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The unusual finite-size effects exhibited by a class of models of sliding charge-density-wave (CDW)
conductors are examined within the context of an automaton model we have developed which allows us
to probe close to threshold in large systems. We demonstrate the existence of two distinct parts of the
finite-size regime, and describe the nature of each subregime. We present evidence for unusual finite-size
scaling, whereby finite-size effects are not simply driven by the divergence of the velocity-velocity corre-
lation length £. Finally, we compare simulations of sliding CDW’s with experimental data to suggest
that finite-size effects may be present in real CDW conductors.

I. INTRODUCTION

The depinning of a charge-density-wave (CDW) system
in an applied dc field is a dynamic critical phenomenon,
which has been studied previously by other authors! as
well as in a companion paper (part 1) preceding this pa-
per.? The purpose of this paper is to examine the prom-
inent and somewhat unusual finite-size effects observed in
simulations of the model introduced and studied in part
I. Finite-size effects in sliding CDW’s are of interest for
several reasons. First, the circumstances of the finite-size
crossover and the nature of the finite-size regime are
somewhat atypical for systems near a second-order phase
transition. Second, because the finite-size regime above
threshold is unusually large, the critical scaling regime is
rather small. As a result, the theoretical—and probably
the experimental—determination of the scaling ex-
ponents describing the transition has been considerably
hampered for several years. Third, recent experimental
measurements>* reveal that the underlying phase-
coherent domains in certain samples are considerably
larger than had once been thought; this implies that some
experimental systems should show considerable finite-size
effects due to the critical growth of dynamic correlations.

Finite-size effects in simulations of a critical system are
typically viewed as an artifact of the process of simula-
tion, although useful information about the critical prop-
erties of the system can often be extracted via the tech-
niques of finite-size scaling. A finite-size crossover typi-
cally occurs when the diverging correlation length £ be-
comes of order the system size L. Estimates of the intrin-
sic correlation length exponent v can be made from mea-
surements of a finite-size scaling correlation length ex-
ponent vg. If the finite-size effects are driven simply by
the divergence of the intrinsic correlation length £, the
two exponents are equal: v, =v. In most thermodynam-
ic critical systems, a finite-size system does not exhibit a
sharp transition; rather, the transition is rounded near
the critical point on the scale of the finite-size regime.

The finite-size effects in sliding CDW’s are rather
different. While sharp estimates of the finite-size scaling
correlation length exponent vy, are difficult to achieve, it
is clear that the finite-size effects are not simply driven by
the growth of the correlation length £, since the two scal-
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ing exponents differ: vg7v. Furthermore, the velocity-
velocity correlation length £ is considerably smaller than
the system size L at the onset of finite-size effects, sug-
gesting that some other mechanism (e.g., the presence of
a second diverging length scale) governs the finite-size
crossover. In addition, the depinning transition [within
the class of Fukuyama-Lee-Rice’ (FLR) models] is sharp
even in systems of finite size. And finally, the finite-size
regime does not consist simply of the “single-particle”
limit that was originally conjectured but rather has a rich
structure of its own.

In this paper, we study finite-size effects within the
context of the automaton model introduced and exam-
ined in our preceding paper (part I) on the critical phe-
nomena of depinning.? We refer readers to the preceding
paper for complete details of the model, but note here
that our automaton is intended as a caricature of the lat-
tice FLR model® which describes the dynamics of the
CDW phase ¢; at each site on a d-dimensional cubic lat-
tice:
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is the finite-difference curvature (lattice Laplacian) of the
phase field ¢ at site 7, the sum being over nearest neigh-
bors {j) to site i; F is proportional to the applied electric
field; V is the strength of the pinning potential; J is the
elastic coupling strength (with appropriate scaling to
make the elastic constants isotropic); and B; are drawn
uniformly from the interval [0,1). Our automaton model
is particularly well suited to the task of studying finite-
size effects, since we need to probe close to threshold in
large systems in order to undertake such a study. In the
conventional lattice FLR model (1), approaching thresh-
old in large systems is difficult because of the critical
slowing down associated with motion through “sticking
points.” Since our model bypasses the slow motion
through sticking points by projecting forward in time to
the hopping motion of unstable phases,? it does not slow
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down near threshold. And since we incorporate a time
lag to mimic motion through a sticking point, our model
possesses the same single-particle scaling behavior close
to threshold in a finite system, namely, that associated
with the saddle-node bifurcation of a single mode.

In Sec. II, we begin by providing a qualitative overview
of the dynamics of a sliding CDW in a finite system to
elucidate the types of possible behavior. We also intro-
duce velocity data from simulations of various system
sizes to highlight some of the major points we wish to
make in this paper. We then present a more detailed in-
vestigation of the finite-size regime, focusing on the two
subregions which comprise it: the ‘“‘single-particle re-
gime” characterized by the existence of one sliding
domain and a CDW velocity v which scales with reduced
field f roughly as v ~f!/2, and a “few-particle sparse re-
gime” where there is more than one sliding domain and a
general flattening in v(f) although there is no simple
scaling of velocity with reduced field. In Sec. III, we
compare results from simulations with experimental data
on an extremely good sample of NbSe; to suggest that
finite-size effects of the type reported here are present in
some experimental CDW conductors.

I1. FINITE-SIZE EFFECTS IN SIMULATIONS

A. Overview of the sliding state in finite systems

The power-law scaling of the CDW velocity v with re-
duced driving field f which was studied in the previous
paper occupies only a small interval in f even in systems
of rather large size. Figure 1, a log-log plot of the aver-
age CDW velocity v as a function of the reduced driving
field f=(F —Fr)/Fr in two dimensions for systems of
size 256%, demonstrates a wealth of other behavior. We
demarcate four regions, and describe the two finite-size
regions (I and 1I) below.

Just above threshold (region I, the single-particle
finite-size regime), the CDW dynamics is dominated by a
single site, the “threshold site,” which is critical at the
depinning threshold. The threshold site dominates the
dynamics in this regime both spatially and temporally. If
we start from the pinned threshold state and increase the
field slightly so as to depin the CDW, the threshold site is
initially the only unstable phase, and all other phases
must wait for the threshold site to depin and trigger a
pulse which destabilizes the rest of the system. In this
single-particle regime, there is only one such pulse or
“sliding domain’ characterizing the motion of the CDW.
Since the velocity-velocity correlation length & represents
the average size of the sliding domains, in this regime
£=L. By shading the hopping times in the manner intro-
duced in the preceding paper, we demonstrate the char-
acter of this single domain, in Fig. 2.

The temporal dominance of the threshold site is
reflected in the fact that the velocity v scales roughly with
reduced field £ in the manner v ~ £ /2. This is because al-
most the entire period T is consumed with the slow
motion of the threshold site through its sticking point.
For very small reduced fields, the duration of the pulse

triggered by the depinning of the threshold site is much
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shorter than the sticking time of the threshold site itself.
The pulse propagation time also is not nearly so sensitive
to small changes in f, since the remaining sites in the sys-
tem are not particularly close to their local thresholds.
The square-root scaling of v with f reflects the saddle-
node bifurcation of the threshold site at the critical point.
As f increases, v(f) can begin to flatten, since the stick-
ing time of the threshold site ceases to dominate the pulse
propagation time. Even if the velocity begins to flatten
and ceases to scale with a square-root power law, as long
as there is some time in the cycle when the threshold site
is the only active site, there will be only one sliding
domain and the threshold site will control the dynamics.
As the field is increased further, eventually the
privileged position occupied by the threshold site be-
comes undermined. This signals the onset of region IL
In any number of fashions, the CDW can reorder its slid-
ing sequence and develop new sliding domains. In some
samples (realizations of the random pinning phases {3}),
this may happen if the field is increased enough to desta-
bilize a second site in the system; that is, a second site
may be able to depin without having to wait for the de-
pinning pulse initiated by the threshold site to sweep
across the system. In other samples, the sticking time for
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FIG. 1. CDW velocity v as a function of reduced field f, in
(a) a single two-dimensional sample of size 256% and (b) several
two-dimensional samples of size 256, We demarcate four ve-
locity regimes: the “single-particle regime” (I), the “few-
particle sparse regime” (II), the “critical regime” (III), and the
“high-field crossover regime” (IV). In an infinite system, only
regions IIT and IV persist.
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FIG. 2. Hopping times for the periodic orbit executed by a
two-dimensional CDW of size 1282, for f=10"". Each site is
shaded according to its hopping time: black denotes hopping
early in the cycle, while white denotes hopping late. The cycle
has been arbitrarily initialized with the hopping of the threshold
site (near the lower-left corner). The orbit is periodic, so black
and white are identified in this shading scheme. There is only
one “sliding domain” at this field, encompassing the entire sys-
tem. Therefore, in this regime, £=L.
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the threshold site may become short enough that it hops
again before the initial pulse has passed through the
whole system. In any case, once multiple sliding domains
form, the period T can drop dramatically since pulses
need not travel so far to depin stable sites. This process
leads to sharp jumps in the velocity, as are evident in Fig.
1. As mentioned in the preceding paper, as f is increased
sufficiently further, the number of sliding domains be-
comes large enough (in the critical regime) that the evolu-
tion of v with f becomes smooth.

B. CDW velocity in systems of various sizes

In this section we demonstrate several features of the
behavior of CDW systems of finite size, the most impor-
tant being the existence of more than one diverging
length scale as the threshold is approached from above.
Because of this, the onset of finite-size effects scales in a
manner differently than one would expect based on the
intrinsic velocity-velocity correlation length v, and the
standard techniques of finite-size scaling collapses are not
particularly useful.

We begin by presenting data of the type shown in Fig.
1,ind =1, 2, and 3, for a variety of system sizes. In Fig.
3, we show data in d =1 for several samples each of
linear size L ranging from 256 to 8192; Fig. 4 shows
several samples in d =2 with L ranging from 8 to 256;
and Fig. 5 shows data in d =3 for L ranging from 8 to 43.

There are several things to glean from these three sets
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FIG. 3. Velocity data for various sample sizes in d =1, to illustrate finite-size effects.
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of figures. First, note that the extent in logo( f) of the in-
termediate few-particle sparse regime (region II) grows
with the system size L. Although they are not complete-
ly well defined, we can roughly identify two finite-size
crossovers: the “outer” finite-size crossover separating
regions II and III, and the *“inner” finite-size crossover
separating regions I and II. The width in log,4(f) grows
with system size because the inner crossover moves to
smaller f with increasing L faster than the outer cross-
over does. If we denote the inner crossover as occurring
at a reduced field f§, and the outer as occurring at a field
[ then we can define two finite-size scaling correlation
length exponents, vi and v:
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The growth in the width of the intermediate finite-size re-
gime with L derives from the fact that vi <vl. We
demonstrate this in Fig. 6, where we plot, in d =2 and 3,
the crossover points fL and f% as a function of L. From
these data, we estimate the finite-size exponents to be
v£=0.410.1, 0.3£0.1 in d =2 and 3, respectively, and
v§=0.810.2, 0.60.2. It should also be noted that both
sets of exponents are probably unequal to the values for
the intrinsic correlation length exponent v presented in
part I, namely, v=0.5 in both d =2 and 3. The errors
are such that we cannot say with certainty that v# v, and
v#v, but it appears that this is the case.

0
10 R B S B S e S R

g 162 ]
-1
10 E—
_2 i
107 F
1078 L —
F 3
10—4 pened sovnd svwd rrenad v ewmd rd e

10""107%10%10"*10"% 021071 10°
f
101 bbbk Ak I IR B I BN

10° 64°

i Bt B

107!

1072

T

1073

]
]

10+ [ evvnd arod o vvd i 2vsad d 4
10~"10"% 0510 40210 %10 1 10°

f
10° i A B B B I I
- 256°
1071 L- _
1072 . ]
1072 L ]

B 10-—4 FETTY ERETIYY NPT ERTOW RETT™ T I
10""07%10-5%10™ 0310”101 10°
f

FIG. 4. Velocity data for various sample sizes in d =2, to illustrate finite-size effects.
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Because there is more than one such scaling exponent,
it is immediately clear that a typical finite-size scaling ap-
proach cannot collapse velocity data from different sys-
tem sizes onto a single scaling curve. Finite-size scaling
can only translate data on a log-log plot, but it cannot
stretch such data. At best, we can try to align different
data sets at individual points to get separate estimates of
the finite-size exponents vi, and v§.

One should also. note that there is considerable
sample-to-sample variation in log;o(v) within the finite-
size regime for a given size L and dimension d. This vari-
ation appears to be greatest in d =2, where there is a ten-
dency for individual v (f) curves to cluster into a high-
velocity branch and a low-velocity branch; this is most
evident for the particular samples shown of size 162 and
1282. Associated with this variation is the fact that the
sample-to-sample fluctuations in log;o(v) within the
finite-size regime tend to grow rather than diminish with
system size, as the high-velocity and Ilow-velocity
branches spread apart. In d =1, most curves tend to lie
on the high-velocity branch; indeed, the data presented
for systems of size 4096' and 8192! do not show any
curves on the low-velocity branch. In d =3, on the other
hand, most samples tend to lie on the low-velocity
branch, as is particularly evident in the data for 32°. We
shall address these sample-to-sample variations and the
dimensional trends below in Sec. II C.
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C. Velocity fluctuations in the finite-size regime

Although the absolute sample-to-sample finite-size
fluctuations in v vanish in the thermodynamic limit, the
fluctuations in log,s(v) tend to grow with increasing sys-
tem size. We can understand these fluctuations in part
via the concept of the reactivation time, which we can
define unambiguously in the single-particle regime. The
reactivation time ¢, is the amount of time required for the
threshold site to be “reactivated”? (returned to a condi-
tion of instability) after having previously hopped:

t,=T —7y, , (5)

where T is the full period of the CDW orbit and 1, is the
sticking time of the threshold site. We have studied the
distribution of reactivation times D (z,) for various sam-
ples as a function of system size L at a fixed reduced field
f. We plot D(t,) in d =2 and 3 for various system sizes,
in Figs. 7 and 8, respectively. We find that there are two
pieces which make up this distribution, one peaked at
short times and one peaked at long times. The short-time
piece does not shift with system size, but the long-time
piece moves out to longer times as L increases. These
two pieces appear to be associated with two topologically
distinct reactivation pulses. The first, a local reactivation
pulse, involves only sites in the neighborhood of the
threshold site, and therefore does not depend on system
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FIG. 5. Velocity data for various sample sizes in d =3, to illustrate finite-size effects.
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size. The second, a nonlocal reactivation process, must
wrap around the boundary and reactivate the periodic
image of the threshold site. Since the distance to the
periodic image grows with L, so does the time for such a
reactivation to occur. The high-velocity branch in the
v(f) curves appears to be associated with sites which
reactivate locally in a short time, while the low-velocity
branch arises from the nonlocal processes which take
longer.

Comparison of the reactivation time distributions in
d =2 and 3, however, reveals that the relative weight of
the two processes is quite different in each dimension.
The two pieces carry roughly equal weight in d =2, while
in d =3 almost all reactivations are of the long-time, non-
local type. In d =1 {not shown), almost all reactivations
are concentrated in the local, short-time piece. This di-
mensional dependence is reminiscent of the return statis-
tics for random walks: return to the origin is common in
d =1, marginal in d =2 and unlikely in d = 3. If we con-
sider the reactivation path as being something akin to a
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FIG. 6. Inner and outer finite-size crossover points (f§ and
f&, respectively) as a function of system size L, in d =2 (a) and
3 (b). We extract from these data the scaling exponents v} and
V- A power-law fit to the data gives rise to the solid lines of

slope —1/vf and —1 /44,
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random walk, then it follows that as d increases, the
chance of locally reactivating the threshold site (without
having to resort to the periodic boundary conditions to
return to the origin) will decrease.

Because of this tendency for almost all reactivations in
d =1 to be local and those in d =3 to be nonlocal, the
typical velocity fluctuations are greatest in d =2, where
local and nonlocal reactivations occur with roughly equal
probability. A set of velocity curves for various samples
in d =3 does not typically exhibit large fluctuations in
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piece which moves out to longer times with increasing L.
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logo(v), as is evident in Fig. 5. This is because very few
samples belong to the shorter-time (higher-velocity
branch).

~ Although the arguments presented above are only
directly pertinent to the single-particle regime, where the
period decomposes simply into threshold-active and
threshold-inactive pieces, the growth in the relative ve-
locity fluctuations and the dimensional tendencies de-
scribed seem to hold in the intermediate few-particle re-
gime, suggesting that the basic process described contrib-
utes to at least part of the dynamics at those fields.

D. Unusual finite-size effects above threshold

Prior to our simulations and those by Middleton on the
lattice FLR model for small system sizes,’” it had been
conjectured®® that (1) finite-size effects will become evi-
dent when the correlation length becomes of order the
system size, £~ L, and (2) the system will crossover from
the critical scaling regime (region III) to the single-
particle finite-size regime (region I), with v ~ f!/2. Simu-
lations of both the lattice FLR model and our automaton
model demonstrate the existence of the intermediate
few-particle finite-size regime. Furthermore, Middleton’
has explained the existence of the intermediate finite-size
regime in mean-field theory.
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As alluded to previously, we have found several anom-
alous finite-size effects in sliding CDW’s. First, the sys-
tem deviates from the critical scaling regime and begins
to show finite-size effects when the correlation length £ is
still considerably smaller than the system size L, suggest-
ing that something other than the simple growth of the
correlation length governs “the finite-size crossover.
Second, the scaling of the finite-size crossover with sys-
tem size, as embodied in the exponent Vg, is inconsistent
with the divergence of the correlation length, as de-
scribed by the exponent v; i.e., v7<v. Third, the finite-
size onset is not just a simple crossover from the critical
regime to the smgle-partlcle regime, but mvolves the in-
termediate sparse regime.

An exact determination of the crossover from critical
scaling is difficult. One reason is that the critical regime
is small or even nonexistent (in smaller systems), making
it difficult to pinpoint where critical scaling ends and
finite-size effects begin. A second reason is that the non-
self-averaging nature of the finite-size regime must be ac-
counted for: some samples continue to exhibit apparent
power-law scaling to lower fields than do other samples
of the same size. As a result, we feel it is generally better
to examine v (f) curves for many samples of a given sys-
tem size to estimate the onset of the finite-size regime,
rather than average the velocity from many samples. The
considerable error in the estimates of v§ reported above
reftect this difficulty.

Further evidence that the finite-size crossover is not
governed simply by the divergence of the velocity-
velocity correlation length £ is the fact that £ is consider-
ably smaller than the system size L at the crossover. We
demonstrate this in Flg 9, where we shade the hopping
times in a system of size 1282 at a field of f£=0.005, the
approximate crossover point in a system of this size. The
domain structure apparent from this shading scheme
reflects the spatial extent of dynamic correlations. In a
conventional critical system, we would see finite-size
effects when £~L; in the CDW this would imply that
there is a single sliding domain characterizing the
motion. Figure 9 demonstrates that there are many such
domains at the finite-size crossover. We find that £~ f 7"
in the critical regime, and that as f is lowered, £ contin-
ues to grow, although in a nonscaling manner, until the
system crosses over at very small f into the single-
particle regime. It is only within the single-particle re-
gime that §=L.

It has been noted previously that the correlation length
exponent v is “small.” In particular, Sibani and Little-
wood® noted that the velocity- -velocity correlation length
exponent v is less than 2 /d, which is expected as a lower
bound for finite-size scaling correlation length exponents
in certain types of disordered systems.'® This led them to
suggest that there could be a second diverging length
scale near threshold. Middleton!”” has noted that one
can define a finite-size scaling correlation length exponent
v Which does satisfy v, =>2/d in d =1 and 2, by consid-
ering the fluctuations in the threshold field F; as a func-
tion of system size L. This 2 /d scaling of threshold field
fluctuations has been confirmed by the renormalization-
group calculation of Narayan and Fisher.!? Middleton
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FIG. 9. Hopping times for the periodic orbit executed by a
two-dimepsional CDW of size 128% for f=0.005, near the
outer finite-size crossover f§%. Each site is shaded according to
its hopping time: black denotes hopping early in the cycle,
while white denotes hopping late. The cycle has been arbitrari-
ly initialized with the hopping of the threshold site (near the
lower-left corner). The orbit is periodic, so black and white are
identified in this shading scheme. The velocity correlation
length £ is the average size of the correlated sliding domains.
Note that £ << L at this crossover point, in contrast to the usual
scenario for finite-size effects.

has hypothesized that the finite-size fluctuations in the
threshold field also govern the finite-size deviations from
power-law velocity scaling above threshold. In d =2, he
has measured v§=1.010.2 for the lattice FLR model,
which is not inconsistent with our rather uncertain esti-
mate of v{ in d =2. One possible source of discrepancy
between the two estimates of +v§ is the fact that
Middleton computed v§ from an average of several v (f)
curves, whereas we did not perform such an average. At
this point there is not a clear picture as to the origin of
the outer finite-size crossover. Examination of the CDW
motion near the crossover does not reveal an obvious
larger dynamic length scale. The 2/d fluctuations in
threshold field identified by Middleton do not necessarily
imply a similar scaling of the velocity data in finite sys-
tems. And our previously proposed crossover of time
scales!? appears inconsistent with recent simulations on a
generalized time-lag CDW automaton.!

The scaling of the inner finite-size crossover, character-
ized by the exponent vk, appears to be consistent in both
two and three dimensions with the relation vi=1/d.
This relation is a result of Middleton’s mean-field theory
of the finite-size regime,’ and it also is consistent with a
heuristic argument based on empirical evidence we ob-
serve from our simulations. Although different samples
cross over from the single-particle to few-particle regimes
via different processes, the crossover typically involves
having a large enough increase in reduced field f that a

11201

second phase becomes independently unstable. In our
previous paper (part I), we presented evidence that, in
our automaton model, the distribution of local curvatures
is flat near threshold. It follows that the typical interval
in f separating the most unstable site and the second
most unstable site scales like 1/N, where N is the total
number of sites in the system. Since N =L4, it follows
that vi,=1/d.

HI. EXPERIMENTAL STUDIES
OF THE CRITICAL PHENOMENA OF DEPINNING

There has been considerable interest in the possibility
of observing critical scaling in the depinning of experi-
mental CDW conductors. Most effort has been devoted
to determining the value of the velocity (or CDW
current) exponent §{. Unfortunately, experimentally mea-
sured values of { have varied even more widely than
those determined via simulation. Sample quality—or
more appropriately, the lack thereof—has been identified
by Thorne!®> as a major culprit in this uncertainty. We
would like to suggest that, even in samples of extremely
good quality, finite-size effects could overshadow any pos-
sible measurement of critical exponents. In an extremely
good NbSe; sample studied by Thorne!® that exhibited a
highly uniform and coherent current density, it has been
estimated that {~1. Furthermore, it has been estimated
that this particular sample was effectively two-
dimensional since the transverse Lee-Rice length was
comparable to the sample thickness. Thorne estimates’’
that the sample contained on the order of 70 X70 phase-
coherent (“Lee-Rice”) domains. Our simulations would
suggest that the critical regime in a system of this size is
extremely tiny or even nonexistent, so it is likely that this
estimate of =1 reflects the near-linear dependence of
the high-field crossover regime rather than the strict
power-law scaling of the critical regime. One might im-
agine using a less pure sample with a smaller phase-
coherence length in the hopes of ‘“‘squeezing” more Lee-
Rice domains into the sample, but typically these samples
have sufficiently nonuniform current densities that they
are probably unsuitable for studies of critical phenomena.

The rather small effective size of high-quality samples,
e.g., the 70X 70 Lee-Rice domains quoted above, suggests
that finite-size effects may play an important role in these
samples. Indeed, looking for a substantial scaling regime
in a system this size is—according to our simulations—
fruitless. Given that the finite-size regime in simulations
is so unusually large, it makes sense to look for signatures
of finite-size effects rather than power-law scaling.

Experimental studies of CDW current-voltage charac-
teristics typically measure the differential resistance
dV /dIvs V /Vy, where Vis the applied voltage, V7 is the
threshold voltage, and I is the total (normal + CDW)
current. This differential resistance is more sensitive to
subtle changes in current, particularly changes which
occur over small ranges in voltage. For the high-quality
sample referred to above, we have plotted dV/dI vs
V/Vy in Fig. 10. We have also plotted in this figure
dV /dI for one of our two-dimensional samples of size

1282, (A simulation of size 642 would obviously make a
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FIG. 10. Comparison of the differential resistance dV /dI for
(a) an extremely high-quality sample of NbSe; and (b) a simula-
tion of our automaton model in a two-dimensional system of
size 1282

more appropriate comparison with the 70? estimated size,
but the dV /dI curve for such a sample would not look
very different than that presented for the sample of size
1282) Since our simulation measures only the CDW con-
tribution to the current, we have added an arbitrary nor-
mal current to compare with the experimental data. The
ratio of the normal to CDW conductances is a free pa-
rameter in this fit, the variation of which only alters the
vertical position of d¥ /dI relative to the ohmic step for
V /V; <1, but changes no other features in the plot.

As is seen in Fig.10, the experimental and simulated
dV /dI curves are qualitatively very similar. The flat step
for V/V; <1 represents the ohmic resistance of the nor-
mal carriers below threshold. Both experiment and simu-
lation show a sharp dip just above threshold, then a rise
in dV /dl for slightly larger fields, and finally a slow de-
crease to a saturated high-field limit. In the simulation,
the origin of these features is clear. The sharp dip just
above threshold corresponds to the single-particle
(square-root scaling) regime; the rise in dV /dI is associat-
ed with the general flattening in the velocity which is
characteristic of the few-particle sparse regime; the spikes
superimposed on the bump arise from sharp jumps in the
velocity which are associated with the introduction of
new sliding domains; and the slow drop in d¥V /dI corre-
sponds to the passage through the small critical regime

" and into the high-field crossover regime.
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The features observed in the experimental dV /dI curve
in Fig. 10 are common to many samples, but are certainly
not present in all samples. Other effects might be in-
voked to explain these features; macroscopic sample in-
homogeneity, producing several regions of the CDW
which depin at slightly different fields, could presumably
give rise to a similar response. The fact that these data

- are from a sample which by all measures exhibits an ex-

tremely uniform and coherent current density, however,
leads one to believe that the features are intrinsic to the
sliding CDW itself.

Ideally, one would like to test whether or not the
features described are actually due to finite-size effects.

- One approach would involve measuring dV /d[ in a num-

ber of samples for which a reasonable estimate of the
dimensionality and total domain number can be made
and extracting an estimate for the scaling of the finite size
regime with system size and dimensionality. Unfor-
tunately, uneven quality from sample to sample will
hamper such an investigation.

The features present in Fig. 10 are also sometimes evi-

~dent near mode-locked steps in CDW’s subjected to a

combined ac-dc field. This serves to support the conten-
tion'®1%13 that the approach to a mode-locking transition
is critical in the same manner as the approach to the dc
depinning transition, exhibiting the same sort of growing
dynamic correlations.

‘IV. SUMMARY AND CONCLUSIONS

‘We have described an intriguing set of phenomena as-
sociated with finite-size effects in sliding CDW’s arising
from the growth of dynamic correlations near the depin-
ning transition. The finite-size regime is unusually prom-
inent, becoming apparent when the velocity-velocity
correlation length & is still rather small compared to the
system size L. We have measured both the intrinsic
correlation length exponent v and the finite-size scaling
correlation length exponents vk and v4, and have demon-
strated their inequality, implying the existence of multi-
ple length scales in the dynamics. Although we do not
understand the precise reason for the premature onset of
finite-size effects, we do understand its consequences. In
particular, the large finite-size fegime dominates the rath-
er paltry critical scaling regime, making determination of
critical exponents in simulations very difficult. The sig-
nature of these finite-size effects is present in some experi-
mental data on sliding CDW’s, which is not so surprising

~ given the rather small effective sizes of certain samples.

The obvious unresolved question centers on the cause
of the observed finite-size scaling behavior, such as the
identification of a larger diverging length scale. Unusual
finite-size behavior has been noted in sandpile models,?°
which are similar in spirit to this class of CDW models,
and the resolution of this question may involve these oth-
er systems as well.
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