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Statistical mechanical approaches to models with many poorly known parameters
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Models of biochemical regulation in prokaryotes and eukaryotes, typically consisting of a set of first-order
nonlinear ordinary differential equations, have become increasingly popular of late. These systems have large
numbers of poorly known parameters, simplified dynamics, and uncertain connectivity: three key features of a
class of problems we callsloppy models, which are shared by many other high-dimensional multiparameter
nonlinear models. We use a statistical ensemble method to study the behavior of these models, in order to
extract as much useful predictive information as possible from a sloppy model, given the available data used
to constrain it. We discuss numerical challenges that emerge in using the ensemble method for a large system.
We characterize features of sloppy model parameter fluctuations by various spectral decompositions and find
indeed that five parameters can be used to fit an elephant. We also find that model entropy is as important to
the problem ofmodelchoice as model energy is toparameterchoice.
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I. INTRODUCTION

Multiparameter models are ubiquitous in the natural s
ences, and much effort of late has gone into making s
models of biological regulation in prokaryotes and euka
otes @1–4#, largely because the chemical networks contr
ling processes such as the cell cycle and terminal differen
tion are now seen to be much more complex than previou
thought, consequently reducing one’s ability to understa
them by intuition alone. These models conventionally con
of a large set of nonlinear ordinary differential equatio
~ODEs! constructed based on the kinetics of the protei
mRNA, small molecules, etc., participating in the regulato
process. However, few rate constants for the constituen
actions have been measured in cells and one is often igno
of absolute concentrations of signaling molecules, parti
larly in mammalian systems. Knowledge of the genomes
model organisms, such asE. coli, Drosophila, and C. el-
egans, while a major step forward in the large-scale gene
tion of biological data, furnishes almost none of the inform
tion necessary to construct and evaluate such dynam
models of protein regulation. There is a famous aphorism
physics: ‘‘Give me four parameters and I can fit an elepha
Give me five and I can wag its tail’’@5#. When one considers
that these models may have parameters that number in
tens to hundreds and are only growing in size, genera
meaningful and useful models of biological regulation a
pears even more daunting.

Most previous works using such models have employe
variety of ad hocmethods to attempt to deal with this pro
lem. Some investigators have either guessed at approp
rate values or performed ‘‘fit-by-eye’’ to selected protein a
tivities @6#. Others have tried to fit data, using only a sub
of the model parameters, which they designate to be im
tant with some kind of sensitivity analysis@7#. In order to
understand the behavior of their model when best parame
are changed, some have randomly generated rate consta
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try to see what kinds of parameter sets are consistent
either quantitative or qualitative cellular data@2#. Surpris-
ingly, despite potential pitfalls, all of these methods ha
yielded fruit, and we unify and place them on firm theoretic
footing in our method.

Recently, independent work by another group@8# used a
Monte Carlo@9,10# approach to obtain an ensemble of ra
constants consistent with available time series data.
work overlaps theirs substantially in the Cost Function a
Ensembles sections, where we reference as appropriate
considering a small transcriptional network, as opposed
our larger receptor-mediated signaling network@11#, those
authors avoided the numerical challenges we have resol
and also missed the interesting emergent features of slo
models, which is our primary focus here. We are particula
interested in some of the topological features of the ene
space, which we feel to be generic to the kinds of models
discuss.

We identify three key features of current kinetic models
biological regulation.

~i! Poorly known parameters.As discussed above, thes
models tend to require a large number of poorly determin
or completely unknown parameters@12#.

~ii ! Simplified dynamics.Most models are justifiably con
fined to a small subset of known cellular proteins, even wh
the process under consideration is in reality more detai
This is a mild kind of coarse-graining that effectively ‘‘reno
malizes’’ the parameters~interactions! in order to account for
all the effects not explicitly considered in the model.@More
severe coarse-graining makes for a much less useful m
because the level of description of the model~input-output
‘‘black boxes’’ or bulk composition of components! is no
longer commensurate with the level of description of curr
experiments~proteins and interactions!.#

~iii ! Uncertain connectivity.New proteins and interaction
among known proteins continue to be discovered, mak
even the topology of many protein networks somewhat t
tative @13#.

We call models with many unknown parameters, ren
malized interactions, and murky topologiessloppy. While on
©2003 The American Physical Society04-1
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the surface pursuit of sloppy models seems hopeless, we
with adequate care useful models of this type can be c
structed and meaningful predictions can be extracted fr
these models. We draw on analogies from statistical mech
ics to attempt to make useful biological statements even
the face of sloppiness. While we slant our presentation
applications towards biological regulation on a molecu
level, our approach could be useful for modeling in oth
contexts: we expect that construction of models in other s
ations like terrestrial nutrient cycling@14# and oceanic bio-
geochemical cycling@15–17# share some of the features o
sloppiness, particularly, in the degree of coarse-graining
the difficulty of obtaining parameter data that modelers d
sire. In addition, our approaches are easily generalizable
they do not rely on a particular form for the model.

II. ILLUSTRATIVE EXAMPLES

In order to make both the problem and our solution to
more concrete, we will consider two test problems to de
onstrate our techniques, shown in Figs. 1 and 2. The first
simple toy model of an autoinhibitory one gene circuit@18#
and the second, when coupled with real cellular data,
used to try to understand aspects of differentiation in a n
ronal cell line@11#. For the larger model~30 nonlinear dif-
ferential equations with 48 rate constants!, we consider both
the real data used in Ref.@11# and two types of fake data. In
the first case, which we call the ‘‘mock’’ model, data poin
are generated from the model, which match the real dat
all respects~time, protein, fractional error! except, of course,
that the model can match the data exactly. In the second c
which we will henceforth refer to as the ‘‘perfect’’ model, w
go far beyond the quality and quantity of data that can c
rently ~or in the near future! be obtained experimentally. We
used the model to generate 90 data points~one each minute!
for every active ~phosphorylated/guanosine triphospha
bound! chemical@19# with error bars of size one at ever
point, corresponding to fractional errors between 1 and 1024

FIG. 1. Simple autoinhibitory gene circuit@18#. Our mathemati-
cal form for this model has the following four equations and s
parameters: d@PA#/dt5k2@PA :A#2k1@P:A#, d@PA :A#/dt5
2d@PA#/dt, d@mRNA#/dt5k3@PA#2k4@mRNA#, and d@A#/dt
5k5@mRNA#2k6@A#1k2@PA :A#2k1@PA#@A#.
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percent. In all cases, the sort of biological information we a
interested in is exemplified in Fig. 3, in which both mRN
and A ~protein! concentration from the model of Fig. 1 ar
shown as a function of time. The kinds of predictions w
typically make are similar to the information contained
Fig. 3 except no experimental data are initially present~see
Ref. @11# for details!.

III. COST FUNCTIONS

The ensemble method~as described also in Ref.@8#! fits
the model to a set of data with errors$(Yi ,s i)%1

NR, which can

include both outputs of the modelyk(t i ,uW ) ~the concentra-
tion of chemicalk at timet i) and~presumably poorly known!
model parametersuW , which for models of protein networks
contain reaction rate information and potentially initial co
ditions. For purposes of this study we assume we have
rate data and only time courses of chemical expression~ac-
tivity ! for $(Yi ,s i)%. Our starting point is a cost function o
the following type, given by

C~uW !5
1

2 (
i 51

NR S Bkyk~ t i ,uW !2Yi

s i
D 2

1 f „yW ~ t,uW !…. ~1!

FIG. 2. Network for extracellular-regulated kinase~ERK1/2! ac-
tivation by epidermal growth factor~EGF! and neuronal growth
factor ~NGF! in rat pheochromocytoma~PC12! cells @11#. Lines
capped with an arrow represent positive stimulation and th
capped with a small circle represent negative stimulation. O
mathematical form for this model has 28 first-order, nonline
ODEs with 48 parameters, which can be found in the suppleme
material to Ref.@11#.
4-2
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It is this cost that we associate with the energy of a statist
mechanical system. The nonleast-squares termsf allow us to
include somewhat fuzzy data in the model, such as inequ
ties on the model outputs or other general nonlinear ter
The factorsBk @one for each protein~chemical! measured
during a particular experiment# are inserted so we may mak
use of data determined only up to a multiplicative consta
as is often the case for time series of protein activities m
sured in cells. TheBk’s are fixed by demanding that th
simulation outputs are rescaled to optimally match the d
Taking the derivative of Eq.~1! with respect toBk and set-
ting it equal to 0 yields

Bk5

(
i 51

Nk

@yk~ t i !Yi /s i
2#

(
i 51

Nk

@yk~ t i !/s i #
2

, ~2!

allowing us to determineBk algebraically.@In the typical
case the nonlinear termsf involve ratios of concentrations o
the same chemical at different times, and theBk’s drop out of
f, leaving Eq.~2! unaltered.# In the models of signal trans
duction to which we have applied these methods, the
constants and initial concentrations can be widely separ
in magnitude, partially due to the fact that they can hav
variety of different units. In order to minimize the effect o
these widely separated scales and avoid exploration of
physical negative values we deal with the logarithms of
parameters for all our calculations, rather than nondim
sionalizing large sets of equations by hand. Henceforth, th
we identify uW as a vector of logs of rate constants.

Multiple minima are the norm rather than the exception
high-dimensional nonlinear optimization problems, and
find this to be the case with the models we have conside
We find multiple minima in Eq.~1! ~and hence multiple bes
fit parametersuW * ) by combining Monte Carlo~see below!

FIG. 3. Time courses for concentrations of mRNA (d and solid
lines! andA (j and dotted lines! from model schematized in Fig. 1
Data points are simulated, and the error bars representone en-
semble standard deviation, in contrast to the four standard de
tions depicted in the plots of Ref.@8#.
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with periodic quenches, using the Levenberg-Marquardt
conjugate gradient methods@20,21#. We then select the mini-
mum with the lowest cost to perform our subsequent ana
sis. We should point out, however, that in our limited exp
rience the different minima are qualitatively simila
especially once thermal fluctuations are allowed.

IV. ENSEMBLES

While a set of best fit parameters can form a starting po
for any analysis of a sloppy model, with relatively little time
series data and parameter information, making predicti
based on a single set of parameters is at best worrisome
at worst meaningless. In order to make useful predictio
particularly, of time courses of chemical concentrations, o
wants to know not only the results of the model with t
optimal parameters but the model’s behavior whenall pa-
rameter combinations consistent with the available data
considered. We thus use the best fit parameters and He
as a starting point in generating such an ensemble in
space of parametersuW . From a practical perspective, we fe
that this ensemble approach makes the model both more
ful and more falsifiable. If the fluctuations about the traje
tory of a particular dynamical variable are very large, th
predictions about that variable’s behavior will be unreliab
Conversely, new or additional data that falls far outside
ensemble deviation represents a serious failing of the mo
that cannot be fixed by parameter fiddling and calls for re
sion of the model@22#.

Consider the probabilityP(DuM ) that our model with
parametersuW would generate the observed dataD5$Yi%. If
we assume thes i represent Gaussian random measurem
errors, then

P„DuM ~uW !…})
i 51

NR

expH 2
1

2
S y~ t i ,uW !2Yi

s i
D 2J .

If we convert the product to a sum and substitute in
definition of the cost in Eq.~1!, we find

P„DuM ~uW !…}exp@2C~uW !/T#,

which we can identify with a Boltzmann distribution wit
energyC(uW ) and temperatureT51 in units where Boltz-
mann’s constant is unity. In Bayesian terms, we then ass
a flat prior for the parameters~the same choice made in Re
@8#! and write, for the probability of the data producing th
model, the same Boltzmann distribution as above@23#. Thus,
we start at the best fit and generate a thermal ensemb
order to compute an average and standard deviation for
observableO of interest,

^O&5
1

NE
(
j 51

NE

Oj , ~3!

sO5A^O2&2^O&2. ~4!

ia-
4-3



bu
b

st
uc
uc
y.
b

c-
n
o

a
or

ne
r
he

s

a
n
b
in

x-

di

tiff

ew

eter
d-

ec-
ad-
es-
at

odel
in-
e

ce

n ei-

in
un-

m-
on-
a-

ns

e
the

ll

is

the

o
in-
ian
ore
pin
nds
n-

ow
les

g
fore,
ose
ces
dis-
n a

ter
d be

-
ting

K. S. BROWN AND J. P. SETHNA PHYSICAL REVIEW E68, 021904 ~2003!
Typically O is a time-dependent chemical concentration,
of course any quantity one can extract from the model can
treated in such way.

The scale factorsBk in Eq. ~1! can also be seen as ‘‘be
fit’’ parameters. For consistency, we must also consider fl
tuations in these scale factors; by integrating out their fl
tuations we gain an entropic correction to our cost ‘‘energ
Fortunately, their quadratic contribution to the cost can
traced out of the partition function to yield a partition fun
tion only of the parametersuW , which can then be used i
computing averages. Once this trace is performed, one
tains a partial free energy

Fp~uW !5C~uW ,$Bk
0%!2T(

k51

NB

lnSA 2pT

ak~uW !
D , ~5!

where$Bk
0% are the ground-state rescaling factors,NB is the

number of rescaling factors, and

ak~uW !5(
j 51

Nk S yk~ t j ,uW !

s j
k D 2

. ~6!

The free energy function in Eq.~5! is what we use for all our
thermal techniques.

V. STIFF AND SOFT DIRECTIONS

We are interested in the shape of the cost manifold
well, and we use the following approach to gain such inf
mation. Once we have obtained the best fit parametersuW * ,
we compute the Hessian matrix

Hi j ~uW * !5
]2C

]u i]u j
U

uW 5uW*
.

For large systems the true second derivative matrix defi
above is computationally expensive, so we also conside
approximate second-derivative matrix, which we call t
Levenberg-Marquardt~LM ! Hessian~L! because of its use in
that optimization algorithm. The LM Hessian is defined a

Llm~uW * !5(
i 51

NR ]r i

]u l

]r i

]um
U

uW 5uW*
,

wherer i5@Bkyk(t i ,uW )2Yi #/s i is the i th residual. The LM
Hessian is only appropriate for least-squares problems,
one expects that the LM Hessian is a good approximatio
the true Hessian when the cost at the minimum is small
agrees poorly in so-called ‘‘large residual’’ problems,
which the ground-state cost is not near 0@21#. We wish to
evaluate the utility ofL because it is substantially less e
pensive to compute thanH, requiring only as many function
evaluations as are necessary to compute the energy gra
@an O(N) rather thanO(N2) computation#. An eigenvector
decomposition of the Hessian allows us to identify s
~large eigenvalue! and soft~small eigenvalue! directions in
parameter space. As we will show, we typically see a f
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very stiff and many soft directions: since one bare param
must be varied per stiff direction, only a few need be a
justed to fit our ‘‘elephant.’’

One may naturally ask, in the spirit of the preceding s
tion, since the best fit parameters are insufficient in
equately characterizing a sloppy model, is the best fit H
sian (H or L) similarly unsuitable? We do indeed feel th
the ensemble approach generates a better measure of m
softness thanH, since the ensemble samples the full nonl
ear cost space andH is a quadratic approximation to th
actual shape of the cost surface, withL serving as an ap-
proximation toH. One can construct an empirical covarian
matrix Q from the ensemble of parameters$uW j%1

NE,

Q5^~uW 2^uW &!~uW 2^uW &!T&, ~7!

where the angle brackets denote ensemble average. A
genvalue decomposition of this matrix~called principal
component analysis~PCA! @24# in statistics! can then be in-
verted and information about soft and stiff modes obtained
a manner analogous to that using the Hessian, with the
derstanding that the PCA HessianP5Q21. While PCA does
not explicitly model cost nonlinearities—it generates an e
pirical Gaussian distribution for the given data—these n
linearities will affect the shape of the resulting PCA qu
dratic form.

We have thus far identified four sources of soft directio
in the cost Hessian.

~i! In a formally underdetermined system, there will b
one exactly zero mode for every excess parameter over
number of data points.

~ii ! A binding-unbinding reaction close to equilibrium wi
only need to constrainK5ku /kb , while the productkukb
will be soft. Besides increased numerical stability, this
another reason why we computeH, L, and P in logspace;
these types of soft and stiff modes show up directly in
subsequent eigenvectors.

~iii ! Another form of nontrivial soft direction is related t
a type of gauge invariance found in spin glasses. Gauge
variances are associated with symmetries in the Hamilton
or Lagrangian and they often occur when a model has m
detail than nature provides. If one changes the sign of a s
in a spin glass and also changes the sign of all the bo
connecting it to its neighbors, the Hamiltonian remains u
changed. In chemical kinetic models where we only kn
concentrations up to an overall scaling factor, if one resca
the concentration of a chemicalC while simultaneously res-
caling the rate constants involved in reactions connectinC
to others in the system, the cost is unchanged. We, there
expect one such gauge invariance for every chemical wh
absolute concentration is unknown. These gauge invarian
are broken by conservation equations and if one uses a
crete description of chemical concentrations rather tha
continuous one.

~iv! Soft modes would arise at a bifurcation in parame
space, since near the bifurcation the energy surface woul
very flat in the direction corresponding to the parameter~or
parameters! controlling the bifurcation. We have yet to ob
serve such a soft mode. Examples of the more interes
4-4
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soft directions~ii ! and ~iii ! are shown for the small autoin
hibitory circuit in Fig. 4, as well as the mode spectrum.

VI. NUMERICAL CHALLENGES

While the schemes presented above are easy to conc
alize, there are several challenges in actually performing
computations. Many of these difficulties arise because s
ing large systems of nonlinear ODEs with random right-ha
sides can lead to all manner of numerical pathologies.
one, the ill-determined nature of sloppy problems often le
to poorly conditioned Hessians, i.e., those whose eigenva
are widely separated in magnitude. Diagonalizing a matrix
this type can be numerically unstable, so rather than an
genvalue decomposition we use singular value decomp
tion ~SVD! @25#. SVD is preferable to eigenvalue decomp
sition in this situation because of its increased stability.

A second cause of computational woe is in the poss
stiffness of the differential equations during the solution p
cess, even if parameters giving a nonstiff set of equations
equally acceptable with respect to data description. T
problem arises both in the optimization process and in
thermal sampling. We deal with this difficulty by using
technique that is analogous to a trick used both in comp
tions and simulations of the Ising model. In the zero-fie
Ising model, one has a discreteZ2 symmetry between the u
and down states, which can make calculations of the mag

FIG. 4. Mode spectrum and eigenvector projections at a m
mum for the model in Fig. 1 showing stiff and soft directions d
scribed in the text. Eigenvector-eigenvalue correspondence is
cated by the numbers 1–6. The softest mode 6 arises from a g
invariance involving only parametersk3 andk5, and hence shows
up as a vector with a 45° angle in thek5-k3 plane~lower left!. The
angle indicates that each rate appears to the first power in the g
invariant quantity, which one can show algebraically given
equations accompanying Fig. 1. Thek1-k2 plane~upper left! reveals
binding-unbinding soft modes. Vector 5 is a near-equilibrium s
mode betweenPA and A, and hence appears in the third quadra
since those two rates must change together, with the same sig
preservek2 /k1. Notice all other modes are perpendicular to 5
this plane, indicating both the stiffness of the product and the
pected orthonormality of the vectors. The large eigenvalue spec
shown here is typical of sloppy models.
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tization difficult. In practice, then, one can add an infinite
mal magnetic field to break the symmetry~thus forcing the
system to pick a unique ground state!, perform the calcula-
tion, and then take the field to 0. Similarly, in sloppy mo
eling, we modify Eq.~1! to read

C̃~uW !5C~uW !1
g2

2
tODE
2 , ~8!

where tODE is a measure of the total time required for th
integration of the equations~e.g., the total number of time
steps! and g!1. This term has the effect of breaking th
continuous symmetry of the soft modes, which can otherw
allow wandering into regions of excessive numerical st
ness. We find that this small bias dramatically improves p
formance while maintaining the integrity of the results, a
is almost a necessity for both the initial parameter fitting a
subsequent ensemble generation steps. In fact, additio
such a term has given more that a 100-fold computatio
speedup without any additional computational overhe
such as that necessary for most stiff integration routines@25#.
We emphasize as well that for problems we have thus
considered, the computer time cost has no effect on the p
erties of the solutions obtained, indicating that the stiffnes
not necessary in describing the data.

There are additional problems in generating the ensem
For one, our cost manifolds are highly asymmetric~more
like cigars than spheres!, and taking uniform steps in such
manifold leads to low acceptance probability. We, therefo
perform importance sampling@26# using the initial best fit
Hessian to scale the parameter moves, thereby making l
jumps in the soft directions and smaller jumps in the s
ones. Doing so, however, introduces an additional compl
tion. Extremely soft modes have step scales that can lea
numerical instability~they can be many orders of magnitud
in logspace!, but by not taking a step in those directions w
neglect possibly vital information, since the modes that
soft with respect to available data can and do have dram
effects on model predictions. We compromise by cutting
the scale of the move at unity, which corresponds to
allowing eigenvector movements larger than a factor ofe at
any one step. This allows us to explore the shape of the
basin more fully while still preserving numerical solvenc
with the downside of increasing the equilibration time for t
thermal Monte Carlo. We, therefore, pick trial moves

Du i5(
j 51

Np A R

min~l j ,1!
Vi j r j , ~9!

where V is the matrix of eigenvectors of the ground-sta
HessianH0 , r j is a Gaussian random number with ze
mean and unit variance,R<1 is a fixed rescaling tuned to
the problem to improve the acceptance ratio, andl j is an
eigenvalue ofH. We feel importance sampling of this sort
a necessity when generating ensembles for sloppy mod
though one might be able to get by equally well using t
Levenberg-Marquardt Hessian as well.
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VII. SLOPPINESS IN THE PC12 MODEL

In order to gain some understanding of the behavior of
soft and stiff modes for the model of Fig. 2, we chose
compare mode spectra for the real model’sH (HR), L (LR),
andP (PR), as well asH from the mock model (HM) andH
from the perfect model (HP). The singular value spectra o
these model matrices are shown in Fig. 5. Changing an
genvector by a factor of 2 reduces the probability of t
model~likelihood that the model would reproduce any of t
datasets! by a factor ofe if the corresponding eigenvalue lie
above the dotted line drawn in the figure. First, concentr
on the stiffest few modes~enlarged in the inset! that are most
important in fitting the data. Notice that the stiffest few e
genvalues agree quite well among the various models: e
the perfect model’s eigenvalues have the same variation
to an overall energy scale change~due to its use of much
more data of high precision!. How much are the eigenvectors
shared between these model matrices? Consider the me

wi
lm~k!5(

j 51

k

~vW i
l
•vW j

m!2, ~10!

which is an indicator of how much of eigenvectori in model
l is present in thek stiffest eigenvectors of modelm, with
wll 51. We usek55,6,7 for our analyses; these are natu
choices if we are interested in the tail wagging of the
ephant. We find good overlap of the three stiffest modes
model l with model m for all lÞm pairs: w1(5)>0.98,
w2(6)>0.66, andw3(7)>0.61. In fact, if one considers jus
the stiff-stiff squared dot product,w1(1)>0.89, indicating
that the high value ofw1(5) is largely due to overlap be
tween just the stiffest mode in each model.

FIG. 5. Natural log of eigenvalues for the model matrices sc
matized in Fig. 2: realH (s), real L (h), real P (d), mock H
(L), and perfectH (n). The spectrum for the perfect model
Hessian has been shifted downward by 10 to compress the axe
dramatically different energy scale is due to the energy being
tensive both with the size of the error bars and the number of
points. The dotted line is a cost significance criterion describe
the text. The realP spectrum was calculated from an inverse cov
riance matrix representing 704 independent samples.
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These results show the following. First, the calculat
curvature matrixH and the empirical HessianP formed by
PCA are qualitatively similar. Also,P’s agreement withH
suggests that the stiffest modes are locally quadratic, tho
nonlinearities would appear further from the minimum. Se
ond, the stiff modes of the true HessianH are well approxi-
mated by the Levenberg-Marquardt HessianL, allowing
greater computational efficiency in the sampling proced
and the possibility of a thermal variant of the Levenbe
Marquardt algorithm@27# for minimization. However,H and
P both have the advantage of being calculable whether
cost is of least-squares type or not, which is not true forL.
Third, the stiffest modes are essentially independent of
amount of data, the eigenvalues being related by a chang
scale.

Next we consider the bulk of the spectrum, which co
tains what we feel to be the most unexpected features. F
the eigenvalue spacing is uniform in logspace; there is
clear cutoff between ‘‘stiff’’ and ‘‘soft’’ but rather a con-
tinuum of eigenvalues. The shapes of the spectra are
quite similar; the increased flattening in the soft part of t
spectrum ofPR is likely due to partial equilibration of the
soft modes. The most striking feature of Fig. 5 is the mo
spectrum ofHP, which, while shifted vertically for dimen-
sional reasons, displays a degree of sloppiness virtually id
tical to the much less well-determined real and mock mod
Obviously, the perfect model can give a better estimate of
model parameters; only the last eigenvalue is insignifican
our criterion ~dashed line shifted downward by 10!. More
broadly, the fact that the eigenvalues of the perfect mo
have the same shape shifted upwards means that it is q
tatively similar as a fitting problem: the stiffest five eigenp
rameters can be used to explain and fit most of the varia
in the time series curves, just as in the original models.

Considering that generating the quantity and precision
~admittedly fake! data that went into the perfect model
quite unrealistic for current and near-future biological e
periments, we are lead to believe that sloppiness is an in
ent feature of this problem, i.e., systemic in the energy
pology of large systems of nonlinear equations coupled
data. While we believe the preponderance of sloppy mo
to be related to the problem of ‘‘separation of exponential
as discussed in Ref.@28#, we also feel that it could have
biological implications. For example, a coordinated chan
along sloppy directions could alter the activity of one reg
latory pathway while leaving another unchanged, thus allo
ing the cell to maintain certain functions while slowly evol
ing others. Similarly, simultaneous use of multiple mi
pharmacological interventions could have a much m
subtle and controlled effect than ‘‘all-or-nothing’’ inhibition
of one or two protein players. The important point is th
widely varying microscopic dynamics can give rise to sim
lar protein activation phenomenology, and it is the charac
of this activation-deactivation cycling that the cell senses a
not values of individual rate constants.

VIII. MODEL SELECTION

We are also able to extend our thermodynamically mo
vated techniques to the problem of model selection, tha
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choosing one of a competing set of models for a proce
given the data they are supposed to explain. In signal tra
duction models, a useful and persistent question one wo
like to answer is whether a not the addition or removal o
regulatory loop is warranted, given the available data. Ba
on both modeling and experiments on the PC12 system
began to believe that the loop consisting of PI3K and A
PKB is essentially unnecessary in setting the dynamics
ERK @11# and we would like to have a quantitative measu
of whether this is indeed so.

On first thought, the ground-state energy of the differ
models must enter into this problem, since the best fitt
model is desirable. However, one could introduce anot
model with additional parameters so chosen to improve
ground-state energy, thus by extension leading one to ch
a model with an infinite number of parameters in all situ
tions, which is clear nonsense. One would like not only
measure of a model’s goodness of fit but also of its comp
ity or entropy. Thus, the most general model selection cr
rion to choose between modelsi and j must be of the form

Bi j 5 f ~Fi ,F j !, ~11!

whereF5E2TS is the Helmholtz free energy. In Bayesia
statistics, in order to choose between two models describ
the same data a quantity exactly of this type, called
Bayes factor@29#, is computed

Bi j 5

E e2Fp(uW i )/Tp i~uW i !duW i

E e2Fp(uW j )/Tp j~uW j !duW j

, ~12!

and modeli is chosen ifBi j .1 and modelj otherwise, with
strength of evidence according to the magnitude ofBi j @30#.
Except for the factorsp ~about which we will have more to
say shortly!, Eq. ~12! is a ratio of partition functions, and
hence related to the difference in free energy between mo
i and j.

The factorsp i ,p j are called prior distributions and ca
incorporate biases we may have about likely values for
parameters. One might then think that in order to mak
completely unbiased calculation one should just pickp51,
i.e., the uniform distribution. A difficulty with the Bayes fac
tor arises if one chooses a prior probability distributionp(uW )
with infinite integral such as the unform distribution. Use
such a distribution, called ‘‘improper,’’ in the computation
the partition function introduces an arbitrary multiplicativ
constant and makes interpretation of the Bayes factor d
cult @29#. However, use of a properp(uW ) is not always ap-
propriate, since this presupposes more knowledge abou
parameters than one may feel is justified, and the Bayes
tor can show sensitivity to the choice of the prior in syste
where a relatively small amount of data is available@31#. For
these reasons a simplification of Eq.~12! is often employed,
which does not depend upon a prior@29#. This generates the
so-called Schwartz criterion or Bayes information criteri
~BIC! @32#, which is an approximation to the logarithm of th
Bayes factor:
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logBi j '
1
2 ~Cj 02Ci0!1 1

2 ~Nj2Ni !logNR ,

C0 is the ground-state cost,NR is the number of observation
~data points!, N is the number of model parameters, a
other notation is as above. The BIC is asymptotically~in NR)
equal to the true log Bayes factor@33#, but for the problems
we consider it is questionable whether we have enough
to be sufficient in the asymptotic regime.

We mention here that we have discovered other reas
besides facilitating model selection, for picking a prop
prior distribution on the parameters. We typically find th
the cost space of a sloppy model looks somewhat like a
course; a few relatively shallow holes are separated by la
flat regions. Even in the stiff directions the cost can even
ally flatten out far from a minimum and these flat region
while potentially high in cost, are areas of high entrop
Thus, analogous to the thermodynamics of a lone hydro
atom in empty space, during thermal sampling once a s
mode escapes to these regions~or a rare thermal event cause
the atom to unbind! entropy takes over and it can evapora
to infinity ~in infinite time!. In this work we confront this
problem by~1! controlling the stepsize in the stiff direction
during the Monte Carlo~as described above! and~2! running
for finite time, of course. However, we recognize that this
still a problem in principle and treat it in detail elsewhe
using a simpler model system~K.S.B. and J.P.S., in prepara
tion!. In short, adding a very weak Gaussian prior
corresponding to a quadratic term in the cost for t
parameters—perturbs the minimum negligibly but preve
the stiff directions from evaporating.

We do not want to show any particular bias against f
quentist statistical methods, and non-Bayesian criteria e
which take into account the caveats we introduced ear
One such popular criterion is the Akaike information crit
rion ~AIC! @34#, in which one selects the model with th
smallest value of

Ai52Ci012Ni . ~13!

The AIC is based on an information theoretic measure
model quality. Unlike in the Bayesian case, the fundamen
quantity from which this criterion is derived@the frequentist
analog of Eq.~12!# depends upon the true model and cann
be calculated, thus forcing one to go directly to the AIC
some variant thereof@35#. The BIC and AIC are point-base
estimates and the true Bayes factor uses ensemble info
tion, so we are inclined to favor the true Bayes factor wh
one can calculate it meaningfully. However, it remains for
to describe how to surmount the improper prior problem.

In order to arrive at a meaningful calculation of the Bay
factor without assuming too mucha priori information about
rate constant ranges and values, we propose the follow
method, which is a form of robust Bayesian inferen
@30,36#. We assume that the logarithm of each rate cons
u l is Gaussian distributed around its best fit valueu* with
standard deviation ofMl , which one may interpret as a num
ber of decades divided by log(10). To further simpli
things, we assumeMl is independent ofl ~or pick M
5maxl$Ml%) and write for theM-corrected log Bayes factor
4-7
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logBi j ~M !5
Nj2Ni

2
log~2pM2!

1 logE duW ie
2Fp(uW i )/T2(uW i2uW i* )2/2M2

2 logE duW je
2Fp(uW j )/T2(uW j 2uW j* )2/2M2

. ~14!

We now treatM as a free parameter and calculate the
Bayes factor for several values ofM by sampling paramete
space with this prior distribution, in the manner we describ
previously. We can then use the results from the differ
M ’s to assign meaning to the calculation as follows. F
example, suppose modeli is only favored whenM,1. If we
think knowing the rate constants to better than a factor of
an unrealistic expectation for modeli, then we can confi-
dently choose modelj. Similarly, if M.50, we only pick
model j if we are uncertain in our parameters by at least
orders of magnitude, which will generally be unrealistica
large given typical guesses of, and ranges for, biolog
rates. On the contrary, ifM turns out to be a value consiste
with known or guessed uncertainties in biological affinitie
then we must consider the two models essentially equival
We should also point out that sophisticated methods exis
computing free energy differences between two syste
@37#, and they are particularly useful when the energy dis
butions for the two models are dramatically different. Ho
ever, we are fortunate that in our case one model is a su
of the other and we are able to calculateBi j (M ) from Eq.
~14! directly, by converting the integrals to Riemann sum

We used the logarithm of the Bayes factor~free energy
difference!, BIC, and AIC to compare the model in Fig.
with and without the left-hand regulatory PI3K loop. For th
computation of the BIC and AIC,Ni559 andNj551, while
in the free energy calculationNi548 andNj540. This is
because in the free energy calculation we are including
entropic contribution due to theB factors @discussed previ-
ously, see Eq.~5!#, while in the ground-state calculation
they remain parameters, which are picked to be optimal.
find that the AIC (Ai /Aj50.9476) yields a very slight pref
erence for the larger model, and the BIC (logBij56.1339)
would seem to strongly favor the larger model with the reg
latory loop, thoughNR may be so small as to make the BI
inapplicable in this case. However, the ensemble calcula
overwhelmingly favors the smaller model lacking PI3K a
d

re

d

,

te
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Akt/PKB for a variety ofM ’s, even as small asM50.25. We
should also point out that the exact Bayes factor calcula
and our robustness calculations@11# both agree; some of the
most easily varied bare parameters are associated with
PI3K loop.

How should we interpret the results of these statisti
tests? In this case, there is little doubt that the PI3K lo
exists in the cell—the question being tested is whether i
strongly affecting the regulation of ERK1/2. The results
the free energy calculation~that the PI3K loop is unneces
sary! agree with both robustness and our intuition, sin
looking at ensemble time series plots with error bars show
significant differences between the model with the loop a
without. Experiments show the loop doesn’t matter at
@11#, an even more stringent criterion. The AIC is local to t
minimum, ignores model error bars in its predictions, a
gives ambiguous results. The BIC is local and asymptotica
correct, but we may very well be outside of its domain
validity. For these reasons, we believe the free energy dif
ence criterion is most reliable for the three methods in t
case.

IX. CONCLUSION

We have presented a unified methodology for the c
struction, evaluation, and use of models with many unkno
parameters, ‘‘renormalized’’ interactions, and tentative
pologies, focused particularly on models of biochemic
regulation in cells. Our methods draw heavily from statistic
thermodynamics in order to get as much useful informat
out of a model as given whatever data we have available.
find many soft eigendirections in the parameter space
these models~using a variety of curvature measures of fittin
cost!, and show that this sloppiness is not a result of hav
too little dynamical data for comparison. We show that e
tropies and free energies of the parameter ensemble natu
arise through the statistical comparison of different mod
as alternative descriptions of a given data set.
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