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Abstract

Exploring a recently developed mesoscale continuum theory of dislocation dynamics, we derive three predictions about
plasticity and grain boundary formation in crystals. (1) There is a residual stress jump across grain boundaries and
plasticity-induced cell walls as they form, which self-consistently acts to attract neighboring dislocations; residual stress in
this theory appears as a remnant of the driving force behind wall formation under both polygonization and plastic
deformation. We derive the predicted asymptotic late-time dynamics of the grain-boundary formation process. (2) During
grain boundary formation at high temperatures, there is a predicted cusp in the elastic energy density. (3) In early stages of
plasticity, when only one type of dislocation is active (single-slip), cell walls do not form in the theory; instead we predict
the formation of a hitherto unrecognized jump singularity in the dislocation density.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Dislocations in crystals evolve to form structures, especially walls: grain boundaries at high temperatures
where climb is allowed, cell boundaries under low-temperature plastic deformation when climb is forbidden.
We examine here the detailed predictions of a new variant of continuum dislocation dynamics (Roy and
Acharya, 2005; Limkumnerd and Sethna, 2006), that spontaneously forms sharp walls as shock-wave
solutions of the partial differential equation (Limkumnerd and Sethna, 2006; Cho, 2006).

How does this new approach fit in to the extensive existing literature on continuum plasticity and
dislocation structure formation? First, there are many large-scale simulation studies using discrete dislocations
(Holt, 1970; Lepinoux and Kubin, 1987; Gullouglu et al., 1989; Ghoniem et al., 1990; Lubarda et al., 1993;
Barts and Carlsson, 1997; Koslowski and Ortiz, 2004; Ramasubramaniam et al., 2007). The computational

ARTICLE IN PRESS

www.elsevier.com/locate/jmps

0022-5096/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jmps.2007.08.008

!Corresponding author. Tel.: +31 503638044; fax: +31503634886.
E-mail address: s.limkumnerd@rug.nl (S. Limkumnerd).
URL: http://www.lassp.cornell.edu/sethna/sethna.html (J.P. Sethna).

http://www.lassp.cornell.edu/sethna/sethna.html
file://localhost/Users/Sethna/Downloads/www.elsevier.com/locate/jmps
file://localhost/Users/Sethna/Downloads/dx.doi.org/10.1016/j.jmps.2007.08.008
mailto:s.limkumnerd@rug.nl


burden of evolving an enormous number of dislocation segments with long-range interactions is a primary
motivation for developing a continuum theory, which replaces the explicit dislocation lines with an average
tensorial density. Whatever continuum theory succeeds in describing the collective behavior, these discrete
dislocation simulations will remain as the validation underpinning the continuum theory and likely also as its
connection to specific materials properties.

Second, there are theories (along with an earlier, scalar attempt (Sethna et al., 2004) to explain wall
formation) which ignore the tensor structure of the dislocation density. (a) Macroscopic continuum plasticity
often makes use of the simple von Mises law, which presumes an elastic response when a yield stress is reached,
after which the distortion tensor evolves according to the local deviatoric stress (stress with the isotropic
pressure removed). Generalizations of the von Mises approach which incorporate corrections due to gradients
in the local distortion tensor have grown out of early work on size-dependent hardness (Fleck and
Hutchinson, 1993) and dislocation patterns (Aifantis, 1984a, b; Walgraef and Aifantis, 1985; Pontes et al.,
2005). (b) Models of plasticity in glasses (a somewhat different physical system) describe localized
rearrangements of atoms (Falk and Langer, 1998; Langer, 1998), and appear to generate fractal avalanches
and crackling noise (Bailey et al., 2007) reminiscent of crackling noise recently observed in crystal plasticity
(Zaiser, 2006). (c) There are a variety of reaction– diffusionmodels which have been used to describe the widths
of persistent slip bands and other dislocation patterns (Aifantis, 1984a, b; Walgraef and Aifantis, 1985; Pontes
et al., 2005), cellular structures (Kratochvil, 1990a, b), double cross-slip (Bréchet and Louchet, 1988),
dislocation vein structures (Saxlová et al., 1997), and many other effects (Hähner, 1996). In the domains for
which these theories were developed, the dislocation density or its tensor structure can be argued to be largely
irrelevant; for example, the isotropic theory of work hardening is a reasonable first approximation to
macroscopic plasticity. But by omitting explicit evolution of the dislocation density tensor, these approaches
lose the ability to predict the rotational and deformation morphology of the mesoscopic dislocation structures,
and they lose the connection between the microscopic Peach–Koehler forces on the dislocations and the
resulting continuum dynamics—both crucial properties that we want to incorporate into our theory.

Third, there are theories which incorporate more microscopic detail about the dislocation content than we
keep, keeping track not only of the net dislocation density but of local dislocation densities for each slip system
(including oppositely oriented Burger’s vectors), and incorporating dislocation entanglement as effective
hardening rules coupling the densities on different slip systems. These researchers have studied both texture
(grain orientation distribution) evolution in polycrystal plasticity and the evolution of subgrain structures,
either for their own sake (Mika and Dawson, 1999; Barton and Dawson, 2001; Dawson et al., 2002; Arsenlis
and Parks, 2002; Arsenlis et al., 2004; Ma et al., 2006) or as a precursor for other computations (like
recrystallization simulations (Raabe and Becker, 2000)). Of these three features missing in our model
(canceling ‘geometrically unnecessary’ dislocations, entanglement, and slip systems) the first can plausibly be
ignored on the mesoscale. In macroscopic plasticity, most dislocations cancel out in the net density; ignoring
the geometrically unneccessary dislocations would be a poor description. On the mesoscale, the crystal
misorientations across cell walls and grain boundaries, and the accepted microscopic structure of grain
boundaries (Hirth and Lothe, 1992), are solely due to the net dislocation density kept in our model. (Indeed,
the geometrically unnecessary dislocations on the macroscale could plausibly be largely due to cancellations
between dislocations on mesoscopically separated walls.) The other two features we omit clearly remain
important on the mesoscale. Indeed, in the simulations presented here the dislocations evolve in time, where in
practice they evolve under increasing strain—a reflection of the lack of entanglement or work hardening in our
model. However, our mesoscale theory, by ignoring entanglement and slip planes, does succeed in providing a
striking explanation for wall formation that has not emerged analytically from these more detailed theories
(although wall formation may have been observed numerically in these models (Mika and Dawson, 1999;
Barton and Dawson, 2001; Dawson et al., 2002)). The more detailed and quantitative predictions of the theory
presented here must be interpreted as a first approximation, to which the effects of entanglement, slip planes,
anisotropy, and materials properties will need to be added.

Finally, Ortiz and collaborators have extended the mathematical minimizing-sequence techniques
developed for studying martensitic and magnetic microstructures to describe the formation of dislocation
microstructures (Ortiz and Repetto, 1999; Ortiz et al., 2000; Aubry and Ortiz, 2003; Conti and Ortiz, 2005).
While it is perhaps too early to draw broad generalizations, it would seem that the model presented here
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quantifies the formation of the dislocation walls, and provides a microscopic model for studying their
morphology and evolution, whereas the variational methods directly solve for the microstructure and not how
it originates.

The model we study was originally proposed by Roy and Acharya (2005), who allowed both glide and
climb. We subsequently rediscovered this law from the microscopic dynamics and a closure approximation,
proposed a modified law to suppress climb, and showed numerically that the models developed shock
singularities (Limkumnerd and Sethna, 2006), providing a potential underlying explanation for both the grain
boundaries formed at high temperatures and the cell walls formed at low temperatures in plastically deformed
crystals. In Section 2 we will present Roy and Acharya’s derivation for the equations of motion.

In Section 3 we will analyze the solution of our model in one dimension. Near a locally-flat dislocation wall,
the properties may be approximated by a 1D theory, incorporating variations only perpendicular to the wall;
hence the solution in one dimension likely encapsulates the singular form for wall singularity formation in
three dimensions. We will map the dislocation dynamics theory in one dimension onto Burgers equation, the
prototype of a partial differential equation exhibiting shock formation. We will analyze the asymptotics of the
evolution of the stress and dislocation density near the walls, and show how the residual stress associated with
the wall draws in and absorbs neighboring dislocations. We shall also show that the continuum model predicts
that the energy density will be continuous across the grain boundary (despite the jumps in the individual
residual stress components), but that it is predicted to have a cusp singularity.

In Section 4 we examine the behavior of our model under single-slip conditions—well studied numerically
with 2D discrete dynamics simulations, and characteristic of early stages of plastic deformation in certain
geometries. When appropriately restricted to forbid climb, the model predicts that materials with only one
kind of dislocation will not form cell walls, agreeing with the behavior seen in simulations and experiments.
However, the mesoscale theory predicts that these systems will form a more subtle, hitherto unobserved jump
singularity in the dislocation density.

Finally, in Section 5 we will consider how and whether these predictions are likely to depend upon the
detailed structure of the continuum model, and how physical mechanisms ignored by the model will likely
affect and modify these striking predictions.

2. Governing equations

A complete macroscopic description of the deformation u of a material is given by qiuj ¼ bEij þ bPij , where b
E
ij

represents the elastic, reversible distortion and the plastic distortion tensor bPij describes the irreversible plastic
deformation. The plastic distortion is the result of the net density of dislocations, described by the Nye
dislocation density tensor (Nye, 1953; Eshelby, 1956; Kosevich, 1962; Kröner, 1958; Mura, 1963)

rijðxÞ ¼ !!ilmqlbPmj ¼
X

a
tai b

a
j dðn

aÞ (1)

which measures the net flux of dislocation a, tangent to t, with Burgers vector b, in the (coarse-grained)
neighborhood of x. The microscopic statement that dislocations cannot end implies qirij ¼ 0, so the time
evolution must be given in terms of a current J (Kosevich, 1962; Mura, 1963; Rickman and Vinãls, 1997):

qtrij ¼ !!ilmqlJmj, (2)

so Jij ¼ qtbPij . The evolution law is thus determined by the current J. We controlled the microscopic mobility
difference between glide and climb (Limkumnerd and Sethna, 2006) by introducing a mesoscale parameter l.
By setting

qtbPij ¼ Jij ¼ JRA
ij !

l
3
dijJRA

kk , (3)

at low temperatures l ¼ 1 removed the trace of J enforcing volume conservation, and hence forbids climb,
while at high temperatures l ¼ 0 allowed for equal mobilities for both glide and climb.

The current from a single dislocation moving with velocity v is Jij ¼ !ilntlbjvndðnÞ, and the net
Peach–Koehler force on a dislocation driving its motion is f PKl ¼ !!lmntmbcsnc where r is the local stress
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(due, for example, to the other dislocations). In our derivation of the equation of motion (Limkumnerd and
Sethna, 2006), we allowed each dislocation to move independently, and then made a closure approximation to
write J in terms of q. Roy and Acharya (2005) got the same final result by simply assuming that all the
dislocations move with the same velocity v, given by DðqÞ=2 times the force density Fl ¼ !!lmnrmcsnc on the
local dislocations

JRA
ij ¼

D

2
!ialFlraj ¼ !

D

2
!ialð!lmnrmcsncÞraj ¼

D

2
ðsicrac ! sacricÞraj . (4)

A physically natural choice for DðqÞ is proportional to an inverse density of dislocation lines (so that the force
per dislocation drives the motion Roy and Acharya, 2005). Groma et al. (Groma, 1997; Zaiser et al., 2001) use
a similar approach to study plastic deformation in two dimensions with only one slip system (i.e., allowing
only parallel edge dislocations with one direction of Burgers vector, leading to scalar order parameters). They
do a closure-like factorization of a two-point dislocation density correlation function which leads to a theory
with one fewer factor of q in the evolution law than our equation has. While we cannot generalize their
approach to the 3D tensor theory, we can reproduce their continuum theory by choosing DðqÞ ¼ D0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðqyqÞ

p

and specializing to two dimensions and one slip system. We choose here to discuss the mathematically more
convenient choice of a constant D (allowing us in Section 3 to map the dynamics onto Burgers equation).
Numerically, both choices give qualitatively similar evolution (Limkumnerd and Sethna, 2006).

3. Analysis of the continuum equation in one dimension

Near a wall singularity (say, perpendicular to ẑ) the dynamics is 1D. The variations of the stress, plastic
strain, and dislocation densities parallel to the wall asymptotically become unimportant compared to the
variations along ẑ as one approaches the singularity. In one dimension the stress rðxÞ, generally given by a
long-range integral over the neighboring dislocations qðx0Þ, can be written as a linear function of the local
plastic distortion bP. In general, the stress field generated by a dislocation density q is given in Fourier space by
Hirth and Lothe (1992),

esabðkÞ ¼ KabmnðkÞermnðkÞ, (5)

where

KabmnðkÞ ¼ !
imkg
k2

!gnadbm þ !gnbdam þ
2!gnm
1! n

kakb

k2
! dab

" #$ %
. (6)

By substituting this form of eq ¼ eqðkzÞdðkxÞdðkyÞ in one dimension into Eq. (5) together with Eq. (1), one
obtains, in real space,

sij ¼ !C̄ijkmbPkm, (7)

where

C̄ijkm ¼ m d̄ikd̄jm þ d̄imd̄jk þ
2n

1! n
d̄ij d̄km

" #
, (8)

(a form slightly different from the elasticity tensor), and the Kronecker delta is modified such that d̄zz ¼ 0. The
elastic energy density E in one dimension can (surprisingly) be written in terms of the local plastic distortion
tensor

E ¼
1

2
C̄ijkmbPijb

P
km

¼
m
2
ðbPxy þ bPyxÞ

2 þ mðbPxx
2
þ bPyy

2
Þ þ

mn
1! n

ðbPxx þ bPyyÞ
2, ð9Þ

as can be verified by direct computation. Our equation of motion for the plastic distortion bP also simplifies
dramatically. The bPzj components do not evolve in one dimension (except bPzz for la0, which helps enforce
volume conservation); we can see this from Eq. (4), where szc ¼ 0 (because C̄zckm ¼ 0 in Eq. (8)) and rzc ¼ 0
(because b depends only on z in Eq. (1)). (This equation also shows that the bPzj components are compatible;

ARTICLE IN PRESS
S. Limkumnerd, J.P. Sethna / J. Mech. Phys. Solids 56 (2008) 1450–1459 1453



variations in them do not generate dislocation density.) All other components of bP evolve according to

qtbPij ¼ !
1

2
ðqzEÞ qz bPij !

l
3
bPkkdij

" #
, (10)

where E is the elastic energy density from Eq. (10) and we have rescaled the time to set D ¼ 1 (which can again
be verified by direct substitution).

We now specialize to the case of l ¼ 0, where glide and climb are treated on an equal footing (applicable to
grain boundary formation during polygonization at high temperatures, for example). In this case, Eq. (10) tells
us that the individual components of bP are all independent of one another, slaves solely to the evolution of
the total stress energy density E. By contracting Eq. (10) with C̄ijkmbPkm and then using expression 9, the time
evolution of the strain energy becomes

qtEþ 1
2 qzEð Þ2 ¼ 0. (11)

Eq. (11) can be cast into the famous Burgers equation by defining F ¼ qzE (Frisch and Bec, 2001; Sethna
et al., 2004; Whitham, 1974):

qtFþFqzF ¼ 0. (12)

The scalar FðzÞ is again the net Peach–Koehler force density on the local dislocation density qðzÞ. Burgers
equation is the archetype of hyperbolic partial differential equations. Under Burgers equation F will develop
sharp jumps downward after a finite evolved time, corresponding to cusps in the energy density E and leading

to jumps in the components of bP (Fig. 1). In particular, from Eq. (1), a jump in bPxz or b
P
yz corresponds to a tilt

boundary, and a jump in bPxy ! bPyx is equivalent to a twist boundary. (Note that bP is not a symmetric tensor.)

The jump discontinuities in bPxx, b
P
yy, and bPxy þ bPyx produce the necessary stress jumps that drive the formation

of walls.
Our theory provides specific, quantitative, testable predictions for the dynamics of wall formation. The

singularity formation is generic, happening for almost all initial conditions. At late times, the asymptotic late-
time solutions to Burgers equation (between the singularities) are linear functions of z whose slopes decay with
time

F&
z! z0
t! t0

. (13)

The constants z0 and t0 represent arbitrary constants, defining the location of singularities in space and time.
The corresponding elastic energy density (continuous across the singularities) has asymptotic form given by
integrating Eq. (13)

E&
1

2

ðz! z0Þ2

ðt! t0Þ
þ E0. (14)

The individual components of the distortion tensor (apart from the three time-independent components bzj)
numerically take the form

bPij&aij
z! z0ffiffiffiffiffiffiffiffiffiffiffi
t! t0

p þ gij (15)

which can be shown to be consistent with the evolution law for the energy density (Eq. (14)), so long as the
coefficients aij and gij obey the relations

C̄ijkmaijakm ¼ 1; C̄ijkmaijgkm ¼ 0; C̄ijkmgijgkm ¼ 2E0 (16)

for i; j ¼ x or y; there are no restrictions on aiz and giz.
Our theory predicts that, when jt! t0j ! 1, the Peach–Koehler attraction that drives the formation of

walls, and hence the residual stress, vanishes. All components of bPij (except for the three non-evolving
components bPzj) exhibit sharp jumps separated by completely flat regions—corresponding to walls of
dislocations separating dislocation-free grains.
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4. Single-slip: simulations and singularity formation

There has been extensive work on discrete point dislocation simulations in two dimensions, where it appears
necessary to include more than one slip system to form walls (Benzerga et al., 2004; Benzerga etal, 2005;
Fournet and Salazar, 1996; Gómez-Garcı́a et al., 2006; Groma and Bakó, 2000; Groma and Pawley, 1993a, b;
Gullouglu and Hartly, 1993), unless dislocation climb motions are allowed in the system (Barts and Carlsson,
1997). What does the continuum model predict for this case? Let us consider a 2D system (constant along ẑ) of
straight edge dislocations with Burgers vector along x̂, described by a single non-zero component rzxðx; yÞ.
Such a system has two non-zero components of the distortion tensor, rzx ¼ !qxbPyx þ qybPxx. A simulation of
this system with Gaussian random initial bPyx and bPxx, allowing both glide and climb, generates a series of walls
of dislocations roughly parallel to the ŷ-axis (Fig. 2) similar to those seen by Barts and Carlsson (1997) in their
2D study of single-slip with both glide and climb.

To forbid climb in this case it is convenient1 to simply choose bPxx ' 0. Fig. 3 shows the evolution of the
distortion field for climb-free dynamics with a single-slip system.2 In agreement with experiment and the
discrete dislocation simulations (Bakó and Groma, 1999; Miguel et al., 2001), we observe no cell wall
structures in single-slip (which would correspond to jumps in bP in Fig. 3). Instead, we find a network of
surfaces exhibiting a striking new singularity: a cusp in the distortion tensor, corresponding to a jump in the
dislocation density. We can understand this singularity analytically using our mapping to Burgers equation.
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Fig. 1. Cusps and jumps in one dimension. For the continuum dynamics equation allowing both glide and climb, the Peach–Koehler force
density F obeys Burgers equation, and hence develops sharp jumps (top). The individual components of the plastic distortion tensor bP

(bottom), as well as the stress and strain tensors, evolve to also have sharp jumps at the walls; the dislocation density hence develops the d-
function singularity associated with grain boundary formation. These discontinuities in the residual stresses and strains, however, cancel
out in the net elastic energy density, which is continuous with only a cusp at the walls (middle). All of our simulations have periodic
boundary conditions, zero external loading and strain, and are initialized with Gaussian random plastic distortion tensors (whose
correlation length governs the initial length scale between walls).

1Our proposed evolution law Eq. (3) suppressed climb by removing the trace of the current, hence the term !l=3 Jkkdij in qtbPij . This
choice is inconvenient here, because it introduces new components bPyy and bPzz to the problem, and the corresponding dislocation densities
rzy, rxz, and ryz. While these are allowed by symmetry, they are not part of the discrete dislocation simulation.

2Forbidding climb in this 2D simulation with only one Burgers vector confines the dynamics to one slip system, even though slip systems
are not explicitly included into the mesoscale theory.
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With only one non-zero component of bP, the energy density is proportional to the square of bPyx (Eq. (9)). The
energy density satisfies Eq. (11) and forms cusps, so the distortion tensor must also form cusps.

5. Discussions

Which of these new predictions of the mesoscale dislocation dynamics model can be trusted? Which seem (in
retrospect) physically plausible, and which are likely artifacts of simplifications made in the modeling process,
or just mathematical curiosities of this particular model?

(1) Residual stress. The primary driving force for dislocation motion is stress. In cases where dislocations
dynamically assemble into walls (polygonization at high temperatures, cell wall formation at low
temperatures), it does seem natural in retrospect to expect that the walls will be associated with stress
jumps designed to attract residual dislocations to the walls. Grain boundaries formed from the melt when
separate growing crystals touch should likely not be described by this mesoscale continuum model. These
residual stress jumps must be viewed as a fundamental prediction of the model.3

(2) Cusps in the energy density. If there are jumps in the stress at grain boundaries, surely it is natural that
there be some singularity in the energy density. At late stages when the dislocations between grain boundaries
have all been removed, a flat boundary can lower the system energy by moving into the region of higher energy
density. If both glide and climb are allowed,4 and if dislocation mobility is unimpeded (by precipitates,
impurities, lattice pinning, or tangling) this traction will lead the boundaries to move until the energy density is
continuous across the boundary. Hence, for mobile walls at high temperatures, it is natural to expect the
energy density to be continuous, and have only cusp singularities.

(3) Dislocation density jumps in single-slip. The formation of dislocation walls in the continuum theory
cannot properly be called a prediction, since wall formation is well-known experimentally. It is, however, a
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Fig. 2. Continuum of walls. The dislocation density tensor rzx evolved allowing both glide and climb from a random initial state of edge
dislocations along t&ẑ with b&x̂. Notice that the dislocations arrange themselves into small-angle tilt boundaries at the lattice scale, but do
not coarsen; compare to Barts and Carlsson (1997).

3One concern we do have is that a wall with a stress jump can lower its energy by splitting in two; stress jumps at walls in real materials
may be stabilized by a different mechanism than in the continuum model.

4The glide-only continuum model does have small jumps in the energy density.

S. Limkumnerd, J.P. Sethna / J. Mech. Phys. Solids 56 (2008) 1450–14591456



natural consequence of the hyperbolic form of the equations. The (hitherto unobserved) prediction of
dislocation density jumps in early stages of plasticity when only one slip system is active is also a natural
consequence of hyperbolic equations. Our continuum model is guaranteed to lower the net energy with time,
reassuring us that the predicted dislocation density jumps are energetically favorable and satisfy all
compatibility constraints. They could, however, be smeared by pinning and inhomogeneities in real systems
just as grain boundaries and cell walls are distorted by these effects. A smeared dislocation density jump may
be more challenging to identify than a smeared wall of dislocations, perhaps explaining why these jumps have
not yet been seen experimentally.

Are cell walls formed to minimize the energy (the LEDS hypothesis (Kuhlmann-Wilsdorf, 1989, 1995)), or
do they form in a non-equilibrium tangling-induced instability? On the one hand, our current model
completely lacks effects of dislocation entanglement which induce work hardening. The fact that our walls
form from relatively homogeneous initial conditions suggests that a theory evolving to locally minimize the
energy does form walls. On the other hand, our theory forms walls to minimize the energy, but they are sharp
only because of the particular dynamical evolution law by which they are formed; a continuum blur of walls,
within our theory, would also minimize the energy (Limkumnerd and Sethna, 2007).

In summary, we predict that residual stress is not due to inhomogeneities or other infelicities in the
formation process, but is an intrinsic component of the formation of grain boundaries and cell walls. We make
concrete predictions about the nature and form of these stresses near grain boundaries, that should be testable
in colloidal systems or using next-generation X-ray sources. We provide a mesoscale explanation for a key
feature of single-slip plasticity (the lack of cell walls), and we predict that these systems will instead form a
hitherto unobserved dislocation density jump structure.
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Fig. 3. Cusps formed with one slip system. Plastic distortion tensor bPyx formed by climb-free evolution of a Gaussian random initial state
of edge dislocations pointing along ẑ with Burgers vector along (x̂. Notice that walls do not form with one slip system, only cusps in the
distortion tensor; compare to Miguel et al. (2001).
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Bréchet, Y., Louchet, F., 1988. Dislocation patterning in uniaxial deformation. Solid State Phenom. 3–4, 335–346.
Cho, A., 2006. Theory of shock waves clears up the puzzling graininess of crystals. Science 311, 1361.
Conti, S., Ortiz, M., 2005. Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176,

103–147.
Dawson, P.R., Mika, D.P., Barton, N.R., 2002. Finite element modeling of lattice misorientations in aluminum polycrystals. Scr.

Materialia 47, 713–717.
Eshelby, J.D., 1956. Solid State Physics 3. Academic Press, San Diego.
Falk, M.L., Langer, J.S., 1998. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205.
Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41,

1825–1857.
Fournet, R., Salazar, J.M., 1996. Formation of dislocation patterns: computer simulations. Phys. Rev. B 53, 6283–6290.
Frisch, U., Bec, J., 2001. Burgulence. In: Lesieur, M., Yaglom, A., David, F. (Eds.), Les Houches 2000: New Trends in Turbulence.

Springer EDP-Sciences, Berlin, pp. 341–383.
Ghoniem, N.M., Matthews, J.R., Amodeo, R.J., 1990. A dislocation model for creep in engineering materials. Res. Mech. 29, 197–219.
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