack ‘backbones’ of width w with a

given site as their left end. Hence, the distribution of the longest crack, wm, in a

lattice with L2 sites is given by

P(wm < w′) =
(

1− e−w′/w0
)L2

. (2.6)

The stress at the tip of a crack of width w is asymptotic to σK
√

w, where σ is the

applied far-field stress, and K is a lattice dependent constant. A sample survives

until the largest crack becomes unstable when its tip stress reaches a threshold

σth = σK
√

w. Therefore, we have

S L(σ) ≃
(

1− e−(
σ0
σ

)2)L2

≃ DL(σ), (2.7)

where σ0 ≡ σth/K
√

w0 and DL(σ) ≡ exp[−L2e−(σ0/σ)2
] is the DLB distribution. To

apply the above derivation to the failure stress, we first check the distribution

of micro-crack lengths at peak load. As shown in Fig. 2.2, the distribution is ex-

ponential, but due to damage accumulation, the slope of the tail changes with

respect to the initial distribution. This appears to be due to bridging events in

which two neighboring cracks join, leading to a modification of Eq. 2.7 as dis-

cussed in Ref. [108]. Thus, damage accumulation, though very small, is relevant

because it changes the exponent of the micro-crack distribution. The exponen-

tial form of the crack length distribution tail, however, suggests that the DLB

form should still be valid, as demonstrated in Fig. 2.3. In particular, the av-

erage failure stress scales as 〈σ〉 = σ0/
√

log(L2) (Fig. 2.3) and the distributions

for different L all collapse into a straight line when plotted in terms of rescaled

coordinates (Fig. 2.4).
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Figure 2.3: The average failure stress as a function of system size L at various
bond fractions p (symbols) can be fit well by the DLB form (solid
lines), except close to the percolation threshold (1− p > 0.3).

2.5 Convergence and Asymptotic Properties

Our arguments thus far are seemingly paradoxical. On the one hand we have

argued on very general grounds that the distribution of failure strengths must

be either Gumbel or Weibull, while on the other hand we have checked that the

failure distribution for fuse-networks is of the rather different form proposed by

Duxbury et al. How can this ‘paradox’ be resolved? While it is not guaranteed

that a microscopic survival distribution will lead to a fixed point under linear

rescaling (Eqs. 2.2, 2.3), the DLB distribution does converge to the Gumbel form,

i.e.,
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Figure 2.4: A collapse of the strength distribution for different system sizes at
1 − p = 0.1, such that the DLB form would collapse onto a straight
line.

lim
L→∞

DL(ALσ + BL) = Λ(σ), (2.8)

as can be demonstrated by a straightforward calculation using AL =

σ0/(2(log(L2))3/2) and BL = σ0/
√

log(L2). The above result is striking because

fracture distributions are usually assumed to not be of the Gumbel form, since

fracture must happen at positive stress, while the Gumbel distribution has sup-

port for negative arguments as well. This is akin to arguing that the normal

distribution is not valid for test scores since scores must always be positive.

Nonetheless, it brings us to the issue of convergence and validity of extreme

value distributions as opposed to DLB type distributions.
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The extreme value distributions, S ∗(σ) (=Λ(σ) or Ψα(σ)), are a uniform ap-

proximation to the true survival function, S L(σ), for all σ in the limit of large L,

i.e.,

lim
L→∞

(

sup
σ∈ℜ

∣

∣

∣

∣

∣

∣

S L(σ) − S ∗
(

σ − BL

AL

)
∣

∣

∣

∣

∣

∣

)

= 0. (2.9)

In contrast, DLB type distributions 3, are based on material details, and are

asymptotically correct in the low reliability tail, i.e.,

lim
L→∞

(

lim
σ→0

1− DL(σ)
1− S L(σ)

)

= 1. (2.10)

Note that the uniform convergence in Eq. 2.9 does not bound the relative error

in the low reliability tail, while the asymptotic convergence in Eq. 2.10 does.

The above discussion hints at an underlying question: How to accurately

predict the probability of rare small-strength events with limited experimental

data? The standard practice is tomeasure the failure distribution of construction

beams or micro-circuit wires, fit to the universal Weibull or Gumbel form, and

extrapolate. However, as we have argued, this approach can lead to incorrect

estimates. The low reliability tail is non-universal, and must be modeled by a

theory that, like DLB, accounts for microscopic details (see also [190]). Such the-

ories, analogous to critical droplet theory (low temperatures), instantons (low

~), and Lifshitz tails (low disorder, deep in the band gap) are by construction

accurate in the low reliability tail. In this case a fit to the Weibull or Gumbel

form over-estimates the low-stress failure probability, and hence might be ap-

propriate as a conservative estimate (e.g., construction beams), but not when

optimizing a design (e.g., circuits). It is interesting to observe that usually the

RG and the critical droplet theory address continuous and abrupt phase transi-

tions, respectively, yet here these two approaches both apply to fracture.

3The DLB distribution is asymptotically exact (up to a prefactor) in the limit of 1− p→ 0
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The convergence to extreme value distributions can be extremely slow [190].

For the RFM, let z be number of standard deviations up to which the Gumbel

approximation is accurate within a relative error of ǫ. By using the Edgeworth

type expansions for the extreme value distributions [183], we find

zπ√
6
=























√
η exp[−

√
η

2 exp[−
√
η

2 exp[. . .]]] , η < 4e2

logη − 2 log[logη − 2 log[. . .]] , η > 4e2,

where the ellipsis indicate an infinite recursion, and η = −(4/3) log(1− ǫ) log(L2).

For an accuracy of 10% at one standard deviation a sample volume of L2 ≈ 1018

is required, while at 2 standard deviations the required sample volume is about

L2 ≈ 10264. As a comparison, for the Gaussian approximation to the mean of

a sample of M(≫ 1) random variables (normalized so that E[X] = 0, E[X2] =

1, E[X3] = γ) we get, z ∼ ∆1/3
+ ∆

−1/3
+ O(∆−4/3), where ∆ = 6ǫ

√
M/γ, thus

z ≈ 3 for ǫ = 0.1, M = 3000, γ = 2, where the value γ = 2 corresponds to the

standard exponential distribution. However, the universal extreme value forms

are not always dangerous for extrapolation. One can show that they are valid

asymptotic forms, à la Eq. 2.10, if they satisfy the condition of tail equivalence [3,

p. 102] [182]:

lim
σ→0

1− S L(σ)
1− S ∗(σ)

= C, 0 < C < ∞. (2.11)

The success of the classical example of aWeibull distribution of failure strengths

emerging from a power-law micro-crack length distribution may be due to the

tail equivalence of the microscopic and the Weibull distributions.
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2.6 Conclusion

In conclusion, by using a combination of renormalization group, extreme value

theory, and numerical simulations we have shown that the failure strength of an

elastic solid with a random distribution of micro-cracks follows the DLB distri-

bution which asymptotically falls into the Gumbel universality class. The non-

universal low reliability tail of the strength distribution may not be described by

the universal extreme value distributions, and thus the common practice of fit-

ting experimental data to universal forms and extrapolating in the tails is ques-

tionable. Theories that account for microscopic mechanisms of failures [190],

the DLB distribution for instance, are required for accurate prediction of low

strength failures. In our study the emergence of a Gumbel distribution of frac-

ture strengths is surprising, and brings into question the widespread use of the

Weibull distribution for fitting experimental data.
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CHAPTER 3

AVALANCHES AND DIELECTRIC BREAKDOWN

3.1 Abstract1

Motivated by recent experiments on the finite temperature Mott transition in

VO2 films, we propose a classical coarse-grained dielectric breakdown model

where each degree of freedom represents a nanograin which transitions from

insulator to metal with increasing temperature and voltage at random thresh-

olds due to quenched disorder. We describe the properties of the resulting non-

equilibrium metal-insulator transition and explain the universal characteristics

of the resistance jump distribution. We predict that by tuning voltage, another

critical point is approached, which separates a phase of boltlike avalanches from

percolationlike ones.

3.2 Introduction

Vanadium dioxide (VO2), when heated or strained, displays an insulator to

metal transition with intriguing non-equilibrium collective behavior, portrayed

in a remarkable series of recent experiments [191–195]. Strong electron corre-

lations drive the microscopics of this metal-insulator transition, where a deli-

cate interplay among structural, electronic and spin degrees of freedom takes

place [196]. However, as we argue in this Letter, the universal features of the

observed resistance jumps can be understood via appropriate generalizations

1This chapter is published as Phys. Rev. Lett. 107, 276401 (2011) with minor modifications.

The co-authors are S. Papanikolaou, S. Zapperi and J. P. Sethna.
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of previously studied models of dielectric breakdown [107, 197]. By tuning two

natural control parameters, the applied voltage V and the contrast h (the ratio of

conductances of the insulating and metallic domains), we show that the exist-

ing experiments are in the small h regime, where a crossover, in small samples,

between a low-V percolating phase and a high-V “bolt” phase takes place. As

h becomes larger, this crossover evolves to a sharp transition with novel critical

properties.

The VO2 films studied in Ref. [191] had a thickness of 90 nm, widths ranging

from 2 µm to 15 µm and lengths ranging from 200 nm to 4 µm. X-ray diffrac-

tion studies of films near criticality revealed that stable insulating grains have

an average linear size of 20 nm [192, 198]. With the sample put under an exter-

nal voltage V , multiple resistance jumps were observed near the bulk transition

temperature [191]. Let ∆R be the resistance change that occurs during one such

jump. The statistics of these jumps revealed a power law probability distribu-

tion P(∆R) ∼ ∆R−α, with an exponent α ≃ 2.45. The resistance jump distribution

depended strongly on the magnitude of the external voltage, with the largest

jump scaling linearly with the voltage. Further, in the presence of external volt-

age, elongated conducting clusters have been observed through X-ray diffrac-

tion [192], whereas in the absence of voltage, percolationlike isotropic clusters

have been recorded with near-field infrared spectroscopy [193, 199].

Even though VO2’s transition properties are dominated by electron correla-

tions, we argue that the observed collective phenomena can be explained in a

purely classical way, consistent with experimental observations [191–195]. The

large length scales of the domains (∼15-20 nm) and the small electron mean-free

path near the transition (∼0.26 nm) suggest that coherence effects are unimpor-
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tant and electron transport is predominantly classical (Ohm ’s law). Given the

observed metallic domain sizes of 20 nm and the sample thickness of 90 nm,

it is clear that avalanches involving domains at distances larger than 5 lattice

spacings have a 2D character, thereby justifying the use of our 2D model. This

high-temperature transition (∼340 K) cannot be interpreted as a quantum phase

transition, since the observed ∼1% lattice distortion suppresses any electronic

coherence. The Frank-Condon overlap integral, accounting for the ∼1% lattice

distortion, would drastically suppress any quantum overlap between electronic

initial and final states on these length scales (∼20 nm). The thermal loading

must be considered quasi-static because the loading rate of the experiments (< 3

K/min, [191]) is much slower than the intrinsic dynamics of the domains (∼10−3

s, [198]). Also, some experiments at high voltage show a large event that repeats

in space [200] and time [194] over repeated cycles of thermal loading, while oth-

ers [191], for smaller voltages do not exhibit this repetition. In our model, we

consider a quasi-static model of classical resistors in two dimensions with de-

terministic dynamics, and with classical, quenched disorder, hence leading to

reproducible avalanche sequences. The strongly-correlated quantum and statis-

tical physics underlying the Mott transition is absorbed into temperature and

voltage dependencies of our domain dynamics, which could be estimated by

using DMFT methods [201, 202].

Motivated by previous successful studies of strongly-correlated electronic

systems at finite temperatures [203–205], we propose an extended dielectric

breakdown network model of coarse-grained regions transforming from insu-

lator to conductor with random critical temperature thresholds. We study the

resistance jump distribution and make predictions about the exponent α. In ad-

dition, we study the probability distribution of avalanche sizes P(s) ∼ s−τ, where
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s is the number of resistors transformed in a single avalanche burst. We explain

the observed qualitative behavior at different voltages, and predict the existence

of two distinct regimes: a) a percolation dominated regime [206] where scaling

appears only in resistance jumps and avalanches are isotropic and small, and,

b) a bolt dominated regime, where avalanches are highly anisotropic, almost

linelike. Finally, we make a number of experimentally verifiable predictions

regarding the behavior of the system in the different regimes.

3.3 Coarse GrainedModel

In our model each link i of the network, labelled by a variable S i, is thought of as

a microscopic “grain” of linear size at least of the order of the dephasing length

lφ. It can be conducting (S i ≡ +1) with conductance σC, or insulating (S i ≡ −1)

with conductance σI = h σC . The variable 0 ≤ h ≤ 1 is the inverse contrast

between conducting and insulating regions. We enforce bi-periodic boundary

conditions on a diamond lattice (a square grid rotated by 45◦) and subject it to an

external voltage V per link. Experimental observations show that the threshold

temperature in the insulator to metal transition decreases with voltage [195,200,

201]. We account for this in the model by transforming the resistor at link i from

insulator to metal when the following condition is satisfied,

T ≥ T c
i − bVi (3.1)

where T is the temperature of the sample, Vi is the voltage drop across the ith

link, and T c
i is the random zero-voltage critical temperature threshold which

models the disorder. The unit of resistance is ∆R = (1 − h)RI, for a single resis-

tor. The quantity RI is defined by the resistance deep in the insulating phase

33



(when all grains are insulating), and here we set it to unity. The unit of voltage

and temperature in our simulation is the variance of the random pinning field

disorder (assuming b = 1). Equation 3.1 is a linear approximation to the ob-

served voltage dependence of the critical temperature threshold [195, 200, 201];

the exact functional form should be irrelevant for the universal behavior.

3.4 Analysis

In this model there are two cases which have been studied previously: V = 0

and the limit h → 1. At V = 0, resistors are not coupled and transform se-

quentially one at a time as in percolation. The resistance jump distribution

for percolation, originally studied in Ref. [206], displays a multifractal struc-

ture with a power law tail at large jumps decreasing with an exponent α ≃ 2.7

(the power law tail is shown in Fig. 3.1(b)). As h → 1, the model can be stud-

ied by an explicit perturbation expansion in powers of (1 − h)/h [207]. The

voltage Vi across the ith link satisfies the recursive equation Vi = V − 1
2[(1 −

h)/h]
∑

j Γi j(S j + 1)V j, where Γi j are the lattice Green functions with dipolar form

at long distances. Their general form for a n-dimensional hyper-cubic lattice

is Γi j =
∫

dnk/(2π)n sin 1
2ki sin 1

2k j cos(k.ri j)/(
∑n

l=1 sin2 1
2kl), where ki, k j are the direc-

tional wave vector components, and ri j is the vector from the center of link i to

center of link j. Taking ǫ ≡ (1− h)/h << 1 we obtain [207],

Vi − V = −(ǫV/2)Σ jΓi j(S j + 1)+ O(ǫ2). (3.2)

Thus, in the singular limit of h → 1, the model maps to a disordered, long-

range, frustrated Ising model. This mapping is intriguing, because it maps a di-

electric breakdownmodel with non-additivemulti-body interactions, to a dipolar
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Ising model with additive two-body interactions. The dipolar interaction in this

singular limit is shared with a model [208] of interface depinning in magnetic

hysteresis, where their fingerlike structures resemble our bolts.

3.5 Numerical Validation

We perform numerical simulations, where a random temperature threshold T c
i ,

drawn from the standard Gaussian distribution, is assigned to each link. The

simulation starts with every resistor in the insulating state (S i = −1 ∀ i). The

voltage at individual nodes is found by numerically solving the Kirchoff equa-

tions [209]. At each step the resistor for which the condition T = T c
i − b|Vi|

(Eq. 3.1) is satisfied at the lowest possible value of T , is transformed into metal,

and voltages are recomputed for the entire network. The process is repeated

until every resistor in the conducting state (S i = 1 ∀ i).

In the experiments of Refs. [191, 192, 199] on VO2, h is small (about 10−3)

and the voltage appears to be low compared to the disorder threshold. In this

limit, for large resistance jumps, shown in Fig. 3.1(a), the distribution has an

exponent α ≃ 2.7 which is very similar to the experimental findings reported in

Ref. [191]. The structure of the resistance-temperature curve shown in Fig. 3.1(b)

is also similar to ones reported experimentally. The size of the largest resistance

jump scales linearly with the applied voltage, as reported in Ref. [191]. This

dependence on the applied voltage stems from the non-additive multi-body in-

teractions of our model, and cannot be achieved by previously suggested bond-

percolation type models [191] where the size of the largest resistance jump van-

ishes in the large system size limit. A more explicit signature of percolation
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Figure 3.1: Universal scaling and avalanches in the high-contrast, percolation-
dominated regime. (a) The resistance-temperature curve shows
a multiple-step structure similar to the experimentally observed
one [191]. (b) The resistance jump distribution acquires a univer-
sal form, for different contrast parameters and voltages for L = 128.
The exponent α = 2.7 agrees qualitatively with the experimentally
observed exponent 2.45. Additionally, the distributions show finite-
size scaling, demonstrating the presence of a nearby critical point.
Insets: The largest resistance jump is observed to scale linearly with
1/L at fixed V = 0.1 (inset in (b), as observed experimentally [191]),
and linearly with V at fixed L = 128(inset in (a)) .
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would be the observation of the multifractal scaling [206] expected at low resis-

tance jumps, possibly below the experimental resolution.

3.6 Scaling Analysis and Phase Transition

When the contrast is smaller (h & 1/2), we find that the insulator to metal

transition occurs in avalanches, with several bonds transforming simultane-

ously at the same temperature. For fixed h (near 1), avalanches and resistance

jumps are linearly related (∆R ∼ s(1− h)/(2L2) for the diamond lattice) and both

show power laws and universal scaling (sizes shown in Fig. 3.2). As the ex-

ternal voltage V is varied, the avalanche size distribution evolves from trivial

(at V = 0, where resistors transform one by one) to a power law at a critical

voltage Vcr(h), to again trivial (one giant avalanche) at V ≫ Vcr. This behav-

ior is suggestive of a continuous phase transition; we analyze the probabil-

ity distribution of our sizes P(s) with the scaling form P(s) ∼ s−τΦ(s/ξσ, L/ξ),

where ξ ∼ |V − Vcr|−ν is the correlation length. The nth moment of the avalanche

size distribution scales as 〈sn〉 ∼ Lσ(1+n−τ)
Ψ((V − Vcr)L1/ν). These scaling forms

fit the data with good accuracy as shown in Fig. 3.2. Figure 3.2(a) shows the

universal size distribution and Fig. 3.2(b) shows the distribution of the mean

avalanche size, and a fit to the predicted scaling form. From these fits we get

1/ν = 0.25±0.24, σ = 0.8±0.4, τ = α = 1±0.2. We have also studied other disor-

der distributions (e.g. T c
i taken from a uniform or exponential distribution) and

explored other analytical methods (e.g. changing the critical range in the fits and

analyzing the size distribution of spatially connected pieces of the avalanches)

all of which confirm the presence of critical fluctuations.
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Figure 3.2: Novel universality at the percolation-bolt transition. (a) The prob-
ability distribution of avalanche sizes shows universal scaling near
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avalanche size at the critical voltage diverges as L → ∞, suggesting
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The phase transition identified above separates a percolative phase from a

‘bolt’ phase as shown in Fig. 3.3. We estimate the phase boundary by a mean-

field theory that becomes exact in the limit of h → 1, V → 0. In this limit the

local voltage concentrations are unimportant and the interactions are additive.

The avalanches can be modeled as a branching process – a grain (bond) turning

metallic induces a long-ranged perturbation in the voltage field, which can re-

sult in a fewmore grains turningmetallic, ad infinitum. The voltage change, ∆V ,

due to a single metallic bond at a distance r, goes as ∆V(r) ∝ V(1−h)
r2(1+h) (a continuum

result obtained by approximating a single metallic bond by a circular inclusion

in a 2-D domain). Let λ be the average number of grains that turn metallic due

the perturbation caused by one grain, then λ ∝ V logL(1 − h)/(1+ h). The mean

size of the resulting avalanche is given by 1 + λ + λ2
+ . . .. Thus, setting λ = 1

yields a phase boundary between a phase with small avalanches (percolative

phase, λ < 1), and a phase with large avalanches (bolt phase, λ ≥ 1).

Figure 3.3 shows the phase boundary V = 7.26(1+ h)/(1− h), where the pref-

actor 7.26 is obtained by fitting the simulation data. It is difficult to notice the

logarithmic drift in the phase boundary due to limited simulation size, how-

ever, the mean-field analysis suggests that the phase boundary is at V = 0 in

the limit of L → ∞. Even though the voltage per bond, V , goes to zero, the

externally applied voltage diverges as L/ logL. This is analogous to fracture

where the stress at failure goes to zero, and yet the net applied force at failure

diverges in the limit of large length scales [187]. The mean-field theory yields

an avalanche size exponent of τ = 3/2, which is different from the numerically

observed value (Fig. 3.2 a), possibly due to the effect of fluctuations. Finally, we

have checked that the mean-field theory can also be collapsed by using scaling

forms consistent with the scaling analysis discussed previously (Fig. 3.2 b).
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Even though we believe that the phase diagram shown in Fig. 3.3 is qualita-

tively accurate, there are other possible scenarios that cannot be entirely ruled

out. It is possible that V is finite at the transition, as suggested by the scal-

ing analysis. It is also possible that this is an avoided critical point, i.e. large

avalanches reflecting a crossover to the critical point at h → 1,V → ∞. How-

ever, the avalanche size distribution displays a scaling collapse (cf. Fig. 2) and

a power law in a large range. Also, the behavior is fairly independent of h for

0.5 < h < 1, rendering a crossover unlikely.
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Figure 3.3: Fractal-looking clusters and phase diagram. The colors in the insets
reflect avalanches; the first spanning cluster is shown in black. The
phase boundary and the error-bars are obtained by treating the crit-
ical voltage, Vcr, as a free parameter in data collapses (see Fig. 3.2).
The percolation fixed point at h = 0,V = 0 is likely unstable under
coarse-graining, and we anticipate that there will be a crossover to
the critical point (h→ 1) behavior for very large avalanches even for
high contrast.
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Our minimal model can be verified experimentally in the following ways:

a) For high voltages boltlike avalanches should appear, leading to boltlike con-

ducting clusters. This property has already been observed in Ref. [192], where

elongated clusters appear in the presence of finite gate voltage, whereas such

anisotropy is absent when V = 0 [199]. b) At low contrast (h & 1/2), mean re-

sistance jumps and sizes (measured, e.g., using multiple ESM images) should

diverge only at a critical voltage, with power law distributions τ = α ≃ 1. An

approach to this regime should be easier in hydrostatic pressure-controlled sys-

tems like organic materials in the κ-ET family.

3.7 Conclusions

In conclusion, we presented a novel model of avalanches for the metal-insulator

transition in VO2, bringing together recent experimental findings, and also

making concrete experimental predictions as the relevant parameters are al-

tered. We have identified a novel continuous transition controlled by long-range

interactions which could be observed in particular classes of materials that

have evidently smaller contrast, like organic materials under hydrostatic pres-

sure [210,211] or bulk V2O3 [212]. Another possibility for achieving low contrast

is by tuning hydrostatic pressure, approaching the metal-insulator Ising critical

point [205].
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CHAPTER 4

AVALANCHES IN FRACTURE

4.1 Abstract1

We present a unified theory of fracture in disordered brittle media that recon-

ciles apparently conflicting results reported in the literature. Our renormaliza-

tion group based approach yields a phase diagram in which the percolation

fixed point, expected for infinite disorder, is unstable for finite disorder and

flows to a zero-disorder nucleation-type fixed point. In a region of intermedi-

ate disorder and finite system sizes, we predict a crossover region with mean-

field avalanche scaling. We discuss intriguing connections to other phenomena

where critical scaling is only observed in finite size systems and disappears in

the thermodynamic limit.

4.2 Introduction

Brittle fracture in disordered media intertwines two phenomena that seldom

coexist, namely, nucleation and critical fluctuations. The usual dichotomy of

thought between nucleated and continuous transitions makes the study of frac-

ture interesting. Even more intriguing is the fact that crack nucleation hap-

pens at zero stress in the thermodynamic limit: smaller is stronger and larger

is weaker. This makes the existence of critical fluctuation in form of clus-

ters and avalanches of all sizes even more mysterious. What kind of critical

1This chapter is published as Phys. Rev. Lett. 110, 185505 (2013). The co-authors are S. Zap-

peri and J. P. Sethna.
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point governs a phase transition that happens at zero applied field (stress) in

the thermodynamic limit, and what is the universality class of such a transi-

tion? How do self-similar clusters, extremely rough crack surfaces, and scale

invariant avalanches ultimately give rise to sharp cracks and localized growth?

These questions have been addressed previously via a host of different theories,

such as those based on percolation and multifractals [9, 213], spinodal modes

and mean-field criticality [136], and classical nucleation [108]. In this Letter,

we present a theoretical framework based on the renormalization group and

crossover scaling that unifies the seemingly disparate descriptions of fracture

into one consistent framework.

Fracture in disordered media is the result of a complex interplay between

quenched heterogeneities and long-range stress fields leading to diffuse damage

throughout the sample, and local stress concentration favoring the formation of

sharp localized cracks. The self-affine morphology of cracks [214], the power

law statistics of avalanche precursors [116, 117, 120, 121, 187, 215] and the scale

dependence of the failure strength distribution [94,95,103,112,134,187,215–217]

all result from this competition. Disordered fracture can be understood in the

limit of infinitesimal as well as infinite disorder. Infinitesimal disorder means

perfect crystalline material with just a few isolated defects (say a missing atom

or a micro-crack). In this limit, fracture statistics can be understood as a nu-

cleation type first order phase transition [107, 108, 135, 218]. In the limit of in-

finite disorder, stress concentration becomes irrelevant and fracture progresses

via uncorrelated percolation-like damage [9, 213]. This mapping to percolation

theory becomes rigorously valid when the disorder distribution is not normaliz-

able (or very broad, in the language of multifractals) [213]. The situation is more

complicated at intermediate disorder, where unlike typical first order transi-
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tions, crack nucleation is preceded by avalanches with power-law distributions

and mean-field exponents [121, 136, 144, 146, 215], sometimes interpreted as a

signature of a spinodal point [136]. Our renormalization group based theory

unifies the above descriptions into one consistent framework that is summa-

rized into a single phase diagram.

4.3 Fuse Network Model

We use a 2D fuse network to model disordered brittle materials. A description

of the disordered fuse network model that we study can be found in any num-

ber of references [9, 136, 209]. Briefly, we consider a periodic network of fuses

arranged in a square lattice of size L tilted by 45◦ (the so-called ‘diamond lattice’,

figure 1a). Each fuse is assigned a quenched current threshold from a common

distribution with a cumulative distribution function F(·). If the current through

a fuse exceeds its threshold, then the fuse is burned and is removed from the

network i.e., its conductance is set to zero. The current through the network is

ramped quasi-statically, and fuses are burned one at a time until the network

becomes non-conducting, at which point the network is said to be fractured.

We assign thresholds between 0 and 1, specifically we take F(x) = xβ, β > 0.

This form of distribution of thresholds serves as model for a generic distribu-

tion with a power law tail at the origin, and has been studied widely [9, 136].

In this model the limit β → 0 corresponds to infinite disorder, while the limit

β→ ∞ corresponds to infinitesimal disorder. Figure 4.1 shows a schematic of an

undamaged fuse network (4.1a), and realizations of fractured networks for var-

ious values of the parameter β. Notice how the damage looks percolation-like

for small βwhile a single crack appears for large β.
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(a) A fuse network (b) β = 0.03

(c) β = 0.5 (d) β = 3.0

Figure 4.1: Fuse network model. a). Schematic of a fuse network. Periodic
boundary conditions are used in the horizontal direction. b-d). Frac-
tured sample for various values of the parameter β; the spanning
cluster (or crack) is colored red. There is a smooth crossover from
percolation-like behavior for small β to nucleated cracks at large β.
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4.4 Percolation and Cross-Over to Nucleation

We begin by arguing that crack-tip stress concentration is a relevant pertur-

bation to the infinite disorder percolation critical point. Our assertion implies

that percolation-like behavior is a finite-size crossover effect. We calculate self-

consistent upper and lower bounds for the stress and damage fraction at failure,

and show that all of these quantities vanish in the limit of large L. This will es-

tablish that percolation cannot be the dominant behavior for large L, since per-

colation demands that the damage fraction be finite. Let σ f , φ f be the stress and

the damage fraction at failure, respectively. The lower bound on both quanti-

ties is trivially equal to 0. The upper bound is obtained self-consistently. Let

us assume that φ f < φ
+

f ≪ 1, where φ+f is an upper bound on φ f , and simi-

larly σ f < σ
+

f ≪ 1. Let, if possible, the damage be percolation-like, so that

φ+f = F(σ+f )
2. The stress at the tip of a crack of length l (lattice units) is given by

σtip(l) ≈ σ+f (1+α
√

l), where α is a lattice dependent constant. Thus, the length of

a critical crack at a given stress and damage fraction is lcr(σ+f ) ∼ 1/(σ+f )
2α2
+ h.o.t.

The probability that a critical crack forms at a given lattice site is at least F(σ+f )
lcr .

Since there are L2 sites in the lattice, the probability of 1 such crack appearing on

the entire lattice is at least L2F(σ+f )
lcr [108]. At the failure stress this probability

is 1, thus σ+f can be obtained by solving L2F(σ+f )
lcr(σ+f )

= 1. It can be proved that

the solution σ+f (L) → 0 as L→ ∞, thus, φ+f = F(σ+f )→ 0.

We have established that percolation is unstable to nucleation, however, the

crossover length is expected to be rather large. The reason for this effect is that

φ+f (L) decays very slowly with L. The rate of decay obviously depends on F(·),
2A calculation based on effective medium theory yields φ = F(σ/(1− φ2)) ∼ F(σ) + O(σφ2).

We ignore the higher order terms.
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for F(x) = xβ one can show that φ+f (L) ∼ (β/2 logL)β/2. More sophisticated es-

timates that account for stress concentration during the growth of the critical

crack, as opposed to percolation-like growth assumed here, yield similar re-

sults. The convergence becomes extremely slow as β approaches 0, meaning

that percolation threshold will be reached before nucleation of the critical crack

for increasing larger system sizes. This is consistent with the previous studies

that found that the fuse network can be mapped onto a percolation problem in

the limit of β → 0 [9]. However, one should note the subtle point that order of

limits matters since percolation is ultimately unstable to nucleation at any β.

4.5 Mean-Field Model of Avalanches

The avalanche behavior associated with fracture can be understood via a sim-

ple model. The model and the associated analysis is valid in the vicinity of

the critical point and breaks down for very large L. Consider an avalanche

that starts with a bond breaking at a stress σ (≪ 1) and damage fraction

φ (≪ 1). Linear elasticity predicts that the change in the stress field due to

the breaking of the bond, c(r, σ), decays as c(r, σ) ∼ σ/r2 (ignoring the dipo-

lar directional dependence), where r is distance from the broken bond. The

probability that a bond at distance r breaks in response to this change in stress

is approximately given by F′(σ)c(r, σ). Thus, the expected number of bonds

that break in response to stress change due to one bond breaking is given by

λ ∼
∫ L

1
rdrF′(σ)c(r, σ) ∼ F′(σ)σ logL. Substituting the form F(x) = xβ gives

λ(σ, β, L) ∼ βσβ logL = βφ logL. This shows that limβ→0 λ(β, φ, L) = 0 (for fixed

L), thus there are no avalanches for small β, and the damage is percolation-like.

For suitable β the avalanche progresses as a branching process, where breaking
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of one bond triggers a few more and so on (λ is also known as the branching

ratio). It is well known that integrated avalanche size distribution for such pro-

cesses is a power law with exponent τa = 3/2+ 1 = 5/2; for suitably large L we

expect the avalanche size distribution to be a power law with exponents con-

sistent with the mean field value of 5/2 3. Finally, for very large L (or β), the

system flows away from the critical point and the avalanches get cutoff due to

nucleation effects.

4.6 Scaling Functions and Renormalization Group

All the ideas discussed so far can be encapsulated neatly in the form of crossover

scaling functions. The scaling form for the cluster size distribution can be de-

rived by using ideas of scale invariance. Let G(z1, . . . , zn) be a scale invariant

function, then by definition, G(·) should remain invariant under a rescaling by

a factor b, i.e. G(z1, . . . , zn) = bα0G(z1bα1, . . . , znbαn) for some constants αi. Taking

b = 1 + ǫ and solving up to first order in ǫ gives the general form of a scale

invariant function as G(z1, . . . , zn) = z−α0/α1
1 G(z2z−α2/α1

1 , . . . , znz−αn/α1
1 ), where the uni-

versal scaling function, G(·), and the critical exponents, αi/α1, are characteristic

of the critical point 4, [220]. The variables zi represent directions in parameter

space near the critical point. The directions with αi > 0 belong to the relevant

parameters and those with αi < 0 to irrelevant parameters. We treat β, 1/L to be a

relevant parameters, and let u be the leading irrelevant parameter (the largest of

3It is an interesting question as to where the numbers 3/2 and 5/2 appear from. While there

is no simple explanation (I think), one can read a mathematical proof of these facts in Ref. [219].
4Other orderings of variables are equally valid, such as G(z1, . . . , zn) =

z−α0/α2

2 G2(z1z−α1/α2

2 , . . . , znz−αn/α2

2 ), etc. See [220] for details.
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the negative αi). Thus, ignoring all irrelevant variables but the leading one, the

scale invariant distribution of cluster sizes can be written as

Pc(sc|β, L) = s−τcc Fc

(

βL1/ν f , scL
−1/σcν f , uL−∆ f /ν f

)

(4.1)

where we use s as a generic variable for the distribution of sizes, the subscript

c denotes variables associated with the clusters (the subscript a will be used

to distinguish avalanches size distributions from the cluster sizes). We use the

subscript f (for fracture) to distinguish the critical exponents from their coun-

terparts in percolation theory. We know that in the limit of β → 0 (at fixed L)

the cluster size distribution should reduce to distribution of percolation clus-

ters at the critical point, thus we can deduce two critical exponent combination,

namely τc = 187/91 = 2.0549and σcν f = 48/91 = 0.5275. In principle, ∆ f can

also be related to percolation critical exponents, however, the corresponding ex-

ponent combination for percolation is not known, thus the mapping is not of

much practical use. The moments of the cluster size distribution should scale as

(treating u as a constant and taking a Taylor expansion for large L)

〈sn
c〉 = L(n+1−τc )/σcν f

(

Jc
n(βL1/ν f ) + L−∆ f /ν fK c

n(βL1/ν f )
)

, (4.2)

where Jc
n(·), K c

n(·), n = 2, 3 . . . , are universal scaling functions 5. From a data

fitting perspective, it is easier to deal with the moments (as opposed to the dis-

tribution function) becauseJc
n(·), K c

n(·) are functions of just one scaling variable.

The functions for the avalanche size distribution are completely analogous,

Pa(sa|β, L) = s−τaa Fa

(

βL1/ν f , saL−1/σaν f , uL−∆ f /ν f
)

, (4.3)

〈sn
a〉 = L(n+1−τa )/σaν f

(

Ja
n (βL1/ν f ) + L−∆ f /ν fKa

n (βL1/ν f )
)

, (4.4)

where τa is expected to be close to its mean field value of 5/2.

5This scaling relation is valid only if n + 1− τc > 0; we find τc = 187/91, thus, n ≥ 2.
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Figure 4.2: Scaling theory of fracture. a). The avalanche size distribution shows
a power law consistent with the mean field exponent of 5/2 for mod-
erate β (= 0.5 at L = 128). As expected, the power law is distorted for
much smaller or larger β. b). The cluster size distribution shows a
power law that is consistent with the exponent predicted by percola-
tion theory (= 187/91). The power law cutoff becomes smaller as one
moves away from the critical point. c, d). The scaling forms fit the
data well, confirming the predictions of the scaling theory. Higher
moments of the distributions fit the scaling forms as well (not shown
here). Notice the significant finite-size effects as the data gets closer
to the L = ∞ curve (obtained by extrapolating the fit to the infinite
size limit) with increasing system sizes.
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4.7 Numerical Validation

We have done numerical simulations to verify our theoretical predictions. We

did extensive statistical sampling of systems of size up to L = 128and β between

0.03 and 8. In order to fit the data to the scaling predictions we use the following

functional forms for the scaling functions for the moments of the cluster size

distribution (with yc(x) ≡ (log x − µc)/αc)

Jc
n(x) = a0,nerf (yc(x)) + e−(yc(x))2 ∑i=m

i=0 Ac
i,nHi (yc(x)) , (4.5)

K c
n (x) = a1,nerf (yc(x)) + e−(yc(x))2 ∑i=m

i=0 Bc
i,nHi (yc(x)) , (4.6)

where µc, αc, a0,n, a1,n, Ac
i,n, Bc

i,n are fitting parameters, erf(·) is the error function,

and Hi(·) is the ith Hermite polynomial. We use the first three Hermite polyno-

mials in the expansion, i.e., m = 3. The corresponding forms for the avalanches

are (with ya(x) ≡ (log x − µa)/αa)

Ja
n (x) = e−(ya(x))2 ∑i=m

i=0 Aa
i,nHi (ya(x)) , (4.7)

Ka
n (x) = e−(ya(x))2 ∑i=m

i=0 Ba
i,nHi (ya(x)) . (4.8)

The forms of the scaling functions are chosen so that they have the

correct asymptotic behavior. As discussed previously, we need that

lim
βL1/ν f→0,∞Ja

n (βL1/ν f ) = 0 since there are no avalanches for very small β

(at fixed L) and at very large L (at fixed β). On the other hand we need

lim
βL1/ν f→0Jc

n(βL1/ν f ) = C, for some constant C (according to percolation theory)

and lim
βL1/ν f→∞Jc

n(βL1/ν f ) = 0 since there are no clusters in the nucleation domi-

nated regime away from the critical point. The forms used here satisfy all these

requirements.

Figure 4.2 shows the size distributions as well as fits to the scaling forms. It
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is evident that the data is consistent with the scaling theory. Based on joint fits

for n = 2, 3 (n = 3 not shown in figure 4.2) we estimate the following values

of the critical exponents: ν f = 1.49± 0.20, τa = 2.59± 0.15, σa = 0.45± 0.15,

∆ f = 1.12± 0.30, σc = 0.35± 0.07. The scaling exponent τc, and the exponent

combination σcν f are held at their theoretical values of 187/91 and 48/91, re-

spectively, and τa is found to be close to its mean field value of 5/2. The statis-

tical error bars are much smaller than the error bars reported here. We have es-

timated the error bars due to systematic errors by using a variety of techniques

such as varying the number of terms in the scaling functions, trying different

fitting forms, varying the critical range for the fits, varying the error bars on the

data over a reasonable range, etc.

4.8 An Unusual Critical Point and Phase Diagram

Figure 4.3 shows the phase diagram that emerges from our analysis. In the

β − 1/L space, curves along which the scaling variable βL1/ν f attains a critical

value demarcate the boundary between qualitatively different behavior. Note

that the exact position of the boundaries is somewhat arbitrary, since this is a not

an abrupt (first order) transition; however, the diagram is qualitatively accurate.

The critical phenomena associated with fracture has several intriguing char-

acteristics. Firstly, the scaling function associated with the avalanches has a

singularity at 0, lim
βL1/ν f→0Ja

n (βL1/ν f ) = 0, that subdues the avalanche behavior

as the critical point is approached (this corresponds to, say, taking the limit of

large L at fixed, but small, β, and entering the “nucleation” regime of Fig. 4.3).

Secondly, there is no point in the phase diagram (except for the physically un-
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1/L

β

Avalanches

Percolation

Nucleation

Figure 4.3: Phase diagram for brittle fracture in disordered media. Disor-
der decreases along the β axis; nucleation governs the behavior for
small disorder or long length scales. Percolation is characteristic of
the large disorder regime, while the crossover region exhibits in-
teresting critical behavior in the form of scale free distributions of
avalanche sizes. The topology of the fractured samples evolves from
percolation-like damage for large disorder to well defined sharp
cracks in the nucleated regime. The phase boundaries are quanti-
tatively somewhat arbitrary, and are set at the value of the scaling
variable βL1/ν f at which the second moment of the avalanche size be-
come half of its peak value (for the avalanche phase); the boundary
of the percolation phase is found analogously.
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realizable β = 0 limit) that shows any critical phenomena in the limit of L → ∞.

Thus, scale invariance itself becomes a finite-size effect; perhaps this phenom-

ena should be named finite-sized criticality. Finally, it is rather remarkable that

the critical phenomena (typically associated with continuous phase transitions)

gives way to nucleation (a first order transition) in the limit of long length scales!

Thus, fracture has mixed first order and continuous transition character. Notice

that the reason that the critical phenomena gives way to nucleation is that in

the limit of large L the failure stress σ f goes to zero, and so does the amount of

distributed damage φ f . Transitions of mixed first order and continuous charac-

ter have become somewhat of a mini theme in the past decade or so. Recently

we noted that the Mott transition and dielectric breakdown have a mixed char-

acter [221]; similar findings have been reported in a variety of fields such as

jamming transitions, rigidity percolation [222], and phase-separated mangan-

ites [223].

4.9 Conclusion

In conclusion, we have presented a scaling theory of fracture that builds on

renormalization group ideas and unifies several disparate results in the field.

Our theory shows that percolation-like behavior as well as the scale invariant

precursor avalanches leading to fracture are finite-size effects. We show that on

long length scales brittle fracture is always nucleated. We hope that our analysis

will pave the way for a deeper understanding of the many mysteries associated

with the phenomenon of fracture.
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APPENDIX A

APPENDIX

This appendix gives a short introduction to various results and mathematical

tools needed to better understand the content of this thesis.

A.1 Extreme Value Statistics

Extreme value statistics is a branch of classical statistics. Chapter 1 of this thesis

assumes a knowledge of the basic results from extreme value statistics that are

discussed here. Extreme value statistics is the study of distribution of the largest

or the smallest element of a set of independent and identically distributed ran-

dom variables. Let Xi, i = 1, . . . , n be i.i.d random variables with a distribution

function F(·). Let Zn = maxi=1,...,n Xi, then the distribution of Zn is given by

Hn(z) = P (Zn < z) = F(z)n. (A.1)

Clearly, Hn(·) does not have a meaningful limit for large n. We call a distri-

bution F(·) max-stable if there exist constants An and Bn such that the limit

limn→∞ Fn(Anz+Bn) exists. If this limit exists, then the central theorem of extreme

value statistics asserts that it has to be of the following form

lim
n→∞

Fn(Anz + Bn) = Gγ(z) = exp
{

−(1+ γz)−1/γ
}

, γ ∈ ℜ, 1+ γz > 0. (A.2)

If A.2 holds, then F(·) is said to be in the domain of attraction ofGγ(·). Notice that

so far I have formulated the theory in terms of maximum of random variables,

however, in fracture one deals with minimum of random strengths, as opposed

to maximum. There is a way to translate between the two, since

mini=1,...,nXi = −maxi=1,...,n − Xi. (A.3)
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Further, one can arrive at the limit results directly, let Yn = mini=1,...,nXi, then the

distribution of Yn is given by

Jn(z) = P (Yn < z) = 1− (1− F(z))n, (A.4)

and the limit for min-stable distributions is

lim
n→∞

Jn(Anz + Bn) = G∗γ(z) = 1−Gγ(−z). (A.5)

A distinction is often drawn between the cases for γ > 0, γ < 0, and γ = 0. In

the statistics literature these are called the Type I, Type II and Type III distribu-

tions, respectively. In physics literature they are called the Fréchet, the Weibull,

and the Gumbel distributions. The convergence to limit forms is rather remark-

able in that it asserts that the limit form Gγ(·), if it exists, bears little resemblance

to F(·). When does this remarkable result hold? There are several characteri-

zations of the “domain of convergence”, I state one of them that is particularly

concise. Let us define a function f (·)

f ≡
( −1
logF

)←
, (A.6)

i.e., f (·) is the left continuous inverse of −1/ logF(·). Then, the following is a

necessary and sufficient condition for A.2 to hold

lim
t→∞

f (tz) − f (t)
t f ′(t)

=
zγ − 1
γ
, (A.7)

while the following is a sufficient condition

lim
t→∞

f ′(tz)
f ′(t)

= zγ−1, (A.8)

It is worth mentioning that the theory of extreme value statistics is very closely

related to the theory of regularly varying functions, and the reader will be well
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advised to gain familiarity with the topic. In general, a function r(·) is said to be

regularly varying at ∞ (or 0) with an index k if

lim
t→∞

r(tz)
r(t)
= zk. (A.9)

All polynomials are regularly varying, zk is the canonical k-varying function.

Note that the sufficient condition for domain of convergence is stating that f ′(·)

is regularly varying with index γ−1. It can be shown that any regularly varying

function can be expressed as r(z) = zkL(z), where L(·) is slowly varying, meaning

lim
t→∞

L(tz)
L(t)

= 0. (A.10)

The theory of extreme value statistics shows that the limit distributions of

the extremes are universal (up to the parameter γ). What about the rate of con-

vergence to the limit forms? The two main characterizations of the approach to

the limit form are studied in the theory of large deviations, and the theory of

Edgeworth type expansions. Here I state a result on the Edgeworth expansions

that is due to de Haan and Resnick. It will be seen that the rate of convergence

is closely related to regularly varying functions. The result due to de Haan and

Resnick is stated below

lim
n→∞

Fn(Anz + Bn) −Gγ(z)

R(n)
=

(

− logGγ(z)
)(1+γ)

Gγ(z)Hγ
(

− log(− logGγ(z))
)

, (A.11)

where R(·) is defined as

R(n) ≡ n f ′′(n)
f ′(n)

− γ + 1, (A.12)

and Hγ(·) is defined as

Hγ(z) ≡























∫ z

0
eγu

∫ u

0
eρsdsdu, for γ ≥ 0

−
∫ ∞

z
eγu

∫ u

0
eρsdsdu, for γ < 0.
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Finally, the constant ρ is the index of variation of R(·) at∞ (it can be proved that

R(·) is indeed regularly varying if F(·) is in the domain of attraction of Gγ(·)),

lim
t→∞

R(tn)
R(t)

= nρ. (A.13)

The norming constants An, Bn given below are “optimal” in the sense that choos-

ing another sequence will not result in an improvement in the rate of conver-

gence

An = n f ′(n), Bn = f (n). (A.14)

Are the domain of convergence and the rate of convergence related? It seems

not. In fact, it can be shown that f ′(·) is regularly varying with index γ−1. Thus,

it admits a representation of the form f ′(z) = zγ−1L(z) for some slowly varying

function L(·). Consider

R(n) =
n f ′′(n)

f ′(n)
− γ + 1, (A.15)

=
(γ − 1)nγ−1L(n) + nγL′(n)

nγ−1L(n)
− γ + 1, (A.16)

=
nL′(n)
L(n)

. (A.17)

The slowly varying part of f ′(·) that had a passive role to play in determining the

domain of convergence has the leading role in deciding the rate of convergence.

This indicates that the domain of attraction and the rate of convergence are in-

dependent properties. Indeed, the maximum of exponential random variables

converges rather quickly to the Gumbel form (R(n) ∼ 1/2n), while the maximum

of normal random variables converges rather slowly to Gumbel (R(n) ∼ 1/ logn).

Similarly, the maximum of power-law distributed variables (F(z) = 1− z−α) con-

verges quickly to the Fréchet form (R(n) ∼ (2α2 − 3α + 1)/2α2n), while maximum

of variables with a slightly different distribution (F(z) = 1 − z−α logz) converge

only logarithmically.
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A.2 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics is a vast field, worthy of several textbooks

worth of discussion. Here I reproduce some very canonical results. Throughout

I assume isotropic linear elastic behavior

σi j = λǫkkδi j + 2µǫi j, (A.18)

where λ, µ are the Lame constants (µ is the same as the shear modulus G). The

above relation can be inverted as

ǫi j = −
ν

E
σkkδi j +

1+ ν
E
σi j, (A.19)

where

ν =
λ

2(λ + µ)
, E =

µ(3λ + 2µ)
λ + µ)

. (A.20)

More generally one might write linear relation between stress and strain as

σi j = Ci jklǫkl, yielding a total of 81 elastic constants in 3 dimensions. However,

general arguments show that Ci jkl must have the following symmetries

Ci jkl = Ckli j = C jikl = Ci jlk , (A.21)

thus reducing the number of constants to 21. Finally, the requirements of

isotropy reduce the number of constants to 2, the Lame constants.

The condition of equilibrium, ignoring body forces and inertial effects, is

given by (a derivation of this basic equation can be found in any standard text

on elasticity theory)

σi j, j = 0. (A.22)
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The notation σi j, j is the Einstein notation, where a ‘comma’ denotes differentia-

tion, and the repeated index is summed over. Thus, in 3 dimensions,

σi j, j ≡
∑

j=1,2,3

∂σi j

∂x j
, (A.23)

and so Eq. A.22 is a vector equation saying that the tensor field σi j is divergence

free. Several important results can be derived by using complex variables and

analytic functions. In this formulation the displacements and stresses are ex-

pressed as functions of the complex variable z = x + iy = reiθ. There are several

formulations of elasticity in terms of potential functions, I present the one due

to Westergaard. In this formulation all problems of planar elasticity can be re-

duced to finding two complex potential functions Φ(·) and Ψ(·). The state of

stresses and displacements (and hence strains) can be written in terms of these

functions

σx + σy = 2
[

Φ
′(z) + ¯Φ′(z)

]

, (A.24)

σy − σz + 2iτxy = 2
[

z̄Φ′′(z) + Ψ′(z)
]

, (A.25)

2µ(u + iv) = κΦ(z) − z ¯Φ′(z) − ¯Ψ(z), (A.26)

where u(z), v(z) are the real displacements, and

κ =























3− 4ν, for plane strain,

(3− ν)/(1+ ν), for plane stress.

This formulation can be further simplified in situations with more symmetry. In

case of anti-plane shear just one complex potential, Ω(·) is sufficient,

τxz − iτyz = Ω
′(z) (A.27)

µw = ReΩ(z), (A.28)

where w is the only non-zero component of the displacement (out of plane). The

pure mode-I case (symmetric about x-axis) is given byΨ′(z) = −zΦ′′(z), while the
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pure mode-II case (anti-symmetric about the x-axis) is given by Ψ′(z) = −Φ′(z) −

zΦ′′(z). The potential functions Φ(·) and Ψ(·) for several cases can be constructed

by using the potential functions for distributed loading on the crack face in pure

mode-I and mode-II. Let the loading on the crack face be t = p2(x1)e2, then

Φ
′(z) =

1

2π
√

z2 − a2

∫ a

−a
p2(t)

√
a2 − t2

z − t
dt, (A.29)

while if t = p1(x1)e1, then

Φ
′(z) =

−i

2π
√

z2 − a2

∫ a

−a
p1(t)

√
a2 − t2

z − t
dt. (A.30)

The singularity at the crack tip is characterized by the means of three stress

intensity factors KI , KII ,KIII , called the mode-I, mode-II and mode-III stress in-

tensity factors, respectively. In a coordinate centered at the crack tip (with the

y-axis pointing perpendicular to the crack front, and the z-axis parallel to it) ,

these are defined as

KI ≡ lim
r→0

√
2πrσyy, KII ≡ lim

r→0

√
2πrσxy, KIII ≡ lim

r→0

√
2πrσyz, (A.31)

where the factor
√

2π is kept for historical reasons. Why is the singularity at the

crack tip in the form of a square-root? We will soon show that this is (almost)

generic. The stress intensity factors for the distributedmode-I andmode-II load-

ings discussed earlier can be found to be

KI =
1√
πa

∫ a

−a
p2(t)

√

a + t
a − t

dt, (A.32)

KII =
1√
πa

∫ a

−a
p1(t)

√

a + t
a − t

dt. (A.33)

To understand the origin of the square root singularity, consider the problem

of a semi-infinite crack in an infinite mediumA.1. The boundary value problem

61



θ
r

x

Figure A.1: Polar coordinates at a sharp crack tip. The θ = 0 direction is aligned
with the crack, while θ = ±π gives the two crack surfaces that are
assumed to extend indefinitely (marked in bold blue color).

for this case is σi j, j = 0, and along the crack faces θ = ±π we need σθθ + iσrθ = 0.

Assuming potentials of the form Φ(z) = Azλ,Ψ(z) = Bzλ one can show that the

most general solution is of the form

σi j =

∞
∑

n=−∞
r(n+1)/2σ̂i j(θ). (A.34)

The lowest order pole in this series is due to the r−1/2 term. There is a region

where this term dominates over the next (non-singular) terms. The far-field so-

lution is given by the non-singular terms, while the structure of the defect-core

(near crack-tip) is dominated by the more singular terms (r−3/2 etc.). There is an

intermediate region where the solution is determined by the r1/2 term, and this

is the region of interest since it is neither effected by the boundary conditions at

infinity, nor by the non-linearities and other details near the crack-tip. This is

the universal part of the elastic field due to a crack. Thus, the crack field is char-

acterized in terms of the stress intensity factors which are normalized so as to

capture the magnitude of the r−1/2 singularity. The stress field due to a crack-tip

is generically written as

σi j =
1√
2πr

(

KIσ
I
i j(θ, φ) + KIIσ

II
i j (θ, φ) + KIIIσ

III
i j (θ, φ)

)

. (A.35)

It should be noted that there are situations where the crack tip singularity is not

of the type r−1/2. These include blunt cracks, wedge cracks or intersections of

cracks with free surfaces etc.
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A.3 Griffith’s Theory of Crack Growth

Griffith’s theory is based on thermodynamic ideas of energy balance. The sug-

gestion is the calculate the energy change due to infinitesimal growth of a crack.

If this change is negative, i.e., if the crack propagation lowers the net energy

of the system then it is a thermodynamically favorable change and will occur

spontaneously. There are several methods (and model systems) to do such cal-

culations; here I present two. All of them yield similar results, up to some de-

tails. The energy criteria is

dΠint
+ dΠext

+ dΓ ≤ 0, (A.36)

where Πint is the potential due to the elastic energy stored in the system, Πext is

the potential due to the work done by external forces, and Γ is the surface energy

of the crack surface. For a mode-I crack of length 2a with a far field stress σ∞

these quantities are

Π
int
+ Π

ext
= −σ2

∞a2π
1+ κ
8G
, Γ = 4aγ, (A.37)

where γ is the surface energy per-unit length (we assume unit thickness). Taking

the variation with a, the criteria for crack growth reads

d(Π + Γ)
da

≤ 0. (A.38)

Thus, a crack of length 2a becomes unstable if

σcr∞ ≥
√

16Gγ
π(1+ κ)a

, (A.39)

and conversely, given a far-field stress of σ∞ the critical crack length needed to

create an unstable crack is

acr =
16Gγ

π(1+ κ)σ2
∞
. (A.40)
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It is generically true that the critical crack length scales as 1/σ2. The quantity

dΠ/da is often called the elastic energy release rate, where Π = Πint
+ Π

ext. More

generally, one can show that

G ≡ −dΠ
da
=

1+ κ
8G

(K2
I + K2

II) +
1

2G
K2

III . (A.41)

The criteria for crack growth initiation can then be written as

G = Gcr. (A.42)

This criteria is known as the Griffith’s criteria. More specifically, The parameter

Gcr is called the crack resistance, and is a material property. Griffith choose Gcr

to be exactly equal to the surface energy needed to the create the incremental

crack area. Note that even if the material is isotropic, Gcr can have a directional

dependence due to the crystal structure. Equation A.41 is sometimes written in

terms of the parameters E, ν. For the case of plain strain it becomes

G = 1− ν2
E

(K2
I + K2

II), (A.43)

while for the case of plain stress it becomes

G = 1
E

(K2
I + K2

II) +
1+ ν
4E

K2
III . (A.44)

Note that the Griffith’s criteria is a necessary condition for crack propagation,

but it might not be sufficient. In ductile materials a lot more energy is dissi-

pated in the plastic zone due to plastic deformations than is needed to create

the material surface. This can lead to a blunting of crack tip and ultimate ar-

rest of the growing crack. Thus, ductile materials are tougher than the Griffith

prediction. In such cases the parameter Gcr is taken to include all the energy

dissipated in the plastic deformation, surface creation, and any other processes

that occur near the crack tip.
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Figure A.2: A straight crack of length 2a (drawn in red) at an angle χ to the
pure mode-I direction. The material axis is at an angle θ to the pure
mode-I direction.

A.4 Crack Paths in Crystalline Materials

The celebrated principle of local symmetry predicts that in an isotropic mate-

rial, cracks will grow in a direction that corresponds to a local mode-I field at

the crack front (KII = 0). Does this criteria generalize to cases where the isotropy

is broken by the presence of a crystal lattice and cleavage planes? Experimental

and numerical evidence suggests that it does not. A number of “principles” or

criteria have been suggested in order to predict the crack growth direction in

such cases. I will study the validity of such criteria by using classical molecular

dynamics simulations of graphene. This study is motivated by recent experi-

ments conducted by Zenghui Wang and Jiwoong Park at Cornell.

Consider the system shown in figure A.2. The direction of pure mode-I

growth is perpendicular to the loading direction. The principle of local sym-

metry would predict that a crack would grow in this direction (i.e. χ = 0). Let
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Figure A.3: Crack with an infinitesimal kink developing at an angle ω to the
crack.

us assume that even though the material is linear isotropic, the surface energy

γ(·) has a directional dependence, with γ(0) being the energy of a unit surface

along the material axis. Let the material axis be at an angle θ to the pure mode-I

direction. In what direction χ is the crack growth stable? To answer this ques-

tion, let us assume that instability appears in the form of an infinitesimal kink

at the crack tip, as shown in Fig. A.3. The direction of stable growth is one in

which the most favorable kink happens at ω = 0, where ω is the angle that the

kink makes with the main crack. In other words, the stable direction of crack

growth is the one that is immune to instabilities, and cracks growing in this di-

rection do not curve during their growth. It is well known that principle of local

symmetry and the principle of maximum hoop-stress give χ = 0 as the direction

of stable growth. However, they do not account for crystalline anisotropy.

Let H be the net energy release rate (elastic and surface), then it can be

demonstrated that for plane strain and up to the first order in ω

H = 1− ν2
E

(K2
I + K2

II − 2KIKIIω) − 2γ (χ + ω − θ) . (A.45)
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The stress intensity factors KI , KII are solutions of complicated boundary value

problems, and can be evaluated in closed form for only a handful of situa-

tions. In order to make progress, we assumes that we are interested only in

finite cracks in infinite plates as shown in Fig. A.3. For this case we can use the

techniques of complex variables discussed earlier to get

KI

σ∞
√

aπ
= cos2 χ,

KII

σ∞
√

aπ
= cosχ sinχ. (A.46)

Let us generalize the principle of maximum energy release rate to mean that

a crack grows in the direction that maximizes the net energy release rate H .

Further, for stability we need that crack should not kink, or ω = 0. Thus, we

have

dH
dω

∣

∣

∣

∣

∣

ω=0
= 0,

d2H
dω2

∣

∣

∣

∣

∣

∣

ω=0

< 0, H(ω = 0) ≥ 0. (A.47)

Do these calculations based on continuum and equilibrium ideas give realis-

tic predictions for crack paths? We test these theories by comparing their predic-

tions to crack paths observed in molecular dynamics simulations of graphene.

All simulations are performed in the canonical (NVT) ensemble by using Nose-

Hoover style non-Hamiltonian equations of motion implemented in the freely

available software LAMMPS [224]. A time step of 0.1 femtoseconds is used in

all simulations. The simulations are conducted at a range of temperatures vary-

ing from 0-1000 K, even though most simulations reported here are either at

10K or 300K, as these two temperatures were representative of the low and high

temperature behavior of the system. The simulation is set up by introducing

a notch of length 20 Angstroms in a sheet of graphene that has been stretched

uniformly in the y-direction as shown in figure A.4. Fixed boundary conditions

are used in the y-direction, while the boundaries in the x-direction are free.

I will report the observed behavior for two potentials, namely, AIREBO [225]
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Figure A.4: Simulation setup with free and fixed boundary conditions.

and LCBOP [226] (Reaxff [227] yields similar results for the two different pa-

rameterizations [228, 229] that I have tested). I will also study the behavior of

AIREBO as a parameter rcc [230] is varied. This parameter represents the lower

cut-off distance in a switching function to model the C-C bond breakage.

In order to get a prediction from Eq. A.47, the surface energy per-unit length,

γ(·), is needed as an input. The surface energy can be readily calculated on a

computer (it is much harder to measure experimentally). The basic idea is that
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the net energy of a strip of graphene (or any other material) is given by

Enet = Ebulk + Eedge = neb + lγ,

where n is the number of atoms in the strip, eb is the ground state energy per-

atom in the bulk, and l is the net length of the exposed edge. This equation

can be used to calculate the surface energy per-unit length, since Enet and eb

are trivial to measure for a given configuration and a given atomistic potential.

This process is described in detail in Ref. [231]. Further, the authors there give

a rather simple formula for the edge energy as a function of the angle α of the

edge with respect to the armchair axis of graphene

γ(α) = 2γa sin(π/6− α) + 2γz sin(α), (A.48)

where γa, γz are the energies of the armchair and the zigzag edges, respectively.

The edge energy has the obvious symmetries γ(α) = γ(−α) and γ(α) = γ(π/3−α).

Figure A.5 shows the comparison of the numerical results with the prediction.

For the AIREBO potential the maximum relative error is 1.6% or 0.02 eV/Å,

while for the LCBOP potential it is 0.7% or 0.007 eV/Å, thus the formula works

fairly well.

Figure A.6 shows a plot of the maximum stable crack angle, χmax, as a func-

tion of the orientation of material axis with respect to the loading. Notice that

when either the armchair axis is almost perpendicular to the loading direction

(θ ∼ 0), or when the zigzag axis is almost perpendicular to the loading direction

(θ ∼ 30◦), the crack deflection is at most equal to the misalignment. Thus, for

small misalignments, the prediction is that the crack should tend to propagate

along the closest high symmetry direction.

One can foresee that the predictions of the simple minded theory discussed

previously is doomed to fail. The most obvious reason is that the entire theory
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Figure A.5: Edge energy of graphene edges for the AIREBO and the LCBOP po-
tentials. The circles are the numerically measured values, while the
lines are predictions from Eq. A.48. The relaxed edge configuration
is calculated by two different methods, ‘CG’ or a conjugate gradient,
and ‘Anneal’ or thermal annealing followed by few steps of steep-
est decent. It is interesting to see that the energies obtained by the
annealing method show signs of the characteristic cusps at the high
symmetry angles.
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Figure A.6: The maximum stable crack angle, χmax, as a function of the orienta-
tion of the material axis θ (as predicted by Eqs. A.47).
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Figure A.7: The stress strain curves for the AIREBO potential obtained by im-
posing a strain in a given direction and measuring the correspond-
ing stress. The system is not relaxed after imposing the strain. No-
tice the unrealistic hardening at high strains, and the unreasonably
high peak stress.

is based only on the edge energy, γ(·). The AIREBO potential has a tunable pa-

rameter rcc which has no effect on the surface energy, and yet affects the crack

behavior considerably, thereby debunking the theory. Figures A.7 and A.8 show

the stress response of the AIREBOpotential obtained by imposing a strain along

the zigzag or the armchair direction andmeasuring the stress needed to hold the

deformation. Notice that this behavior depends considerably on the parameter

rcc, and that there is a discontinuity in the behavior for rcc = 2.0 (which is ex-

pected since the potential has a term with rcc − 2 as the denominator). Also

notice that the peak stress in the zigzag direction is much higher than that in the

armchair direction. This indicates that the AIREBOpotential is perhaps stronger

in the zigzag direction (thus making it hard to create an armchair surface), and

will perhaps favor cracks that grow along a zigzag surface. Figure A.9 shows

the corresponding curves for the LCBOP potential. Notice that the LCBOP po-

tential is much more isotropic in the sense that the peak stress in both directions

is roughly the same.
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Figure A.8: The stress strain curves for the AIREBO potential obtained by im-
posing a strain in a given direction and measuring the correspond-
ing stress. The system is relaxed after imposing the strain. Notice
again the hardening at high strain.
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Figure A.9: The stress strain curves for the LCBOP potential obtained by impos-
ing a strain in a given direction and measuring the corresponding
stress. The system is relaxed after imposing the strain.
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Figure A.10 shows the crack paths for various configurations for the AIREBO

potential with rcc = 2.0. It is clear that at this parameter value the cracks always

grow along the zigzag direction. This is in violation of the predictions of the

surface energy based theory. It is worth mentioning that while setting rcc = 2.0

makes the potential brittle, leading to sharp cracks, it is perhaps objectionable

on theoretical grounds since it introduces a discontinuity in the potential. How-

ever, choosing other values of the parameter leads to unrealistic behavior, such

as that shown in figure A.11.

Figure A.12 shows the observed crack paths for the LCBOP potential. It is

evident that thermal effects play a significant role in determining the crack path.

The cracks grow straight at T = 300K, regardless of the lattice orientation, while

at 10K they tend to grow along the zigzag axis for θ up to 15◦, and straight

otherwise. The dependence of crack growth direction on temperature will be

investigated in a future paper.
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(a) θ = 0◦ (b) θ = 8◦ (c) θ = 15◦ (d) θ = 23◦ (e) θ = 30◦

(f) θ = 0◦ (g) θ = 8◦ (h) θ = 15◦ (i) θ = 23◦ (j) θ = 30◦

Figure A.10: Crack paths for the AIREBO potential. Simulations a-e were done
at T = 10K, while f-j were done at T = 300K. In all cases a strain of
10% was applied in the y-direction. It is clear that the cracks tend
to propagate along the zigzag axis of graphene. At θ = 0◦ there are
two equivalent zigzag directions, thus the crack tends to oscillate
for configurations of low θ.
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(a) rcc = 1.7 (b) rcc = 1.8 (c) rcc = 1.9

(d) rcc = 1.7 (e) rcc = 1.8 (f) rcc = 1.9

Figure A.11: Crack paths for the AIREBO potential at varying rcc. Simulations
a-c were done at T = 10K, while d-f were done at T = 300K. In all
cases a strain of 40% was applied in the y-direction, and θ = 15◦.
Notice how the graphene sheet is able to withstand such a high
strain by blunting the crack tip and relieving the stress via local
plastic rearrangement of atoms
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(a) θ = 0◦ (b) θ = 8◦ (c) θ = 15◦ (d) θ = 23◦ (e) θ = 30◦

(f) θ = 0◦ (g) θ = 8◦ (h) θ = 15◦ (i) θ = 23◦ (j) θ = 30◦

Figure A.12: Crack paths for the LCBOP potential. Simulations a-e were done
at T = 10K, while f-j were done at T = 300K. Notice the fact that for
T = 300K all cracks grow straight.
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