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Statistical mechanical approaches to models with many poorly known parameters
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Models of biochemical regulation in prokaryotes and eukaryotes, typically consisting of a set of first-order
nonlinear ordinary differential equations, have become increasingly popular of late. These systems have large
numbers of poorly known parameters, simplified dynamics, and uncertain connectivity: three key features of a
class of problems we ca#lloppy modelswhich are shared by many other high-dimensional multiparameter
nonlinear models. We use a statistical ensemble method to study the behavior of these models, in order to
extract as much useful predictive information as possible from a sloppy model, given the available data used
to constrain it. We discuss numerical challenges that emerge in using the ensemble method for a large system.
We characterize features of sloppy model parameter fluctuations by various spectral decompositions and find
indeed that five parameters can be used to fit an elephant. We also find that model entropy is as important to
the problem ofmodelchoice as model energy is frarameterchoice.
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[. INTRODUCTION try to see what kinds of parameter sets are consistent with
either quantitative or qualitative cellular dafta]. Surpris-
Multiparameter models are ubiquitous in the natural sciingly, despite potential pitfalls, all of these methods have
ences, and much effort of late has gone into making suckielded fruit, and we unify and place them on firm theoretical
models of biological regulation in prokaryotes and eukary-footing in our method.
otes[1-4], largely because the chemical networks control- Recently, independent work by another grd&p used a
ling processes such as the cell cycle and terminal differentiaMonte Carlo[9,10] approach to obtain an ensemble of rate
tion are now seen to be much more complex than previouslgonstants consistent with available time series data. Our
thought, consequently reducing one’s ability to understandvork overlaps theirs substantially in the Cost Function and
them by intuition alone. These models conventionally consisEnsembles sections, where we reference as appropriate. By
of a large set of nonlinear ordinary differential equationsconsidering a small transcriptional network, as opposed to
(ODEs constructed based on the kinetics of the proteinspur larger receptor-mediated signaling netw¢il], those
mMRNA, small molecules, etc., participating in the regulatoryauthors avoided the numerical challenges we have resolved,
process. However, few rate constants for the constituent reand also missed the interesting emergent features of sloppy
actions have been measured in cells and one is often ignoramiodels, which is our primary focus here. We are particularly
of absolute concentrations of signaling molecules, particuinterested in some of the topological features of the energy
larly in mammalian systems. Knowledge of the genomes ogpace, which we feel to be generic to the kinds of models we
model organisms, such d&s. coli, Drosophilg and C. el-  discuss.
egans while a major step forward in the large-scale genera- We identify three key features of current kinetic models of
tion of biological data, furnishes almost none of the informa-biological regulation.
tion necessary to construct and evaluate such dynamical (i) Poorly known parameter#\s discussed above, these
models of protein regulation. There is a famous aphorism ilfmodels tend to require a large number of poorly determined
physics: “Give me four parameters and | can fit an elephantor completely unknown parametdrs2].
Give me five and | can wag its tai[5]. When one considers (i) Simplified dynamicdMost models are justifiably con-
that these models may have parameters that number in thimed to a small subset of known cellular proteins, even when
tens to hundreds and are only growing in size, generatinghe process under consideration is in reality more detailed.
meaningful and useful models of biological regulation ap-This is a mild kind of coarse-graining that effectively “renor-
pears even more daunting. malizes” the parameter@nteractionsin order to account for
Most previous works using such models have employed all the effects not explicitly considered in the modéWlore
variety ofad hocmethods to attempt to deal with this prob- severe coarse-graining makes for a much less useful model
lem. Some investigators have either guessed at appropriabecause the level of description of the mo¢iabut-output
rate values or performed “fit-by-eye” to selected protein ac-“black boxes” or bulk composition of componentss no
tivities [6]. Others have tried to fit data, using only a subsetonger commensurate with the level of description of current
of the model parameters, which they designate to be imporexperimentgproteins and interactiong
tant with some kind of sensitivity analysjg]. In order to (iii) Uncertain connectivityNew proteins and interactions
understand the behavior of their model when best parameteesnong known proteins continue to be discovered, making
are changed, some have randomly generated rate constantsigen the topology of many protein networks somewhat ten-
tative [13].
We call models with many unknown parameters, renor-
*Corresponding author. Electronic address: ksb12@cornell.edu malized interactions, and murky topologisppy While on
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FIG. 1. Simple autoinhibitory gene circyit8]. Our mathemati- .. 1
cal form for this model has the following four equations and six ,~"Akt/PKB"~_
parameters: d[Ppl/dt=ky[Pa:Al—ki[P:A], d[Pa:Al/dt= k%

.......

—d[PA)/dt, d[mRNA/dt=ks[P,]—k{mRNA, and d[A]/dt
=Kks[MRNA —kg[A]+K[Pa:A]—ki[PAl[A].

the surface pursuit of sloppy models seems hopeless, we fe
with adequate care useful models of this type can be cor
structed and meaningful predictions can be extracted fron
these models. We draw on analogies from statistical mechat
ics to attempt to make useful biological statements even in

the face of sloppiness. While we slant our presentation and G, 2. Network for extracellular-regulated kina@RK1/2) ac-
applications towards biological regulation on a moleculartjvation by epidermal growth factofEGP and neuronal growth
level, our approach could be useful for modeling in otherfactor (NGF) in rat pheochromocytoméC12 cells [11]. Lines
contexts: we expect that construction of models in other situcapped with an arrow represent positive stimulation and those
ations like terrestrial nutrient cyclingl4] and oceanic bio- capped with a small circle represent negative stimulation. Our
geochemical cycling15-17 share some of the features of mathematical form for this model has 28 first-order, nonlinear
sloppiness, particularly, in the degree of coarse-graining an@DEs with 48 parameters, which can be found in the supplemental
the difficulty of obtaining parameter data that modelers dematerial to Ref[11].
sire. In addition, our approaches are easily generalizable, as
they do not rely on a particular form for the model. percent. In all cases, the sort of biological information we are
interested in is exemplified in Fig. 3, in which both mRNA
and A (protein concentration from the model of Fig. 1 are
shown as a function of time. The kinds of predictions we
In order to make both the problem and our solution to ittypically make are similar to the information contained in
more concrete, we will consider two test problems to demFig. 3 except no experimental data are initially preseee
onstrate our techniques, shown in Figs. 1 and 2. The first is Ref.[11] for details.
simple toy model of an autoinhibitory one gene cirduig|

II. ILLUSTRATIVE EXAMPLES

and the second, when coupled with real cellular data, we ll. COST FUNCTIONS
used to try to understand aspects of differentiation in a neu- ] ] .
ronal cell line[11]. For the larger mode(30 nonlinear dif- The ensemble metho@s described also in Reff8]) fits

ferential equations with 48 rate constanise consider both the model to a set of data with errdisY; 10'i)}TR, which can
the real data used in Réfl1] and two types of fake data. In include both outputs of the modgi(t;,6) (the concentra-
the first case, which we call the “mock” model, data points tjon of chemicak at timet;) and(presumably poorly known

are generate_d from th_e mode_l, which match the real data iRwodel parameters, which for models of protein networks
all respectstime, protein, fractional errdlexcept, of course, contain reaction rate information and potentially initial con-

that the model can match the data exactly. In the second Casgrions. Eor purposes of this study we assume we have no

which we will henceforth refer to as the “perfect” model, we . . :
go far beyond the quality and quantity of data that can cur—rate data and only time courses of chemical expression

rently (or in the near futurgbe obtained experimentally. We :a/ét);())lrg\r/v?rg\(it, Uié}' Sgasgartlng pointis & cost function of
used the model to generate 90 data pofotee each minuje 9 ype. g y

for every active (phosphorylated/guanosine triphosphate- N - 2

bound chemical[19] with error bars of size one at every C(f) = 1 D Bryi(ti, 0)—Y; LB !
. ; . i (=52 | ————| +fy(t,9). (@

point, corresponding to fractional errors between 1 and*10 2= gj
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80 with periodic quenches, using the Levenberg-Marquardt or
conjugate gradient methof0,21]. We then select the mini-
mum with the lowest cost to perform our subsequent analy-
sis. We should point out, however, that in our limited expe-
rience the different minima are qualitatively similar,
especially once thermal fluctuations are allowed.
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IV. ENSEMBLES

[A] (No. of Molecules)

While a set of best fit parameters can form a starting point
for any analysis of a sloppy model, with relatively little time-
series data and parameter information, making predictions

. . . . . . . . based on a single set of parameters is at best worrisome and
0 10 20 30 40 50 60 70 80 90 at worst meaningless. In order to make useful predictions,
Time (min) particularly, of time courses of chemical concentrations, one
wants to know not only the results of the model with the
optimal parameters but the model's behavior wladinpa-
rameter combinations consistent with the available data are
a(;onsidered. We thus use the best fit parameters and Hessian
as a starting point in generating such an ensemble in the

space of parametel% From a practical perspective, we feel

It is this cost that we associate with the energy of a statisticahat this ensemble approach makes the model both more use-
mechanical system. The nonleast-squares témlsw us to ~ ful and more falsifiable. If the fluctuations about the trajec-
include somewhat fuzzy data in the model, such as inequaltory of a particular dynamical variable are very large, then
ties on the model outputs or other general nonlinear termdredictions about that variable’s behavior will be unreliable.
The factorsBy [one for each proteirichemical measured Conversely, new or additional data that falls far outside the
during a particular experimehare inserted so we may make ensemble deviation represents a serious failing of the model
use of data determined only up to a multiplicative constantthat cannot be fixed by parameter fiddling and calls for revi-
as is often the case for time series of protein activities measion of the mode[22].

sured in cells. TheB,’s are fixed by demanding that the ~ Consider the probability(D[M) that our model with
simulation outputs are rescaled to optimally match the datgparameters) would generate the observed d&a{Y;}. If
Taking the derivative of Eq(l) with respect toB, and set- we assume the; represent Gaussian random measurement

[mRNA] (No. of Transcripts)

FIG. 3. Time courses for concentrations of MRN@® @nd solid
lines) andA (M and dotted linesfrom model schematized in Fig. 1.
Data points are simulated, and the error bars represeaten-
semble standard deviation, in contrast to the four standard devi
tions depicted in the plots of Rdf8].

ting it equal to O yields errors, then
Ni Ng > 2
- 1 ti,0)-Y,;
S, [tV /o] P(DIM(8)]] exp{ - 5(%) }
Bi=—: , 2 o !
21 [yk(t)/oi]? If we convert the product to a sum and substitute in the

definition of the cost in Eq(l), we find

allowing us to determineéB, algebraically.[In the typical - .
case the nonlinear terniisnvolve ratios of concentrations of P(DIM(6))=exd —C(8)/T],
the same chemical at different times, andBy& drop out of
f, leaving Eq.(2) unaltered] In the models of signal trans- which we can identify with a Boltzmann distribution with
duction to which we have applied these methods, the rat@nergyc(é) and temperaturd =1 in units where Boltz-
constants and initial concentrations can be widely separategiann’s constant is unity. In Bayesian terms, we then assume
in magnitude, partially due to the fact that they can have & flat prior for the parametefshe same choice made in Ref.
variety of different units. In order to minimize the effect of [8]) and write, for the probability of the data producing the
these widely separated scales and avoid exploration of urmodel, the same Boltzmann distribution as ab®&. Thus,
physical negative values we deal with the logarithms of theye start at the best fit and generate a thermal ensemble in
parameters for all our calculations, rather than nondimenorder to compute an average and standard deviation for any
sionalizing large sets of equations by hand. Henceforth, therphservableO of interest,
we identifyé as a vector of logs of rate constants.

Multiple minima are the norm rather than the exception in 1 Ne
high-dimensional nonlinear optimization problems, and we (0)= NC 2 O;, 3
find this to be the case with the models we have considered. Ej=1
We find multiple minima in Eq(1) (and hence multiple best

fit parametersé*) by combining Monte Carldsee below go=V(0?—(0)2 (4)
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Typically O is a time-dependent chemical concentration, butvery stiff and many soft directions: since one bare parameter
of course any quantity one can extract from the model can beust be varied per stiff direction, only a few need be ad-
treated in such way. justed to fit our “elephant.”

The scale factor8 in Eq. (1) can also be seen as “best  One may naturally ask, in the spirit of the preceding sec-
fit” parameters. For consistency, we must also consider fluction, since the best fit parameters are insufficient in ad-
tuations in these scale factors; by integrating out their flucequately characterizing a sloppy model, is the best fit Hes-
tuations we gain an entropic correction to our cost “energy.”sian (H or L) similarly unsuitable? We do indeed feel that
Fortunately, their quadratic contribution to the cost can behe ensemble approach generates a better measure of model
traced out of the partition function to yield a partition func- softness thai, since the ensemble samples the full nonlin-

tion only of the parameters, which can then be used in €ar cost space and is a quadratic approximation to the
computing averages. Once this trace is performed, one ofctual shape of the cost surface, withserving as an ap-

tains a partial free energy proximation toH. One can construct an empirical covariance
matrix ® from the ensemble of paramete{r@}TE,
A - Ne [27T L
|:p(ev)=(:(a,{Bk})—Tk2l In( m) , (5) O=((6—(6))(6— (8N, 7)

where the angle brackets denote ensemble average. An ei-
genvalue decomposition of this matrifcalled principal
component analysi€PCA) [24] in statistics can then be in-

where{BE} are the ground-state rescaling factd¥g, is the
number of rescaling factors, and

N vkt @)\ 2 verted and information about soft and stiff modes obtained in
ak(§)= 2 M (6) a manner analogous to that using the Hessian, with the un-
=1 a}‘ derstanding that the PCA HessiBs= 0 ~1. While PCA does

not explicitly model cost nonlinearities—it generates an em-
The free energy function in E@5) is what we use for all our pirical Gaussian distribution for the given data—these non-

thermal techniques. linearities will affect the shape of the resulting PCA qua-
dratic form.
V. STIFF AND SOFT DIRECTIONS We have thus far identified four sources of soft directions

in the cost Hessian.
We are interested in the shape of the cost manifold as (j) |n a formally underdetermined system, there will be
well, and we use the following approach to gain such infor-one exactly zero mode for every excess parameter over the
mation. Once we have obtained the best fit paramefers number of data points.

we compute the Hessian matrix (i) A binding-unbinding reaction close to equilibrium will
only need to constrailK =k, /k,, while the productk ki
H (%)= F°C will be soft. Besides increased numerical stability, this is
i (6%) 96,90, 5:(5*' another reason why we compuite L, and P in logspace;

these types of soft and stiff modes show up directly in the

For large systems the true second derivative matrix define§ubsequent eigenvectors. o

above is computationally expensive, so we also consider an (i) Another form of nontrivial soft direction is related to
approximate second-derivative matrix, which we call the type of gauge invariance found in spin glasses. Gauge in-
Levenberg-MarquardiLM) HessianL) because of its use in variances are associated with symmetries in the Hamiltonian

that optimization algorithm. The LM Hessian is defined as O Lagrangian and they often occur when a model has more
detail than nature provides. If one changes the sign of a spin

R NR o ar. in a spin glass and also changes the sign of all the bonds
Lim(6¥)=2>, — —— , connecting it to its neighbors, the Hamiltonian remains un-
=1 96 90ml 5 changed. In chemical kinetic models where we only know

. concentrations up to an overall scaling factor, if one rescales
wherer;=[Byy(ti,0) —Y;l/o; is theith residual. The LM the concentration of a chemic@l while simultaneously res-
Hessian is only appropriate for least-squares problems, anchling the rate constants involved in reactions connediing
one expects that the LM Hessian is a good approximation tto others in the system, the cost is unchanged. We, therefore,
the true Hessian when the cost at the minimum is small bugéxpect one such gauge invariance for every chemical whose
agrees poorly in so-called “large residual” problems, in absolute concentration is unknown. These gauge invariances
which the ground-state cost is not neafal]. We wish to  are broken by conservation equations and if one uses a dis-
evaluate the utility ofL because it is substantially less ex- crete description of chemical concentrations rather than a
pensive to compute tha#, requiring only as many function continuous one.
evaluations as are necessary to compute the energy gradient(iv) Soft modes would arise at a bifurcation in parameter
[an O(N) rather thanO(N?) computatiol). An eigenvector space, since near the bifurcation the energy surface would be
decomposition of the Hessian allows us to identify stiff very flat in the direction corresponding to the paraméoer
(large eigenvalueand soft(small eigenvaluedirections in  parametenscontrolling the bifurcation. We have yet to ob-
parameter space. As we will show, we typically see a fewserve such a soft mode. Examples of the more interesting
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| e ST tization difficult. In practice, then, one can add an infinitesi-
’ . 2 mal magnetic field to break the symmefithus forcing the
> 0l * 3 1 system to pick a unique ground statperform the calcula-
¢ 4 tion, and then take the field to 0. Similarly, in sloppy mod-
g 5t ) 1 eling, we modify Eq.(1) to read
P
& -10 T
. ' go s C(0)=C(0)+?tODE, (8)
w15t R
oy 20 | wheretgopge is a measure of the total time required for the
6 integration of the equation.g., the total number of time
. . . P ® steps and y<<1. This term has the effect of breaking the
1-050 05 1 01234567 continuous symmetry of the soft modes, which can otherwise
s Index allow wandering into regions of excessive numerical stiff-

ness. We find that this small bias dramatically improves per-
FIG. 4. Mode spectrum and eigenvector projections at a miniformance while maintaining the integrity of the results, and
mum for the model in Fig. 1 showing stiff and soft directions de- is almost a necessity for both the initial parameter fitting and
scribed in the text. Eigenvector-eigenvalue correspondence is indsubsequent ensemble generation steps. In fact, addition of
cated by the numbers 1-6. The softest mode 6 arises from a gaugeich a term has given more that a 100-fold computational
invariance involving only parameteks andks, and hence shows speedup without any additional computational overhead,
up as a vector with a 45° angle in the-k; plane(lower lefy). The  such as that necessary for most stiff integration routiaés
angle indicates that each rate appears to the first power in the gaugge emphasize as well that for problems we have thus far
invariant quantity, which one can show algebraically given theconsidered, the computer time cost has no effect on the prop-
equations accompanying Fig. 1. Tkek, plane(upper lefi reveals  grties of the solutions obtained, indicating that the stiffness is
binding-unbinding soft modes. Vector 5 is a 'near—eqqilibrium softot necessary in describing the data.
mode betweerP, andA, and hence appears in the third quadrant  There are additional problems in generating the ensemble.
since th:kse”:wo’\:a:gs mh'Sttﬁhange dtogether’ with tg? slam;a Ség.r" Bor one, our cost manifolds are highly asymmetficore
preservek, /K;. Notice all other modes are perpendicular to n . . . . .
this plane, indicating both the stiffness of the product and the ex!lke cigars than sphergsand taking uniform steps in such a

pected orthonormality of the vectors. The large eigenvalue spectrurﬁmnIfOId leads to low acceptance probability. We, therefore,

shown here is typical of sloppy models perform importance sampling26] using the initial best fit
' Hessian to scale the parameter moves, thereby making large

jumps in the soft directions and smaller jumps in the stiff
ones. Doing so, however, introduces an additional complica-
tion. Extremely soft modes have step scales that can lead to
numerical instabilitythey can be many orders of magnitude
VI. NUMERICAL CHALLENGES in logspacg but by not taking a step in those directions we

While the schemes presented above are easy to concepfﬂﬁglec,t possibly vital in.formation, since the modes that are
alize, there are several challenges in actually performing th&0ft With respect to available data can and do have dramatic
computations. Many of these difficulties arise because sol€fTects on model predictions. We compromise by cutting off
ing large systems of nonlinear ODES with random right-handn€ scale of the move at unity, which corresponds to not
sides can lead to all manner of numerical pathologies. Fof!lOWiNg eigenvector movements larger than a factoe at
one, the ill-determined nature of sloppy problems often lead@ny One step. This allows us to explore the shape of the cost
to poorly conditioned Hessians, i.e., those whose eigenvalud@sin more fully while still preserving numerical solvency,
are widely separated in magnitude. Diagonalizing a matrix ovith the downside of increasing the qu|l|br§t|on time for the
this type can be numerically unstable, so rather than an efn€rmal Monte Carlo. We, therefore, pick trial moves
genvalue decomposition we use singular value decomposi-
tion (SVD) [25]. SVD is preferable to eigenvalue decompo- N R
sition in this situation because of its increased stability. Agi=2 \/TDV”TJ : 9

A second cause of computational woe is in the possible =1 ¥ minCj,
stiffness of the differential equations during the solution pro-
cess, even if parameters giving a nonstiff set of equations arehere V is the matrix of eigenvectors of the ground-state
equally acceptable with respect to data description. ThiglessianH,, r; is a Gaussian random number with zero
problem arises both in the optimization process and in thenean and unit varianc&<1 is a fixed rescaling tuned to
thermal sampling. We deal with this difficulty by using a the problem to improve the acceptance ratio, ands an
technique that is analogous to a trick used both in computaeigenvalue oH. We feel importance sampling of this sort is
tions and simulations of the Ising model. In the zero-fielda necessity when generating ensembles for sloppy models,
Ising model, one has a discrefg symmetry between the up though one might be able to get by equally well using the
and down states, which can make calculations of the magné-evenberg-Marquardt Hessian as well.

soft directions(ii) and (iii) are shown for the small autoin-
hibitory circuit in Fig. 4, as well as the mode spectrum.
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0% . . : - These results show the following. First, the calculated
curvature matrixd and the empirical HessialR formed by
PCA are qualitatively similar. AlsoP’s agreement withH
suggests that the stiffest modes are locally quadratic, though
nonlinearities would appear further from the minimum. Sec-
ond, the stiff modes of the true Hessiblnare well approxi-
mated by the Levenberg-Marquardt Hessian allowing
greater computational efficiency in the sampling procedure
and the possibility of a thermal variant of the Levenberg-
Marquardt algorithnj27] for minimization. HoweverH and
P both have the advantage of being calculable whether the
cost is of least-squares type or not, which is not truelLfor
Third, the stiffest modes are essentially independent of the
—300 10 20 30 20 50 amount of data, the eigenvalues being related by a change of
n scale.
Next we consider the bulk of the spectrum, which con-
FIG. 5. Natural log of eigenvalues for the model matrices schetzins what we feel to be the most unexpected features. First,
matized in Fig. 2: reaH (O), realL (L)), realP (@), mockH  he gigenvalue spacing is uniform in logspace; there is no
(¢©), and perfectH (A). The spectrum for the perfect model's clear cutoff between “stiff” and “soft” but rather a con-

Hessian has been shifted downward by 10 to compress the axes; tﬂﬁuum of eigenvalues. The shapes of the spectra are also
dramatically different energy scale is due to the energy being ex- )

tensive both with the size of the error bars and the number of datgUIte similar; the increased flattening in the soft part of the

points. The dotted line is a cost significance criterion described inSpeCtrum off ™ is likely due to partial equilibration of the

the text. The reaP spectrum was calculated from an inverse cova—s’o‘ct modes. TFhe m(_)st strlklng fe_ature of _F'g' Sis the mode
riance matrix representing 704 independent samples. spectrum ofH", Wh'Ch’ while shifted Vertl(;ally folr d'mer?'
sional reasons, displays a degree of sloppiness virtually iden-
tical to the much less well-determined real and mock models.
Obviously, the perfect model can give a better estimate of the
In order to gain some understanding of the behavior of thenodel parameters; only the last eigenvalue is insignificant by
soft and stiff modes for the model of Fig. 2, we chose toour criterion (dashed line shifted downward by )LlMore
compare mode spectra for the real model'$HR), L (LF), broadly, the fact that the eigenvalues of the perfect model
andP (PR), as well asH from the mock modeliM) andH have the same shape shifted upwards means that it is quali-
from the perfect modelH®). The singular value spectra of tatively similar as a fitting problem: the stiffest five eigenpa-
these model matrices are shown in Fig. 5. Changing an eiameters can be used to explain and fit most of the variation
genvector by a factor of 2 reduces the probability of thein the time series curves, just as in the original models.
model(likelihood that the model would reproduce any of the  Considering that generating the quantity and precision of
datasetgsby a factor ofe if the corresponding eigenvalue lies (admittedly fake data that went into the perfect model is
above the dotted line drawn in the figure. First, concentratguite unrealistic for current and near-future biological ex-
on the stiffest few mode&@nlarged in the insgthat are most  periments, we are lead to believe that sloppiness is an inher-
important in fitting the data. Notice that the stiffest few ei- ent feature of this problem, i.e., systemic in the energy to-
genvalues agree quite well among the various models: evepology of large systems of nonlinear equations coupled to
the perfect model’s eigenvalues have the same variation ugata. While we believe the preponderance of sloppy modes
to an overall energy scale changgue to its use of much to be related to the problem of “separation of exponentials,”
more data of high precisionHow much are the eigerctors  as discussed in Ref28], we also feel that it could have
shared between these model matrices? Consider the meastielogical implications. For example, a coordinated change
along sloppy directions could alter the activity of one regu-
k latory pathway while leaving another unchanged, thus allow-
wim(k)= >, (vl JJm)Z, (10)  ing the cell to maintain certain functions while slowly evolv-
=1 ing others. Similarly, simultaneous use of multiple mild
pharmacological interventions could have a much more

which is an indicator of how much of eigenvecidn model subtle and controlled effect than “all-or-nothing” inhibition

| is present in thek stiffest eigenvectors of modeh, with ~ ©f 0ne or two protein players. The important point is that
w!'=1. We usek=5,6,7 for our analyses; these are naturajwidely varying microscopic dynamics can give rise to simi-
choices if we are interested in the tail wagging of the ellar protein activation p_hen_omenol_ogy, and it is the character
ephant. We find good overlap of the three stiffest modes off this actlvatlpn—f:i(_aactlvatmn cycling that the cell senses and
model | with model m for all I#m pairs: w,(5)=0.98, ot values of individual rate constants.

w,(6)=0.66, andv3(7)=0.61. In fact, if one considers just
the stiff-stiff squared dot producty;(1)=0.89, indicating
that the high value ofv,(5) is largely due to overlap be- We are also able to extend our thermodynamically moti-
tween just the stiffest mode in each model. vated techniques to the problem of model selection, that is,

VII. SLOPPINESS IN THE PC12 MODEL

VIIl. MODEL SELECTION
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choosing one of a competing set of models for a process, log Bij*%(cjo—cioH%(Nj—Ni)log Ng,
given the data they are supposed to explain. In signal trans-
duction models, a useful and persistent question one woulg, is the ground-state cod\i is the number of observations
like to answer is whether a not the addition or removal of adata points N is the number of model parameters, and
regulatory |00p is warranted, given the available data. Basegther notation is as above. The BIC is asymptoticéﬂM\]R)
on both modeling and experiments on the PC12 system, Wgqual to the true log Bayes factf83], but for the problems
began to believe that the loop consisting of PI3K and Akt/we consider it is questionable whether we have enough data
PKB is essentially unnecessary in setting the dynamics ofg pe sufficient in the asymptotic regime.
ERK[11] and we would like to have a quantitative measure \ve mention here that we have discovered other reasons,
of whether this is indeed so. besides facilitating model selection, for picking a proper

On first thought, the ground-state energy of the differentprior distribution on the parameters. We typically find that
models must enter into this problem, since the best fittinghe cost space of a sloppy model looks somewhat like a golf
model is desirable. However, one could introduce anothegoyrse; a few relatively shallow holes are separated by large
model with additional parameters so chosen to improve th@at regions. Even in the stiff directions the cost can eventu-
ground-state energy, thus by extension leading one to choosgly flatten out far from a minimum and these flat regions,
a model with an infinite number of parameters in all situa-yhile potentially high in cost, are areas of high entropy.
tions, which is clear nonsense. One would like not only aThys, analogous to the thermodynamics of a lone hydrogen
measure of a model’s goodness of fit but also of its complexgtom in empty space, during thermal sampling once a stiff
ity or entropy. Thus, the most general model selection critemode escapes to these regi¢osa rare thermal event causes
rion to choose between modelsindj must be of the form  the atom to unbindentropy takes over and it can evaporate

_ to infinity (in infinite time). In this work we confront this
Bij =1(Fi.F), (1D problem by(1) controlling the stepsize in the stiff directions

whereF=E—TSis the Helmholtz free energy. In Bayesian during the Monte Carl¢as described aboyand (2) running

statistics, in order to choose between two models describineéfr finite time, of course. However, we recognize that this is

. . till a problem in principle and treat it in detail elsewhere
h ly of th I he™ . :
:Baeyess?rfgitggg] aisqéjoar:g%e%xacty of this type, called t using a simpler model syste(K.S.B. and J.P.S., in prepara-
' tion). In short, adding a very weak Gaussian prior—

. .. corresponding to a quadratic term in the cost for the

f e Pl T (6,)d6; parameters—perturbs the minimum negligibly but prevents
Bij= - , (12)  the stiff directions from evaporating.

J e Pl T, (5,-)d5,- We do not want to show any particular bias against fre-

quentist statistical methods, and non-Bayesian criteria exist,

which take into account the caveats we introduced earlier.
One such popular criterion is the Akaike information crite-
rion (AIC) [34], in which one selects the model with the
smallest value of

and model is chosen ifB;;>1 and mode| otherwise, with
strength of evidence according to the magnitud&gf 30].
Except for the factorsr (about which we will have more to
say shortly, Eq. (12) is a ratio of partition functions, and
ihirrl(c:i?. related to the difference in free energy between models A;=2Cjp+2N;. (13

_ The factorsm; ,; are called prior distributions and can tpe AlC is based on an information theoretic measure of
incorporate biases we may have about likely values for the,,qe| quality. Unlike in the Bayesian case, the fundamental
parameters. Or_le might then_ think that in o_rder to make %uantity from which this criterion is derivedhe frequentist
completely unbiased calculation one should just pick1, — gn5100°0f Eq(12)] depends upon the true model and cannot
i.e., the uniform distribution. A difficulty with the Bayesafac- be calculated, thus forcing one to go directly to the AIC or
tor arises if one chooses a prior probability distributiof¥)  some variant theredB5]. The BIC and AIC are point-based
with infinite integral such as the unform distribution. Use of estimates and the true Bayes factor uses ensemble informa-
such a distribution, called “improper,” in the computation of tjon, so we are inclined to favor the true Bayes factor when
the partition function introduces an arbitrary multiplicative gne can calculate it meaningfully. However, it remains for us
constant and makes interpretation of the Bayes factor diffito describe how to surmount the improper prior problem.

cult [29]. However, use of a proper(6) is not always ap- In order to arrive at a meaningful calculation of the Bayes
propriate, since this presupposes more knowledge about tHactor without assuming too muehpriori information about
parameters than one may feel is justified, and the Bayes facate constant ranges and values, we propose the following
tor can show sensitivity to the choice of the prior in systemsmethod, which is a form of robust Bayesian inference
where a relatively small amount of data is availald&]. For  [30,36. We assume that the logarithm of each rate constant
these reasons a simplification of £G2) is often employed, 6, is Gaussian distributed around its best fit valife with
which does not depend upon a pr[@9]. This generates the standard deviation d¥1,, which one may interpret as a num-
so-called Schwartz criterion or Bayes information criterionber of decades divided by log(10). To further simplify
(BIC) [32], which is an approximation to the logarithm of the things, we assumeM, is independent ofl (or pick M
Bayes factor: =max{M,}) and write for theM-corrected log Bayes factor

021904-7



K. S. BROWN AND J. P. SETHNA PHYSICAL REVIEW B8, 021904 (2003

N;—N; Akt/PKB for a variety ofM’s, even as small alsl =0.25. We
logB;;(M)=— log(27M?) should also point out that the exact Bayes factor calculation
and our robustness calculatiofisl] both agree; some of the
+|ng déie_Fp(gi)/T_(‘gi_9i*)2/2M2 rglgit I%isplfy varied bare parameters are associated with the
How should we interpret the results of these statistical
—Iogf déje*Fp(éi)’T*(’;r'z’f)z’ZMz_ (14) tes_ts? _In this case, there is' little QOubt that _the PI3K Ic_)o_p
exists in the cell—the question being tested is whether it is
strongly affecting the regulation of ERK1/2. The results of
We now treatM as a free parameter and calculate the logihe free energy calculatiofthat the PI3K loop is unneces-
Bayes factor for several values bf by sampling parameter gary) agree with both robustness and our intuition, since
space with this prior distribution, in the manner we describeqpoking at ensemble time series plots with error bars show no
previously. We can then use the results from the differenkignificant differences between the model with the loop and
M’s to assign meaning to the calculation as follows. Foryjthout. Experiments show the loop doesn't matter at all
example, suppose modeis only favored whetM <1. Ifwe  [11], an even more stringent criterion. The AIC is local to the
think knOWing the rate constants to better than a factor of 2 i$ninimum' ignores model error bars in its predictionsy and
an unrealistic expectation for model then we can confi- gives ambiguous results. The BIC is local and asymptotically
dently choose modegl Similarly, if M>50, we only pick  correct, but we may very well be outside of its domain of
modelj if we are uncertain in our parameters by at least 2lya|idity. For these reasons, we believe the free energy differ-

orders of magnitude, which will generally be unrealistically ence criterion is most reliable for the three methods in this
large given typical guesses of, and ranges for, biologicatgse.

rates. On the contrary, M turns out to be a value consistent
with known or guessed uncertainties in biological affinities, IX. CONCLUSION
then we must consider the two models essentially equivalent. .
We should also point out that sophisticated methods exist for Y& have presented a unified methodology for the con-
computing free energy differences between two System§tructlon, evaluation, and use of mod_els with many unknown
[37], and they are particularly useful when the energy distri_pararr_\eters, renormah_zed interactions, and te.ntatlve.to-
butions for the two models are dramatically different. How- Pologies, focused particularly on models of biochemical
ever. we are fortunate that in our case one model is a subskggulation in cells. Our methods draw heavily from statistical
of th'e other and we are able to calcul&g(M) from Eq. thermodynamics in order to get as much useful information
(14) directly, by converting the integrals to Riemann sums. out of a model as _glven_whgtever_ data we have available. We
We used the logarithm of the Bayes factéree energy find many soft eigendirections in the parameter space of
difference, BIC, and AIC to compare the model in Fig. 2 these modelgusing a variety of curvature measures of fitting
with and without the left-hand regulatory PI3K loop. For the CS!, and show that this sloppiness is not a result of having
computation of the BIC and AIQY, =59 andN; =51, while too little dynamical data for comparison. We show that en-
in the free energy caIcuIatiohI-:48 andN-=J40 'This is tropies and free energies of the parameter ensemble naturally
i . ; 2 X )
because in the free energy calculation we are including thMse through the statistical comparison of different models
entropic contribution due fo thB factors[discussed previ- &S alternative descriptions of a given data set.
ously, see Eq(5)], while in the ground-state calculations
they remain parameters, which are picked to be optimal. We
find that the AIC @;/A;=0.9476) yields a very slight pref- The authors would like to thank C. C. Hill, R. A. Cerione,
erence for the larger model, and the BIC [B)g-6.1339) K. H. Lee, D. Schneider, C. Myers, C. J. Umrigar, M. R.
would seem to strongly favor the larger model with the regu+ewings, and B. Ganem for helpful discussions. We would
latory loop, thoughNg may be so small as to make the BIC like to thank NSF DMR-0218475 and NIH T32-GM08267
inapplicable in this case. However, the ensemble calculatiofor financial support and the Cornell Theory Center for com-
overwhelmingly favors the smaller model lacking PI3K and putational resources.
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