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Analytical characterization of sloppiness in neural networks: Insights from linear models
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Recent experiments have shown that training trajectories of multiple deep neural networks with different
architectures, optimization algorithms, hyperparameter settings, and regularization methods evolve on a re-
markably low-dimensional “hyperribbon-like” manifold in the space of probability distributions. Inspired by
the similarities in the training trajectories of deep networks and linear networks, we analytically characterize
this phenomenon for the latter. We show, using tools in dynamical systems theory, that the geometry of this
low-dimensional manifold is controlled by (i) the decay rate of the eigenvalues of the input correlation matrix
of the training data, (ii) the relative scale of the ground-truth output to the weights at the beginning of training,
and (iii) the number of steps of gradient descent. By analytically computing and bounding the contributions of
these quantities, we characterize phase boundaries of the region where hyperribbons are to be expected. We also
extend our analysis to kernel machines and linear models that are trained with stochastic gradient descent.
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I. INTRODUCTION

Recent experiments have shown that deep networks ex-
plore a low-dimensional manifold in the prediction space as
they train to perform a task [1,3-5]. This manifold is dom-
inated by its first few dimensions, with widths that decay
geometrically. Remarkably, this manifold is shared between
diverse networks, independent of their architecture, training
algorithms and other specifications as depicted in Fig. 1. Low-
dimensional structures also arise while fitting other nonlinear
models [6,7], where these phenomena have been explained by
the fact that the function being used for approximation has
a limited flexibility. But deep networks are universal approxi-
mators, and they are capable of fitting arbitrary datasets. There
must be another cause for the low-dimensional manifolds in
deep networks.

In this paper, we argue that low-dimensional structures in
training manifolds of deep networks arise not due to limited
flexibility, but rather from the intrinsic low-dimensionality of
the task. While nonlinear models are “sloppy,” i.e., captured
by manifolds in prediction space with geometrically decaying
widths, due to their structural constraints, deep networks are
sloppy because of the geometric properties of the task (ex-
amples in classical datasets are shown in Fig. 2). Inspired by
the similarities in the training trajectories of deep and linear
neural networks, we will exploit the analytical tractability of
the latter to argue that it is indeed the task that results in the
low-dimensionality of the training of deep networks. Let us
first expand on the different facets of sloppiness.

A. Model manifold

Consider a dataset {(x;, y;)}_, with inputs x; € R¢ and
labels y; € {1,...,C} which correspond to whether the
corresponding input x; belongs to one out of C different
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categories. A deep network-based classifier is a probabilistic
model of this data. Given an input x, it assigns a probabil-
ity to each possible output y € {1, ..., C}, this is denoted
by pw(y | x) where w € R? are the parameters/weights of
the model. If y = (y1,...,y.) €{l,...,C}" is the set of
all possible outputs for a dataset, we may write P, (¥) =
]_[:;1 Pw(yi | x;) as the joint probability assigned to these out-
puts by the model. As we vary the weights w over some
region in R”, the probabilistic model P, spans a region that
is a subset of the n(C — 1)-dimensional simplex. Let us call
this set the “model manifold”. Statistical divergences, such
as the Kullback-Leibler (KL) divergence, quantify distances
between probabilistic models and thereby induce a natural
geometry on the weight space. The Fisher information ma-
trix (FIM) is the natural Riemannian metric on the model
manifold [12].

B. Training manifold

Now consider Fig. 1 again, which was partially repro-
duced from Ref. [1]. The authors developed techniques to
analyze the model manifold of deep networks. They showed
that probabilistic models corresponding to different points on
the training trajectories of multiple deep networks with dif-
ferent architectures, optimization algorithms, hyperparameter
settings, and regularization methods evolve on a remarkably
low-dimensional model manifold. To visualize and analyze
this manifold, they used a technique known as intensive prin-
cipal component analysis (inPCA) [13], closely related to
multidimensional scaling [14] and principal components anal-
ysis (PCA) [15], to embed the models into a Minkowski space.
While an exact isometric embedding is guaranteed when
the dimensionality of the embedding space is equal to the
number of models, they found that low-dimensional

©2026 American Physical Society
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FIG. 1. Left: Manifold of models along training trajectories of networks with different configurations (architectures denoted by different
colors, optimization algorithms, hyperparameters, and regularization mechanisms) is effectively low-dimensional for CIFAR-10. This is a
partial reproduction using the data from Ref. [1]. Linear networks are trained upon images directly (dark green), after preprocessing using one
layer (“Scattering-1” in lighter green) and two layers (“Scattering-2” in the lightest green) of a scattering transform [2]. With typical weight
initializations all models begin training near Py, where every sample is assigned equal probability to belong to every class (marked by hand to
guide the reader). They progress to the truth P, (not seen here) to different degrees. All nonlinear deep networks in this experiment achieve
zero training error. While linear networks do not fit the data perfectly, the manifolds swept by linear networks are quite similar to those of
deep networks. These common low-dimensional manifolds in probability space are the inspiration of this paper. Right: Quantitative analysis
of the inPCA embedding in terms of the explained stress which characterizes how well pairwise distances between points are preserved after
the embedding. When the inPCA embedding is computed using all the points on the left, the explained stress of the first two dimensions
is about 71% (red), about the same when inPCA is computed using only nonlinear models (orange). We can compute inPCA using points
corresponding to only linear models and embed all other models (green) or only the nonlinear models (blue) into this space. While there are
clearly differences between the manifolds of linear and nonlinear models (blue curve is lower), it is remarkable that nonlinear models can be
faithfully represented in the embedding constructed using linear models (green line is close to red and orange). Our analysis in this paper that
focuses on linear models is therefore a meaningful insight into the manifolds of nonlinear models.

100 projections preserved pairwise distances between probabilis-
— CIFARIO tic models (statistical divergences such as the Bhattacharyya
1071 WikiText-103 distance) very well. A two-dimensional embedding shown in
< — Audio Set Bird Fig. 1 captures 71% of the “stress” (i.e., pairwise distance
<1072 preservation). A mere 50 dimensions are sufficient to account
-8 = for 98% of the stress, even when these architectures range
S 10 from 0.6 million to 50 million weights. They observed that
g 10-4 the stress explained by each successive dimension decays
§ geometrically, indicating a highly concentrated spectrum. The
S 1075 points corresponding to one particular architecture in Fig. 1,
.UQJ‘ which is the set of models explored during the training pro-
10-6 cess, are a subset of the model manifold of that architecture. It
is evident that this subset is very low-dimensional. Let us call

1077 | it the “training manifold.”
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C. Sloppy models
FIG. 2. Real-world data are sloppy. Eigenvalues of the empirical

correlation matrices of feature representations of different types of
data exhibit a sharp drop-off among the first few eigenvectors. This is
characteristic of multiparameter models fit to data, but here it arises
in real-world data. For CIFAR-10 [8], we use raw pixel values as
the features. For WikiText-103 [9], the text is broken into token
sequences of length 16, and BERT [10] embeddings from the last
hidden layer are concatenated to form a feature vector. For sounds
corresponding to the Bird category in AudioSet [11], each 1-s audio
segment is treated as a sample, with spectrograms serving as feature
vectors.

The geometric decay in the stress explained by each
dimension is strikingly reminiscent of structural patterns
found in another class of over-parameterized models known
as sloppy models [16]. Sloppiness was first identified in
systems biology, where detailed mechanistic models—Ilarge
systems of differential equations with numerous unknown rate
constants—were constructed to describe protein or gene reg-
ulation networks [17]. In practice, inferring these parameters
from data is nearly impossible. But one need not infer them
exactly, analyses based on the Fisher Information Matrix and
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the Cramér—Rao bound [18] showed that these parameters
could vary by many orders of magnitude without substantially
affecting the fit to experimental data, or predictions on new
data. The signature of such “sloppy” models is that successive
eigenvalues of the FIM computed at the fitted parameters
decay geometrically. Sloppy models consistently exhibit good
generalization—not only to out-of-sample data, but often to
out-of-distribution conditions, such as predictions under novel
drug regimens that differ significantly from those used for
model calibration [19].

D. Sloppy data

Deep networks exhibit a lot of these same phenomena,
e.g., an overwhelmingly large number of eigenvalues of the
Hessian and FIM of typical networks are vanishingly small
[20-22]. Symmetries in multilayer architectures entail that
both these matrices have a large number of zero eigenvalues
[23-25]. The authors of Ref. [26] showed that the eigenspec-
trum of the input correlation matrix is closely related to the
eigenspectrum of the Hessian of the training loss and the FIM
for general deep networks. They used this observation to argue
that deep networks generalize—in spite having fewer data
than the number of parameters—when the input correlation
matrix has eigenvalues that decay geometrically. Let us call
such data “sloppy.” Almost pervasively, real-world data ex-
hibits this sloppy structure [27]; for example, Fig. 2 shows
that eigenvalues of the input correlation matrices of three
different modalities (images, text, and sounds) span a very
large range and are spread nearly uniformly on a logarithmic
scale. This structure in the data has been argued to be the prin-
ciple underlying effective continuum and universal theories in
physics [28].

E. Hyperribbons

The FIM can exhibit geometric decay in its eigenvalues
even when input data is one dimensional, i.e., when it could
not be sloppy. Consider the situation when the targets are
given by y = f(x, w) € R for x € [—1, 1] and weights w €
R?. The truncated Taylor series of f may be written as

n—1

few) ~ fule,w) =) gr(w)xt

k=0

where ¢ (w) = w for & € [—1, 1] and f(k) denotes the
kth-derivative of f with respect to the data x. If the true
function has a radius of convergence R > 1 and if w varies
over some compact region, say, Zk w,% < 1, then

lgr(w)| < cR™*

for some constant c. The model manifold of f is contained
within a distance O(R™"*") of the model manifold of f,. If
we consider a dataset with n samples, the model manifold
of f,, which is the set of all possible predictions on these
samples, is a subset of R". In fact, it is a hyperellipsoid where
the lengths of the principal axes decay geometrically. This is
because the Jacobian of the predictions in R” with respect to
the weight space is a Vandermonde matrix which has geomet-
rically decaying singular values [29,30]. The FIM, which is

the outer-product of this Jacobian, inherits this structure, its
eigenvalues also decay geometrically. The FIM is a purely
local property, but it is closely related to the global geometry
of model manifold, in our example. Such model manifolds
look like “hyperribbons.” There is one set of parameters that
is tightly constrained by the data, another which can vary,
say, twice as much without affecting predictions, and so on.
This hyperribbon structure reflects the intrinsic limitations in
model flexibility: the model simply cannot produce a wide
range of predictions, despite its many parameters.

F. Contributions of this manuscript

These four concepts are clearly distinct from each other,
but they share a suspiciously common pattern: (i) the stress
captured by successive dimensions of an inPCA embedding
of the training manifold of deep networks, (ii) eigenvalues of
the FIM of sloppy models at typical fits, (iii) eigenvalues of
the input correlation matrices of real-world data across diverse
modalities, and (iv) cross-sectional widths of hyperribbon-like
model manifolds—all exhibit geometric decay. The goal of
this manuscript is to identify and clarify connections between
these concepts.

The key question that will help frame our narrative is: why
do different architectures, training and regularization meth-
ods, explore such a tiny subset of the prediction space? Deep
networks are universal approximators [31]. With sufficient
capacity and training, they can be induced to fit even anoma-
lous or completely random data. The model manifold of a
deep network-based classifier is therefore high-dimensional,
it spans the entire n(C — 1)-dimensional simplex. However,
across large problems with n(C — 1) ~ 10°~108, the authors
of Refs. [1,32] have found training manifolds to be re-
markably low-dimensional, as low as 50 dimensions seem
sufficient to embed the manifold faithfully. The same story
holds for regression. This flexibility implies that the manifolds
explored by deep networks during training cannot be hyper-
ribbons in the same sense as those in sloppy models. While
they may exhibit low-dimensional structure empirically, this
structure cannot arise from a fundamental limitation in model
flexibility. It requires a different theoretical explanation.

We show in Fig. 1 that the training manifold of linear
models, e.g., linear predictors fitted upon raw pixels, or after
projecting input images upon a fixed nonlinear basis com-
puted using the scattering transform [2], is similar to that
of deep networks. This empirical observation motivates our
analysis. Figure 3 encapsulates some of the main results of this
manuscript, discussed in Sec. II. We analyze how and when
low-dimensional representations of high-dimensional training
trajectories arise for linear regression problems (as we have
found for the real-world models in Fig. 1). The key players of
this analysis and their predominant roles are as follows.

(1) The sloppiness in the input data being fit, characterized
by the logarithm of the ratio of successive eigenvalues of the
input correlation matrix, we will call this the

slope: c,

that mimics the eigenvalue decay in Fig. 2. Sloppy data al-
lows the first few dimensions of the hyperribbon of training
trajectories to capture most of its variance.
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FIG. 3. Eigenvalues of PCA of points on training trajectories of
linear regression and eigenvalues of different important contributions
to it. There is a rapid decrease in the PCA eigenvalues (black), and
thus these points admit a low-dimensional representation with high
explained-variance in the first few dimensions, similar to linear and
nonlinear models in Fig. 1. The PCA covariance matrix P(T") after T’
gradient descent steps can be decomposed analytically into two im-
portant contributions: P”(T ) that depends upon the regression targets
and P°» (T ) that depends upon the distribution of initial weights. The
sharp initial decay in the eigenvalues of P(T") is well-approximated
by P while the decay in the tail is controlled by P’*. Details in
Fig. 5.

(2) The relative scale of the ground-truth weights to the
initial weights which are drawn from zero-mean Gaussian
distributions with isotropic variance cr*z and Uj, respectively,

o
weight initialization strength: —.
Ow
The spread of initial conditions leads to a spread in trajectories
that will dominate the tail of the eigenspectrum.
(3) The

number of weight updates: 7.

(4) The larger the T, the larger the volume of the out-
put space explored by the different training trajectories and
therefore, intuitively, the larger the dimensionality of the hy-
perribbon.

In the sequel, we will make more precise statements that
relate these three parameters to training trajectories. Our
analysis will proceed by analyzing the PCA matrix P(T) of
points along training trajectories obtained by initializing lin-
ear models at different points, and fitting them upon data with
different degrees of sloppiness (different ¢). We will be able
to decompose P(7T') into three pieces, the two most important
being a piece P} determined predominantly by the ground-
truth targets, and a piece P/ determined by initialization,
the relative importance of these terms is proportional to the
weight initialization strength. By analytically computing and
bounding these various contributions (Fig. 3), we characterize
the “phase boundaries” of the region where low-dimensional
hyperribbons are to be expected (Fig. 8). In Sec. III we will
also extend our analysis to kernel machines and linear models
that are trained with stochastic gradient descent.

II. TRAINING MANIFOLD FOR LINEAR REGRESSION
A. Target data set, training, and weights

Consider a dataset {(x, y;)}/_, that consists of inputs x] €
R?=! and outputs y; € R. We will focus on the case with a
scalar output in this paper for clarity of exposition, all results
hold for multidimensional output. Let x; = [x/, 1] denote the
input with a constant appended to it and consider a linear
model y; = w ' x; with w € R? trained to minimize

n

1
Cw) = -3 ri(w)’. (1

i=1

Here the residuals r;(w) =3, —y; for i € {1, ..., n} denote
the difference between the predictions and the targets y; €
R. We will assume that targets correspond to unknown true
weights w* € R?, ie., y; = w*x;. Discrete-time gradient
descent to minimize this objective with a step size « (learn-
ing rate) can be written as w,4; = w; — « 9,C(w,), starting
from some wg € R? for all 7 = 1,2, .... We denote the n-
dimensional vector of residuals computed at weights w; by
re=[r(w), ..., rmw)]" € R As the weights are updated
by gradient descent, this vector 7, evolves as

repn = —aK)r, = (I — oK) rg, 2)

where I € R"*" is the identity matrix and K € R"*" is a sym-
metric positive semidefinite matrix with entries K;; = x;'x;/n
fori, j e {1, ...,n}. Note that K = XX " /n where the ith row
of X € R™ contains the input datum x;. In other words, for
linear models, the neural tangent kernel (NTK [33]) is simply
the input-correlation matrix. Let the ith largest eigenvalue of
K be denoted by AKX > 0. The shorthand

K;=1-ak

will be useful to simplify our expressions. It is the first-order
approximation of exp(—«aK ). We make the following assump-
tions in our analysis.

(1) Input data and ground-truth targets. We will assume
that input data are sloppy with a decay rate ¢ > 0 on the
logarithmic scale, i.e.,

A = exp(—(i — 1)o),

foralli=1,...,n, with ¢ > 1/n. We will assume that the
unknown true weights w* are a random variable

RY 3 w* ~ N(0, 021)

where o is a scalar. This will indirectly be an assumption on

the norm of the targets y;.

(i1) Model. The model is in the data scarce regime, i.e., the
number of samples is smaller than the dimensionality of the
input data n < d. Weights w are under-determined if n < d
and therefore an infinite set of solutions achieves C(w) = 0.
We will assume that rank (K) = n. This is not unduly restric-
tive. All our analysis can also be conducted in the image space
of K if K is rank deficient.

(iii) Training method. For a large part of the analysis we
will be interested in training methods that resemble gradi-
ent descent. We will assume that the step size o < 1/Af.
This assumption ensures that ||/ — «K], < 1 and therefore
[I7¢]l> = O monotonically as ¢ — oo and therefore it is quite
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standard in the analysis of gradient descent algorithms [34].
The most important parameter of the training process for us
will be the total number of weight updates T'.

(iv) Weight initialization. We will assume that weights are
initialized to values wy sampled from a Gaussian distribution
with zero mean and an isotropic variance

R? 5 wy ~ N(0, 21)

w

for a scalar o2. The ratio 0>/o controls the distance in
weight space that a training trajectory needs to travel from
its initialization at wy to fit to the true weights w*. We will
see that, roughly speaking, the larger this ratio, the smaller the
dimensionality of the hyperribbon and weaker the dependence
on the other parameters of the problem such as the slope ¢ or
the number of weight updates 7.

B. Principal component analysis of the training manifold

Consider N randomly initialized models with weights
{w(()')}ﬁv= |- From assumption (iv) on weight initialization, we
have E[wg] =0 and E[wowg ] = o21. The initial residual
vectors satisfy

E[f"] ==y E[r ] = nsyolk + 37,

foralli, j e {l,...,N}, where y = [y, ..., y.]" € R"is the
vector of targets and §;; = 1j—;, is the § function. The pre-
diction space R” has Euclidean geometry. We can therefore
capture the geometry of the training manifold, which is a
subset of R", using principal component analysis (PCA) of
points along trajectories {r,(’)},T:_O1 'ii - The covariance matrix
corresponding to PCA is ’

where the mean residual is F=F(N,T) = 37 Y, r® for

T > 1. The mean residual evolves according to the equation
F(N,T) = Kr7r(N, 1), with

lT_l t 1 —1 T
KTz?tZ:;K = —K (I-KJ). (4)

As the number of random initializations N goes to infinity, we
can separate the PCA matrix P into two components,

P(T)= lim P(N,T)

T-1
1
== > Kj(nogK +yy")K} — Kryy Ky
=0 =Py(T)
= P7"(T)+ P)(T) —Py(T). (5)
—— ————
=P|(T)

We have broken down the PCA matrix into its three
components. The third term P>(7) has unit rank. The
first term P (T) = == ,Tz_ol K7'K depends on the vari-

ance of initial weights 03,, and the second term Piv (T) =

% Z,T;Ol K'yy"K!, again depends on the targets y, but it is not
unit rank. We will analyze this expression further in the next
section.

C. Geometry of the training manifold

The goal of this section will be to characterize the geometry
of the training manifold, i.e., eigenvalues of the PCA matrix
P(T) in Eq. (5). To simplify the notation, we will denote
eigenvalues of matrices P», TP}, and TP} by A", A7", and
A}, respectively, for all i = 1, ..., n. The scaling with 7 on
the latter two matrices is only for the sake of convenience in
our exposition.

1. Eigenvalue of P,

For any two real symmetric matrices A, B € R™*", Weyl’s
inequality says that

A OB B oA 108, (6)

for eigenvalues A; ordered in decreasing order. The third term
P,(T) in Eq. (5) is an outer product of y with itself and has
a single nonvanishing eigenvalue A" = ||Kry||>. Therefore,
eigenvalues of P(T) are sandwiched by the eigenvalues of
Py (T )I

max (AP .

P =Py <l < (7)

1 l

From Eq. (4),

1= (1—ark)’ _ 1

K < .
” T”Z X OlT)\.nK S O(T)\.nK

(®)

This suggests that A”> = O(1/T?). The approximation be-
comes tighter for long training times. We can therefore focus
our analysis on understanding P, (7).

2. Weight initialization strength contribution

Since K; =1 —aK commutes with K, we can write
TP (T) to be the geometric sum

T-1 2
no
TPI(T) =noy, 3 Ki'K = =2+ K™ (I = K]"),
t=0

and calculate its eigenvalues explicitly as

2 _ _ K 2T
S0 %(1 (1 ot)»l) ) ©)

! o 2—ark

Due to the inequality 1 — (1 — x)? < min{l, ax}, which holds
for |x| < 1 and @ > 1, under assumption (iii), the eigenvalue
A7 is bounded above by

)\qw<ﬁ min{l,ZTot)\lK} 10
Y 2 —ark '

Figure 4 uses Eq. (10) to explain how eigenvalues A" of
different indices i depend upon the training duration 7 and
the sloppy eigenspectrum of the input correlation matrix K.
From Eq. (5), it is immediate that if the initialization vari-

ance o2 is small (relative to o which controls [y]), the

*
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FIG. 4. Contributions to the eigenspectrum of the PCA matrix
coming from weight initialization computed using the bound in
Eq. (10) (dotted) and numerical computation of the corresponding
term in Eq. (5) (bold) with 02 =1, & = 1, and ¢ = 0.5. For very
large training times T 3> AX /0K the eigenvalue A7 corresponds to
the minimum in the numerator being 1 for any i. This means that A"
decays to ~o2 /2« as the index i increases, at a rate determined by the
decay of AX. From Eq. (10), for T <« A¥/AK and i < In(2T@)/c, the
minimum in the numerator is 1, and we again have a similar decay.
For larger values of i, the minimum comes from the other term and
therefore A7 decays to much smaller values ~m. This is the
lower envelope of the curves above. The limit 77 — 0 corresponds to
the eigenvalues of 02K and therefore reflects the sloppy decay in the
input correlation matrix.

contribution of P (T) to the dimensionality of the hyper-
ribbon is small for all times 7. Our calculation shows that
for all times 7', the head of the eigenspectrum P/ decays
rather quickly. For small times 7', eigenvalues in the tail of
P are quite small. The implication is that, everything else
(.e., Ply ) being the same, models trained for long times have
a higher-dimensional hyperribbon due to variations caused by
the initialization of weights. For short times, the hyperribbon
has a smaller dimensionality.

3. Target contribution

The second term corresponding to P} (T') in Eq. (5) resem-
bles the so-called reachability Gramian in systems theory. It is
well-known that P = limy_, , P; (T') is the unique solution to
the discrete algebraic Lyapunov equation [35]

K,PK] —P +yy" =0.

In systems theory, this concept is used for model reduction,
i.e., to identify a low-dimensional dynamical system that cap-
tures time-varying data from a larger system. The rate of
decay of the singular values of the reachability Gramian char-
acterizes the quality of this approximation. Singular values
of the Gramian decay quickly [36-39] when K; has some
nice properties (e.g., normal, well-conditioned), and ny is
approximately low rank. This is precisely the setting of our
paper. To study P} (T'), which is a finite sum, we write it as the

difference between two Gramians:

[e.¢] oo
TP(T) =) Kiyy'Kj— ) Ki(K{y KK}
=0 1=0
o0
=) K" — Ky KiK.
=0
We summarize our results in three lemmas whose proofs are
given in the Appendix. The following lemma shows that the
eigenspectrum of P (T') decays quickly.
Lemma 1. We have

Mo 4p7* — 42
Mo (L pHy

where

7T2
PP\ 2k k=4 )

The following lemma now gives a lower bound on the
eigenvalue A7.

Lemma 2. 1f we denote &; = Y/ (1 — ark)?, then
IyI? < Ay < Aallyll?s

where the norm of the targets concentrates around the value
n
20, 2 K
IylI> ~ no > k. (11)
i=1

Notice that A; = A7 /(o 2AK).

Lemma 1 suggests that the eigenspectrum of P decays as
exp(—im?/nc). In contrast to the decay of P/, this rate is
independent of the training time 7. Suppose now that o2 is
small relative to 0*2. Since )31' > |yl? = no*ztr(K ), the head of
the eigenspectrum of P can be much taller than that of P{",
even if the decay of the two is similar. In other words, the head
of eigenspectrum of P\(T) = P{"(T) + P} (T) is determined
by P} and the tail is determined by P".

It might seem counterintuitive that sloppier data, i.e., large
¢, leads to a slower decay in the eigenspectrum of PJ. But
notice sloppier data will also lead to a faster decay in the
tail of the eigenspectrum of P/. Specifically, in Fig. 4 the
threshold upon the index i after which the eigenspectrum of
P} (T) decreases quickly is i* < In(2T«)/c. This threshold
scales as 1/c. Therefore, if one trains for small times 7', then
the eigenspectrum of the sum Py(T) = P (T) + Ply (T) still
decays after i*, essentially dominated by P". In other words,
for the same T, sloppier the data, smaller the threshold i* after
which the eigenspectrum of P;(7) decays.

We should note that although Lemma 1 does show that
the eigenspectrum of P; decays, it is a loose upper bound. In
our experiments, the decay of the eigenspectrum is typically
about twice as fast. This is because our upper bound depends
on the displacement rank of the matrix, and the decay rate
of the bound for a matrix with a displacement rank of 2 is
twice as slow as that of a matrix with a displacement rank of
1. In our case, the displacement rank is the rank of the matrix
yy' —KTyy KT in P](T) which is 2, but in our numerical
experiments we observe the decay rate to be closer to the
bound with displacement rank of 1. This suggests that there
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FIG. 5. Tail of the eigenspectrum of P;(T') is well-approximated
by the contribution coming from the weight initializations P;” (T),
while the head is well approximated by the contribution coming from
the targets P;(T). These eigenvalues were computed for d = 100
dimensional data with slope ¢ = 0.2 for the eigenvalues of the input
correlation matrix, after fitting n = 50 samples for 7 = 50 iterations
with initialization variance o> = 0.1 and variance of the ground-
truth weights being o> = 2, this experiment uses N = 100 random
initializations.

could be better ways to exploit the displacement structure and
improve our bounds. Note that if the labels y; are aligned with
an eigendirection of the data then [ny, K] =0, and the rank
of the above matrix is 1. In this case, the training manifold
geometry can be calculated analytically and is dominated by
the decay of the initialization given in Eq. (9).

4. Combining the two parts to obtain
the eigenspectrum of P1(T)

The following lemma combines the technical development
in the previous two subsections.
Lemma 3. The eigenvalues of P;(T) in Eq. (5) satisfy
A
)\—P < min {1 4p= 0= 4
1

if i < 2k%,
a||y||2} h

<4p~®7D 4 2 min{l, 2aTAK,. ) else.

H ||2

foralli =1,...,n, where k* = min{

Figure 6 compares the upper—bound on the eigenvalues
derived from Lemma 3 against the eigenvalues computed
directly from Eq. (5) for different values of sloppy decay
rate c¢. This lemma correctly predicts the qualitative trends
in the eigenspectrum, in the head of the spectrum where it
decays quickly, in the intermediate plateau where eigenvalues
do not decay, and in the tail where it again decays quickly.
Figure 7 shows, using a numerical calculation, how the eigen-
spectrum of P(N, T') in Eq. (3) changes for different training
times 7.

In2T
1 a?z}

5. Phase diagrams

Figure 8 summarizes the development of this section us-
ing a phase diagram that describes the geometry of the

A\ —— ¢=0.15
c=0.25

1 1 1 1 |
11 21 31 41 51

Index i

[Eny

FIG. 6. Comparison of the bound in Lemma 3 (dashed) with
eigenvalues of P;(7") computed directly from Eq. (5) (solid) for
different values of sloppy decay rate c. We use 100 random ini-
tializations for each experiment, error bars in the above plot denote
standard deviation across 100 numerical experiments. The proof of
Lemma 3 works by computing the ideal point to apply Weyl’s in-
equality. This enables us to separately calculate the decay in the head
of the eigenspectrum and the tail, for both small and large training
times 7' in spite of the fact that different parts of P;(7) in Eq. (5)
dominate in different regimes.

hyperribbon in terms of the relevant parameters, the train-
ing time 7, the slope ¢ and the relative magnitude of the
weight initialization o,/0,. Consider Fig. 8(a). For small
initialization variance o,/oy, > 1, the hyperribbon is very
low-dimensional for most training times 7 and slope c.

103

100 | 1 1 1
1 21 41

Index i

FIG. 7. Eigenvalues of P(N, T) for different training times T
from numerical experiments on linear models with d = 100 dimen-
sional data with n = 50 training samples, slope ¢ = 0.1, initialization
variance 02 = 1 and learning rate « = 1/AK. We use 100 random
initializations for each experiment, error bars in the above plot denote
standard deviation across 100 numerical experiments. As training
time 7 increases, the eigenvalues in the tail increase in magnitude,
this is because P/ (T'). See Fig. 4. This also causes an increase in the
largest eigenvalue in the head, due to the diminishing magnitude of
P,(T)in Eq. (8).
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FIG. 8. Phase diagram for linear regression that describes the number of dimensions in the hyperribbon, i.e., the number of dimensions
required to capture 95% of the variance of the points on the training manifold. This is studied with respect to three parameters: (i) the training
time 7, (ii) slope ¢, and (iii) the relative magnitude of weight initialization o,/0,,. Panels (a)—(c) show a heat-map of the dimensionality of the
hyperribbon for different training times 7" and slopes c for three different regimes of weight initialization. Panel (d) is a three-dimensional plot
that depicts the boundaries of the different phases, defined by the dimensionality of the hyperribbon (3 dimensions in black, 10 in pink, and
30 in orange). Panels (e)—(f) show contours for different values of o, /0, for three- and ten-dimensional hyperribbons, respectively. See the

narrative for an elaborate discussion.

The eigenspectrum is dominated by P; in this case and its
fast decay allows for lower-dimensional hyperribbons. There
appears to be a straight line (log7 o ¢) along which the
dimensionality is larger, due to relative magnitudes of P;" and
P} in Eq. (5). The matrix P} results in a higher-dimensionality
for large ¢ while P is the cause of higher-dimensionality
at relatively small values of ¢ and large 7. For small T, the
relatively large magnitude of A will reduce the initial part
of the eigenspectrum (coming mostly from Py), resulting in a
higher dimensionality. If the initialization variance is small,
short training times do not fit the data well. For large c,
this causes the hyperribbon to be low-dimensional (roughly,
because the condition number of optimization is large and
different models end up being rather similar). The majority
of experiments in Ref. [1] lie in this regime. For small c, this
is evident as a higher-dimensional hyperribbon (roughly, be-
cause models are initialized in different subspaces of the data).
For longer training times 7, different models fit the data very
well when c is small (again, because of a benign condition

number). This is evident as a low-dimensional hyperribbon
above the straight line.

Next consider Figs. 8(b) and 8(c). As the initializa-
tion variance increases, the apparent straight line log 7T o ¢
that distinguishes low-dimensional hyperribbons from higher-
dimensional ones, is still present. The upper-left region
is increasingly higher-dimensional. For small slope c the
hyperribbon is high-dimensional for all training times 7.
Because, models are initialized in very different subspaces
of the data, and this is true for all three plots, except
that it becomes more apparent as o,/o, decreases. For
large ¢, for small times, the hyperribbon may be low-
dimensional but we need much longer times to fit this data
well. Reference [1] (Figs. 10, S.10,S.16) showed that when
neural networks are initialized very far away from stan-
dard initializations, the hyperribbon is not low-dimensional.
The dimensionality further increases when input data is
not sloppy. Their experiments lie in regimes Figs. 8(b)
and 8(c).
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The training dynamics of deep linear networks has an ini-
tial “alignment” phase where weights rotate from their initial
values toward the eventual solution, and a second phase where
the dynamics predominantly changes the magnitude of the
weights [4,40]. Linear networks considered here do not have
the initial alignment phase, so our results in Fig. 8(a) hold
for the deep linear networks in the second phase. In other
words, we conjecture that the dimensionality of the training
manifold in Fig. 8(a) is a lower-bound for the dimensionality
of the manifold of an equivalent deep linear network. The
contribution to the dimensionality coming from the initial
alignment phase diminishes as the number of weight updates
T increases.

Next consider Fig. 8(d). A three-dimensional plot that de-
picts the boundaries of the different phases, defined by the
dimensionality of the hyperribbon (3 dimensions in black, 10
in pink, and 30 in orange). Some broad trends are apparent in
the 3D plot, e.g., (i) large o, /0, leads to a low-dimensional
hyperribbon, (ii) the geometry of the hyperribbon is very
sensitive to other parameters when the slope ¢ is small. As
one goes from small 7', large slope ¢ and large o, /0, to large
times, small slope and small o,/0,, the dimensionality of
the hyperribbon increases. The other panels in this figure are
obtained by projecting this phase diagram upon different axes.

Figures 8(e) and 8(f) show contours for different values of
0./0y for three- and ten-dimensional hyperribbons, respec-
tively. Focus on the contour marked 4.8, the two left and right
wings of this contour together lead to a slice of Fig. 8(a) at
a fixed dimension of three. Figure 8(e) indicates that there is
a contiguous region in (T, ¢, 0, /0y)-space with o./0y, Z 9
where the hyperribbon has fewer than three dimensions. In
Fig. 8(f) such contiguous regions occur at small values of
04/ 0y.

Altogether, Figs. 8(d)-8(f) shed light on thumb-rules for
identifying the complexity of models that would be required
to fit data in these different regimes. Given a dataset (a proxy
for its complexity would be c), a training recipe (a proxy
of which would be o,/0,) and training budget (a proxy of
which would be T'), the boundary of the phase diagram in-
dicates the smallest model that one needs to achieve a good
fit. For example, if our regime lies below the orange sur-
face, then we need to fit a model with a larger number of
parameters.

Sloppy models such as deep networks exhibit spectral bias
where the training dynamics fits to the top eigen-components
of the data at early times [41-43]. Low-dimensional training
manifolds, identified experimentally in Ref. [1] and analyti-
cally in this paper, are not directly related to this phenomenon.
The training manifold is low-dimensional due to the similarity
of (the predictions of models along) trajectories initialized at
different locations, e.g., when networks fit similar subspaces,
not necessarily the top eigenspace, at similar rates. Low-
dimensional training manifolds exist even when the network
fits to the data well, e.g., in Fig. 8(a), the dimensionality is
small for very large times, especially when ¢ < 1. Spectral
bias does imply that the training manifold is low-dimensional
for a single architecture. But since different architectures
have different spectral biases [44], this does not capture the

low-dimensionality of the training manifolds for diverse archi-
tectures that was reported experimentally, especially in view
of Ref. [1], Fig. 11 and Ref. [3] which showed that different
architectures, optimization and regularization-based configu-
rations fit the same easy images in the dataset first and the
same challenging images toward the end of training.

III. VARIANTS OF THE LINEAR MODEL

We next extend our analysis to (i) stochastic optimization
algorithms, (ii) ¢, regularization of the weights, and (iii)
kernel machines. In all three cases, we will see that the PCA
matrix P(N, T) in Eq. (3) undergoes minor changes and can be
analyzed using Lemma 3 to show that the training manifold is
low-dimensional. This section sheds further light into explain-
ing the experimental results of Ref. [1]—just like we showed
in the prequel that the manifold of networks with the same
architecture (linear) trained with gradient descent from differ-
ent initializations is low-dimensional, the manifolds obtained
from different optimization algorithms, regularization tech-
niques and architectures are also low-dimensional. In each
of the three settings, we will also be able to interpret the
decay of the eigenvalues of P(N, T) to provide thumb-rules
for hyperparameter selection.

1. Stochastic gradient descent

Let us now consider stochastic gradient descent for the
linear predictive model. In this case, the weights w € R are
updated, not using the gradient on the entire objective as
before w;y1 = w; — «d,C(w;), but instead as

L
o
2 > k)t

i=1

Wiyl = Wy —

where the random variable w; is uniformly distributed on
{1,...,n} and | is the batch size. We can model SGD as
gradient descent perturbed by state-dependent Langevin noise

Wit = w — d,Cw) + @/ D& (12)

where & ~ N(0,D) where D=X"X/n—Xx'% with ¥ =
n! Z:‘z | %; is the covariance matrix of the inputs [22]. Under
this dynamics of the weights, the residuals evolve as

et = (I — kO, + (/[ DX

The PCA matrix P(N, T), as the number of random initializa-
tions N goes to infinity, becomes

1 T-1
P(T) = — > E[nr] — Kryy Kr.
t=0

where K7 is the same matrix as in Eq. (5). Notice here the
randomness of r; comes from both random initialization and
noise from Langevin dynamics, and we are taking expec-
tation with both sources of randomness, assuming they are
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independent. We now have

Elrs1r] = KE[rr K] + 26/, DK/ELrEE1XT
+(?/DXE[&]X T
= KE[rr] K] + (@®/DXX XX T
= K,E[rr] |Ka + &/ DK,

where we recall that K; = I — oK.

If we define P; = (a?/|) Y 12, K;K*K!, then P solves the
Lyapunov equation K, ;K] — P: + (/| )K* = 0, and it can
be checked by induction that

T-1 T-1
SB[ = TP+ 3 KBl ] - P)K;
t=0 t=0
T-1 T-1
= Kj(oaK +yy" )Ky+ TP — Y KiP:K},
t=0 t=0

which has two additional terms compared to Eq. (5). Notice
that K; commutes with K2 so P; has the explicit expression

P, = (/DI —K3)~

Since P: commutes with K,;, we can simplify

'K? = (a/])(2I — aK)"'K.

T-1 T—1
Z K\P:K, = (a/|) Z KX (I —aK)"'K
t=0 t=0

= (1/D@I —aK) > (I - K]").

For aAX <1 the ith eigenvalue of the above matrix is =~
TAX/(2|). In Lemma 3, the upper bound on the eigenvalues
of P|(T) for i < 2k* is perturbed by largest eigenvalue of the
two additional terms. This is at most the largest eigenvalue
of P, which is simply A (P:) = (a/ (A /(2 — adf)) < /|
for our setting where Af =1 and & < 1 (which ensures the
convergence of the infinite sum in FP;). In other words in
Lemma 3, we will have

Py 2
)LP < min {1’ 4[0*(1‘*1) + L(ﬁ + g)}
AP yiP\e [
for i < 2k*.

This indicates an interesting relationship between the vari-
ance of weight initialization o2, the learning rate o and the
batch size |. Suppose we wish to keep the volume of the
ensemble of trajectories, as measured by the volume of the
hyperribbon in residual space, the same. This is a reasonable
because it indicates the propensity to identify good fits within
the ensemble. Suppose we are in the regime where o |,
which is very common while training neural networks. If we
pick a batch size that is twice as large, the first term o /o
shrinks by a factor of two. To compensate—to keep the decay
rate and effectively the dimensionality of the hyperribbon the
same—we must pick a weight initialization variance that is
twice as large.

2. Weight decay

The least-squares objective Eq. (1) is often “regularized”
to be C(w) + %||w||§ to obtain a fit where the weights have a

small ¢,-norm. This is important in the data scarce regime,
i.e., n < d, where there may be multiple solutions to the
nonregularized problem. The residual dynamics can be seen
to be 141 = (I — aK,)r, where K, = XX + AlL,y,. All our
calculations in Sec. II hold with K replaced by Kj, i.e., with
each )LZKA = AIK + A. For example, from Lemma 3, for i < 2k*
we have

P
L; < min {1, 4,0_("_1) + %(ﬁ + X)},
AP Iyl \ e

which indicates that the decay rate of the eigenvalues is now a

balance between the regularization parameter A and the ratio
2

o,/

3. Kernel machines

Consider predictions given by J; = f(x;) where the pre-
dictor f is not linear, but it belongs to a class of functions
F with some regularity properties. A classical example of
such a class of functions is called reproducing kernel Hilbert
space (RKHS) which is a Hilbert space with the “reproducing
kernel property.” This property states that for any input datum
x, there exists a function ¢, € F such that the evaluation
of f € F at the input x can be written as an inner product

fx) = (f. o) F = [ f(x)e:(x')dx". The function
k(-xsx/) = ((va an’)}‘ 2 O

is called the reproducing kernel. Gradient descent in RKHS
[45] to minimize the objective in Eq. (1) corresponds to up-
dates of the form

W fin() = fi00) = = D7 (i) = k(. ).
i=1

Notice that the residuals r; = fi(x;)) —y; foralli=1,...,n
follow linear dynamics, same as those in Eq. (2), namely,
ri+1 = (I — aK)r; except that we now have K;; = k(x;, x;)/n
for any i, j. This matrix is called the Gram matrix and it
is positive semidefinite by Mercer’s theorem [46]. In other
words, all our development in the previous section holds for
trajectories of kernel machines initialized from different initial
conditions.

If the input correlation matrix is sloppy, then the Gram
matrix is sloppy. This is easiest to see if x comes from a
high dimensional distribution, i.e., d — 0o as n — oo with
a fixed d/n. Results in random matrix theory [47] state that
the Gram matrix K can be well-approximated by the sam-
ple covariance matrix in such cases. And therefore, kernel
machines are rather similar to linear models. If inputs x are
drawn from a distribution with density p(x) supported on
R4, as n — o0, then the kth eigenvalue of the Gram matrix
K converges to the kthe eigenvalue of the integral operator
Tlpl(x) = [ k(x, x)p(x")p(x')dx’ [48]. The eigenspectrum of
such integral operators has been studied, e.g., if p(x) is Gaus-
sian and k(x, x') o< exp(—||x — x'||?/d) is highly local, then
eigenvalues of the Gram matrix K decay exponentially [49].
For translation invariant kernels, the decay is related to how
quickly p(x) goes to zero with increasing ||x|| and to the
Fourier transform of the kernel k [50]. In other words, the
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Gram matrix K can also be sloppy even if the input correlation
matrix is not.

Let us now consider the space of training trajectories cor-
responding to different kernel models. Let {K}M_ be M
different kernel machines with trajectories in the residual
space defined by r&1” = (I — aK™)*!r{"™ for the ith ini-
tialization. This suggests that we should study the covariance

matrix
T 1 E ’,.(iam) 7 r(iam) 7 T
P(N,M, )_Nn'Tl t([ )([ ) ’

where the mean 7 = 71— 3", ™ Taking N — 00 as be-

fore, we get

Imt

M
1 m
PM.T) = - > P"NT)— Py(M.T),
m=1

where Py(M, T) = Kr.pyy' Kz y, With

M T-1

Kroy = —ZZ KM

m=1 t=0

The above equation is the analog of Eq. (5). Similar to our
previous analysis, P»(M, T) has a single eigenvalue that van-
ishes for large T. We can thus obtain a result that is rather
similar to the one in Lemma 3 with appropriate substitutions
p — p™ and AKX — AX™ assuming different kernels have
different slopes ¢ but the same largest eigenvalue, i.e., the
same learning rate «. Now by Weyl’s inequality,

M M
Avi- 141 (Z Pf’“(T)) <D n(PM(T)),
m=1

m=1

and the fact that A,(}_,, P") > M| y||?, the right-hand side of
the per-kernel version of Lemma 3 can be summed up over m.
Altogether the eigenvalues of TPy (M, T) = T P, satisfy

i—1 2
413 mln{l —Zp(m)L Wl O _ } (13)

Otllyll2

if i < 2k* and otherwise we have

AP —(k*=1) o, min {1 20[T)“]L(’(IYZ')J k*+2}
P DIAC 2

S| 2 oyl
foralli=1,...,n, where k* = min,, In(2T«)/(2¢"™). This

is a loose upper bound, because it uses the floor L%J in the
exponent of p™. But due to the averaging over m, if different
kernels have similar condition numbers, i.e., similar o, then
the decay rate of eigenvalues Af) ' is shallower by a factor of M.
But they do decay, and we should expect the hyperribbon to be
low-dimensional. For the second expression when i > 2k*, the
second term (coming from P ) dominates the eigenspectrum.

It has become worse due to the presence of )»’L(,“, .
can see that it still indicates a decay in the eigenspectrum at
large i.

This narrative gives intuition into the experiments of Ref.
[1] which are discussed in Sec. I, where the training manifold

for different neural architectures was computed to find that

But we

the explained variance of the top few dimensions was quite
high. Our discussion suggests that this can arise only if the
“effective kernels” of all those networks have Gram matrices
that decay quickly. If some of them do not decay quickly, then
the explained variance would be low.

IV. DISCUSSION

1. Contextualization in terms of the broader literature
on sloppy models

The central contribution of this paper is a technical result
on characterizing the geometry of the manifold of predictions
of linear models as they train on different types of data, for dif-
ferent durations, and using different types of architectures and
training methods. We argued that there are broad similarities
in the training trajectories of linear models and deep networks,
not in the weight space where there are vast differences, but
in the prediction space. Just like deep networks evolve on
low-dimensional manifolds during training, linear models also
evolve on low-dimensional manifolds. In the latter case how-
ever, tools in dynamics systems theory allow us to characterize
the geometry very precisely. We showed that hyperribbon-like
training manifolds in linear models are controlled by three
factors: (i) sloppiness of the input data, (ii) strength of the
weight initialization, and (iii) the number of gradient updates.

It informs our growing understanding of sloppy models
and information geometry for the analysis of multiparameter
models. Sloppiness is described better, not as the geometry of
the set of predictions of the model for different values of its
parameters, but rather as the restriction to the set of possible
predictions on new data after fitting the model. The former
is a property of the functional form of the model and the
statistics of the input data. But the latter is also a property
of the task—the questions we ask of the model. When the
task depends on collective behavior of the system, rather than
individual parameters, multiparameter models, including deep
networks, are sloppy. For such models, further training on new
data only makes small changes to the prediction space. This
is yet another example of the emergence of simplicity from
complexity in physics [16].

Let us note that we do not need geometric decay in the
eigenvalues of the Gram matrix for our arguments in this paper
to be valid, this assumption is adopted essentially to enable
analytic computations. Figure 2 shows the eigenspectra for
three different real datasets across diverse data modalities.
Such eigenvalue plots are often plotted on a log-log scale
(which gives the famous power laws [51,52]) or in terms of the
density of the eigenvalues (in random matrix theory [20,21]).
These are different ways of studying the same phenomenon,
namely the decay in the eigenvalues. The important structure
in natural data lies in the head of the eigenspectrum—decay
in the head reflects how salient variations in the data di-
minish in importance. The log-log scale emphasizes trends
in the mid/tail of the eigenspectrum and hides the trends in
the head of the eigenspectrum. While this may be important
for some problems, in the context of our specific problem
and we argue machine learning in general, it is important
to study the decay in the head of the eigenspectrum more
precisely.
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2. Perspective on generalization in deep learning

Deep networks often have more parameters than the
number of training data. Their remarkable real-world per-
formance therefore defies foundational assumptions about
the role of model parsimony in generalization. There is
a large amount of literature that studies this question,
ranging from the “double descent” paradigm [53-55], ar-
guments that relate wide minima to generalization [20,56],
implicit regularization toward low-complexity solutions dur-
ing training [57], analyses of generalization in the kernel
regime [33,58-60], and compression in the mutual infor-
mation between inputs, representations, and outputs [26,61—
63]. Emergent low-dimensional geometries termed “hyperrib-
bons” have been argued to lead to generalization in sloppy
models [29,30]. Roughly, hyperribbons refer to the shape of
the set of all possible predictions on the training samples made
by models within a hypothesis class. This is conceptually
similar to notions of capacity in statistical learning theory
except that it focuses on the geometry of the set, not just the
volume.

Together, these diverse viewpoints suggest that low-
dimensional structure—whether in the loss landscape, the
data, or the training dynamics—plays a central role in en-
abling generalization in deep learning. And this commonality
perhaps hints at a unified theory of statistical generalization.
There is some recent work [64] that takes a step toward
such a theory. The authors use tools from contraction theory
[65] to show that the generalization gap for a general deep
network trained using gradient flow after time ¢ is given
by r(0)"G(t)r(0) where r(0) is the vector of residuals at
initialization and G(¢) is a certain “effective Gram matrix”
that conceptually captures the volume of the hypothesis space
explored during training. This result is similar to information-
theoretic generalization bounds [66]. It can be shown that if
the Gram matrix in the present paper K is sloppy (which was
also observed by Ref. [26]), then this effective Gram matrix
is also sloppy. In the context of the present paper, this result
therefore suggests that low-dimensional training manifolds
lead to effective generalization. Deep networks are a very
large hypothesis class, and therefore effective generalization
is difficult without a sufficiently large number of samples.
The only way deep networks could generalize as well as
they do is if the training process does not explore the entire
hypothesis space. Our paper shows that if input data is sloppy
and if the variance of the weights at initialization is small,
then the training manifold spans a very small subset of the
space of predictions—and this is perhaps why generalization
is possible.
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APPENDIX: PROOFS

Proof of Lemma 1. We will denote T P} (T ) as P in this proof
for clearer exposition. We know that P solves the discrete
algebraic Lyapunov equation

K,PK] —P+ (yy' —K,yy'K]) = 0.

See Ref. [37], Chapter 4.3.3], where such a P also solves the
continuous Lyapunov equation K;P + PK; + BBT = 0 with

Ki=(Ks+D7'(Ky—1D), BB'
=2Ks+ D' (yy" —KJyy' K} )(Ka + D)7
Notice that K; is normal and has a bounded spectrum:
o(Kq) € [-b, —al,

with 0 < a < b < 0o. Notice that BBT has a rank of at most
2. From Ref. [39], Theorem 2.1 and Corollary 3.2] we can
conclude that

AP, <4p7HAP, with p = exp o~ .
+2 2log(4b/a)

H Ki _ arf
Notice that A;¢ = — —aiF

states that & < 1/AK, we have

so with our assumption (iii) which

b)) _uk

a A Eak) S

|
Proof of Lemma 2. The lower bound is obtained by seeing
that

3y > max ay (Kgyy ' Kg) > Iyl
and the upper bound is given by

M <D MKy K = Rallyll*.
t

Since the true weights w* are drawn from an isotropic nor-
mal distribution with covariance 0*21 , the norm of the targets
concentrates around the trace of the data correlation matrix
0*2 Y )\IK. Indeed, ||ly||> = (VTw*)"S?(VTw*), where V
and S, are given by the singular value decomposition of the
data matrix X = USV ". Since entries of VT w* are indepen-
dent random variables, ||y||? is concentrated around the above
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value by the Hanson-Wright inequality

12 t
2 2 in|{ ———
P(llIylI* = olte(K)| > 1) < 2exp [‘“mm (mftr(K)’ a_zﬂ

where a > 0 is a constant independent of ¢, K and o,. |
Proof of Lemma 3. To keep the notation clear, in the proof
we will refer to P (T') and Py (T) as P’ and P”, respectively.
Let usKﬁrst discuss the case for small times T'. Notice that
ifT < 2%, then 2T« < a% < =1 < ¢ Tn this case, we

have k* = nClo) _ n
- 2¢ 2°

bound on )»f) ' by Weyl’s inequality:

so we can obtain the following upper

N A+ A for i < 2k*,
S M ATy, for i > 2k
For i < 2k*, we have
K:‘D] Afl ] 20w
il - M —(i—1)
xf]gk‘{@tp +A¥<4p

o2min {1, 2Tarf}

w
allyl?

9

where we have used AIIJ ' > Ay since P° is positive definite.
Note that under assumptions (i-ii), AKX =1and @ < 1, there-
fore we do not need the minimum in the second term. For

i > 2k*, we have

Py Oy
)“i )"i—k*+1
~ y
)\'1

- +4p~*=1

P

A

o2min{1,2aTA% ..}
aflyl?

where we have used Eq. (10) and assumption (ii).

+4p7 D,

X

K
For large times T > ;A—‘K, we can choose the splitting point
for Weyl’s inequality to be n/2. We now have

v y v
A AN M A

B Tl | T TR gm0/,
ST T ST
If7T > %, then 2Toc)\lK > 1 foralli > 1, so by Eq. (10)
.
R Do — O‘z}‘zK—n/erl
and
A0 2 1 2
i—n/2+1 Oy (o
N T alP2-ark, ) alyl?
For 28 <1 < 2K "we may still use the split at k* =

2,(K) 2u1,(K) o
n/4 in the above calculation, and take the minimum of the
above two bounds for i > n/2. |
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