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There has been renewed interest in the response properties of disordered ma-

terials in recent years. Understanding the “jamming” of hard or soft particles,

considered as a zero-temperature phase transition, has led to the development

of new techniques in statistical physics. Related phase transitions that occur

in disordered elastic networks may hold the key to understanding the highly

tunable systems frequently seen in biology. To address these problems, we in-

vestigate the scaling properties and extract the universal predictions of a dy-

namical mean-field theory, the coherent potential approximation (CPA), that de-

scribes the phase behavior in inhomogeneous elastic systems quite well (Chap-

ter 2). We make comparisons to measurements of charge density fluctuations

in strange metals, which also show featureless response (Chapter 3). We follow

up on these universal predictions from the CPA by showing the existence and

origin of logarithmic corrections to scaling in two dimensions (Chapter 4). We

also perform simulations of an anisotropically diluted version of the triangu-

lar lattice and analyze the non-mean-field behavior as a crossover between two

distinct universality classes of rigidity transitions as isotropy is broken (Chap-

ter 5). We extract universal scaling functions for Ising models using modern

non-perturbative techniques (Chapter 6). Finally, we comment on the topolog-

ical defects that are possible in the many nematic phases of bent-core liquid

crystals (Chapter 7).
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CHAPTER 1

INTRODUCTION

I have placed a cutoff Λ that separates projects that I will write about from

projects that I will not. Projects that live above Λ include: disorder in Heisen-

berg magnets with Landau-Lifshitz dynamics, coarsening in BKT models, ap-

plications of machine learning to discover energy functionals and predict tem-

perature/discover hidden order, strain stiffening of fiber networks at large

strains, continuous phase separation of biopolymers, and acoustic perturba-

tions of shear thickening suspensions. For projects that live below Λ, see the

Chapters below. As is typical, the projects that live above Λ contribute to my

understanding of the projects below, but I have chosen to integrate them out.

Each chapter has at least two sections. The first sections are devoted to soft

introductions, derivations of necessary formulas, or illustrative examples. The

final section of each chapter is the reformatted full text of a manuscript that

is either published or to be submitted. The appendices associated with each

chapter are generally the appendices associated with the manuscript that is the

final section of that chapter.
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CHAPTER 2

UNIVERSAL SCALING FUNCTIONS FOR VISCOELASTIC MATTER

FROM A DYNAMICAL MEAN-FIELD THEORY

2.1 The coherent potential approximation for random spring

networks

We have been broadly interested in the response properties of disordered net-

works that undergo phase transitions from a rigid state to a floppy state. This

is a phase transition that occurs at zero temperature. It is also a transition that

is detected in the response properties of the network, rather than in the av-

erage configuration of the nodal (translational) degrees of freedom. Suppose

we have an infinite set of nodes organized throughout space. The nodes could

be arranged in a regular pattern or placed randomly with some finite density.

Connect nodes with linear springs to all neighbors that are a distance at most R

away. If enough connections are formed throughout the network, we imagine

that the network would have a linear elastic regime: for any infinitesimal strain

ϵ, the network will relax to produce an elastic energy Cϵ2/2.

We now imagine that we start removing bonds at random. At (ordinary)

percolation, the network falls apart (there is no connected component that can

span edge-to-edge in the infinite system). Here, the network is floppy, since

there is no connected set of bonds that can transmit stress. However, long before

we disconnect the network, the lattice is already floppy in general. Most of

the bonds in the tenuously connected random network do not contribute to

transmitting loads for any given applied strain. Tracking the rigid component
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of the network, there is a location in phase space where the rigid component

is first severed by removing an important bond, so that stress cannot propagate

from edge-to-edge in the infinite system. This point is called rigidity percolation,

and it has been the subject of some intense study over the years [1, 2, 3, 4, 5, 6,

7, 8, 9]. One typical model is the aforementioned bond dilution model: we have

a Hamiltonian H with quenched disorder

H =
1
2

∑
⟨i j⟩

ki j

∣∣∣ui − u j

∣∣∣2 , ki j ∼ p δ
(
ki j − k

)
+ (1 − p) δ

(
ki j

)
. (2.1)

The Latin characters i, j label the nodes in the network. The sum is performed

over the set ⟨i j⟩ of pairs of connected nodes in the network with all bonds (often,

nearest neighbors). The vectors ui are the positions of the nodes in d dimensions.

The stiffness of the spring connecting i to j is ki j, which is a random variable. ki j

is drawn from some distribution; for a typical bond dilution model each ki j = k

with probability p and ki j = 0 with probability 1−p; the bonds are independently

randomly placed. The properties of the model are investigated as a function of

p, the parameter in the probability distribution for ki j that controls the average

number of connections.

To determine average response properties of the network, one draws sam-

ples from the distribution of quenched disorder in the Hamiltonian and then

computes the average physical quantity over the drawn Hamiltonian samples.

One can compute average moduli, average dynamical Green’s functions, aver-

age higher-order correlations, etc. Because this model has a phase transition

in its response at some value 0 < p < 1 for a typical rigid network, the aver-

age response properties will show interesting singularities and lend themselves

well to being described using the usual language of critical phenomena: critical

exponents, scaling functions, etc.
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Interestingly, this model has Newtonian equations of motion that describe its

dynamics unambiguously. Depending on whether the network is submerged in

molasses (giving viscous damping), or whether the springs contribute damping

when nodes are forced together quickly (giving a Galilean-invariant damping),

or whether the network is undamped, one can deterministically compute the

dynamics of the nodes for a given disorder realization under arbitrary forces,

and so one can compute average Green’s functions without additional input.

This leads directly, near the phase transition, to estimates of dynamical criti-

cal exponents z. In thermodynamically controlled critical phenomena, like the

Ising model, one has no dynamical laws a priori. The theory of dynamical criti-

cal phenomena [10] in these cases usually proceeds by assuming one approaches

equilibrium through some overdamped process that depends upon gradients of

the free energy with respect to the order parameter. One then imposes conser-

vation laws, and finds different dynamical critical exponents depending upon

which conservation laws are imposed, leading to the well-known Models A-J.1

We will study one class of these bond dilution models numerically in Chap-

ter 5. We can start by making some estimates of properties of the model by using

an interesting mean-field theory. Let us start with a regular lattice, described by

a dynamical matrix Di j. We are going to estimate the average response proper-

ties of the lattice by replacing the random springs with a new spring kEM which

best captures the response properties of the diluted network. Clearly, kEM ≤ k: as

we dilute the network, the effective value of the connecting springs is reduced

so that the effective network is less stiff. This kind of replacement is usually

called an effective medium theory, since the disordered medium is replaced by a

homogeneous effective medium. We will proceed to find the optimal value of

1Some of these letters don’t have models since some sets of conservation laws were shown
to have the same universal features.
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kEM by requiring the effective medium flex in a similar way under an imposed

load as the average flex of the random network. The procedure described below

closely follows the technique discussed in [1].

First, consider the effective medium network with all bonds equal in

strength to kEM. Single out a pair of nodes that are connected (I will call this

pair ⟨12⟩). Now apply a uniform bulk stress to the network (for instance, a di-

lational stress). The nodes move outward from their equilibrium positions. In

particular, the bond associated with ⟨12⟩ extends by a distance δum.

Next, we replace the bond connecting ⟨12⟩with a single “wrong bond” ki j of

arbitrary strength (eventually, this bond will be averaged over the distribution

of bond disorder that we would like to investigate). We simultaneously apply

a force f to the two nodes to keep the lattice in its original position under the

uniform stress. We have that

f + δumkEM = δumki j =⇒ f = δum

(
ki j − kEM

)
(2.2)

since we have force balance after this procedure. This entire process is illus-

trated in Figure 2.1.

We would like to understand how the lattice flexes under the insertion of a

single wrong bond. We will do this using a superposition principle.

Case 1: if we take the unstressed lattice with the bond connecting ⟨12⟩ re-

placed by ki j, and apply the force f to the two nodes, the lattice will flex, and

the nodes will move apart by some amount δu. If we were to apply the uniform

stress to the rest of the lattice, the nodes ⟨12⟩ will move apart all the way to δum

by definition of f .

Case 2: if one takes the complete effective medium lattice under the uniform
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kEM

1 2 Apply dilational

stress.

kEM

1 2

δum

Simultaneously replace

kEM→kij and apply f.

kEM

kij
1 2

f

Figure 2.1: We take the effective medium lattice (shown as triangular) and place
it under a dilational stress, leading nodes 1 and 2 to separate by δum. Next, we
replace the bond between nodes 1 and 2 with the bond ki j and simultaneously
apply a force f so that none of the nodes move. The relationship between f , δum,
kEM, and ki j is given by Equation 2.2.

stress and replaces the bond connecting ⟨12⟩ with the bond ki j without applying

any other forces, the lattice flexes by δu. This is because applying f across the

bond ki j causes a further displacement δu by the definition of δu given in Case 1

and superposition. These steps are shown in Figure 2.2.

Using the mental picture given by Case 2, δu is the “fluctuation” in the rela-

tive displacement between the nodes that is due to the introduction of a single

“wrong bond” ki j. However, we can compute the relationship between f and δu

using the mental picture given by Case 1. The mean-field-like expression will

be closed by requiring that ⟨δu⟩ = 0, giving an equation for the kEM. This is the

statement that, under an arbitrary load, replacement of any spring in the effec-

tive medium by a random spring drawn from the disorder distribution will on

average not flex the network. This means that the flex of the effective medium

network is doing a good job of approximating the flex of a network with a ran-

dom collection of springs. However, it is still an approximation in that we only

replace a single link with a random bond. Higher-cluster computations have

been performed by others [11]. This approximation is equivalent to the coherent
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Case 1: Case 2:

kEM

1 2

kEM

1 2

Replace

kEM→kij .

Apply dilational

stress.

kEM

1 2kij

kEM

1 2

Apply f.
Replace

kEM→kij .

kEM

1 2

δu

kij

f

1 2kij

kEM

δu

Apply dilational

stress.

kEM

kij
1 2

f

kEM

kij
1 2

f

Apply f.

Figure 2.2: Two orderings of replacing a bond, applying f , and applying the
dilational stress. By a superposition argument, the lattice flex δu is identical in
each case. Case 2 argues that ⟨δu⟩ = 0 is a good condition to use to set the value
of kEM. Case 1 gives a method to compute the relationship between f and δu.
Illustrated here is the situation where ki j > kEM.
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potential approximation, which is used to treat impurity scattering in other prob-

lems with quenched disorder in the Hamiltonian and can be placed on firmer

diagrammatic foundations. It represents a resummation of an infinite subclass

of diagrams with impurity scattering lines which do not cross (called the non-

crossing approximation) [11, 12]. It can also be viewed as the saddle point of

a nonlinear sigma model coming from a replica field theory for heterogeneous

elasticity [13]. In this latter setup, renormalization of the theory can be achieved

to investigate classical wave localization near two dimensions for infinitesimal

disorder, which is a different transition that occurs in these systems.

We need to close our set of mean-field equations. To relate f to δu, we start

with the unstressed effective medium lattice with the bond connecting ⟨12⟩ re-

placed with ki j. Upon applying f across the nodes ⟨12⟩, we can imagine the

forces that arise from the flex to balance f coming from two places: first, there

is a force that comes from a lattice which is entirely regular and comprised of

springs of strength kEM. The effective stiffness of this is kEM/a∗, where a∗ has to

do with the geometry of connections in the unit cell, but the effective spring is

proportional to the only microscopic stiffness kEM. We will compute a∗ exactly

later. Second, there is a correction from removing one of the springs kEM and

adding a spring ki j. This can be thought of as adding another spring, connected

in parallel with the first, with strength ki j − kEM. Hence, the effective stiffness

is kEM/a∗ + ki j − kEM. The philosophy behind this decomposition is shown in

Figure 2.3.

Upon applying the force f , the nodes ⟨12⟩move apart by δu. Hence,

f = δu
(
kEM

a∗
+ ki j − kEM

)
. (2.3)

However, we also have an expression for f from Equation 2.2. Equating these
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kEM

1 2kij =

kEM

1 2

+ 1 2

kij-kEM

force constant

kEM/a
*+kij-kEM

force constant

kEM/a
*

force constant

kij-kEM

Figure 2.3: The decomposition of the lattice perturbed by a single bond into a
regular lattice and a single bond. This decomposition makes it easier to compute
a∗ and hence to find the exact relationship between f and δu.

and solving for δu gives

δu = δum
ki j − kEM

kEM/a∗ + ki j − kEM
. (2.4)

We now treat ki j as a random variable, and set the average ⟨δu⟩ = 0 as discussed

above. The quantity δum depends upon the arbitrary load we placed on the

original lattice but not on ki j, and so it drops out of the expression. We end up

with a closed set of equations for the kEM:〈
ki j − kEM

kEM/a∗ + ki j − kEM

〉
= 0. (2.5)

Now we can compute a∗ using the perfect lattice filled with kEM. I will use

superscripts to refer to node labels and subscripts to refer to indices of tensors

(which when repeated, are contracted). The force on node i is

f i
k = −

∂U
∂ui

k

= −
∑

j

Di j
kℓu

j
ℓ (2.6)

where the dynamical matrix Di j
kℓ is

Di j
kℓ =


−kEMr̂i j

k r̂i j
ℓ , i , j

kEM
∑

m,i r̂im
k r̂im
ℓ , i = j

(2.7)
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and r̂i j is the unit vector pointing from node i to node j. We can use the Fourier

transform to invert these equations, giving

ũk = −D̃−1
kℓ f̃ℓ (2.8)

where the ∼ variables are Fourier transforms of the real-space variables and are

functions of the reciprocal space coordinates qi. The dynamical matrix in Fourier

space is

D̃kℓ =
∑

i j

Di j
kℓe

iqn
(
ri

n−r j
n

)
= kEM

∑
δ̂

(
1 − eiaqnδ̂n

)
δ̂kδ̂ℓ (2.9)

where δ̂ is a unit vector pointing in the direction of one of the connections in

the unit cell and a is the nearest-neighbor separation. We now imagine putting

a force across nodes 1 and 2 of arbitrary magnitude f2. This corresponds to

choosing a force acting on every node i of

f i
k = f2r̂12

k

(
δi1 − δi2

)
. (2.10)

Now we can compute its Fourier transform:

f̃k =
∑

i

f i
keiqnri

n = f2r̂12
k

(
eiqnr1

n − eiqnr2
n
)
. (2.11)

We know that nodes 1 and 2 will separate by some amount δu2 along r̂12. We

can compute this quantity in real space by undoing the Fourier transform and

using the relationship between the displacements and forces in Fourier space:

u2
i − u1

i =
1
N

∑
q

ũie−iqnr2
n −

1
N

∑
q

ũie−iqnr1
n =

1
N

∑
q

(
e−iqnr2

n − e−iqnr1
n
)

ũi

= −
1
N

∑
q

(
e−iqnr2

n − e−iqnr1
n
)

D̃−1
iℓ f̃ℓ

= −
f2

N

∑
q

(
e−iqnr2

n − e−iqnr1
n
) (

eiqmr1
m − eiqmr2

m
)

D̃−1
iℓ r̂12
ℓ

=
f2

N

∑
q

(
2 − eiqn(r2

n−r1
n) − e−iqn(r2

n−r1
n)
)

D̃−1
iℓ r̂12
ℓ

=
f2

N

∑
q

(
2 − eiaqn r̂12

n − e−iaqn r̂12
n
)

D̃−1
iℓ r̂12
ℓ .

(2.12)
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The distance that these nodes have separated is δu2. We define a∗ by f2 =

(kEM/a∗) δu2, or a∗ = (kEM/ f2) δu2. Hence

a∗ =
kEM

f2
δu2 =

kEM

f2
r̂12

i

(
u2

i − u1
i

)
=

kEM

N

∑
q

(
2 − eiaqn r̂12

n − e−iaqn r̂12
n
)

r̂12
i D̃−1

iℓ r̂12
ℓ . (2.13)

Now we use a trick: for the completely randomly diluted lattice, all bonds are

equivalent. We have singled out a bond r̂12 which is only one of the nearest-

neighbor directions in the unit cell. We can replace r̂12 everywhere with δ̂ and

average over the different δ̂ directions.2 With z different nearest neighbors, this

becomes
a∗ =

1
z

1
N

∑
q

kEM

∑
δ̂

(
2 − eiaqnδ̂n − e−iaqnδ̂n

)
δ̂iδ̂ℓD̃−1

iℓ

=
2
z

1
N

∑
q

kEM

∑
δ̂

(
1 − eiaqnδ̂n

)
δ̂iδ̂ℓD̃−1

iℓ

(2.14)

since δ̂ and −δ̂ are equivalent. But now the object inside the sum over wavevec-

tors can be recognized as the Fourier transform of the dynamical matrix, leading

to the stunningly simple expression

a∗ =
2
z

1
N

∑
q

D̃ℓiD̃−1
iℓ =

1
z̃

1
N

∑
q

D̃ℓiD̃−1
iℓ =

d
z̃
, (2.15)

where z̃ = z/2 is the number of bonds per node.

We are interested in a generalization of this argument to finite frequencies.

In nearly all steps, the static force f can be replaced by a sinusoidal force with

frequency ω with no consequence. For instance, the self-consistent expression

for kEM in terms of a∗ remains identical. However, in computing a∗, the relation-

ship between the force and the displacement in Fourier space (Equation 2.8) is

now given by the Green’s function G̃i j =
(
D̃ − Imω2

)−1

i j
rather than directly by the

inverse dynamical matrix itself. Following the same steps in the derivation, the

2In cases where bonds are occupied with different probabilities in different directions, a gen-
eralization is needed. There could be different values of a∗ for different directions, for instance.
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quantity a∗ is then

a∗ =
1
z̃

1
N

∑
q

D̃ℓiG̃iℓ. (2.16)

In an infinite system, we can make the replacement

1
N

∑
q

−→
1

sBZ

∫
BZ

ddq (2.17)

giving

a∗ =
1
z̃

1
sBZ

∫
BZ

ddq D̃ℓiG̃iℓ. (2.18)

which allows us to compute this quantity for a general Bravais lattice at ar-

bitrary frequencies. Note that the dynamical matrix and the Green’s function

are both written in terms of kEM, and so they enter nontrivially into the self-

consistent expression.

To complete the story for the bond dilution model, we can average the quan-

tity in Equation 2.5 over the bimodal distribution of bond disorder where ki j is

k with probability p and 0 with probability 1 − p. This gives〈
ki j − kEM

kEM/a∗ + ki j − kEM

〉
= p

k − kEM

kEM/a∗ + k − kEM
+ (1 − p)

−kEM

kEM/a∗ − kEM
= 0. (2.19)

This can be solved for a∗ to show

p − kEM/k
1 − kEM/k

= a∗ =
1
z̃

1
sBZ

∫
BZ

ddq D̃ℓiG̃iℓ. (2.20)

Let us now locate the phase transition at ω = 0. The self-consistent equation

can be solved exactly for kEM, assuming G̃iℓ can be inverted atω = 0 (so kEM , 0).3

We have

kEM =


k p−d/̃z

1−d/̃z , p > pc ≡ d/̃z

0, p ≤ pc ≡ d/̃z
(2.21)

3We can do this more safely using the finite frequency form of G̃iℓ and then taking ω → 0 to
verify these expressions for kEM.
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so kEM vanishes linearly with p at pc ≡ d/̃z. When the frequency becomes

nonzero, it is possible that the only solution for kEM has an imaginary part. For

the effective medium Green’s function to be analytic in the upper half-plane

(which is necessary for causality), the imaginary part of kEM must be nonpos-

itive. The CPA incorporates the loss of coherence of phonons due to impurity

scattering into an effective dissipation. The full dynamical scaling behavior will

be investigated in the manuscript and Chapter 4. First, it is useful to recall how

universal predictions can be extracted from mean-field theories.

2.2 An instructive example of universal predictions: from

mean-field theory to Landau

Before focusing on the specific example of effective medium theories for disor-

dered elastic systems, which have more nontrivial scaling behavior, it is use-

ful to perform a calculation in the same spirit for a more familiar problem: a

mean-field theory for the Ising model. The Ising model is a simplified model

of a magnet. “Spins,” which can take values si ∈ {−1,+1} (pointing down or

up) are arranged in a particular graph structure. To replicate the paramagnetic-

ferromagnetic transition, one prefers configurations of spins with adjacent spins

pointing in the same direction. The spin states are taken to occur with likelihood

P ({si}) ∝ exp (−βH ({si})) , (2.22)

where H is the Hamiltonian, which maps spin configurations to their energies.

This distribution ensures that lower energy states are preferred. The degree of

preference is controlled by β, the inverse temperature, so that at very “cold”

temperatures β ≫ 1 a typical configuration has very low energy. For an Ising
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model in a uniform field on a lattice with nearest-neighbor interactions, the

Hamiltonian is

H ({si}) = −J
∑
⟨i j⟩

sis j − h
∑

i

si, (2.23)

where the sum
∑
⟨i j⟩ is performed over nearest-neighbor spins, J is the energy

scale of the coupling between adjacent spins, and h is an external field that

gives a preferred direction of spin alignment. To detect the paramagnetic-

ferromagnetic transition that occurs upon lowering the temperature, one tracks

an order parameter

m =
1
N

〈∑
i

si

〉
(2.24)

which gives the average direction of a spin (one can track this value as h → 0+,

for instance, to eliminate the degeneracy between upward and downward

pointing states). An approximate way to detect the phase transition in this

model is through the following mean-field theory: first, we assume that the

average spin has magnitude m. We will then self-consistently compute m by re-

quiring that a spin si, feeling all neighbors of magnitude m (a “mean field”), has

average value m when allowed to fluctuate. The first assumption removes the

interaction of spins in the energy functional:

H = −J
∑
⟨i j⟩

sis j − h
∑

i

si ≈ −
Jz
2

∑
i

sim − h
∑

i

si =
∑

i

−

( Jz
2

m + h
)

si =
∑

i

Heff (si) .

(2.25)

The interacting problem has factorized into a single-site problem. To self-

consistently solve for m, we require that the average value of si is m, where the

energy functional for si is Heff (si):

m = ⟨si⟩ =

∑
si∈{−1,+1} si exp (−βHeff (si))∑

si∈{−1,+1} exp (−βHeff (si))
= tanh

(
β
( Jz

2
m + h

))
. (2.26)

Hence, according to our mean-field theory, the average magnetization per spin
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m as a function of inverse temperature β should be the solution to the self-

consistent equation

m = tanh
(
β
( Jz

2
m + h

))
. (2.27)

How does this tell us that there is a phase transition? The solution set for m

changes as we vary β. This can be seen graphically by plotting each side of the

equation and tracking intersections. Let us restrict ourselves to the case where

h = 0 for now. Intuitively, tanh (x) is an S-shaped curve that crosses through

0 when x = 0, so m = 0 is always a solution. The paramagnetic-ferromagnetic

transition occurs when β is increased sufficiently so that the S-shaped curve of

tanh (x) is steeper near the origin than x, since it then intersects the line y = x

at three locations: 0, and two other places symmetric about the origin. Because

tanh (x) ≈ x− x3/3+ . . . , the slope of our function near the origin is simply βJz/2.

Hence, the transition occurs at

βcJz
2
= 1 =⇒ βc =

2
Jz
=⇒ kBTc =

Jz
2
. (2.28)

There are some obvious trends that the mean-field theory does seem to cap-

ture: the critical temperature increases if we increase the energy scale of spin-

spin interactions J or the number of neighbors z. However, we do not expect the

mean-field theory to be quantitatively accurate, since we ignore the fluctuations

of the spins that spin si interacts with. Indeed, this mean-field theory completely

misses the fact that the Ising model has no transition at finite temperature in 1

spatial dimension. It is also quantitatively wrong about the location of the transi-

tion for the square lattice Ising model: past the first step in the derivation of the

mean-field theory, there is essentially no reference to the connectivity properties

or loop structure of the lattice on which the spins live.
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The mean-field theory does, however, make some predictions about the

phase transition that are accurate in high enough spatial dimensions (so that

the fluctuations that were ignored do not modify the critical properties). These

are the universal predictions of the model, and they include critical exponents

(power laws with which certain parameters diverge or go to zero) and shapes

of scaling functions. These predictions are broadly insensitive to the specifics

of the model being studied, and allow phase transitions to be sorted into “uni-

versality classes” which share critical exponents and scaling functions. The ma-

chinery of the renormalization group seeks to explain the empirical observation

of universality. For now, we will use this extremely simple mean-field theory

for the Ising model to extract universal predictions: the critical exponents and

scaling function associated with the magnetization.

We know from our graphical analysis of the self-consistent equation for m

when h = 0 that m vanishes continuously as T → T−c . We expect that

m ∼
(
Tc − T

Tc

)β
≡ (−t)β , (2.29)

where β is a critical exponent (not to be confused with the inverse temperature).

To extract this critical exponent, we first set h = 0 in the self-consistent equation

and then rewrite the equation in terms of Tc and t:

m = tanh
(

Jz
2kBT

m
)
= tanh

(
Jz

2 (kBT − kBTc + kBTc)
m
)
= tanh

(
Jzm

2kBTc

1
1 + (T/Tc − 1)

)
(2.30)

or, using the expression for kBTc and t,

m = tanh
( m
1 + t

)
. (2.31)

Close to the transition, m and t are both small, so the argument of tanh (x) is
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small. We can then expand tanh (x) to cubic order:

m ≈
m

1 + t
−

1
3

( m
1 + t

)3
=⇒

1
3

( m
1 + t

)2
≈ −t. (2.32)

Taking the square root and dropping terms higher-order in t gives

m ∼ ±
√

3 (−t)1/2 , (2.33)

so that the mean-field prediction is that β = 1/2. When multiple variables are

relevant near a critical point, such as t and h, we expect from renormalization

group arguments that the magnetization should behave as

m/m0 ∼ (−t)βM±

(
h/h0

|t|βδ

)
, (2.34)

where δ is another critical exponent andM± (x) is a universal scaling function that

all transitions in the same universality class share. Here the two branches are for

t > 0 and t < 0, respectively. By using the mean-field theory for the Ising model,

we can extract the mean-field prediction for both δ and the shape of M± (x).

Before we begin this exercise, we know the situation close to the critical point

when h = 0. We can define an invariant scaling combination formed between the

magnetization m and the temperature t as

M ≡
m/
√

3
|t|1/2

. (2.35)

The
√

3 represents a non-universal amplitude of the magnetization. Then from

the above analysis, we know that M = ±1 when t < 0 and M = 0 when t > 0.

This tells us that

M+ (0) = 0, M− (0) = ±1. (2.36)

More precisely, we will see that

lim
x→0±
M− (x) = ±1. (2.37)
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This is simply the statement that the magnetization is not continuous across

the line h = 0 when t < 0 since there are two equally satisfactory values of m

which can be approached by taking the external field to 0 coming from above

or below. We can solve for the exponent δ and the shape of the scaling function

M± (x) using the self-consistent equation leaving h arbitrary. First, I rewrite the

self-consistent equation in terms of t, m, and h/h1 ≡ h/kBTc:

m = tanh
(

1
1 + t

(
m +

h
h1

))
. (2.38)

We will write a scaling solution when all of m, t, and h/h1 are small, so that

we are close to the t = 0, h = 0 critical point where m vanishes continuously. This

again justifies our expansion of tanh (x) for small values of its argument. Let us

perform this expansion in a more principled way. Using the expected form of

the scaling function, we can write

M ≡
m/
√

3
|t|1/2

=⇒ m =
√

3M |t|1/2 , H ≡
h/

(
h1
√

3
)

|t|βδ
=⇒ h/h1 =

√
3H |t|βδ , (2.39)

replacing m and h/h1 with their scaling forms M and H before performing a

principled expansion in small t (the extra factor of
√

3 in the invariant scaling

combination H is chosen for later convenience). If the scaling is chosen cor-

rectly, then the self-consistent equation will reduce in the limit t → 0 to a simple

formula involving only the invariant scaling combinations M and H. We first

have
√

3M |t|1/2 = tanh
(

1
1 + t

(√
3M |t|1/2 +

√
3H |t|βδ

))
. (2.40)

We now fix M and H while sending t → 0:

√
3M |t|1/2 ≈

1
1 + t

(√
3M |t|1/2 +

√
3H |t|βδ

)
−

1
3

(
1

1 + t

(√
3M |t|1/2 +

√
3H |t|βδ

))3

.

(2.41)
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Now multiply each side by 1 + t, and subtract the common terms
√

3M |t|1/2 that

appear on each side:

√
3M |t|1/2 +

√
3Mt |t|1/2 ≈

√
3M |t|1/2 +

√
3H |t|βδ −

1
3

(
1

1 + t

)2 (√
3M |t|1/2 +

√
3H |t|βδ

)3

(2.42)
√

3Mt |t|1/2 ≈
√

3H |t|βδ −
1
3

(
1

1 + t

)2 (√
3M |t|1/2 +

√
3H |t|βδ

)3
(2.43)

Now we require some asymptotic analysis to self-consistently determine the

proper value for the unknown exponent βδ. As t → 0, the LHS ∼ t3/2. For a

nontrivial scaling limit, then, the RHS must also ∼ t3/2. Expanding the terms on

the RHS, we have terms that scale like tβδ, t3/2, t1+βδ, t1/2+2βδ, t3βδ, and higher-order

powers of t coming from both the expansion of (1 + t)−1 and further terms in the

power series of tanh (x) that we have already ignored. For a nontrivial scaling

limit, then, we must have βδ = 3/2, so that the leading-order term involving H

scales with the same exponent as the leading-order terms involving M. If we

choose βδ < 3/2, then the leading-order term involving H vanishes more slowly

than every other term and the self-consistent equation is the trivial H = 0 (this

indicates that the improper invariant scaling combination was chosen). If βδ >

3/2, then all terms involving H enter as corrections to scaling and we recover

the analysis performed when we set h = 0 (this also indicates that the improper

invariant scaling combination was chosen). Choosing the only nontrivial option

βδ = 3/2 and then sending t → 0 gives

√
3Mt |t|1/2 ≈

√
3H |t|3/2 −

√
3M3 |t|3/2 (2.44)

or, dividing by
√

3 |t|3/2,

M3 ± M − H = 0. (2.45)

This is an implicit definition of a scaling function M± (H). Since β = 1/2, we

conclude that the mean-field prediction is that δ = 3.
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Is it possible that the predictions of the mean-field theory are exactly correct?

Certainly not. The mean-field theory purports to describe the magnetization

everywhere as a function of temperature and external field. But the mean-field

equation we derived depends on the structure of the lattice only through the

coordination number z, while geometric effects (longer-ranged interactions in-

duced by chains of nearest-neighbor interactions, closed loops on the lattice) are

certainly important for an exact description of the phase behavior.

Is it possible that these predictions for the values of the critical exponents

and the shape of the scaling function are true asymptotically close to the transi-

tion? This is more likely to be true. This simplified model of a phase transition

replicates the transition from a paramagnetic to a ferromagnetic phase through

a pitchfork bifurcation. The most generic possible pitchfork bifurcation will give

an exponent β = 1/2. This can be seen through the fact that we only needed to

expand tanh (x) to cubic order, and all symmetric functions undergoing a bifur-

cation of this form have similar expansions. To lend credibility to this assertion,

let us consider an even further simplified Landau theory for the magnetization,

ignoring all spatial fluctuations in m:

F (m) = f0 + am2 + gm4 − hm, (2.46)

where F is the free energy, h is the external field coupling linearly to m in the

free energy, and a changes sign as T passes through Tc to drive the transition at

h = 0. Near Tc, the most generic form of a is an analytic function of T , and so

a ∼ a0 (T − Tc) with a0 > 0. The equilibrium value of the magnetization is found

through minimization of F (m) with respect to m:

dF
dm
= 0 = 2am + 4gm3 − h ∼ 2a0 (T − Tc) m + 4gm3 − h. (2.47)
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When h = 0, we can write

2a0 (T − Tc) m + 4gm3 = 0 =⇒ m3 ∼
a0

2g
(Tc − T ) m. (2.48)

When T > Tc, m = 0 is the only real solution. When T < Tc there are three real

solutions, but only the nonzero solutions sit in the minima of the free energy.

This leads, for T < Tc, to

m ∼ ±

√
a0Tc

2g
(−t)1/2 (2.49)

and so the Landau theory agrees with the mean-field prediction of β = 1/2. We

can now repeat the same procedure as above to determine the Landau theory’s

prediction for δ and the shape of the universal scaling function: we define

M ≡

√
2g

a0Tc

m

|t|1/2
=⇒ m =

√
a0Tc

2g
M |t|1/2 , H ≡

h/h0

|t|βδ
=⇒ h = h0H |t|βδ (2.50)

with h0 a non-universal quantity to be set for convenience and βδ a universal

quantity to be determined. Inserting these into the self-consistent equation from

the Landau theory gives

2a0Tct

√
a0Tc

2g
M |t|1/2 + 4g

(
a0Tc

2g

)3/2

M3 |t|3/2 − h0H |t|βδ = 0. (2.51)

The prefactors of the first two terms simplify to the same combination of param-

eters: √
2
g

(a0Tc)3/2 Mt |t|1/2 +

√
2
g

(a0Tc)3/2 M3 |t|3/2 − h0H |t|βδ = 0. (2.52)

The equation is greatly simplified if we choose

h0 ≡

√
2
g

(a0Tc)3/2 . (2.53)

Then there are three terms. The first two scale as ∼ t3/2, while the last scales as tβδ.

For a nontrivial scaling limit, then, we choose βδ = 3/2, and so the Landau the-

ory also agrees with the mean-field value of δ = 3. Furthermore, simplification
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of this expression then leads to the self-consistent relation

M3 ± M − H = 0, (2.54)

which is an implicit definition of a universal scaling functionM± (H): the same

function as the one that was found through an asymptotic expansion of the

mean-field theory. This is a sort of “universality” of mean-field theories, more

trivial than the concept of universality classes in more complex theories of criti-

cal phenomena.

The mean-field theory and the Landau theory predict the same critical expo-

nents and shapes of scaling functions close to the transition; it is in this sense

that these aspects of the theories are “universal:” even if we do not have a per-

fect theory for the phases, there are predictions that reasonably similar models

will share. These predictions are robust to a large class of “irrelevant” changes to

the models: for instance, one could imagine an Ising model with next-nearest-

neighbor interactions. A simplified model of this transition would likely in-

corporate the additional interactions into a downward renormalization of the

nonuniversal critical temperature, Tc, but aspects of the transition dealing with

the pitchfork bifurcation, such as the values for critical exponents and shapes of

scaling functions asymptotically close to the transition, would remain the same.

The mean-field theory and the Landau theory only make accurate universal

predictions in some cases. For the Ising model, the critical exponents associated

with the transition are mean-field-like in d ≥ 4, but take other values in lower

dimensions. This discrepancy is attributed to the effects of fluctuations that are

ignored in treating the transition using a single-site problem. In high numbers

of spatial dimensions, these fluctuations are unimportant for the predictions of

universal features like critical exponents, but below an upper critical dimension
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the critical exponents themselves are modified from the values given by mean-

field theories, and more sophisticated techniques to keep track of interactions

are necessary (see Chapter 6).

It is with this philosophy that we approach the analysis of an approximate

theory for a rigidity transition that occurs in randomly diluted elastic networks.

The self-consistent equations that come from the theory in this case determine

the best values for homogeneous elastic constants in the disordered medium.

Past work on these models focuses on their success in describing the phase be-

havior deep into the elastic phase and also in the prediction of the location of the

rigidity transition. Others have done detailed simulations close to the transition

in diluted elastic networks, finding non-mean-field critical exponents. We seek

to identify the universal predictions of this model: critical exponents, shapes

of scaling functions, etc. In this case, the model makes many more predictions

than the Landau theory for the Ising model: all of linear response of disordered

elastic solids can be determined from the Green’s function of the theory.

In the following manuscript, I assisted in the derivations of scaling functions

and in the numerical verifications of the scaling forms. Additionally, I generated

many of the figures that appear, including the RegionPlots for the asymptotic

behavior of the response functions. Danilo Liarte and Jim Sethna had the idea

to extract universal predictions for response functions close to a jamming tran-

sition following Danilo’s earlier postdoctoral work [2]. Eric Schwen and Itai Co-

hen brought valuable comments on experimental realizations of such systems,

and Debanjan Chowdhury was important in technical discussions of response

functions and later extensions of this framework to understand electronic den-

sity response in strange metals (Chapter 3).
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2.3 Universal scaling for disordered viscoelastic matter near

the onset of rigidity

This is a reformatted version of a manuscript appearing on the arXiv as “Universal

scaling for disordered viscoelastic matter near the onset of rigidity,” which was later

edited and published as Phys. Rev. E 106, L052601 (2022) under the same title [9].

2.3.1 Abstract

The onset of rigidity in interacting liquids, as they undergo a transition to a dis-

ordered solid, is associated with a rearrangement of the low-frequency vibra-

tional spectrum. In this letter, we derive scaling forms for the singular dynami-

cal response of disordered viscoelastic networks near both jamming and rigidity

percolation. Using effective-medium theory, we extract critical exponents, in-

variant scaling combinations and analytical formulas for universal scaling func-

tions near these transitions. Our scaling forms describe the behavior in space

and time near the various onsets of rigidity, for rigid and floppy phases and the

crossover region, including diverging length and time scales at the transitions.

2.3.2 Main text

Jamming [14] and Rigidity Percolation (RP) [15] provide suitable frameworks

to characterize the fascinating invariant scaling behavior exhibited by several

classes of disordered viscoelastic materials near the onset of rigidity [16]. Both

are often described by elastic networks near the Maxwell limit of mechanical
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stability [17], and represent transitions from a rigid phase to a floppy one when

the average coordination number z falls below the isostatic value zc. RP appears

in network glasses [18], fiber networks [19, 5] and soft colloidal gels [20], and is

described in terms of networks in which bonds are randomly removed; the bulk

modulus vanishes 4 at the transition [1, 22, 23]. Jamming is also a ubiquitous

phenomenon arising in systems ranging from amorphous solids and glasses [24]

to cell tissues [25] and deep learning [26]. Jamming is commonly described in

terms of sphere packings that possess a finite bulk modulus B > 0 at the tran-

sition. Recently, it was shown that jamming can be described as a multi-critical

point that terminates a line of continuous transitions associated with rigidity

percolation and that there is a deep connection between the universal scaling

forms for both transitions [2]. Determining explicit formulas for the suscepti-

bilities and space-time correlations has been challenging, however, since there

is a scarcity both of comprehensive numerical data and of analytic models for

these transitions (with the exception of jamming in high dimensions [27, 28, 29]).

Here, we leverage the analytically-tractable effective-medium theory (EMT) of

Ref. [2] to fill this gap and extract explicit equations for these universal forms.

At jamming [14], two-dimensional disk packings form a disordered contact

network [blue lines in Fig. 2.4(a)] that supports compression but not shear. Mim-

icking compression by randomly adding next-nearest neighbor bonds between

disks [red N-bonds in Fig. 2.4(a)] and/or randomly removing B-bonds can lead

to either jamming or RP depending on the population for each type of bond [2].

4Different types of lattices do not appear to have the same universal RP behavior. For instance,
isotropic periodic Maxwell lattices (in which z = zc = 2D where D is the dimension) can have
B,G > 0 (as in the kagome lattice), where G is the shear modulus, or B = 0 and G > 0 (as in
the twisted-kagome lattice, see e.g. [21]), which suggests that these lattices do not belong to the
same RP universality class. However, if these lattices have extra bonds so that z > 2D, arbitrary
protocols to randomly dilute these networks without specifically targeting particular bonds will
lead to a continuous transition for both B and G.
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A simpler model that yields the same scaling behavior consists of randomly

placing ‘B’ and ‘N’-bonds between nearest and next-nearest neighbor pairs of

sites [blue and red solid lines in Fig. 2.4(b)] of a periodic honeycomb lattice. This

network describes a diluted version of a 3-sub-lattice system consisting of a hon-

eycomb lattice [shaded blue in Fig. 2.4(b)] and two triangular lattices (shaded

red; here we show only the bonds of one triangular lattice). Detailed knowledge

of the mechanical behavior of periodic lattices allowed the development of an

EMT at finite dimension 5 for jamming [2] and for the crossover from jamming

to RP, valid in both rigid and floppy states. We will employ these results to de-

rive explicit solutions for the critical scaling of the susceptibilities of disordered

viscoelastic matter near jamming and RP. Our analysis not only allows for quick

assessment of scale-invariant behavior of quantities such as viscosities and cor-

relations (without the need for computationally-expensive simulations); it also

serves as an example of how one may analyze rigidity transitions for which the

universality class has not been determined.

Figure 2.4(c) shows the phase diagram of the honeycomb-triangular lattice

(HTL) model in terms of occupation probability of nearest neighbor B bonds and

next-nearest neighbor N bonds. Rigid (yellow) and floppy regions are separated

by an RP line that terminates in a multicritical jamming point J (red disk). From

Fig. 2.4(c), one can also extract definitions for the scaling variables δpB and δp,

chosen so that δp = 0 at RP, and δpB is also zero at jamming.

RP should generically be codimension one, because only one constraint (iso-

staticity) needs to be satisfied. In the HTL model of Fig. 2.4(b), jamming is codi-

mension two. But the jump in bulk modulus characteristic of jamming here

5See also Refs. [30, 31] for calculations in finite dimension based on the nonaffine response
of amorphous solids.
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Figure 2.4: (a) Jammed disk packing, underlying contact network (B-bonds in
blue) and randomly added next-nearest neighbor N-bonds (red). (b) HTL model
with nearest and next-nearest neighbor bonds (solid blue and red lines) con-
necting sites of a honeycomb lattice. Faint blue and red lines show underlying
honeycomb and triangular lattices, respectively. (c) Phase diagram of the HTL
model in terms of occupation probabilities for B and N-bonds. The yellow re-
gion corresponds to the rigid state, and is separated from the floppy state by an
RP line ending at a jamming point J (red disk). (d) Conjecture for a crossover
flow diagram projected into δp× δpB space. J (red disk) and RP (black disk) rep-
resent fixed points of a putative renormalization-group scheme. The blue, black
and gray lines represent the unstable manifold, the critical line and a sample
trajectory, respectively.
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demands a complete honeycomb lattice; one can see that if the three orienta-

tions of hexagon bonds were independently populated, the jamming transition

would be codimension four (their three probabilities set to one plus isostatic-

ity). This special tuning of the system to favor the bulk modulus is echoed in

the jamming of frictionless spheres, where the first state of self stress [32] leads

to a jump in the bulk modulus because the conjugate degree of freedom (a uni-

form compression) was used to tune the system to the rigidity transition. As

evidence for this, shear jamming of frictionless spheres has a jump in a single

anisotropic modulus [33].

We conjecture that there is a class of disordered elastic systems for which a

renormalization-group scheme leads to the typical crossover flow diagram [34]

(projected in δp × δpB space) illustrated in Fig. 2.4(d). The scaling variable

δp ∝ ∆z ≡ z − zc must be relevant for both jamming and RP, but the deple-

tion probability of the B-lattice δpB is relevant only for jamming. This behavior

is captured by the direction of the arrows coming in and out of the putative

jamming and RP fixed points (red and black disks, respectively) in Fig. 2.4(d).

A system near the J fixed point (δpB, |δp| ≪ 1) will be controlled either by J if a

crossover variable δpB/|δp|φ ≪ 1 for some exponent φ, or by RP if δpB/|δp|φ ≫ 1,

i.e. for trajectories such as the gray line passing sufficiently close to the critical

line (black solid line.) Though δpB does not have a direct interpretation in the

jamming of sphere packings [except for the network model of Fig. 2.4(a)], there

might be variables that play a similar role, such as attractive interactions in soft

gels [35].

We now introduce a scaling ansatz for the longitudinal response func-
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tion [36] near jamming:

χL

χ0
≈ |δp|−γL

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (2.55)

where q is the wavevector, ω is the frequency, γ, ν, z and φ are critical expo-

nents for the susceptibility, correlation length, correlation time, and crossover

behavior, respectively [34, 37], and L is a universal scaling function. The con-

stants χ0, q0, ω0 and δ0 are nonuniversal scaling factors. Many other properties

can be derived from L (Table 2.2). Such space-time susceptibilities, and the cor-

responding structure and correlation functions, are the fundamental linear re-

sponse quantities for materials. They have been well studied in glassy systems,

but have hitherto not been a focus in the study of jamming or RP. Baumgarten

et al. [38] and Hexner et al. [39] have studied the static response of frictionless

jammed spheres to a sinusoidal perturbation; they find diverging length scales

that are different from the ones presented here. Because our system is on a reg-

ular lattice, and particularly because our analysis replaces the disordered lattice

with a uniform one, it is natural for us to fill this gap.

Our approach goes beyond previous work [40] in two aspects. First, rather

than starting with an ansatz for the free energy in terms of the excess contact

number ∆z, excess packing fraction ∆ϕ, shear stress ϵ and system size N, we

consider the longitudinal response in terms of δp, q, ω and δpB. Our variable δp

is proportional to ∆z. Though we do not consider an explicit dependence of χL

on ϵ or ∆ϕ 6, we can extract equivalent expressions for moduli and correlations

from the dependence of χL on q. Importantly, the inclusion of ω in our analysis

allows us to predict dynamical properties such as viscosities.

6Note that δp does not change with lattice deformation for our system. This contrasts with
the case of compressed disks in which ∆z can vary with ∆ϕ. We assume fixed (quenched) disor-
der in our model.
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Second, we use EMT [2] to derive and validate both the universal exponents

and the universal scaling functions (L), for both jamming and RP. This form

of EMT is based on the coherent-potential approximation [41, 1] (CPA), and

is known to reproduce well results obtained from simulations of randomly-

diluted lattices with two-body 7 harmonic interactions [42, 21], even for un-

damped [22, 2] and overdamped dynamics [43, 44]. Although the CPA involves

mean-field-like uncontrolled approximations, it preserves the topology of the

original lattices — an essential ingredient that ultimately allows one to describe

jamming. Here we focus on the longitudinal response, since the full response

of isotropic elastic systems can be decomposed into longitudinal and transverse

components, and the latter has the same scaling form near both jamming and

RP as the longitudinal response near RP; see [45].

We use the long wavelength limit of the longitudinal response χL along with

EMT results from Ref. [2] to derive critical exponents (see Table A.1) and the

universal scaling function L in Eq. (A.17) (see [45]),

L(u, v,w) =

 u2

1 + w/
(√

1 − ṽ(v) ± 1
) − ṽ(v)


−1

, (2.56)

where ṽ(v) = v2 and i v for undamped and overdamped dynamics, respectively,

and the plus and minus signs correspond to solutions in the elastic and floppy

states, respectively. Equation (2.56) embodies the central results of this pa-

per. From Eqs. (A.17) and (2.56), we will extract the universal behavior of the

elastic moduli, viscosities as well as the density response and correlation func-

tions (dynamic structure factor). Though it is not certain that these functions

are as universal as critical exponents, recent simulations of compressed hyper-

spheres [46] indicate that critical amplitudes calculated using mean-field mod-
7A more sophisticated version of EMT is needed to reproduce the scaling behavior of

randomly-diluted lattices with three-body forces such as bending [23].
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γ z ν φ βB γB

Jamming 2 1 (2) 1 1 0 1 (2)
Rigidity Percolation 2 2 (4) 1/2 - 1 0 (1)

Table 2.1: Critical exponents for the longitudinal susceptibility (γ), correlation
length (ν), correlation time (z) and crossover behavior (φ) near jamming and
RP for undamped and overdamped (between parentheses if different from un-
damped) dynamics. The exponents βB and γB can be derived from γ, ν and z
(see Table 2.2), and describe power-law singularities for the bulk modulus and
viscosity, respectively.

els at infinite dimension are preserved for low-dimensional jammed packings.

For |δp| ≪ δpB [w ≫ 1 in Eq. (2.56)], our model exhibits RP criticality: δpB

becomes an irrelevant variable, and L(u, v,w)→ L̄(u, v), with

L̄(u, v) =
[
u2

( √
1 − ṽ(v) ± 1

)
− ṽ(v)

]−1
. (2.57)

Here the change in L is accompanied by a change in the critical exponents ν

and z (see Table A.1). Note that the exponent zν depends only on the type of

dynamics, but the exponent ν equals 1 and 1/2 for jamming and RP, respectively.

Our formulation of Eqs. (A.17-A.22) represents a deliberate effort to empha-

size model-independent (universal) features. Note e.g. that our model defini-

tion of the non-universal scaling factor q0 is different for jamming and RP; the

latter involves a term that increases as one moves away from the jamming mul-

ticritical point. Besides, our formulation allows for the suitable incorporation of

analytic corrections to scaling [47, 48, 34, 49], which can be added in a case-by-

case basis. In general, we expect these corrections to appear through the intro-

duction of nonlinear scaling fields, uq(q, ω, δJ) = q/q0+. . . , uω(q, ω, δJ) = ω/ω0+. . . ,

uJ(q, ω, δJ) = δJ/δ0 + . . . , which would replace q/q0, ω/ω0 and δJ/δ0 in Eq. (A.17).

Here the dots represent higher-order terms and perhaps linear terms in the other
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variables (rotating the axes). These nonlinear scaling fields can be viewed as the

difference between the lab parameters and Nature’s natural variables, or as the

coordinate transformation removing the (hypothetical) nonlinear terms in the

renormalization group to their hyperbolic normal form [49]. In order to use our

scaling predictions to describe behavior far from the critical point, one must first

determine the appropriate scaling fields uq, uω and uJ for the particular system.

Equation (A.17) implies that solutions for |δp|γχL as a function of one of the

three invariant scaling combinations (the other two kept constant) should lie on

the curves given by Eqs. (2.56) and (A.22), respectively. Hence, plots for dif-

ferent values of |δp| should collapse for several paths approaching jamming or

RP. Figure A.3 shows an example of a scaling collapse plot of the rescaled lon-

gitudinal response as a function of rescaled frequency for overdamped dynam-

ics at fixed q/|δp|ν and δJ/|δp|φ, and for paths approaching jamming (first row)

and RP (second row) from both the rigid and floppy phases (see inset in each

panel). Real parts are in blue; imaginary (dissipative) parts in red. The solid

and dashed curves are the asymptotic universal scaling predictions [Eqs. (2.56)

and (A.22)] at two different values of the wavevector scaling variable q/|δp|ν. Al-

though there are model-specific predictions for the nonuniversal scaling factors,

we choose them to best fit the collapsed data.

The collapses of Fig. A.3 not only validate our universal scaling forms; they

indicate an interesting crossover to a regime dominated by dissipation (the

imaginary part of χL in red) as the frequency increases. Note that the real part

L′(v) plateaus and the imaginary part L′′(v) (the dissipation) vanishes at low

frequency v. At high frequency, both L′ and L′′ decay to zero, but L′ decays

faster than L′′, except in the limit of very large u and v, where both L′ and L′′
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Figure 2.5: Scaling collapse plots showing the universal behavior of the longi-
tudinal response as a function of rescaled frequency near jamming (first row)
and RP (second row), for overdamped dynamics. Blue disks and red trian-
gles are full solutions of the EMT equations for the real and imaginary parts
of |δp|γχL/χ0, respectively. Solid and dashed curves are the universal scaling
predictions of Eqs. (2.56) and (A.22). We consider points approaching jam-
ming and RP along the paths indicated in the inset graphs of each panel. We
use q/|δp|ν = 0.1 (closed symbols) and 1 (open symbols) in all panels, and
δpB/|δp|φ equal to

√
5/4 from the rigid side (a), and equal to 2 from the floppy

side (b). Full solutions run at |δp| = 10−2, 10−3, and 10−4 for RP and a range
|δp| ∈ [5× 10−2, 5× 10−6] for jamming show convergence to our universal asymp-
totic predictions.
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decay as v−1/2. Hence, there is a frequency ω in which L′ ∼ L′′, and above which

the response is dominated by the dissipative imaginary part. From Eq. (2.56),

we find that ω ∼ D∗q2 in this regime, leading to the definition of an effective

diffusion constant D∗ ∼ |δp|(z−2)ν. Using the exponents shown in Table A.1, we

find that D∗ ∼ O(1) and ∼ |δp| for jamming and RP, respectively. In terms of

rescaled variables, this crossover happens at v ∼ u2 for both transitions. In the

liquid phase [(b) and (d)], L′ behaves as in the elastic phase, but L′′ diverges

rather than vanishing at low v due to the predominant viscous response of the

fluid state.

Equations (2.56) and (A.22) also imply that our universal functions for the

longitudinal response L(u, v,w) and L̄(u, v) generally behave as uαvβ with the

exponents α and β depending on the region in the u (rescaled wavector) ×

v (rescaled frequency) plane. To illustrate and map this global behavior, we

show in Fig. A.4 the power-law regions for which L(u, v,w) ∝ uαvβ and L̄(u, v) ∝

uαvβ, with (α, β) very close to their asymptotic values. The first and second rows

correspond to our scaling forms for jamming and RP, respectively. To generate

each panel, we numerically calculate the exponents using fα ≡ ∂ logL/∂ log u

and fβ ≡ ∂ logL/∂ log v for jamming and similar formulas for RP. We then plot

the regions in which | fα − α| < 0.1 and | fβ − β| < 0.1, for several values of α and β.

Figure A.4 offers a vivid pictorial view allowing an easier assessment of the

global behavior associated with our universal forms for jamming and rigid per-

colation. By comparing the two rows, notice how the change in universality

class is also reflected in the behavior of the universal scaling functions. For

instance, although jamming and RP exhibit similar qualitative features for the
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Figure 2.6: Overdamped asymptotic exponents for universal longitudinal re-
sponse. Diagram in the u (rescaled wavevector) ×v (rescaled frequency) plane,
showing regions of distinct power-law behavior of the jamming (first row) and
RP (second row) universal scaling functions for overdamped dynamics in both
the rigid and floppy phases. The first and second (third and fourth) columns
correspond to the real (imaginary) parts of L and L̄. We use w = 1 for jamming.

imaginary part [(c), (d), (g) and (h)], RP shows additional regimes for the real

part, which do not appear in jamming [compare e.g. (a) and (e) or (b) and (f)].

In the Supplementary Material, we present results for undamped dynam-

ics that are analogous to Figs. A.3 and A.4 in this letter. The full solutions of

our effective-medium theory equations also converge to our universal scaling

functions, except in the limit of very low frequencies. In fact, the asymptotic

solutions derived in [2] do not capture the small but nonzero imaginary parts

of the effective spring constants at frequencies smaller than ∼ ω∗ (the charac-

teristic crossover to isostaticity) when there is no damping. This feature has

important consequences for energy dissipation in systems believed to exhibit

behavior related to RP. The corrections to scaling appear as singular perturba-

tions to the self-consistency equations and vanish as powers of |δp| in dimen-
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Y y Y

B βB ≡ γ − 2ν B = (∂L−1/∂u)/(2 u)
ζ −γB ≡ γ − (2 + z)ν Z = (1/v) Im [B]
Π 2ν − γ P = u2L

S (2 + z)ν − γ S = (1/v) Im[P]

Table 2.2: Critical exponent y and universal scaling function Y describing the
singular behavior of the bulk modulus B and viscosity ζ, density response Π
and correlation function S , according to Eq. (A.35).

sions larger than three. Moreover, the scaling variables contain logarithms in

two dimensions. This analysis is beyond the scope of the present work, and will

be presented in a separate manuscript.

Equations (A.17) and (2.56) determine the scaling behavior of several quan-

tities characterized by the general form,

Y
Y0
= |δp|yY

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (2.58)

where in Table 2.2 we present explicit expressions for the exponent y and univer-

sal function Y describing the bulk modulus (B), viscosity (ζ), density response

(Π) and correlation function (S ). The behavior near RP is obtained by replacing

Y and L in the third column of Table 2.2 by Ȳ and L̄ (now functions of u and

v only), respectively, along with appropriate changes for the exponents (see Ta-

ble A.1). The scaling behavior of the shear modulus and viscosity near jamming

and RP is the same as that of B and ζ, respectively, near RP.

To illustrate the broad applicability of our scaling forms, we discuss our re-

sults for the density-density correlation — the structure function for isotropic

fluids at q , 0. Figure 2.7(a) shows a 3D plot of the universal function S̄(u, v)

(see Table 2.2) for undamped fluids near RP.

At fixed u, S̄(u, v) has a maximum (blue dashed line) at v = v∗ ≈ O(1) [i.e.
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Figure 2.7: (a) 3D plot of the universal scaling function for the correlation func-
tion S̄(u, v), for undamped fluids near RP. The blue dashed line corresponds to
the rescaled frequency v∗ (the boson peak) at which S̄(u, v) is maximum for fixed
rescaled wavevector u. (b) u × v diagram showing the boson peak (blue dashed
line) and power-law regions for which S(u, v) ∝ uαvβ, with (α, β) close to their
asymptotic values (0,−2) (red) and (4,−4) (yellow). In the blue region the con-
dition S̄(u, v) > S̄(u, v∗)/2 is satisfied.

ω∗ ∝ δp] (see [9]), which coincides with the crossover from Debye to isostatic be-

havior, interpreted as the paradigmatic boson peak [50, 51, 52, 53] of glasses [54].

Near jamming or RP, this point marks the onset of the enhancement of the pop-

ulation of low-energy modes [55] leading to a flat density of states at low fre-

quency [55, 2]. At fixed v, S̄ plateaus at a value of u of O(1) (i.e. at q ∝ |δp|1/2).

Our explicit formulas also provide a simple tool to map the global behavior of

many quantities of interest. For example, Fig. 2.7(b) shows a diagram in terms

of rescaled wavevector u and frequency v marking the boson peak (blue-dashed

line) and regions where S̄(u, v) exhibits power-law behavior. The blue region

indicates the neighborhood of the boson peak, in which S̄(u, v) > S̄(u, v∗)/2, and

the red and yellow regions show power-law regimes in u and v.

Near jamming, the two-time density-density correlation function S nn(r−r′, t−

37



t′) in real space is given by,

S nn(r, r′, t, t′)/S 0

≈ |δp|(2+D)ν−γS

(
(r − r′)/ℓ0
|δp|−ν

,
(t − t′)/t0

|δp|−zν ,
δpB/δ0

|δp|φ

)
, (2.59)

where ℓ0 and t0 are nonuniversal scaling factors, and

S(ρ, s,w) =
∫

du dv ei(u·ρ−vs) ImP(u, v,w)
v

, (2.60)

where ρ and s are arguments for the universal scaling functionS associated with

the re-scaled distance and time, respectively. The behavior near RP is obtained

by replacing S and P by S̄ and P̄, respectively, along with appropriate changes

for the exponents (see Table A.1). Equation (A.61) and the corresponding equa-

tion for RP lead to definitions of diverging length and time scales, ℓ = |δp|−νℓ0

and τ = |δp|−zνt0, respectively. Our characteristic length scale diverges as |δp|−1

for jamming, and as |δp|−1/2 for RP. These divergences should be compared with

traditional definitions of ℓc ∼ |∆z|−1/2 and ℓ∗ ∼ |∆z|−1, as discussed in the litera-

ture [56, 57, 58, 38, 39], Note that ν in our paper should not be confused with

exponents for the finite-size scaling of the probability density ∆ ∼ L1/ν, as re-

ported in [59].

In this letter, we have combined scaling theory and the EMT of Ref. [2] to

produce analytical formulas for universal scaling functions for the longitudinal

dynamical response near both jamming and RP. Our equations can be used to

determine the space-time dependence of universal functions for several quan-

tities (such as moduli, viscosities and correlations) near the onset of rigidity in

both the solid and liquid phases. A direct approach to experimentally validate

our predictions consists of using 3D printers to fabricate and perform experi-

ments on the disordered elastic networks illustrated in Figs. 2.4(a) and (b). We
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also expect these scaling forms to apply to more traditional glass forming sys-

tems such as colloidal suspensions. Here, in addition to more standard scat-

tering measurements, new techniques for measuring 3D particle positions and

even stresses with high precision may make it feasible to measure these func-

tional forms and test our predictions [60, 61, 62, 63]. In such suspensions, we

expect that the scaling functions will capture the behavior in the elastic regime.

However, our theory is built on a fixed network topology and lacks some fea-

tures of the liquid phase. Annealed rather than quenched disorder [34] (or

even intermediate disorder [64]) could be needed to describe viscoelastic flu-

ids. An extension of our analysis includes an investigation [65] of the intrigu-

ing connections between the featureless low-energy modes in our system and

the unconventional particle-hole continuum measured using momentum and

energy-resolved spectroscopic probes in certain strange metals [66, 67]. Other

extensions could include the incorporation of anisotropic bond occupation [3],

which plays a major role in the crossover scaling of thickening suspensions near

frictional jamming [68] and that can lead to simpler models for both shear jam-

ming [69] and thickening [70], as well as the incorporation of random stress

fields, which can elucidate the unjamming of colloidal suspensions (such as ti-

tanium dioxide) due to activity [71].
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CHAPTER 3

ANALOGIES BETWEEN GRANULAR MATERIALS AND

HIGH-TEMPERATURE SUPERCONDUCTORS

3.1 Strange metals and strange response

Much interest has formed in recent years regarding high-temperature super-

conductors. Materials with very complicated chemical compositions have been

synthesized in efforts to push the superconducting temperature ever higher,

with the eventual goal of a stable room-temperature superconductor at ambi-

ent pressure. The superconducting phase of any material is typically quite bor-

ing. In the cuprates, for instance, many of the superconducting phases are well-

described by a Ginzburg-Landau theory. Outside of the superconducting phase,

however, these materials show a rich sequence of phases, depending upon the

chemical composition (dopant concentration). A typical phase diagram con-

sists of a Fermi liquid-like phase (though even this is controversial), a “strange

metal” phase, a pseudogap phase, and an antiferromagnetic phase. The charac-

terization of the phase behavior is typically qualitative, and aside from the true

antiferromagnetic ordering, there do not appear to be sharp phase transitions

that separate the phases (Figure 3.1).

Superimposed on top of these phases is the superconducting dome, which

is named after its semicircular shape. At low and high concentrations of (hole)

dopants, the superconducting temperature is heavily suppressed. At some opti-

mal dopant concentration, the superconducting temperature is maximal. Invari-

ably, above the superconducting temperature at optimal doping, the cuprates

enter a “strange metal” phase, which is usually said to be characterized by a T -
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Figure 3.1: A schematic of the phase diagram of a high-temperature supercon-
ductor as hole doping and temperature is varied. Tc is maximal at optimal dop-
ing. A point at zero temperature inside the superconducting dome appears to
control the crossover from Fermi liquid to strange metal.
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linear resistivity ρ ∼ T over a wide range of temperatures in contrast to the

scattering in ordinary metals ρ ∼ T 2. Experimental measurements of other

response properties of high-temperature superconductors in this phase have

been performed to shed light upon the microscopic origin of this unusual be-

havior [66, 67]. In particular, momentum-resolved electron energy loss spec-

troscopy (M-EELS) can be used to extract full susceptibilities, mapping energy

losses ω at different q to χ′′ (q, ω) and using the Kramers-Kronig relation to re-

construct the full χ (q, ω).

These experiments reveal a structure to the electronic density fluctuations

that is quite unlike that of an ordinary metal. In the ordinary (charged) Fermi

liquid, there are generally two types of excitations. Particle-hole excitations oc-

cur when electrons are excited from their place within the Fermi sea to a lo-

cation outside of the Fermi sea. These kinds of excitations are kinematically

constrained since the Fermi sea is largely filled, so free electrons can only be ex-

cited to locations outside of the Fermi surface. Their energies are constrained to

satisfy [12]

ℏ2q2

2m
−
ℏ2kFq

m
≤ ℏω ≤

ℏ2q2

2m
+
ℏ2kFq

m
=⇒

(
q
kF

)2

−2
(

q
kF

)
≤
ℏω

EF
≤

(
q
kF

)2

+2
(

q
kF

)
, (3.1)

which can also be determined by examining where the imaginary part of the

Lindhard function is nonzero. Aside from these excitations, the charged Fermi

liquid also features plasmons, whose dispersion can be computed within the

RPA as the location of the pole in the response function:

ω (q) =

√
3ℏ2k2

F

5m2 q2 + ω2
P =⇒

ℏω (q)
EF

=

√
12
5

(
q
kF

)2

+

(
ωP

EF

)2

, (3.2)

where the plasma frequency ωP =
√

4πe2n0/m is related to the charge e, num-

ber density n0, and mass m of the carriers. At higher values of q, the plasmon’s
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dispersion inevitably takes it into the region of particle-hole excitations, and

the plasmon ultimately rapidly decays into particle-hole excitations and loses

its quasiparticle status in a process known as Landau damping (see Figure 3.2).

Although these calculations are performed for the free electron gas, metals that

behave as Fermi liquids show many of these features due to the generality of the

argument for the plasmon’s existence (Goldstone’s theorem + Anderson-Higgs

mechanism). Under the assumptions of adiabatic continuity, quasielectrons and

quasiholes also are generated in Fermi liquids, and so density response probes

of ordinary metals show a sharply dispersing plasmon over a range of q before

the plasmon is heavily overdamped by the continuum of particle-hole excita-

tions.

In the strange metal, even down to q ∼ 0.1 r.l.u., there is no evidence of a

plasmon [66, 67]. There are slow changes in the shape of χ′′ (q, ω) if one measures

down to q ∼ 0.05 r.l.u., but nothing close to what is seen in ordinary Fermi

liquids occurs here. If the arguments of Goldstone’s theorem still apply, one is

led to conclude that there is a continuum of very low-energy excitations in the

strange metal into which the plasmonic mode can decay. Unlike the particle-

hole continuum in Fermi liquids, the excitations must extend to much lower

wavevectors than the particle-hole continuum in Fermi liquids. Microscopic

theories that predict such a continuum of excitations have been lacking.

The measured featureless response functions, however, look superficially

similar to the featureless response functions that are measured close to the jam-

ming transition, where compressed collections of particles first form a disor-

dered contact network and the resulting amorphous material can first support

a bulk strain. In a continuum elastic membrane, there are certainly phonons
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Figure 3.2: Summary of the excitations in a charged Fermi liquid. The plasmon
decays into the particle-hole continuum via Landau damping.

that must exist by Goldstone’s theorem. However, in the heavily disordered

amorphous solid close to its unjamming transition, these phonons are heavily

damped by the disorder intrinsic in the tenuously connected network that trans-

mits stress through the material. The situation is similar in elastic networks

close to their rigidity percolation transition. To detect the vibrational excitations

in the case of elastic networks, one can examine the spectrum of normal modes

and compute the density of states at each frequency. Close to rigidity percola-

tion, there are large, rigid sections of the lattice connected by only a single bond

45



to a rigid backbone (there are also zero modes that arise from disconnected sec-

tions of the network, but these are often ignored). The density of states near

the transition correspondingly becomes flat down to a very low frequency ω⋆

that is set by the distance to the transition. In this way, the damping of the

phonon that is induced by the disorder can be viewed as a decay into the many

low-lying vibrational modes that exist near the transition. The nature of these

low-lying modes is controlled by the universal features of the critical point.

Correspondingly, the universal existence of the strange metal phase of high-

temperature superconductors is often attributed to the existence of a zero-

temperature quantum critical point. This critical point is presumably shielded

from experiments by the superconducting dome, but the universal features as-

sociated with the critical point can still control material properties deep into

the strange metal phase. With this picture in mind, we investigate whether the

universal properties of the response near the rigidity percolation critical point

investigated in Chapter 2 are sufficient to describe features of the susceptibility

measured for a strange metal. In both cases, we have a zero-temperature criti-

cal point that controls the onset of a spectrum of low-frequency excitations that

leads to the decay of the Goldstone modes. The response in the strange metal

also shows interesting changes as the dopant concentration is modified, which

we are able to partially explain through a mapping from dopant concentration

to bond occupation probability in an elastic network model.

In contrast to other attempts to describe the featureless continuum using

e.g. holographic techniques [72], our analysis predicts that a sharply dispersing

plasmon should exist at q lower than that measured in the experiment. It also

makes some predictions about the crossover into the pseudogap phase which
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we do not investigate in detail (largely because we do not believe the effective

medium theories used to generate the response functions on the floppy side of

the transition are accurate even for the rigidity problem they purport to solve).

The predictions of the theory are imperfect. At asymptotically large q (which

can be made arbitrarily small by changing the distance to the critical point), the

shape of the imaginary part of the response is largely q-independent as in the

experiment. However, the experiment shows a plateau in the response over a

range of frequencies followed by a ∼ ω−2 decay that seemingly violates f -sum

rules. Other theories have plausible alternative explanations for this, including

that the f -sum rule is rendered finite by a logarithmic term ∼ ω−2 log−2 ω [73].

We reproduce the plateau by assuming long-wavelength inhomogeneities that

serve to average the susceptibilities over a range of distances to the critical point.

Far from the critical point, this averaging process is essentially irrelevant. How-

ever, when the scale of the disorder is comparable to the distance to the critical

point, the imaginary part of the response function contains a featureless plateau

similar to the experiment before crossing over to an anomalous ∼ ω−1 falloff,

also indicating violation of f -sum rules. This eventually crosses over into an

∼ ω−3 decay at an energy scale that is controlled by the distance to the critical

point in the elastic membrane, rendering the f -sum rules finite.

Although the microscopic origin of the low-energy excitations that lead to

the destruction of the plasmon in BSCCO remain mysterious, the picture of a

continuum of low-lying excitations that is controlled by the zero-temperature

quantum critical point remains a promising avenue for future research. It would

suffice to develop a quantum theory with a zero-temperature transition in the

same universality class as those seen in high-temperature superconductors to
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describe the crossover from Fermi liquid to strange metal.1 The comparisons

between the universal scaling forms of the susceptibilities near this transition

would then proceed identically to the classical-quantum correspondence that

we investigate in our manuscript. Such a microscopic understanding of the

relevant physics might get us closer to designing materials with higher Tc.

In the following manuscript, I generated all figures and helped to edit the

text. I also searched through the parameter space of δp (distance to the critical

point) and σ (width of the distribution of long-wavelength disorder) to gen-

erate response functions that agreed well with the features that were seen in

the M-EELS experiment. Danilo Liarte and Jim Sethna were invaluable in their

comments on the different types of response functions and the applicability of

the universal forms to the experimentally measured density response. Debanjan

Chowdhury had the idea to apply our previously developed jamming response

functions to the decidedly quantum problem of strange metals and wrote the

full first draft of the manuscript. Peter Abbamonte performed the M-EELS ex-

periments on BSCCO that we sought to describe, provided valuable insight into

the specifics of the experiment and the extraction of momentum-resolved re-

sponse functions, and assisted in the later stages of edits to the manuscript.

3.2 Jamming and unusual charge density fluctuations of

strange metals

This is a reformatted version of the manuscript appearing as Nature Communications

14, Article number: 3919 (2023) [65].
1This is obviously hard.
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3.2.1 Abstract

The strange metallic regime across a number of high-temperature supercon-

ducting materials presents numerous challenges to the classic theory of Fermi

liquid metals. Recent measurements of the dynamical charge response of

strange metals, including optimally doped cuprates, have revealed a broad, fea-

tureless continuum of excitations, extending over much of the Brillouin zone.

The collective density oscillations of this strange metal decay into the contin-

uum in a manner that is at odds with the expectations of Fermi liquid theory.

Inspired by these observations, we investigate the phenomenology of bosonic

collective modes and the particle-hole excitations in a class of strange metals

by making an analogy to the phonons of classical lattices falling apart across an

unconventional jamming-like transition associated with the onset of rigidity. By

making comparisons to the experimentally measured dynamical response func-

tions, we reproduce many of the qualitative features using the above frame-

work. We conjecture that the dynamics of electronic charge density over an

intermediate range of energy scales in a class of strongly correlated metals can

be at the brink of a jamming-like transition.

3.2.2 Introduction

A hallmark of numerous interacting phases of quantum matter are their long-

lived collective excitations (such as phonons, magnons, and skyrmions). Micro-

scopically, these collective modes require a coherent motion of the constituent

particles in the system. While such modes often have a long lifetime at low

energies, they are prone to decay once they encounter the multi-particle contin-

49



uum at high energies. Even in weakly interacting metals, there are two kinds

of long-lived excitations — the plasmon, which represents a collective (longitu-

dinal) density fluctuation, and single-electron like quasiparticle excitations near

the Fermi surface. The plasmon eventually decays at large enough momentum

and frequency (i.e. for ω > ω⋆(q)) into the multi-particle continuum due to

purely kinematic reasons. Within Landau’s original formulation of Fermi liquid

(FL) theory for electrically neutral fermions (e.g. as in liquid Helium-3) [74], the

zero-sound mode is associated with a collective oscillation of the entire Fermi

surface and has properties that are qualitatively similar to a longitudinal acous-

tic phonon. The sound mode gets renormalized into the plasmon mode in the

presence of Coulomb interactions. It is natural to consider the fate of collective

modes and their possibly unconventional decay into multi-particle continua in

the regime of strong interactions.

Recent advances in the experimental technique of momentum-resolved elec-

tron energy-loss spectroscopy (M-EELS) [75] have made it possible to measure

the dynamical charge response of numerous strongly correlated materials over

a broad range of frequencies and momenta [66, 67, 76]. Focusing specifically

on the strange metal regime of a cuprate material (BSCCO), these experiments

report evidence of a featureless particle-hole continuum extending over most of

the Brillouin zone (BZ), while being independent of temperature and doping.

Remarkably, the unconventional continuum persists up to the highest measur-

able energies and accounts for more than 99% of the total spectral weight in the

f−sum rule [66, 67]. Perhaps the most noteworthy observation is the absence of

a sharply dispersing plasmon in the BZ (except for a narrow range of momenta,

q ≲ 0.05 r.l.u., near the Γ−point [77, 78]), as it decays into the featureless contin-

uum. Evidence for such a continuum has been reported in earlier Raman studies
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[79, 80] and recent M-EELS measurements in other strongly interacting metals

(e.g. Sr2RuO4 [76]). The microscopic origin for the decay of the plasmon into

such continua remains unclear. Recent theoretical works have utilized solvable

lattice electronic models [81] to analyze the unconventional particle-hole contin-

uum [82] and the anomalous decay of plasmons [73] in the strongly correlated

regime of certain non-Fermi liquid metals; see Ref. [83] for a complementary

holographic computation of plasmon decay.

In addition to the anomalous dynamics of the charge density fluctuations,

the normal metallic state across a number of strange metals exhibits universal

scattering lifetimes [85, 86, 87, 88] and violates the Mott-Ioffe-Regel limit with

increasing temperature [89, 90], suggesting an absence of electronic quasiparti-

cles with a long mean-free path and lifetime. A satisfactory theoretical expla-

nation for the complex and universal aspects of this phenomenology does not

presently exist starting from microscopic models.

These results point to the intriguing possibility of the strongly interacting

electron fluid forming a collective and self-organized, nearly jammed state. At

intermediate energy scales, it is conceivable that certain aspects of the dynami-

cal response associated with the collective modes can be understood by draw-

ing analogies to a strongly correlated classical liquid. By analyzing the uni-

versal behavior of such a liquid near the onset of rigidity (Fig. 3.3(a)) and a

detailed comparison to recent M-EELS experiments in cuprates, we conjecture

that the intermediate-scale charge-dynamics in strange metals belongs in the

family of a class of theories with critical rigidity correlations. This brings to-

gether a new class of problems under the umbrella of jamming, which includes

rigidity transitions observed in colloids and granular materials [14, 69], living
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Figure 3.3: Charge-density response near onset of rigidity and in strange met-
als. (a) A random network of bonds (red) displayed in a rigid vs. floppy system,
on either side of a continuous rigidity percolation (RP) transition; the critical
properties near RP are distinct from a jamming transition associated with ran-
dom packings of hard spheres [14]. We hypothesize that the two-particle density
response over a broad range of intermediate energies near the hole-doping in-
duced transition associated with the electrons near optimal doping in cuprates
[84] can be described as a rigidity-type transition. (b) The vibrational density
of states, D(ω), as a function of frequency (ω) at a fixed distance from the RP
critical point δp = 10−3. The plateau in D(ω) onsets for ω > ∆ω⋆ ∼ |δp|. Inset:
The polarization function, Π′′(q, ω), in the absence of Coulomb interactions, as
a function of q and ω, revealing the acoustic collective mode and its damping
inside the continuum. (c) The density response function, χ′′(q, ω), (including
the Coulomb interaction) with ωp = 0.66 |δp|. The response functions, χ′′(q, ω),
averaged over a range of |δp| ≤ σ (see (a)) as a function of ω for different q
at a fixed distance (δp) from RP for (d) |δp| = 1.1 × 10−3, σ = 0.9 × 10−3, and
(e) |δp| = 1.6 × 10−3, σ = 0.9 × 10−3. The plasma frequency is chosen to be at
ωp = 0.5ω⋆. The dashed line represents the q-independent shape of the imagi-
nary part of the susceptibility in the absence of disorder. Frequencies in (d) and
(e) are rescaled by the same scaling frequency ω⋆ associated with the average
distance to the transition δp; see the Methods section for details. Experimental
data from M-EELS [66] demonstrating the overall q-independent shape of the
continuum for (f) optimally doped BSCCO and (g) overdoped BSCCO. Error
bars represent statistical (Poisson) error. The lowest frequencies show the lattice
phonon, which we do not describe in our framework.
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tissues [25, 91], elastic networks [1, 5, 2, 21], dislocation systems [92, 93], deep

learning [26], and analogues of metal-insulator transitions for interacting quan-

tum bosons [94]. Quenched randomness in geometrically frustrated magnets

has also been shown to produce a jammed spin liquid [95], which is known to

display unconventional spin-dynamics [96].

In this manuscript we address the question of what phenomenon might give

rise to a largely momentum-independent continuum such as that observed in

M-EELS experiments. We conjecture that these observations might be connected

to phenomena characteristic of the rigidity transition in granular media [14].

Near such a transition, the vibrational density of states develops an anomalous,

nearly frequency-independent plateau [55, 50]. This paper will be concerned

with addressing the similarities between the experimentally measured density

correlations of strange metals and the calculated density correlations near the

onset of rigidity, based on our recent analysis of the density response near a

rigidity transition [9].

3.2.3 Results

The onset of rigidity in classical liquids (but without any long-range crystalline

order) has a complex dynamical signature. The transition is associated with a

singular rearrangement of the low-energy vibrational spectrum of the nearly

rigid solid [14]; see Fig. 3.3(b). These low-energy excitations will become the

analog of the unconventional particle-hole continuum in the strange metal that

we described above. Moreover, the longitudinal phonons in these viscoelastic

systems can decay into this continuum of low-energy vibrational excitations,
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much like the plasmons do in the cuprate strange metal.

Starting with scaling forms for the longitudinal susceptibility that were de-

rived recently by some of us [9, 45], we will write down a coarse-grained effec-

tive description for the long-wavelength and low-frequency bosonic excitations

in a liquid at the brink of rigidity percolation (RP); see Fig. 3.3(a). Percolation

is a transition in connectivity; rigidity percolation is a transition from elastic to

floppy, with a dramatic peak in low-energy excitations we believe common to

strange metals. We will extend our formalism to analyze the inelastic density-

density response using the predictions of our scaling theory and make direct

comparisons with the M-EELS results, highlighting the similarities between the

mechanism for anomalous decay of the plasmon into the continuum at mo-

menta away from the Γ−point. Given the relatively large energy-scales over

which the charge response has been probed, it is likely that the quantum crit-

ical collective modes associated with various forms of broken symmetries that

emerge at low-energies [84] do not play a fundamental role in the interpretation

of the M-EELS experiments.

Our starting point is based on a recently proposed scaling ansatz for the dy-

namical susceptibilities near classical jamming and RP [9, 45]. There has been a

dearth of solvable models in finite dimensions where universal features of the

dynamical susceptibilities can be analyzed in a reliable fashion; we utilized the

tractable effective medium theory [2] to compute these in Ref. [9, 45] and ob-

tained their explicit analytical forms. Given that the strange metals where the

anomalous density fluctuations have been observed are quasi two-dimensional,

we will model our system as a stack of weakly coupled two-dimensional layers.

The individual layers are described in terms of a randomly percolated lattice
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of harmonic springs (Fig. 3.3(a)); the connection to the density fluctuations of

an underlying electronic fluid will be made explicit later. For our present dis-

cussion, we will start specifically with the longitudinal part of the displacement

response, ΞL, near RP,

ΞL(q, ω) ≈ −|δp|−γL (̃q, ω̃) , (3.3a)

q̃ ≡
q
|δp|ν
, ω̃ ≡

ω

|δp|zν
, (3.3b)

where q and ω represent the wavevector and frequency, respectively, and |δp|

represents the deviation away from the critical point. The critical exponents

for susceptibility, correlation length, and correlation time are denoted γ, ν and

z, respectively. For RP, our calculation leads to γ = 2, z = 2 and ν = 1/2. In

two-dimensions, the above scaling form has additional dependence on the log-

arithms of the scaling variables which do not qualitatively affect any of our

results; a detailed discussion of the origin of these additional logarithms will be

discussed elsewhere (see Sec. I of the Supplementary Information [97] for more

details). L (̃q, ω̃) is a universal scaling function whose explicit form appears in

the Methods section. In all of our subsequent analysis and in our comparison

with the experimental results, ΞL(q, ω) will play a central role. Near RP, the

transverse response, ΞT (q, ω), has the same universal scaling form as ΞL (q, ω)

but with different non-universal constants.

The onset of rigidity is tied to a significant rearrangement of the vibrational

density of states, D(ω); see Fig. 3.3(b) and Methods for a definition. Near RP,

D(ω) ∼ ω for ω ≲ ∆ω⋆ ∼ |δp| (up to additional logarithms). For ω ≳ ∆ω⋆,

D(ω) has a remarkably flat continuum as a function of ω over several orders of

magnitude of frequencies; see Fig. 3.3(b). The physical origin of this low-energy

continuum is related to the boson peak that demarcates a crossover from Debye
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to isostatic behavior, and is a recurring feature in the physics of glassy systems

[50, 52, 53]. From the point of view of our analogy to the excitations in the

strange metal, these modes are naturally interpreted as the particle-hole con-

tinuum. This analogy will become more direct when we analyze the nature of

the collective excitations — these are the phonons of the solid becoming floppy,

which turn into the plasmon in the strange metal with the inclusion of Coulomb

interactions — and their decay into the flatD(ω) near RP.

In order to make the analogy between classical liquids and their vibrational

excitations to the collective modes in strange metals, we need a precise re-

lationship between the longitudinal susceptibility (ΞL) and the electron den-

sity correlation functions. As in the jellium model, we assume the negatively

charged electronic liquid co-exists with a uniform oppositely charged (static)

background to maintain electrical neutrality; we are only interested in the dy-

namics of the former. In the proposed model, the changes in the local displace-

ment, U, are tied to a local fluctuation of the electronic number density. More

precisely,

n(x) = n0(1 − ∇ · U), (3.4)

where n0 = ρ/m is the average background density. One of the central quantities

of interest is the polarization function, Π(q, ω) = n2
0q2 ΞL(q, ω), which is related

to the longitudinal susceptibility introduced earlier. This is the density-density

response of the neutral system near the transition. Since the electronic liquid is

charged and interacts via repulsive Coulomb interactions, V(|x− x′|), we include

it explicitly as

∆U =
1
2

∫
x

∫
x′
δn(x)V(|x − x′|)δn(x′), (3.5)

where δn(x) = n(x) − n0 = −n0∇ · U. The experimentally measured density-
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density response, χ(q, ω), can be obtained from the polarizability after including

the effects of Coulomb interactions,

χ(q, ω) =
Π(q, ω)

1 − V(q)Π(q, ω)
. (3.6)

In the remainder of this study, we will calculate χ(q, ω) near RP using the univer-

sal form of ΞL(q, ω), and highlighting both its similarities and differences when

compared against the experimentally measured density response function in

the cuprate strange metal. See Sec. II of the Supplementary Information [97] for

more details.

To analyze the effect of the plasmon decay into the continuum, it is con-

ceptually simpler to approach the transition from the rigid side. The imagi-

nary part of the susceptibility, χ′′(q, ω), reveals a sharply dispersing plasmon

for ∆q⋆ ∼ |δp|1/2 (up to logarithms), controlled by the distance to RP (δp), that

broadens significantly as a result of decay into the low-energy vibrational states

over a broad range of wavevectors and frequencies; see inset of Fig. 3.3(b). The

effect of V(q) on χ(q, ω) is to renormalize the acoustic mode to the plasma fre-

quency, ωp =
√

4πe2n0/m, where we have assumed the three-dimensional form,

V(q) = 4πe2/q2; see Fig. 3.3(c). The broadening of the plasmon due to de-

cay into the unconventional continuum remains identical. The phenomenol-

ogy described here is exactly what we set out to achieve theoretically inspired

by the M-EELS experiments in strange metals—a plasmon that is damped be-

yond small momenta q ≳ ∆q⋆ into a featureless, low-energy continuum. The

close similarity that we demonstrate between the unconventional decay of the

phonon into the vibrational continuum near RP and of the plasmon into the

measured particle-hole continuum in strange metals is one of the central results

of this paper.
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Let us next turn to studying the detailed q, ω−dependence of χ(q, ω) near

RP in order to make further comparisons with the measured charge response

functions. For the smallest values of q, there is a sharp plasmon that appears at

the plasma frequency, ωp. For q ≳ ∆q⋆ ∼ |δp|1/2, the plasmon broadens rapidly,

and χ(q, ω) becomes nearly q-independent with a broad feature centered near

∆ω⋆. Increasing q further serves only to adjust the crossover frequency beyond

which there is a crossover to a 1/ω3 falloff, in accordance with the f -sum rule (see

Figure 3.4(a)). The q-independent shape of χ′′(q, ω) is also shown as the dashed

blue curve in Figure 3.3(d)-(e). This broad feature is tied to the same boson peak

that was discussed above in the context of the onset of the enhancement of the

low-energy modes inD(ω).

Although our form of χ′′ (q, ω) near the transition reproduces the strongly

overdamped plasmon and the q-independent shape of the response over the

measured frequency range, the response at the lowest frequencies does not

have the characteristic plateau of the experiment. To address the possible ori-

gin of this feature, we can appeal to the inherent inhomogeneity that is present

in these materials. There is experimental evidence for nanoscale electronic in-

homogeneity across multiple families of cuprate single crystals (including, e.g.

BSCCO) [98, 99]. For a given sample at a fixed nominal doping, the experiments

probe the density response averaged over all of the inhomogeneous regions of

the sample. To replicate this feature in our theoretical analysis, we sample and

smear our results for χ(q, ω) over a distribution of δp. We thus assume that the

variations in doping level change the distance to the onset of rigidity. Our av-

eraging presumes the disorder does not couple to the translational Goldstone

mode of the transition (by solely changing the density of bonds). The doping,

however, breaks translational symmetry, and pinning on defects is also known

58



to lower the threshold of rigidity [100, 101, 102, 103]. Adding the effects of pin-

ning to our analysis could be fruitful in future work. The qualitative effects of

the above averaging procedure are similar for any smooth, symmetric distribu-

tion.

Near the boson peak, the disorder-averaged susceptibility is most drasti-

cally altered. When the mean deviation from criticality is comparable to the

width of the disorder distribution, |δp| ≤ σ, the spectrum becomes dispersion-

less as a function of ω for large q > ∆q⋆; see Fig. 3.3(d). Within our framework,

the frequency-independent plateau observed near optimal doping can be inter-

preted as the disorder-induced smearing of the boson peak near RP. Beyond this

featureless region, there is a crossover into an anomalous power-law regime,

χ′′(q, ω) ∼ 1/ωα with α < 3. Both of these features are similar to the experi-

ments [66]; see Fig. 3.3(d)-(g) for a comparison. At the largest frequencies, the

asymptotic forms of the polarization with and without disorder-averaging are

identical with α = 3. The shape of the susceptibility is largely independent of

q over a wide range of ω. This leads to a q-independent crossover frequency

from the plateau to a power-law fall off at large ω. As we move away from the

transition fixing the magnitude of the disorder σ, the plateau at low frequencies

evolves into a bump; see Fig. 3.3(e). This bump can be interpreted as a severely

overdamped plasmon, whose location becomes nearly q-independent at large q.

The q-independence is tied to the decay into the particle-hole continuum, whose

onset is at a fixed ∆ω⋆.

The power-law scaling behavior of the singular part of the susceptibility χ′′

before and after the inclusion of disorder averaging is illustrated in Fig. 3.4.

At the highest frequencies, the power-law scaling is unaffected by the specific
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type of disorder considered here. At low frequencies, we see the emergence

of a plateau region whose width is q-independent (and set by the amount of

disorder σ) for q ≳ ∆q⋆. For experimental measurements close to this critical

point, all wavevectors except for those closest to the center of the BZ will probe

the incoherent plateau rather than the collective mode. The most notable dif-

ference between this framework and the one observed in the experiments is in

the wavevector dependence of the magnitude of the response. If the response

has a q-independent shape at all frequencies, then one infers that it must scale

as ∼ q2 to satisfy the f -sum rule. The singular responses computed in this pa-

per also satisfy the appropriate sum rules, since q sets the frequency at which

we cross over into the Drude-type scaling ∼ ω−3. See Sec. III of the Supple-

mentary Information [97] for more details. A recent complimentary theoretical

work [73] finds a distinct high-frequency scaling ∼ 1/ω2 log2(ω), which is also

consistent with the f -sum rule and is in better qualitative agreement with the

experiments.

Within the framework of rigidity percolation, we have pointed out an in-

triguing analogy between the large collection of low-energy vibrational modes

and the particle-hole continuum of strange metals, into which collective modes

can rapidly decay. The onset energy of this decay is set by the distance to the

critical point. Although the details of the specific momentum-dependence for

the polarizability are not in perfect agreement with the MEELS experiment, we

can reproduce a q-independent shape for q > ∆q⋆ that is set by the distance to

the critical point. It is possible that a different, and yet to be understood, uni-

versality class of rigidity transition displays a power-law density response that

agrees better with the experiments. A broad implication of our hypothesis is

that over a range of intermediate energy scales over which the density correla-
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Figure 3.4: Distinct spectroscopic regimes of the charge-density response. Fre-
quency and momentum dependence of χ′′, (a) without (σ = 0) and (b) with
(σ = 0.9 × 10−3) disorder averaging. Here |δp| = 1.1 × 10−3, e = 10−4. In (a),
the largest values of q lead to a bump in the susceptibility at a q-independent
frequency ∆ω⋆, followed by a decay ∼ ω−1 eventually crossing over into ∼ ω−3

Drude-like behavior. In (b), a plateau in the response emerges at the lowest fre-
quencies whose width is set by σ. The qualitative behavior is retained even after
including corrections to the response that fix the scaling in the lowest frequency
regime (see Fig. 3.3(d),(e)).

tions in strange metals appear to display features like jamming, the electronic

fluid might also display interesting memory effects known to arise in glassy

systems and near rigidity transitions. Finding new experimental ways to probe

this physics remains an interesting future direction. Developing a microscopic

quantum theory of interacting electrons whose effective theory reduces to an

analogous rigidity transition is a challenging open problem [104, 94]. In this

regard, exploring possible connections between the low-energy vibrational ex-

citations near jamming and the low-energy non-quasiparticle-like excitations in

the solvable quantum Sachdev-Ye-Kitaev models [81, 105] will be an interesting
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theoretical exercise.

3.2.4 Methods

Universal scaling function

In three spatial dimensions and higher, the scaling function L(̃q, ω̃) has the ex-

plicit form [9, 45]

L(̃q, ω̃) =
[
a q̃2M±(ω̃) − ṽ(ω̃)

]−1
, (3.7a)

M±(ω̃) = b
[ √

1 − c ṽ(ω̃) ± 1
]
, (3.7b)

where a, b and c are constants, with ṽ(ω̃) = ρ ω̃2 and i γ ω̃ for undamped and

overdamped dynamics, respectively. Here ρ is a mass density and γ is a viscous

drag coefficient. The plus and minus signs in M±(...) correspond to the rigid

and floppy states, respectively. We use the undamped form of the response

exclusively.

Vibrational density of states

The vibrational density of states can be computed from

D(ω) = −
ω

π

∫
BZ

d2q Tr
(
Im

[
Gi j (q, ω)

])
, (3.8a)

Gi j (q, ω) = ΞL (q, ω) q̂iq̂ j + ΞT (q, ω)
(
δi j − q̂iq̂ j

)
(3.8b)

The density of states has an additional ω prefactor as we are considering excita-

tions in a classical disordered system.
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Disorder averaging of charge-density response

We convolve our universal scaling function with a specific disorder distribution,

such that the effective disorder-averaged polarization function takes the form

(denoted ‘ ’)

χδp(q, ω) =
∫ ∞

−∞

d
(
∆p′

)
Pσ(∆p′) χδp′(q, ω) (3.9a)

Pσ[∆p′] =
1

√
2πσ2

e−(∆p′)2/2σ2
, (3.9b)

where χδp(q, ω) is the response at a fixed distance (δp) from RP, and we choose a

Gaussian distribution, Pσ[∆p], with width σ and ∆p′ ≡ δp′−δp. For the forms of

the response in Figures 3.3(d)-(e), the frequency is rescaled by ω⋆ = 10−3 in both

figures, instead of the distinct δp. This is to make comparison to the experiment,

where the dopant concentration is changed (moving the system further from a

critical point in our framework), but not the frequency scale.
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CHAPTER 4

UNIVERSAL SCALING OF VISCOELASTIC MATTER NEAR TWO

DIMENSIONS

4.1 Renormalization group flows and normal form theory

The analysis that was performed in the manuscript in Chapter 2 was not com-

pletely satisfying to us. In the introductory section to Chapter 2, I show how

two distinct (simplified) theories of the transition in the Ising model give identi-

cal predictions for certain quantities termed “universal:” critical exponents and

scaling functions. Because these mean-field theories were so simple, I was able

to cast them exactly into their scaling forms, with explicit formulas for the non-

universal constants that need to be scaled away to put the asymptotic solution

into universal form. In our original manuscript [9], we relied on numerical so-

lutions, and previous analytic expansions, to cast solutions into their scaling

form. However, the CPA is a closed set of self-consistent equations. Although

they involve complicated integrals for any given choice of lattice Brillouin zone,

the properties close to the phase transition, at low frequencies and long wave-

lengths, seemed to be independent of the choice of lattice. I very much wanted

to find exact formulas for the right way to rescale the variables to match the

numerical solutions.

Furthermore, there were a few quirks in the numerical solutions for the vis-

coelastic moduli close to the critical point. As these elastic networks approach

the point where they lose their rigidity, the relevant frequency scales become

very tiny (there are a huge number of low-energy modes that begin to appear,

as evidenced by the density of states). The primary contribution to the integral
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appearing in the CPA occurs at the phonon pole, which is placed very close

to the origin and is sharply peaked. Often times, the true solution to the self-

consistent equation would have a tiny negative imaginary part, but Mathemat-

ica required significant coaxing to return reasonable values for this imaginary

part. On the liquid side of the transition for undamped dynamics, the imagi-

nary part appeared to be zero for a range of frequencies that was much more

numerically convincing than the numerical issues occurring on the solid side.

The universal scaling form that we computed had this artifact on both sides of

the transition, but there remained an open possibility that a singular correction

to scaling could fix the low-frequency dissipation on the solid side.

Finally, as the dimension of space was reduced, the corrections to the scal-

ing form seemed to become more and more significant in magnitude. In two

dimensions especially, the collapse plots did not look very nice. Identifying

relevant frequency scales (such as the scale at which the viscoelastic modulus’

imaginary part was equal to its real part) and plotting them as a function of the

distance to the critical point did not reveal anything seriously interesting; the

critical exponents appeared identical to those seen in higher dimensions. All

of these issues together led to a search for a closed-form expansion that would

allow us to 1) describe the non-universal amplitudes of the scaling variables in

terms of microscopic lattice parameters, 2) describe in an appropriate way the

singular corrections to scaling necessary to describe low-frequency dissipation

in the viscoelastic membrane close to the transition, and 3) give an explanation

for the dimension-dependence of the amplitude of the corrections. The analytic

structure that we found was much more interesting than what we expected.

Our first big breakthrough came in simplifying the integral term in the CPA.
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As it is performed over a d-dimensional Brillouin zone, the integration region

is generally a complicated polytope. However, close to the phase transition, the

dominant contribution to the integral comes from the phonon pole at very low

frequency. Quantities written for lattices like dynamical matrices and Green’s

functions greatly simplify in the limit of long wavelengths and low frequencies.

For the rigidity transitions that we are focusing on, with linearly dispersing

acoustic phonon modes and isotropy at the transition, the Green’s function and

dynamical matrix become isotropic tensors describing the dynamical modes of

an isotropic elastic sheet, which has two independent stiffnesses (bulk and shear

moduli). The integration region could then be replaced with a sphere without

modifying the results of the expansion, with an upper wavevector cutoff given

by qD the Debye wavevector.

With this simplification in hand, the integrals could now easily be done an-

alytically in integer dimensions. For d = 3, we could successfully compute the

leading correction to scaling, which was a non-analytic∼ ω3/2 contribution to the

self-consistent equation. The amplitude of this term could be folded into an in-

variant scaling combination U associated with a dangerously irrelevant variable:

if one is interested in the scaling form very close to the transition, one can set

U = 0. However, one then recovers the scaling functions derived in [2, 9], miss-

ing the low-frequency elastic dissipation. In d = 2, we found that the published

scaling forms in [2, 9] are asymptotically incorrect: rather than a term like ∼ ω2

appearing in the expansion, it was replaced with a term like ∼ ω2 log (ω). We

first hinted at this kind of correction in the electron jamming manuscript [65],

where the density fluctuations were occurring in pseudo-two-dimensional lay-

ered structures.
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Our second breakthrough came in thinking deeply about the dimension de-

pendence of the scaling of the self-consistent equation. For all integer dimen-

sions d ≥ 3, the leading-order scaling was identical. Suddenly, in d = 2, a loga-

rithm has appeared. Why? Is two dimensions itself special, or does something

happen in between two and three dimensions? These questions led us to at-

tempt the expansion in arbitrary dimension d, rather than restricting to integer

dimensions. This turned out to be a fruitful exercise: we unveiled that there is a

completely new set of dimension-dependent critical exponents that governs the

scale-invariance of the self-consistent equation below two dimensions. In this

way, d = 2 represents the boundary between a set of exponents for the relevant

variables that are dimension-independent (d > 2) and a set that are dimension-

dependent (d < 2). This is a prediction for an “upper critical dimension” made

by this particular theory.

With the complete analytical expansions at hand, the final step was to cast

the scaling solutions into a form that was elegant and consistent with previ-

ous literature. The exercise in the upper critical dimension d = 2 proved espe-

cially difficult, since the invariant scaling combinations will inevitably involve

logarithms of physical variables we care about, like ω. For this, we took inspi-

ration from previous work on the analytic structure of renormalization group

flows [49]. In a typical renormalization group procedure, one integrates out the

high-frequency degrees of freedom and incorporates their effect into the low-

energy modes. Commonly, this is done from the action, splitting the integral in

momentum space into a high-energy sector and a low-energy sector and per-

forming the integration over the high-energy sector. This can also be done in

real space, such as in the decimation procedure for the Ising model: one groups

small sets of neighboring Ising spins into a single degree of freedom, incorpo-
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rating the fluctuations of the internal short-wavelength degrees of freedom into

an effective interaction between the new spins and then rescaling the system

to maintain the same microscopic length scale. In doing so, one reduces the

correlation length by some factor related to the decimation procedure: if one

integrates out every other spin but maintains the overall correlation structure,

and then rescales the system by a factor of two to maintain the microscopic spin

size, one transforms the correlation length as ξ → ξ/2 in a single decimation

step. Often, one abstracts to a continuous version of this decimation proce-

dure, where the length scale changes by a factor of L/L0 in each step. Then

ℓ ≡ log (L/L0) tracks the number of decimation steps one performs, and one

writes “flow equations” for parameters as a function of the single parameter ℓ,

e.g.
dξ
dℓ
= −ξ. (4.1)

This is an example of an equation giving a renormalization group flow – a prescrip-

tion for how parameters in the model change with the decimation procedure.

Why does one apply this scale transformation in the first place? It helps to

describe properties close to critical points. Note that the flow equation for the

correlation length is only fixed if ξ = 0 or if “ξ = ∞,” with the former being an

attractive fixed point and the latter being a repulsive fixed point. In the Ising

model, the correlation length is 0 for the T = 0 case (where the only possible

configurations are the ground states of all +1 or all −1) and for the T = ∞ case

(where all configurations occur with equal likelihood; the energy functional is

irrelevant and all spins are independently randomly chosen to be ±1). The cor-

relation length approaches infinity only at a critical point, where the system is

correlated on all scales.1 In this way, looking for sets of parameters that give

1The one-dimensional Ising model, where the spin decimation procedure can be performed
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fixed points of renormalization group transformations can help one find critical

points.

More importantly, perturbative analysis in the vicinity of the critical fixed

point gives information about universal properties of the transition. For in-

stance, one can often write a flow equation for the temperature T . If there is

a critical renormalization group fixed point at Tc, one can transform this into a

flow equation for the dimensionless variable t ≡ (T − Tc) /Tc so that the critical

fixed point is at t = 0 and is unstable. In the vicinity of the fixed point, the flows

generically look like
dξ
dℓ
= −ξ,

dt
dℓ
= λtt (4.2)

with λt > 0. Solving these flow equations starting at (ℓ = ℓ0, ξ = ξ0, t = t0) and

eliminating ℓ − ℓ0 gives

ξ = ξ0

(
t
t0

)−1/λt

(4.3)

so that the eigenvalue appearing in the linearization of the flow at the fixed

point characterizes the divergence of the correlation length with temperature

near the fixed point. Typically this critical exponent is denoted ν ≡ 1/λt. There

are a wide variety of other critical exponents that commonly appear: β, for the

magnetization, and δ, for an external field, appeared in the mean-field calcula-

tions in Chapter 2. There is also z, related to dynamics close to the critical point,

α for specific heat, γ and η for correlation functions, and more. All of these ex-

ponents characterize the power-law relationships between parameters close to

the critical point.

Now for a general piece of critical phenomena lore: phase transitions in

exactly, is a particularly unusual example. The correlation length ξ = 0 at T = 0, but ξ → ∞ as
T → 0+. One dimension is the lower critical dimension for the Ising model (so there is no phase
transition at finite temperature). In 1+ϵ dimensions, there is a critical point at finite temperature
that separates the high and low temperature phases.
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high enough dimensions often take place with mean-field critical exponents.2

The rough explanation for this is that ignoring fluctuations of certain degrees of

freedom (a necessary step in deriving mean-field theories generally) can be jus-

tified in high dimensions. However, below some upper critical dimension, these

fluctuations can no longer be ignored to capture the details close to the critical

point accurately. In the Ising model, the upper critical dimension is well-known

to be d = 4. In lower dimensions, the critical exponents can take strange val-

ues. For the d = 2 Ising model, the critical exponents are rational numbers

(Onsager’s exact solution gives many of them). In d = 3, the exponents can be

computed to high precision using conformal field theory or non-perturbative

methods (Chapter 6) and appear to be irrational numbers. Generically, the expo-

nents change as a function of dimension once the dimension is lowered beneath

the upper critical dimension.

We have seen that linearizations of the renormalization group flows about

the critical fixed point give information about the critical exponents. How

does changing the dimension change the exponents? We know that the expo-

nents stay mean-field-like until an upper critical dimension, and then become

dimension-dependent – what does this mean about the analytic structure of the

renormalization group flows? A hint is provided by Wilson’s ϵ expansion. In

the ϵ expansion, one computes the critical exponents near the upper critical di-

mension d = 4 − ϵ by examining the renormalization group flow equations as a

function of ϵ. Ignoring the detailed diagrammatic calculations, justifications of

expansions, and so on, one finds flow equations of the type [107]

dξ
dℓ
= −ξ,

da
dℓ
= 2a +

3
2π2

Λ4

Λ2 + a
g,

dg
dℓ
= ϵg −

9
2π2

Λ4(
Λ2 + a

)2 g2 (4.4)

2A counterexample to this is the Anderson transition, where there is good numerical evi-
dence that the upper critical dimension is d = ∞ [106]. Even here, the critical exponents asymp-
totically approach their mean-field values as d → ∞.
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where a is the coefficient on the quadratic term in the free energy, g is a dimen-

sionless version of the coefficient on the quartic term, and Λ is the upper cutoff

on the momentum integral (these equations were derived using the momentum

shell renormalization group). Typical lecture notes in this subject then point out

that these flow equations have a pair of fixed points for ϵ > 0:

a∗ = g∗ = 0 (Gaussian fixed point), and

a∗ = −
1
6
Λ2ϵ, g∗ =

2π2

9
ϵ (Wilson-Fisher fixed point).

(4.5)

One can then linearize these flows in the vicinity of these fixed points to un-

derstand the topology of the renormalization group flows. The Gaussian fixed

point has two relevant directions for ϵ > 0, indicating that it is unstable. The

Wilson-Fisher fixed point, on the other hand, has an attractive direction, mean-

ing that flows starting at the critical point for a generic model in this universal-

ity class will flow to the Wilson-Fisher fixed point and have critical exponents

governed by the linear stability analysis in its vicinity. These flows are illus-

trated in Figure 4.1. The critical exponents depend upon ϵ and can be used to

understand the dimension-dependent critical exponents below d = 4. More in-

teresting than the computation of the critical exponents, however, is the actual

structure of the flows themselves: in the vicinity of ϵ = 0, the flow for g un-

dergoes a transcritical bifurcation. For ϵ < 0, i.e. for d > 4, the attractive fixed

point is the Gaussian one, even though the Wilson-Fisher fixed point formally

exists. In 4 dimensions, the Gaussian and Wilson-Fisher fixed points cross and

exchange their stability. This gives a general prescription for how one can get

abruptly different behavior above and below the upper critical dimension: the

renormalization group fixed points that govern the critical behavior above and

below the upper critical dimension are different. This also gives a prescription

for understanding the logarithmic corrections that ubiquitously appear in the
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upper critical dimension: the assumption that the renormalization group flows

can be linearized breaks down. Setting ϵ = 0 in the flow for g means that g flows

to 0 much more slowly than it does for any ϵ < 0. This slow flow affects the in-

variant scaling combinations and means that relationships between parameters

close to the critical point cannot be described purely by power laws.

Others in the group [49] have developed methods to classify universality

families of critical points based on the analytic structure of the renormalization

group flows. Normal form theory, borrowed from dynamical systems and bifur-

cation theory, allows us to cast differential equations into extraordinarily simple

forms by restricting ourselves to certain classes of coordinate transformations.

For the purposes of understanding universality and the renormalization group,

it makes sense to restrict ourselves to analytic changes of variables, since the

non-analyticities that arise close to phase transitions should be described by

the structure of the renormalization group flow close to the fixed point, and al-

lowing arbitrary non-analytic changes of variables could change the values of

critical exponents or the structure of bifurcations. Once we have restricted to an-

alytic changes of variables, we can then make a choice of the change of variables

that makes the renormalization group flows as simple as possible, placing them

into their normal form. For the Ising model in d = 4, most of the higher-order

terms can be removed, leading to only quadratic and cubic terms in the flow for

the marginally irrelevant variable g. The coefficient of the cubic term3 is then

just as universal as critical exponents are for fixed points that can be linearized.

Coming back to the CPA as an approximate theory governing the space-

time dynamics close to a rigidity transition – we can compute the critical expo-

nents both above and below d = 2, and we find something resembling an upper

3The coefficient of the quadratic term can be set to 1 through a rescaling of g.
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fixed point
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- 0.4
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Figure 4.1: The flows of the parameters a and g as computed using momentum
shell RG, setting ϵ = 1. The vector field shows the direction of the flow. The red
and blue line segments show unstable and stable eigendirections (respectively)
at the two fixed points. The Gaussian fixed point is completely unstable in d = 3,
while the Wilson-Fisher fixed point has a stable direction.
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critical dimension from the structure of the critical exponents. We then make

this correspondence precise by writing down renormalization group flows con-

taining a transcritical bifurcation, where all coefficients of the universal terms

in these flows are determined by the exact expansion of the CPA. The one-

parameter family of flow equations are simply another way to express the scale-

invariance that emerges from the self-consistent CPA equation near its bifurca-

tion as a function of dimension d. We find that the logarithmic corrections in

d = 2 are perfectly accounted for by these flows in 2 dimensions, which con-

tain a variable that has become marginally irrelevant thanks to an exchange of

stability of two fixed points. This variable above 2 dimensions is a dangerously

irrelevant variable that incorporates the low-frequency elastic dissipation.

In the following manuscript, I discovered the logarithmic corrections in 2

dimensions (although later I found I was not the first to do so [44]), completed

the full asymptotic analysis of the scaling of the response in all dimensions, and

connected the logarithmic corrections to a transcritical bifurcation in renormal-

ization group flows using normal form theory. Danilo Liarte and Jim Sethna

again provided valuable inputs on the scaling forms and the extraction of uni-

versal predictions. Itai Cohen assisted in providing experimental insight and

clarifying a large portion of the text.

4.2 Universal scaling solution for a rigidity transition: renor-

malization group flows near the upper critical dimension

This is a reformatted version of the manuscript appearing as Physical Review E 111,

045508 (2025) [108].
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4.2.1 Abstract

Rigidity transitions induced by the formation of system-spanning disordered

rigid clusters, like the jamming transition, can be well-described in most physi-

cally relevant dimensions by mean-field theories. A dynamical mean-field the-

ory commonly used to study these transitions, the coherent potential approx-

imation (CPA), shows logarithmic corrections in 2 dimensions. By solving the

theory in arbitrary dimensions and extracting the universal scaling predictions,

we show that these logarithmic corrections are a symptom of an upper critical

dimension dupper = 2, below which the critical exponents are modified. We reca-

pitulate Ken Wilson’s phenomenology of the (4 − ϵ)-dimensional Ising model,

but with the upper critical dimension reduced to 2. We interpret this using

normal form theory as a transcritical bifurcation in the RG flows and extract

the universal nonlinear coefficients to make explicit predictions for the behav-

ior near 2 dimensions. This bifurcation is driven by a variable that is danger-

ously irrelevant in all dimensions d > 2 which incorporates the physics of long-

wavelength phonons and low-frequency elastic dissipation. We derive univer-

sal scaling functions from the CPA sufficient to predict all linear response in

randomly diluted isotropic elastic systems in all dimensions.

4.2.2 Introduction

We present here a complete analysis of a particular isotropic, homogeneous

rigidity transition. Our solution provides universal scaling predictions for the

linear responses of the system – viscosities, elastoplastic and viscoelastic func-

tions, Green’s functions, densities of states, etc. It also implies a renormalization
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group flow which recapitulates the classic (4−ϵ)-dimensional Ising critical point

predictions with the upper critical dimension reduced to two.

There is a family of rigidity transitions of past and current interest, with

many common features but not all sharing the same universality class. Most

prominent is the recent focus on the jamming transition [14, 69], applied to

glasses, colloidal and granular systems, and foams. In jamming, a replica so-

lution in infinite dimensions [109, 110] makes quantitative predictions for mi-

croscopic power laws (universal contact force and gap size distributions) all the

way down to two dimensions [111, 112, 46]. Other examples include rigidity

transitions in tissues [25, 91] relevant to wound healing and embryonic organ

formation, dislocation entanglement in crystals [92], and ‘double descent’ accu-

racy transitions in deep learning [26]. Several of these systems appear to share

the same dimension-independent universal power laws above two dimensions,

motivating the simplified model investigated here.

Our work is inspired by the discovery [2] of diluted networks in both two

and three dimensions that show a jamming transition as an endpoint of a line of

rigidity percolation transitions, studied through static simulations and via the

coherent potential approximation. These networks have no linear elastic moduli

in a floppy phase and show a jump in the bulk modulus and linear growth in the

shear modulus at a jamming point of the phase boundary. With the inclusion

of additional angular and bending forces, these models are also believed to be

applicable to fiber networks, such as the ones found in cytoskeletal networks

and extracellular matrices [113, 114]. Here, we present an analysis of this model

for the rigidity percolation transition, where all static moduli grow linearly from

zero.
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Our model is an isotropic, continuum version of the coherent potential ap-

proximation (CPA) [1, 2, 9]. It replicates the CPA predictions for the dilution of

a random, amorphous spring network studied by Düring et al. [44]. Both are

outgrowths of what is termed rigidity percolation (RP) [115, 116, 59], where a

network of springs connecting nodes with no angular forces is diluted, not un-

til it becomes completely disconnected (percolation) but until its elastic moduli

vanish. It is known that rigidity percolation on a two-dimensional triangular

lattice has critical exponents that differ from those found for rigidity percola-

tion on graphs generated from jammed packings of spheres, with a modulus

that with a higher power with excess coordination number [5, 117]. We conjec-

ture that lattice anisotropy [118], and/or undeformed springs in a line (forming

second-order constraints [59, 119]) are relevant perturbations at the rigidity transi-

tion for spring networks, and that our theory is applicable to a randomly diluted

isotropic network without these buckling transitions (Section 4.2.6). This con-

tinuum theory, when used to describe jamming [2, 120], matches most of the

properties seen numerically, both directly and in spring network models gener-

ated from jammed configurations [121] and simulations of diluted amorphous

spring networks [44]. The calculation presented here focuses on the case where

the bulk modulus does not jump, which includes most of the rigidity transitions

other than jamming. Nevertheless, this calculation captures the predicted scal-

ing of the shear mode close to the jamming transition [120]. We leverage our

exact solutions of the continuum theory to generate universal scaling forms for

all linear response properties, and we use them to calculate new critical expo-

nents below 2 dimensions described by nonlinear renormalization group flows.

We identify a scaling variable which is dangerously irrelevant for d > 2 which

is responsible for low-frequency dissipation, the phonon density of states, and
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the logarithmic corrections in d = 2.

We conjecture that many qualitative features of our analysis are important

predictions and tools that should apply more generally. (1) Many replica-theory

and other mean-field methods yield self-consistent formulas that predict power-

law scaling near transitions [122]. Our analysis is a guide to extracting universal

predictions out of these self-consistent relations. For example, the Curie-Weiss

law predicts the entire phase behavior of an Ising magnet above four dimen-

sions [123], but only the power laws and the scaling function near the critical

point are expected to be universal. (2) Much impressive work, especially in jam-

ming, has focused on the microscopic behavior [124, 125, 126, 127, 128, 129, 130]

(how jammed systems are different from regular systems [131]). Our previous

work [40, 33, 9, 45, 65] has taken a different perspective by analyzing the emer-

gent phase behavior in terms of Widom scaling theories (investigating how jam-

ming may be reduced to regular system behavior). Our work here builds upon

these by presenting a wonderful example of the rich phenomena that can be

extracted by focusing on the macroscopic behaviors in space and time of this

and other systems. (3) Our extraction of RG flows allows us to explain the quite

non-trivial invariant scaling combinations in the upper critical dimension (as

we found also in the 4D Ising model [49]); these variables should appear in a

wide class of models that share this upper critical dimension. (4) Many higher-

temperature features of glasses are missed in the infinite-dimensional replica

theories (such as the continued relaxation below the mode-coupling transition)

and are thought to be non-perturbative in the inverse dimension 1/d. Our rigid-

ity transition has a dangerously irrelevant variable above two dimensions that is

needed to incorporate low-frequency vibrational modes and dissipation, which

we show is indeed such a non-perturbative effect in the limit d → ∞. The work
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presented here provides a road map for dealing with such irrelevant variables.

Our work is similar in some aspects to that of a manuscript by Vogel

et al. [132]. They form a self-consistent theory for the shear response of a

nearly unjammed solid with similar structure to our continuum CPA. Their

analysis incorporates nontrivial momentum dependence which is important in

the disordered glassy phase studied by the authors of the article in previous

work [133, 134] and by others [135]; this type of momentum-dependent mod-

ulus is ignored by the CPA. Our work, on the other hand, is focused on cal-

culating the universal scaling functions for the transition, deducing nontrivial

normal forms for renormalization group flows, and understanding specifically

the singular behavior of the theory found in two dimensions.

The organizational structure of our paper is as follows: in Section 4.2.3, we

briefly review the CPA as applied to weakened elastic media. We show that, un-

der quite general assumptions, elastic moduli vanish linearly in deviations from

the critical dilution fraction µ ∼ δp ∼ δ̃z, where δp ≡ p − pc is the distance from

the critical point in bond occupation probability and δ̃z ≡ z̃ − z̃c is the distance

from the critical point in coordination number. In Section 4.2.4, we evaluate

the universal scaling functions for the space-time linear response of the theory

near the critical point directly in d = 3 dimensions and in d = 2 dimensions,

and show that the appropriate scaling for the dynamical behavior close to the

critical point has log corrections in two dimensions, as was noticed in [44]. In

Section 4.2.5 and Appendix C.1, we cast solutions close to the critical point into

a scaling theory in general dimensions d, and show that d = 2 demarcates the

boundary between two differing sets of critical exponents. We construct renor-

malization group flow equations that are consistent with the critical exponents
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predicted by the theory (with more details located in Appendices C.2 and C.3),

with an exchange of stability between two RG fixed points in d = 2. In this

way, we interpret d = 2 as the upper critical dimension of the transition, and

find the appropriate scaling variables in d = 2 analogously to those in the 4D

Ising model. The logarithmic shifts that are one signature of the upper criti-

cal dimension are investigated in more detail in Appendix C.4 through a direct

comparison to a lattice CPA calculation on the bond-diluted triangular lattice.

Finally, in Section 4.2.6, we discuss the applicability of this model more broadly

to a wide variety of different rigidity transitions in disordered elastic systems.

4.2.3 The CPA and critical exponents for static moduli

We examine a continuum version of the coherent potential approximation (CPA)

inspired by the lattice CPA [1]. The lattice CPA can be used to describe a system

comprised of purely harmonic springs of strength k0 on some regular lattice that

are independently randomly occupied with probability p. This is equivalent to

placing a probability distribution on the strengths of bonds k′

k′ ∼ p δ(k′ − k0) + (1 − p) δ
(
k′
)

(4.6)

so that each bond of strength k0 is independently randomly occupied with prob-

ability p. Other effective medium theories have placed more realistic distri-

butions of bonds based on observations of stress and strain fluctuations from

simulations of particular systems (soft spheres touching, gels near their gela-

tion point, etc. [136]). One then tries to describe this disordered elastic system

by a non-disordered effective medium, whose physical properties are renormal-

ized by p. Finding the best effective value of stiffness k so that the disorder-

averaged elastic Green’s function ⟨G(k′, ω)⟩ ≈ G (k (ω) , ω), the elastic Green’s
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function for an effective medium with no disorder, amounts to solving a self-

consistent equation for the stiffnesses. The effective moduli are allowed to be-

come frequency-dependent and complex, transforming them into viscoelastic

moduli [1]. This CPA is related to the CPA used in other impurity scatter-

ing problems which makes a similar assumption that the self-energy is local

Σ (ω, q) ≈ Σ(ω). The content of the approximation made by the CPA is twofold:

first, the effective stiffnesses depend only on ω, and not on q. Second, this con-

straint is imposed by requiring that the single-site T -matrix for multiple scat-

tering vanishes [137], as opposed to the full T -matrix (which is analytically in-

tractable). The result of the approximation is a homogeneous effective medium

that incorporates the effects of phonons scattering off of defects introduced by

the disorder into a effective damping (Figure 4.2).

The self-consistent equation for the shear modulus of the effective medium

under the assumptions of the lattice CPA [1, 2] is

p − µ/µF

1 − µ/µF
=

1
z̃

?
BZ

ddq Tr (DG) , (4.7)

where the integral is an average over the first Brillouin zone, z̃ denotes the av-

erage number of constraints per microscopic unit in the undiluted system (in

the lattice case, it is the number of bonds per node), µF is the shear modu-

lus in the completely filled, non-disordered system, and D and G are the dy-

namical matrix and Green’s function for the medium, respectively. This long-

wavelength limit of the lattice problem reproduces the isotropic CPA for amor-

phous spring networks investigated by Düring et al. in [44]. This expression

is self-consistently solved for µ (p, ω), which is proportional to the best effective

value of the microscopic stiffness k. Some definitions of important parameters

that regularly appear are given in Table 4.1.
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Figure 4.2: Schematic of the approximation made by the CPA. (a) A phonon
traveling (upwards) into an elastic medium with randomly distributed defects
scatters in complicated ways. The dark circles represent the isotropically scat-
tering defects in our continuum CPA, while the colors represent the magnitude
of the displacement field. (b) The same phonon traveling through the effective
medium is damped as it propagates. The CPA gives renormalized elastic con-
stants for a medium with no defects, which incorporates the strong scattering of
shorter-wavelength phonons through a damping term in the effective moduli.

We are interested in properties of disordered rigidity transitions for systems

that are statistically isotropic. To lose reference to any particular lattice, we

pass to a continuum version of the CPA, where the Brillouin zone is replaced

by a sphere of radius qD (the Debye wavevector) and dynamical matrices and

Green’s functions are written for an isotropic continuum elastic sheet. We will

see that this version of the CPA also describes the CPA scaling behavior of

diluted lattices with a continuous rigidity transition that are isotropic at long

wavelengths, as anisotropic terms enter as corrections to scaling. With only one

independent microscopic stiffness, it suffices to track the behavior of the renor-

malized shear modulus µ as it deviates from its value in the unweakened system
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µF, as all other stiffnesses are proportional to this modulus. We decompose the

continuum dynamical matrix and Green’s function into transverse and longitu-

dinal parts to evaluate the integrand:

D = DL(q)q̂iq̂ j + DT(q)
(
δi j − q̂iq̂ j

)
,

G = GL(q, ω)q̂iq̂ j +GT(q, ω)
(
δi j − q̂iq̂ j

)
,

Tr (DG) = GL (q, ω) DL (q) + (d − 1) GT (q, ω) DT (q) .

(4.8)

At zero frequency, assuming the dynamical matrix of the effective medium is

invertible (as it is on the solid side of the transition), G(q, 0) = D−1 (see the

beginning of Appendix C.1 for details on the specific forms of DL/T and GL/T),

and so the integrand is the trace of a d-dimensional identity matrix and the self-

consistent equation can be evaluated directly:

p − µ/µF

1 − µ/µF
=

d
z̃
=⇒

(p − d/̃z) − (1 − d/̃z) µ/µF

1 − µ/µF
= 0. (4.9)

The constant d/̃z is identified as pc. It is identical to the Maxwell counting con-

straint ignoring states of self-stress: each microscopic unit has on average p̃z

constraints and d degrees of freedom, and so pc = d/̃z. Keeping 0 < pc < 1, and

defining µ′ = (1 − d/̃z) µ/µF, one has

(p − pc) − µ′

1 − µ′/(1 − pc)
= 0, (4.10)

and so µ′ ∼ (p − pc) fCPA with fCPA = 1: the static shear modulus vanishes linearly

with p − pc upon approaching the transition.

It is tempting, then, to declare the CPA a mean-field-like theory that gives

dimension-independent critical exponents, as Landau theory does in magnets.

This turns out not to be true; the dynamical scaling of the theory has much more

interesting structure.

83



4.2.4 Two and three dimensions and a dangerously irrelevant

variable

In this section, we expand the solution for the viscoelastic modulus µ (ω) close

to its continuous stiffness transition. We then cast the solution near the criti-

cal point in terms of scaling variables and identify universal scaling functions.

In three dimensions (Section 4.2.4), we show that it is necessary to retain an

invariant scaling combination associated with an irrelevant variable to capture

the low-frequency dissipative part of the viscoelastic modulus in the case of

microscopically undamped dynamics. This irrelevant variable also gives infor-

mation about the low-frequency density of states. This suggests that the irrel-

evant variable is dangerous: it vanishes under a coarse-graining procedure, but

it cannot be set to 0 directly without losing access to a description of important

low-frequency vibrational modes.

In two dimensions (Section 4.2.4), we show that the scaling variables that

were correct in three dimensions no longer capture the behavior near the criti-

cal point. There are large, logarithmic shifts in physically relevant frequencies.

In Section 4.2.5, we will show that this modification of the scaling variables is

a result of the leading irrelevant variable becoming marginal in d = 2, signifi-

cantly altering the low-energy physics. This identifies d = 2 as the upper critical

dimension, and we write new critical exponents and scaling functions below

the upper critical dimension. We also construct renormalization group flows

consistent with the analytic structure of the scaling variables.
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Scaling in 3 dimensions

We first note that, at zero frequency, µ vanishes linearly with p as p → 3/̃z ≡ pc.

We subtract pc from each side of Equation 4.7 (see Appendix C.1 from Eqn. C.3

to Eqn. C.11 for details) so that the self-consistent relation becomes

(p − pc) − (1 − pc) µ/µF

1 − µ/µF
=

3
z̃q3

D

(∫ qD

0
dq

wq2

(λF/µF + 2) µq2 − w
+2

∫ qD

0
dq

wq2

µq2 − w

) (4.11)

where the functional form of w depends upon the microscopic damping of the

system. We focus on undamped dynamics, where w = ρω2, but w = iγω for

overdamped dynamics has very similar scaling behavior. One could in principle

also consider the case of Galilean-invariant Kelvin damping, where w = ρω2 +

iηωq2, but the analysis of the asymptotic scaling in this manuscript assumes w

is q-independent.4 We write a scaling theory for small δp ≡ p − pc, which is

the distance to the critical point as measured in p. At w = 0, the integral terms

vanish. This suggests a definition for a scaling variable for the shear modulus:

M ≡
µ/µ0

|δp|
,

µ0 ≡
µF

1 − pc
.

(4.12)

We use capital letters, such as M, to denote the corresponding scaling variable

for a physical quantity like µ. The scaling variables are typically a physical

quantity divided by a non-universal, dimensionful constant, such as µ0, and

some power of |δp|. We will use script letters, such as M, to denote scaling

functions, which take scaling variables as arguments.

4The function w relates the frequency of a mode to the corresponding eigenvalue of the
dynamical matrix. In the case of a lattice with no damping, an eigenvector of the dynamical ma-
trix with frequency ωi would have a corresponding eigenvalue mω2

i = w′ (ωi). In the continuum
case, ρ replaces m (see Appendix C.1 from Eqn. C.3 to Eqn. C.7 for details).
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The integrals in Equation 4.11 can be done directly; it is useful to substitute

ξ = (q/qD)2 and rescale to wL = w/ (λF/µF + 2) q2
D and wT ≡ w/q2

D to find

δp − |δp|M
1 − |δp|M/ (1 − pc)

=

−
3
2̃z

(∫ 1

0
dξ

ξ1/2

1 − (µ/wL) ξ
+2

∫ 1

0
dξ

ξ1/2

1 − (µ/wT) ξ

)
.

(4.13)

Assuming Im (µ) < 0 for w > 0 (necessary for causality), we have

δp − |δp|M
1 − |δp|M/ (1 − pc)

=
3
z̃

(
wL

µ
+ 2

wT

µ

)
−

−
3
z̃

(wL

µ

)3/2

tanh−1
(√
µ

wL

)
+

+2
(
wT

µ

)3/2

tanh−1
(√
µ

wT

))
.

(4.14)

We are interested in the low-frequency behavior. The terms proportional to

w/µ dominate over the terms proportional to (w/µ)3/2 at low frequencies. This

suggests a scaling w/µ ∼ |δp|, which suggests we should expand the functions

tanh−1 (z) about their appropriate complex infinity. For undamped dynamics,

we note that Im (µ) ≤ 0 and hence Im
(√
µ
)
≤ 0 to respect causality. The function

tanh−1(z) can then be expanded to find

δp − |δp|M
1 − |δp|M/ (1 − pc)

≈
3
z̃

(
wL

µ
+ 2

wT

µ

)
+

+
3
z̃

iπ
2

(wL

µ

)3/2

+ 2
(
wT

µ

)3/2 . (4.15)

One can check that since Im (µ) ≤ 0, we can write

δp − |δp|M
1 − |δp|M/ (1 − pc)

≈
3
z̃

(
wL

µ
+ 2

wT

µ

)
+

+
3π
2̃z

(−wL

µ

)3/2

+ 2
(
−

wT

µ

)3/2 . (4.16)

This expansion is more general and also works for the overdamped case where

w ∼ iγω. This asymptotic analysis of the leading correction to the CPA result

reproduces the calculation done in Appendix B of [52]. Now we are prepared to
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define more invariant scaling variables and our first universal scaling function.

We first insert the definition of M in for µ everywhere. Then, we define Ω2

(named for the undamped case) as the scaling variable for w which makes the

dominant term of the scaling for the frequency-dependent part |δp|Ω2/M. The

definition of w in terms ofΩ is then inserted in the higher-order frequency piece,

and the remaining terms are all absorbed into a scaling combination U for an

irrelevant variable. The result, after dividing both sides by |δp| and throwing

away the higher-order contribution from the denominator of the left-hand side,

is

±1 − M =
Ω2

M
+ U

(
−
Ω2

M

)3/2

,

Ω2 ≡
ω2/ω2

0

|δp|2
, U ≡ u/u0 |δp|1/2 .

(4.17)

The sign ±1 = δp/ |δp| is for the rigid and floppy side of the transition, respec-

tively; formulas for ω0 and u/u0 can be found in Appendix C.1. This is an im-

plicit definition of a universal scaling function for M = M (Ω,U).5 Setting the

leading irrelevant piece U to 0 allows us to solve a quadratic equation for M as

2M (Ω, 0) = ±1−
√

1 − 4Ω2, as found indirectly in [2] and directly in [9, 45]. How-

ever, this form of the universal scaling function (unphysically) has no scattering-

induced dissipation on the rigid side of the transition until Ω = 1/2, while the

full solution retaining U has Im (M) < 0 for all Ω > 0.6 As mentioned in the

introduction to this section, this identifies U as an invariant scaling combina-

tion associated with a dangerously irrelevant variable for the case of undamped

microscopic dynamics, as the functionM(Ω,U) is not analytic in its second ar-

gument at zero. Retaining U is necessary to understand the details of the low-

5In a more complete self-consistent theory beyond the CPA such as [132], the shear modulus
will also have a q-dependence, leading to a scaling formM (Ω,Q,U).

6The effective medium theory misses the important contributions of quasilocalized modes to
the low-frequency density of states, which give a characteristic scaling D (ω) ∼ ω4 [138].
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frequency viscosity, susceptibility, and density of states.

For models with many soft modes, we can illustrate the excess number of

soft modes by comparing the density of states with that of the Debye model, in

which D (ω) ∼ ωd−1. We plot the predicted universal scaling forms for the den-

sity of states divided by the Debye form for different values of the dangerously

irrelevant variable in Figure 4.3. The peak in the excess density of states is lo-

cated near the frequency ω∗ ∼ |δp| where the density of states becomes nearly

flat: a characteristic feature of all rigidity transitions in this family. The dan-

gerous irrelevant variable U controls the continuum phonon density of states,

which vanishes in the appropriate scaling limit.

We note in passing that the frequency scaling variable only appears in con-

junction with the scaling variable for the modulus. Instead of defining a scaling

for w, then, we could define a scaling variable for f ≡ w/µ. This turns out to be

a particularly natural choice that eases the analysis in two dimensions. Written

in terms of this scaling variable, the self-consistent equation reads

±1 − M = F + U (−F)3/2 ,

F ≡
f / f0

|δp|
.

(4.18)

Scaling in 2 dimensions

We follow the steps above, and again evaluate the integral directly in d = 2,

where now 2/̃z = pc. We subtract pc from each side of Equation 4.7 so that the

self-consistent relation becomes
(p − pc) − (1 − pc) µ/µF

1 − µ/µF
=

2
z̃q2

D

(∫ qD

0
dq

wq
(λF/µF + 2) µq2 − w

+

∫ qD

0
dq

wq
µq2 − w

) (4.19)
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U=10-1
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Figure 4.3: Prediction for the shape of the excess density of states near the
rigid-floppy transition in d = 3 (see also Fig. C.1). We compare our density of
states to the Debye result and find an excess of states that contribute to the boson
peak that is often seen in disordered rigid systems. The dangerously irrelevant
variable U must be retained to capture the Debye phonon contribution to the
density of states below Ω = 1/2. These long-wavelength phonons are of course
important to the physics, but are swamped near the rigidity transition by the
flat density of states above ω∗. Hence the phonon contribution is irrelevant in
the RG sense, even though it is important to the physics.

We again write a scaling theory for small δp. The zero-frequency scaling for the

modulus is the same as in Equation 4.12. We perform the same substitution as

in d = 3 of ξ = (q/qD)2 and rescale to wL = w/ (λF/µF + 2) q2
D and wT ≡ w/q2

D to

find

δp − |δp|M
1 − |δp|M/ (1 − pc)

=

−
1
z̃

(∫ 1

0
dξ

1
1 − (µ/wL) ξ

+

∫ 1

0
dξ

1
1 − (µ/wT) ξ

)
.

(4.20)
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Assuming Im (µ) < 0 for w > 0, we have

δp − |δp|M
1 − |δp|M/ (1 − pc)

=

1
z̃

(
wL

µ
log

(
1 −

µ

wL

)
+

wT

µ
log

(
1 −

µ

wT

)) (4.21)

We are interested in the low-frequency behavior. There is now quite clearly a

logarithmic singularity at low frequencies, as discussed in [44]7. Keeping only

the leading-order low frequency terms, we have

δp − |δp|M
1 − |δp|M/ (1 − pc)

≈ −c1
w
µ

log
(
−c2

w
µ

)
. (4.22)

One cannot define a scaling variable for frequency as a ratio of w and δp raised to

some power as we did in d = 3, as extra factors of δp appear inside the logarithm

when written in terms of the scaling variables. We instead implicitly define a

scaling variable for f ≡ w/µ as the right-hand side divided by |δp|:

±1 − M = F2,

|δp| F2 ≡ −c1 f log (−c2 f ) .
(4.23)

The variable F2 is the 2D quantity that corresponds to the right-hand side of

Equation 4.18. Given that F2 is an invariant scaling combination, we can in-

vestigate how this implies f depends upon |δp| by inverting the definition of

F2:

f = −
(F2/c1) |δp|

W−1 ((F2c2/c1) |δp|)
, (4.24)

where W−1(z) is a particular branch of the Lambert W function satisfying

W(z)eW(z) = z. The appropriate branch of the W function has an expansion near

z = 0 of the form W−1(z) ∼ log (z) − 2πi − log
(
log (z − 2πi)

)
+ . . . (see [139] for

more details). This shows directly that the appropriate scaling variable for fre-

quency has important logarithmic shifts close to the critical point in d = 2. These

7Their parameter ε is our − limω→0 f on the floppy side of the transition with undamped
dynamics.
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-Im[MT], δp = 10-2

Re[MT], δp = 10-4
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Figure 4.4: Logarithmic frequency shifts in an effective medium theory for
2D rigidity percolation on the triangular lattice. We plot numerical solutions
of the lattice CPA (thin lines), rescaled shear modulus MT ≡ µ/ |δp| as a function
of rescaled frequency ΩT ≡ ω/ |δp|, against our scaling solutions (thick lines,
Equations 4.35 and C.86). This comparison is done at two distances from the
critical point δp =

{
10−2, 10−4

}
, demonstrating nice agreement. All parameters

in our scaling form are determined from the long-wavelength parameters of the
triangular lattice (Appendix C.4), so there are no fitting parameters. The shift in
the rescaled frequency Ω∗T where Re (MT) = −Im (MT) from ∼ 1.4 to ∼ 1.0 upon
reducing δp from 10−2 to 10−4 is due to logarithmic corrections present in the
upper critical dimension.

logarithmic shifts are confirmed in Figure 4.4, which compares our asymptotic

scaling forms for the continuum CPA to a numerical solution of the CPA for the

bond-diluted triangular lattice. More details of this comparison are located in

Appendix C.4.

We believe that these logarithmic corrections to scaling can be detected in

careful simulations of two-dimensional jammed packings. For instance, in [140],
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the authors control the pressure of a nearly unjammed solid of soft spheres and

examine the phonon transport properties. The authors examine several charac-

teristic frequency scales and find a pure power law relating the pressure to each

frequency scale: ω ∼ p1/2 (their Figure 12(b)), consistent with the mean-field ex-

ponents and no logarithmic corrections. However, their collapse of physical fea-

tures like the sound speed (their Figure 3(b)) is consistent with what would be

seen with additional logarithmic corrections. In Figure 4.5, we plot predictions

for the rescaled transverse sound speed cT over identical ranges of frequency

and comparable distances to the critical point. The residual shifts are compara-

ble in magnitude and direction to what is seen in the simulation of compressed

soft spheres in d = 2 after fitting the non-universal parameters, and in our case

are explicitly due to logarithmic corrections to scaling.

We will now seek to unify these contrasting results for the scaling in 3D and

2D by passing to continuous spatial dimensions d and analyzing the transition

as a function of spatial dimension, so that d = 2 and d = 3 appear as special

cases.

4.2.5 General dimensions: RG flows and universal scaling

functions

We now extend our analysis in the previous section to arbitrary continuous di-

mensions d. We show that new critical exponents arise for dimensions d < 2

(Section 4.2.5); we discuss their relevance and possible models to probe these

new critical properties in Section 4.2.6. We use our predictions to deduce that

the critical properties near two dimensions are described by a transcritical bifur-
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δp = 1 × 10-3

δp = 2 × 10-3
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cT(Ω)/cT0

Figure 4.5: Logarithmic shifts in the frequency-dependent transverse sound
speed in two dimensions. We plot our scaling solutions for the transverse
sound speed cT ∼

√
Re

[
µ
]

against a rescaled frequency variable Ω̂ ≡ (ω/ω0) / |δp|
that ignores the logarithmic shifts. Just as in the 2D soft-sphere collapses in Fig-
ure 3(b) of [140], we see a broadening of the curves as we approach the critical
point, which here is precisely due to logarithmic corrections.

cation in the renormalization group flows (as in the 4D Ising model, where the

Gaussian and Wilson-Fisher fixed points exchange stability), use normal form

theory [49] to predict the universal nonlinear terms needed in the RG, and use

our exact solutions to deduce the CPA predictions for the values of these univer-

sal nonlinear terms (Section 4.2.5). We then investigate the fate of all invariant

scaling combinations as we tune through d = 2 dimensions (Section 4.2.5) and

write universal scaling functions for the viscoelastic shear modulus in terms of

the appropriate scaling variables in each dimension. All details of the direct cal-

culation from the CPA can be found in Appendix C.1; here we report the crucial

parts necessary for the understanding of the invariant scaling combinations and
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Variable Description Location
µ viscoelastic shear modulus —

δp p − pc : deviation from continuous rigidity transition pc —

w ρω2 : (undamped); iγω: (overdamped) —

f w/µ: frequency measured relative to shear stiffness —

M
(
µ/µ0

)
/ |δp|: scaling variable formed between µ and δp Eqn. 4.31, Eqn. 4.32, Eqn. C.9

F
(
f / f0

)
/ |δp|: scaling variable formed between f and δp in d > 2 Eqn. 4.31, Eqn. C.19

F2 scaling variable formed between f and δp in d = 2 Eqn. 4.35, Eqn. C.29

Fd
(
f / f0d

)
/ |δp|2/d : scaling variable formed between f and δp in d < 2 Eqn. 4.32, Eqn. C.34

U scaling variable for leading irrelevant correction to scaling in d > 2 Eqn. 4.31, Eqn. C.20

Ud scaling variable for leading irrelevant correction to scaling in d < 2 Eqn. 4.32, Eqn. C.35

M universal scaling function for µ in d > 2 implicitly defined by Eqn. 4.31

M2 universal scaling function for µ in d = 2 implicitly defined by Eqn. 4.35

Md universal scaling function for µ in d < 2 implicitly defined by Eqn. 4.32

D universal scaling function for the density of states in d > 2 Eqn. C.47

D2 universal scaling function for the density of states in d = 2 Eqn. C.49

Dd universal scaling function for the density of states in d < 2 Eqn. C.48

G universal scaling function for the Green’s function in d > 2 Eqn. C.54

Gd universal scaling function for the Green’s function in d < 2 Eqn. C.55

Table 4.1: Descriptions of physical parameters and scaling variables. The lo-
cation within the manuscript of the definition of each variable is also included.

the calculation of scaling functions. Definitions of some variables that regularly

appear can be found in Table 4.1, along with their location in the manuscript.

New exponents below d = 2

The CPA self-consistent equation (Equation 4.7) depends explicitly on the fre-

quency only through G in the integral term, which splits naturally into a trans-

verse and a longitudinal part, each of which can be evaluated separately. Fol-

lowing the derivation of the scaling in 3 and 2 dimensions, we first subtract pc

from each side of the equation, so that, to leading order in the scaling variables,

each side of the equation ∼ |δp|1. Focusing arbitrarily on the longitudinal part,

one can rescale the integration variable to ξ = (q/qD)2, to find integrals of the
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form

−
d
2̃z

∫ 1

0
dξ

ξd/2−1

1 − (µ/wL)ξ
= −

1
z̃ 2F1

(
1,

d
2

;
d
2
+ 1;

µ

wL

)
, (4.25)

where wL depends on the dynamics (overdamped, undamped) but is gener-

ally a frequency variable rescaled by longitudinal information; for undamped

dynamics wL = ρω
2/(λF/µF + 2)q2

D. The function 2F1 (a, b; c; z) is the ordinary

hypergeometric function. Note that µ is a complex number determined by the

solution to the self-consistent equation. In this way, the analytic structure of the

asymptotic scaling for µ is closely linked to the analytic structure of the hyper-

geometric function, which is convoluted enough to justify further investigation.

We now need to expand the hypergeometric function as µ/wL/T reaches its

limiting value in the scaling limit. It is well-known in the field, and was found

by us directly in Section 4.2.4, that this ratio diverges in the scaling limit in

d = 3.8 We will assume that this is true in all dimensions (without assuming any

specific power laws) and self-consistently check it at the end. The hypergeomet-

ric function has a branch point at z = ∞ that we need to account for to do our

expansion properly. There is a relation between the hypergeometric function’s

values inside the unit disk |z| < 1 and those outside that nicely elucidates the

complex branch structure at∞. Assuming d is not an even integer [141], we can

8Mean-field rigidity transitions have µ ∼ |δp|. In the the undamped case w = ρω2 and it is
well known that ω ∼ |δp|, so µ/w ∼ 1/|δp| diverges. In the overdamped case w = iγω, and we
shall find ω ∼ |δp|2, so again the ratio diverges as 1/|δp|. In fact, our analysis is agnostic to the
type of damping, so wL/T ∼ |δp|2 above d = 2 for all kinds of q-independent damping. This tells
us the scaling of ω and hence that the ratio diverges.
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separate our expression into two pieces

Γ
(

d
2

)2

Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

)2F1

(
1,

d
2

;
d
2
+ 1;

µ

wL

)
=(

−
wL

µ

)
2F1

(
1, 1 −

d
2

; 2 −
d
2

;
wL

µ

)
+

+Γ

(
d
2

)2 Γ
(
1 − d

2

)
Γ
(

d
2 − 1

) (
−

wL

µ

)d/2

.

(4.26)

We will eventually recover the behavior in even dimensions d by carefully tak-

ing a limit. The hypergeometric function with z = wL/µ as an argument is 1

for z = 0 and can otherwise be expanded in a convergent power series in z. In

other words, from our self-consistent equation, the longitudinal piece can be

expanded in the scaling limit as

−
1
z̃ 2F1

(
1,

d
2

;
d
2
+ 1;

µ

wL

)
=

C1

(
wL

µ

)
+C2

(
−

wL

µ

)d/2

+O

(wL

µ

)2 . (4.27)

In the previously analyzed d = 3, for instance, this identifies the correction fixing

the low-frequency imaginary part of the modulus as a non-analytic (−wL/µ)3/2

appearing in the self-consistent equation – related to our dangerously irrelevant

variable.

One now tries to set the scaling of wL/µ by examining Equation 4.27. For

d > 2, the term (−wL/µ)d/2 is subdominant at low frequencies to wL/µ, and so

wL/µ ∼ |δp| so that either side of the self-consistent Equation 4.7 is balanced

asymptotically as δp → 0. On the other hand, for d < 2, (−wL/µ)d/2 sets the

dominant contribution at low frequencies. In this scaling limit, wL/µ ∼ |δp|2/d so

that (−wL/µ)d/2
∼ |δp| and either side of the self-consistent equation is balanced

asymptotically as δp → 0. We note that each of these scalings is consistent with

µ/wL → ∞ in the scaling limit, justifying the expansion of the hypergeomet-
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ric function around its branch point at ∞. This difference in scalings is remi-

niscent of a theory near its upper critical dimension: above d = 2, the critical

exponents are dimension-independent and equal to their mean-field-like value.

Below d = 2, the exponents are modified because the mean-field fixed point

becomes unstable under the RG flow.

Deduced RG flow equations

In our case, we have access not to a principled set of renormalization group

transformations for rigidity percolation or jamming, but only to previously

studied scaling exponents and our explicit solutions. Here we posit RG flow

equations that accurately reproduce the power-law invariant scaling combina-

tions in our explicit solutions (see Appendix C.2). These flow equations are non-

linear functions of the system parameters that express the amount they change

as the system is coarse-grained by a factor 1+dℓ and rescaled. We find from our

explicit solution that we should measure w in units of µ (measuring frequency

in units of stiffness). We also find there is an additional control variable u whose

flow depends upon the dimension d: irrelevant for d > 2, becoming marginal in

d = 2, and relevant at the original RG fixed point for d < 2.

The scale invariance near the critical point is characterized by properties

(typically the eigenvalues) of the stable fixed point of the flows. We have seen

that the scale invariance near the critical point changes completely as we pass

through two dimensions. We can capture the scale invariance smoothly as a

function of dimension by a set of coupled flow equations with a pair of fixed

points that cross and exchange their stability as we pass through two dimen-

sions.
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Our group has developed [49] an understanding of how theories of critical

phenomena behave in the vicinity of their upper and lower critical dimensions.

Normal form theory, adapted from dynamical systems, gives a unifying descrip-

tion of renormalization group flows and special invariant scaling combinations.

In particular, it gives us the language necessary to interpret flows near a bifur-

cation. In the Ising model near its upper critical dimension d = 4, for instance, a

variable that can be identified with the quartic coupling u which was once irrel-

evant in d > 4 becomes marginal in d = 4 and relevant below (at the Gaussian

fixed point), redirecting the flows to the new, stable Wilson-Fisher fixed point.

In the normal form language, the RG flow of this parameter undergoes a trans-

critical bifurcation around d = 4. Through an analytic change of coordinates, the

flow equations can be cast into their normal form in the vicinity of d = 4. In typ-

ical cases (such as in the three-dimensional Ising model), the normal form can

completely linearize the flow at the fixed point, giving invariant scaling com-

binations that are ratios of powers of physical quantities, and hence power-law

behavior that can be characterized by critical exponents. But precisely at the

bifurcation in the upper critical dimension, one must keep specific nonlinear

terms which cannot be removed by an analytic change of variables, and these

nonlinear terms capture completely the well-known logarithmic corrections.

Based on our explicit solution, we thus posit the following RG flow equa-

tions9, which accurately reproduce the power-law invariant scaling combina-

9Normal form theory [49] demands a cubic term Du3 in the equation for du/dℓ. We have
checked that the constant D = 0 for our explicit solution.
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tions in all dimensions d , 2:
dq
dℓ
= q,

dδp
dℓ
= 2δp − u δp,

dµ
dℓ
= 2µ − u µ,

d f
dℓ
= 2 f ,

du
dℓ
= (2 − d)u − u2,

(4.28)

where the nonlinear terms can be removed in dimensions d > 2. Details of the

determination of these flow equations can be found in Appendices C.2 and C.3.

In the flow equations for parameters other than u, the terms involving products

of flow parameters are higher-order and so the invariant scaling combinations

in dimensions other than d = 2 can be accurately determined by setting u equal

to its value at the stable RG fixed point, as we will do in the following section.

Scaling variables and scaling functions

We now use the flow equations deduced from the scaling behavior together

with the asymptotic expansions of the CPA close to the critical point to write

scaling variables and scaling functions for the viscoelastic moduli in arbitrary

dimensions. Turning our focus to the flow equation for u, we find uc = 0 for

d > 2 and uc = 2−d for d < 2: by construction, the flow equation for u undergoes

a transcritical bifurcation in d = 2 (Figure 4.6).

To demonstrate that the scaling for f deduced from the flow equations is

consistent with the direct CPA calculation both above and below d = 2, we

combine the flow equations for δp and f to write

d log ( f )
d log (δp)

≈
2

2 − uc
=⇒ f ∼ δp2/(2−uc). (4.29)
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u

d

d=2

Figure 4.6: Flows of the parameter u under the RG. The solid, red lines indicate
attractive fixed points. The dashed, blue lines indicate repulsive fixed points.
For d > 2, u flows to 0. For d < 2, u flows to uc = 2 − d, a different fixed
point. This is a transcritical bifurcation; two fixed points cross and exchange
their stability in d = 2. The dimension-dependent critical exponents for d < 2
are controlled by the new stable fixed point.

This is correct away from d = 2, as uc = 0 makes the exponent 2/(2 − uc) = 1

and uc = 2 − d makes the exponent 2/(2 − uc) = 2/d. (We will explore d = 2

below, where the full flow equations including the nonlinear terms are needed

to determine the complicated invariant scaling combinations.) For d > 2, we
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must retain the flow equation for u despite its irrelevance; it is a dangerously

irrelevant variable since the scaling function for M is not analytic at U = 0.

Is this interesting, given that we typically don’t do simulations of colloidal

gels or other disordered rigid systems below two dimensions? While we do not

expect experiments to test our predictions in non-integer dimensions, in Sec-

tion 4.2.6 we discuss applications to theoretical simulations in d < 2. In two

dimensions, however, these predictions are in principle experimentally observ-

able. This is a case where the upper critical dimension of a theory is physi-

cally relevant (at least as determined within the CPA). In the Ising model at

its upper critical d = 4, there is a logarithmic singularity in the magnetization,

which also has important (very slowly vanishing at the critical point) log-log

corrections. Here, the situation is identical. Suppose one picks out a phys-

ically relevant piece of dynamical information at this rigidity transition, like

the frequency ω∗ where we cross over into being dominated by dissipation

Re (µ (ω∗)) = −Im (µ (ω∗)). For all d away from 2, we can write how this phys-

ical frequency scales with our excess contact number: in the undamped case,

ω∗ ∼ δp(4−uc)/(4−2uc). But in 2 dimensions, there are detectable shifts in this fre-

quency, and it turns out that for the undamped case ω∗ ∼ |δp|
∣∣∣log |δp|

∣∣∣−1/2
with

additional important log-log corrections.

This can be understood by writing the proper invariant scaling combinations

in the upper critical dimension using the flow equations. In Appendix C.3, we

show that the scaling of the frequency variable in 2 dimensions implied by the

renormalization group flow equations is (making only the δp dependence ex-

plicit)

f ∼
x(u)δp

W (x(u) δp)
, (4.30)
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where W is again the Lambert W function and x(u) is an explicit function of the

(marginally) irrelevant scaling variable. This accurately reproduces the asymp-

totic behavior of the frequency scaling that was found by directly evaluating

the CPA in d = 2 (Equation 4.24) and connects this result to scaling found in

standard critical phenomena.

As investigated in the particular cases of d = 3 and d = 2 in previous sections,

the CPA self-consistent equation also gives us predictions for the universal scal-

ing functions determining the moduli; when written in the appropriate scaling

variables for each dimension one can predict the shape of scaling collapse plots

of measurements of viscoelastic moduli close to a rigidity transition. With this in

mind, we seek to write the self-consistent equations in a form that is consistent

with the posited renormalization group flow equations.

For dimensions d > 2 not even, retaining the lowest-order terms leads to a

scaling function of the form

±1 − M = F + U (−F)d/2 ,

F =
f / f0

|δp|
, M =

µ/µ0

|δp|
, U = u/u0 |δp|d/2−1 ,

(4.31)

where the scaling variable F is the invariant scaling combination formed be-

tween f and δp and f0, µ0, and u/u0 are complicated but explicit combinations of

microscopic parameters (Appendix C.1). The sign ±1 = δp/ |δp| is for the rigid

and floppy side of the transition, respectively. The scaling variable F can be

adapted to deal with different microscopic dynamics. This is an implicit defi-

nition of a universal scaling function for M = M (F,U) for d > 2. Here we note

that the scaling variable U varies with the correct power of δp to be identified as

the invariant scaling combination formed between u and δp. Thus u is correctly

identified as being irrelevant in dimension d > 2. As mentioned before in Sec-
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tion 4.2.4, in previous work [9, 45], U is set to 0, making the eventual solution

for µ(ω) the solution to a quadratic equation, with a cuspy form not seen in the

full numerical solution to the CPA. The variable u is dangerously irrelevant for

microscopically undamped dynamics in all d > 2 and needs to be retained to

understand the behavior of the low-frequency viscous part of the modulus. We

also note that the effect of U is nonperturbative in the inverse spatial dimen-

sion: near d = ∞ perturbing in ϵ ≡ 1/d, U ∼ |δp|1/(2ϵ). This effect is not specific

to the CPA, since above the upper critical dimension the onset of the plateau in

the density of states is ω∗ ∼ |δp| while a description of the phononic contribu-

tion to the low-frequency density of states gives Debye behavior ∼ ωd−1 which

is heavily suppressed in high dimensions.

Below dimension 2, we are forced to change our scaling variables to the ones

relevant at the new attractive RG fixed point. We find

±1 − M = − (−Fd)d/2
− UdFd,

Fd =
f / f0d

|δp|2/d
, Ud = ud/u0d |δp|2/d−1 .

(4.32)

This is an implicit definition of a universal scaling function for M =Md (Fd,Ud)

for d < 2. This scaling identifies Ud as the invariant scaling combination associ-

ated with u in the vicinity of the new attractive fixed point that has emerged be-

low d = 2, with the correct exponent on δp (see Appendix C.2 and Appendix C.1

for details). We summarize the usual critical exponents in Table 4.2.

One can recover the scaling function in d = 2 by carefully taking a limit

d → 2. Reinstalling the definition of U above d = 2, and pulling out a factor of
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fCPA ν z θ ≡ ων γ

d > 2 1 1/2 2 d/2 − 1 2
d < 2 1 1/d 1 + d/2 2/d − 1 1 + 2/d

Table 4.2: Critical exponents as predicted by the CPA in the undamped case,
away from the upper critical dimension dupper = 2. The invariant scaling combi-
nations in dupper capture the logarithmic corrections typical of an upper critical
dimension.

Γ (d/2 − 1) that was previously absorbed into a definition of f0, one finds

±1 − M =

−F′
((
−(u/u0)′

2
d−2 F′ |δp|

)d/2−1
− 1

)
Γ

(
d
2
− 1

)
.

(4.33)

As d → 2+, this reproduces a limit similar to those seen in the replica trick

(xn − 1)/n → log(x) as n → 0 (elaborated upon in Appendix C.1). The resulting

expression

±1 − M = −F′ log
(
−(u2/u02)F′ |δp|

)
(4.34)

gives the right asymptotic behavior predicted by the RG flows at the transcriti-

cal bifurcation, but is not written in the appropriate scaling variables for d = 2;

if one fixes these scaling variables but takes the scaling limit δp→ 0, one side of

the self-consistent equation diverges. If one inserts the proper frequency vari-

able, the equation is asymptotically

±1 − M = F2,

F2 = −
f / f02

|δp|
log (−(u2/u02) f / f02) .

(4.35)

This is a definition of a universal scaling function for M = M2 (F2) for d = 2.

Explicit formulas for all quantities in terms of the microscopic parameters of the

isotropic elastic sheet are also derived in Appendix C.1. In Figure 4.4, we nu-

merically solve the CPA self-consistent equations for the triangular lattice in the

undamped case, which is not microscopically isotropic and which has a hexago-

nal Brillouin zone. Nonetheless, because there is an emergent long-wavelength
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isotropy, the scaling behavior of its modulus near the critical point is well-

described by our forms of the scaling function for the isotropic elastic sheet.

Performing the naı̈ve rescalings MT = µ/ |δp| and ΩT = ω/ |δp|, one sees a slow

but systematic shift of the crossing pointΩ∗T where Re
(
MT(Ω∗T)

)
= −Im

(
MT(Ω∗T)

)
.

If ΩT were the correct scaling variable to use, as it is in all d > 2, this crossing

point would have small corrections away from p = pc but would otherwise be

constant in ΩT. Our form of the universal scaling function in d = 2 perfectly

accounts for these logarithmic shifts.

4.2.6 Applicability of the transition to physical systems

To what systems do we expect the behavior to be quantitatively described by

our universal scaling predictions? What features of our predictions do we ex-

pect to apply more broadly to rigidity transitions? Here we discuss clearly

where our universal predictions do not apply, and speculate about where they

may provide qualitative or quantitative guidance.

As noted in the introduction and in Appendix C.4, our continuum CPA does

not correctly describe the diluted triangular spring lattice, which exhibits non

mean-field critical exponents in its static properties in two dimensions rather

than the predicted log-corrections to mean-field theory [5, 117]. Generalized to

describe the abrupt jump in the bulk modulus, the continuum CPA applies qual-

itatively to simulations of spring network geometries generated from jammed

packings [142]. The generalized continuum CPA reproduces the numerically

observed jamming mean-field exponents in three dimensions, and both this cal-

culation and the simulation find mean-field exponents with log corrections to
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scaling in two dimensions (however, see below). Indeed, based partly on a

discussion years ago with Carl Goodrich, we conjecture that randomly dilut-

ing a spring network generated from a jammed packing starting in the rigid

phase will undergo a transition where both bulk and shear moduli grow contin-

uously, described quantitatively by the version of our continuum CPA analyzed

here [143].

Why is the triangular lattice (and, by implication, many other spring lattices)

not behaving according to our theory? While the triangular lattice is statistically

isotropic in its elastic moduli, many critical points are more sensitive than elas-

tic theory to breaking of rotational invariance. The XY model is unstable to

breaking of triangular and square symmetries [144, 145], and diffusion-limited

aggregation is famous for breaking rotational invariance in a way that revealed

itself only in (then) large simulations [118]. Statistically isotropic lattices might

show mean-field behavior. Another likely culprit are the straight lines between

bonds in the triangular lattice, which are shared with the Mikado networks [146]

formed by random long fibers cross-linked at their intersections. A node con-

necting two parallel bonds cannot move freely under tensile stress, while at any

non-zero angle it needs a third constraint to fix it in place: such second-order

constraints are expected to change critical properties [59, 119]. A generic lat-

tice with the same connectivity structure as a regular triangular lattice, as sug-

gested by Jacobs [59], could be enough to show mean-field behavior. Diluted,

statistically isotropic spring networks with random node positions show mean-

field exponents, but it appears necessary to include the effects of pre-stress to

capture information about additional frequency scales that arise close to the

transition [52]. This can be done in an effective medium framework, and we

expect similar logarithmic corrections in d = 2 to the ones investigated in this
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manuscript. However, effective medium theories generally incorrectly predict

the amplitudes of response properties such as sound attenuation, and a better

starting theory is likely needed to understand this discrepancy [140].

As noted above, this continuum analysis has a natural extension to describe a

jamming transition, inspired again by [2, 9, 45]. There the upper critical dimen-

sion is believed to be two, and our model (and the lattice CPA models) does

agree with known critical exponents. However, our calculation for jamming

shows logarithmic corrections to scaling that only arise in frequency-dependent

quantities, as we have seen in this manuscript, while convincing numerical

work shows logarithmic corrections to the finite-size scaling of zero-frequency

elastic moduli in jamming simulations [142]. We suspect that the lack of log-

arithmic corrections to the finite-size effects in our 2D jamming variant is re-

lated to the CPA assumption that the moduli are independent of wavevector.

One notes that the Green’s function and other wavevector-dependent proper-

ties have a wavevector scale in 2D that does have logarithmic corrections to

scaling q∗ ∼ |δp|1/2
∣∣∣log |δp|

∣∣∣−1/2
(similar to the frequency scaling). Our current the-

ory replaces the system near its rigidity transition with a uniform but frequency

dependent modulus, ignoring the important effects of spatial fluctuations. A

more sophisticated self-consistent approach allowing for more general forms of

response functions, such as the manuscript of Vogel et al. [132] mentioned in

the Introduction, could be analyzed to extract a universal scaling theory that

not only correctly describes the finite-size effects in two-dimensional jamming,

but also describes the 2D and 3D crossovers to the elastic-dipole induced corre-

lations of glasses [133, 134, 147] and Rayleigh scattering. However, the detailed

simulations of [44] do appear to reproduce the logarithmic shifts in the density

of states and ℓ−1
c ∼ q∗ explained in this work.
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Will our predictions of new critical behavior for d < 2 in Section 4.2.5 have

any chance of being tested? Jamming has been studied for hard disks in a one-

dimensional channel [148], exhibiting different critical exponents for the distri-

bution of small gaps than in higher dimensions. We suspect our predicted criti-

cal exponents for linear response properties may be only qualitatively predictive

in d = 1. While our theory predicts exact new values for critical exponents for

all d < dupper = 2, we trust our predictions quantitatively only near the upper

critical dimension. Indeed, other approximate methods such as mode-coupling

theories [149, 150] give correct critical exponents in dupper − ϵ only to order ϵ1,

where higher-order corrections demand further diagrammatic calculations.

The calculation presented here could, however, quantitatively describe a

rigidity transition in a one-dimensional model with long-range bonds. For in-

stance, the one-dimensional Ising model [151] with bond strengths that decay

with a power law J(r) ∼ r−(1+σ) has an ordering transition for σ < σL = 1 and has

nontrivial critical exponents for 1/2 < σ < 1. The situation is similar in ordinary

percolation with long-range bonds [152], where having a bond length distribu-

tion P(r) ∼ r−(1+σ) leads to a percolation transition at a threshold 0 < pc < 1 for

0 < σ < 1, and nontrivial critical exponents for 1/3 < σ < 1 with additional

logarithmic corrections to scaling at σ = 1/3. This could be extended to an

elastic rigidity transition by replacing the connecting bonds by elastic springs

and measuring the elastic modulus. Additionally, the long-range random-bond

Ising model in one dimension has a spin glass phase [153]. These are all cases

where tuning the exponent associated with the range of the interaction can be

used to continuously tune the effective dimension of the critical properties of the

transition, allowing us to access the continuous predictions of critical exponents

in the vicinity of the upper critical dimension.
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Finally, additional extensions to this scaling theory can in principle be added

by hand. Exactly at the rigidity transition, there is no linear response regime,

which has attracted much interest in the jamming community. Tiny deforma-

tions induce both microscopic topology changes and avalanches of all sizes.

Scaling theories have been developed to describe, for instance, power-law re-

lationships between friction coefficients and shear rate in granular matter close

to its flowing instability [134, 154]. Analytical predictions for the universal scal-

ing functions may not be as simple to determine, but once a suitable scaling

theory is established, adding new phenomena (such as rheological responses

beyond the linear regime) should be possible.

4.2.7 Summary & Conclusions

In summary, we take seriously a dynamical version of the CPA, a frequently

used effective medium theory. We examine its predictions close to the criti-

cal point, casting solutions into scaling forms to identify universal pieces. We

first examine its predictions for the universal scaling functions for effective vis-

coelastic moduli close to the critical point in d = 3 and identify a dangerously

irrelevant variable that controls low-frequency dissipation in the case of micro-

scopically undamped dynamics. We then investigate d = 2, and we find that the

appropriate invariant scaling combinations are not ratios of powers of parame-

ters, as we would expect close to a hyperbolic RG fixed point. To our surprise,

although the exponents with which the static moduli vanish with δp are un-

changed with dimension, the critical exponents associated with relevant length

and time scales in the system change quantitatively as we pass below d = 2.

This identifies d = 2 as the upper critical dimension of the theory. From the ex-
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act solution, we deduce from normal form theory [49] a set of renormalization

group flow equations which have a transcritical bifurcation in two dimensions.

These are constructed to match the forms of the scaling variables above, below,

and in the upper critical dimension d = 2. These forms are self-consistently

checked against numerical solutions of the lattice CPA for a bond-diluted tri-

angular lattice, verifying these important corrections in this physically relevant

dimension.
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CHAPTER 5

SIMULATIONS OF RIGIDITY TRANSITIONS IN ANISOTROPIC

RANDOM LATTICES

5.1 Anisotropy in real biological materials

There has been recent interest in understanding real biological materials starting

from extreme points in their phase diagram. When a wound heals, for instance,

cells around the injury appear to liquify to fill the gap, indicating that an exter-

nal stimulus has driven them to change their phase to perform a function [155].

By understanding properties of the phase transition that they undergo, we can

understand properties related to cell operations within their phase under nor-

mal, non-healing conditions.

Similar phase transitions from (more) floppy to (more) rigid states occur in

cartilage. When a sample of cartilage is isolated and highly strained, its stiffness

can increase by several orders of magnitude over changes of a few percent in

strain (a highly nonlinear elastic effect). These kinds of crossovers can be cap-

tured using models that incorporate chains made of stiff rods (mimicking the

collagen fibers in the cartilage) that straighten out under large strains, leading

to engagement of the stiff fibers’ stretching modes. Understanding the response

of real cartilage then entails incorporating corrections to this transition when

background gels, bending stiffnesses, or secondary networks are added [6, 7, 8].

Importantly, this behavior in cartilage is highly anisotropic, as the stretching

modes of long fibers are engaged preferentially along the maximum extensive

axis for the applied strain.
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Even isotropic networks become anisotropic under the finite strains that are

necessary to induce strain stiffening. But the collagen networks that are believed

to be involved in strain stiffening are intrinsically anisotropic: near the surface

of cartilage, the fibers are oriented preferentially parallel to the surface before

gradually rotating into other configurations within the bulk. This anisotropy

that is baked into the structure of the collagen network can affect the response

even at infinitesimal strains, where we probe the linear elastic regime. A generic

theory of linear elasticity incorporates the different strains in different directions

into a 4-index elasticity tensor Ci jkℓ:

E =
1
2
ϵi jCi jkℓϵkℓ. (5.1)

where ϵi j is the linearized symmetric strain tensor, expressed in terms of deriva-

tives of the local displacement field ui:

ϵi j =
1
2

(
∇iu j + ∇ jui

)
. (5.2)

The elasticity tensor is symmetric under the interchange of dummy indices i j↔

kℓ because the energy density is quadratic in the strain tensor (this is called the

major symmetry). It is independently symmetric under the interchange i↔ j and

k ↔ ℓ thanks to the symmetry of the stress and strain tensors (these are called

minor symmetries).

The stress that is felt under a particular strain can then be straightforwardly

computed:

σi j =
∂E
∂ϵi j
= Ci jkℓϵkℓ (5.3)

which is a generalization of Hooke’s law for linear springs to a linear elastic

medium in arbitrary dimensions. We can count how many independent com-

ponents of Ci jkℓ are possible under different symmetries in d dimensions. In the
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least symmetric case, each index can be in the set {1, . . . , d}. This gives d4 com-

ponents before taking into account the major and minor symmetries. This can

be done by forming a matrix out of the independent (taking into account the

minor symmetries) pairs of components i j and kℓ. In dimension d ≥ 2, there are

n = d + d!/2!(d − 2)! of these pairs (in d = 3, the n = 6 independent pairs are

{xx, yy, zz, xy, yz, zx}, for instance). We imagine forming an n × n matrix of these

elastic coefficients. The major symmetry is then simply the statement that this

matrix is symmetric. An n×n symmetric matrix has n(n+1)/2 independent com-

ponents. This means that the most anisotropic linear elastic material possible in

d dimensions has

1
2

(
d +

d!
2(d − 2)!

) (
d +

d!
2(d − 2)!

+ 1
)
=

1
8

d (d + 1)
(
d2 + d + 2

)
(5.4)

independent stiffnesses that can be measured to characterize the response prop-

erties. In d = 2, this number is 6, while in d = 3, this number is 21. Additional

symmetries of the material can then be used to further reduce the number of

independent elastic components.

This reduction generally goes as follows: the uniform material is typically in-

variant in its properties under some group of transformations from O(d): reflec-

tions and rotations in d dimensions. This invariance could come, for instance,

from its microstructure (like having a crystal with a cubic unit cell). Suppose

Ri j ∈ O(d) is a symmetry of the material. Then we can rotate the coordinates

within our shear and recover the same energetic cost of deformation. Under a

rotation, a shear transforms as

ϵi j → ϵ
′
i j = RikϵkℓR jℓ (5.5)

This means that we find further relationships amongst the different components
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of the elastic tensor:

1
2
ϵi jCi jkℓϵkℓ =

1
2
ϵ′i jCi jkℓϵ

′
kℓ =

1
2

RimϵmnR jnCi jkℓRkoϵopRℓp. (5.6)

Reindexing i↔ m, j↔ n, k ↔ o, ℓ ↔ p gives

1
2
ϵi jCi jkℓϵkℓ =

1
2
ϵi j

(
RmiRn jCmnopRokRpℓ

)
ϵkℓ (5.7)

or, since the strain is arbitrary,

Ci jkℓ = RmiRn jRokRpℓCmnop. (5.8)

When we construct our 4-index tensor, we have our scalar “moduli.” To

get the 4-index orientation of the material correct, we can write a basis for

all 4-index tensors from outer products of four orthonormal basis vectors à la

x̂i x̂ j x̂k x̂ℓ.1 Once again, the major and minor symmetries of the elasticity tensor,

together with the additional symmetries imposed by the material, restrict the

number of independent coefficients we are allowed to have. Let’s focus on two

dimensions for now. We only have six independent components of the elasticity

tensor. We can represent the invariance given by the major and minor symme-

tries by grouping terms that transform into each other under these symmetries

with the same coefficient:2

Ci jkℓ = C11 x̂x̂x̂x̂ +C22ŷŷŷŷ +C33 (x̂ŷx̂ŷ + x̂ŷŷx̂ + ŷx̂x̂ŷ + ŷx̂ŷx̂)+

+C12 (x̂x̂ŷŷ + ŷŷx̂x̂) +C13 (x̂x̂x̂ŷ + x̂x̂ŷx̂ + x̂ŷx̂x̂ + ŷx̂x̂x̂)+

+C23 (ŷŷx̂ŷ + ŷŷŷx̂ + x̂ŷŷŷ + ŷx̂ŷŷ) .

(5.9)

1This is just like how a vector vi can be expanded in an orthonormal basis x̂i. These basis
tensors for the four-index case can be thought of as d × d matrices of d × d matrices with a single
entry 1 and all other entries 0.

2Here I use the common matrix naming convention for the components of the elasticity ten-
sor, where {xx, yy, xy} ↔ {1, 2, 3} for the indices.
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Now let’s suppose that our material is symmetric independently under x and

y reflections.3 These flip the signs of terms with an odd number of x̂ and ŷ, so

C13 = C23 = 0, and we have only four independent moduli:

Ci jkℓ = C11 x̂x̂x̂x̂ +C22ŷŷŷŷ +C33 (x̂ŷx̂ŷ + x̂ŷŷx̂ + ŷx̂x̂ŷ + ŷx̂ŷx̂) +C12 (x̂x̂ŷŷ + ŷŷx̂x̂) .

(5.10)

Suppose additionally that the material is invariant under rotations by 90◦. This

transforms x̂ into ŷ and ŷ into −x̂, which maps x̂x̂x̂x̂ → ŷŷŷŷ and the other terms

grouped in parentheses into themselves (since each term has the same number

of x̂’s and ŷ’s). This means that C11 = C22, and so we have three independent

elastic moduli:

Ci jkℓ = C11 (x̂x̂x̂x̂ + ŷŷŷŷ) +C33 (x̂ŷx̂ŷ + x̂ŷŷx̂ + ŷx̂x̂ŷ + ŷx̂ŷx̂) +C12 (x̂x̂ŷŷ + ŷŷx̂x̂) .

(5.11)

Finally, let’s assume that the material is additionally invariant under rota-

tions by 60◦. This transforms x̂ into x̂/2 +
√

3ŷ/2 and ŷ into −
√

3x̂/2 + ŷ/2.

The 4-index basis objects get mapped into monstrously long expressions, but

we can use Mathematica to check their coefficients. For instance, before the

transformation, the coefficient of x̂x̂x̂x̂ is C11. After the transformation, it

is (C11 + 9C11 + 3C33 + 3C33 + 3C33 + 3C33 + 3C12 + 3C12) /16. Because the coeffi-

cients before and after the transformation must be equal to respect the sym-

metry, one has

C11 =
5
8

C11 +
3
4

C33 +
3
8

C12 =⇒ C11 = C12 + 2C33, (5.12)

eliminating another independent modulus. We can check the coefficients of

other terms, like x̂x̂ŷŷ, but these turn out to give the same equation for C11 in

3This is the situation with the anisotropic triangular lattice that we will study in detail in the
manuscript of this section.
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terms of C12 and C33. Hence we have only two independent moduli:

Ci jkℓ = (C12 + 2C33) (x̂x̂x̂x̂ + ŷŷŷŷ + x̂x̂ŷŷ + ŷŷx̂x̂)+

+C33 (x̂ŷx̂ŷ + x̂ŷŷx̂ + ŷx̂x̂ŷ + ŷx̂ŷx̂ − 2x̂x̂ŷŷ − 2ŷŷx̂x̂) .
(5.13)

Is this as simple as it gets? The first of these collections of basis tensors

in parentheses is 1 if the first two and the last two indices are equal, and zero

otherwise. This is the tensor δi jδkℓ. The second term in parentheses is 1 if the first

and third and second and fourth indices agree but are different from each other

or if the first and fourth and second and third indices agree but are different from

each other. It is also −2 if the first two and last two indices agree individually

as pairs but are different from each other. These conditions can be written all

together as δikδ jℓ + δiℓδ jk − 2δi jδkℓ.4 Hence the above expression reduces to

Ci jkℓ = C12δi jδkℓ +C33

(
δikδ jℓ + δiℓδ jk

)
. (5.14)

One can check easily that this tensor is in fact invariant under any rotation, even

though we have only imposed a few discrete symmetries. In arbitrary dimen-

sion d, δi jδkℓ and
(
δikδ jℓ + δiℓδ jk

)
are the only 4-index isotropic tensors that one can

construct obeying the major and minor symmetries of the elasticity tensor [36].

This is general enough to justify giving names to the coefficients; these coeffi-

cients are called the Lamé parameters C12 ≡ λ and C33 ≡ µ. The two independent

moduli can also be decomposed into a shear modulus G (the energetic cost for

a shear ϵxy (for instance) is Gϵ2/2) and a bulk modulus B (the energetic cost for

a dilation ϵi j = (ϵkk/d) δi j is Bϵ2/2). Using the expression for the isotropic elastic

medium, one can find these moduli in terms of the Lamé parameters:

G = µ, B = λ +
2
d
µ. (5.15)

4It is worth checking the cases x̂x̂x̂x̂ and ŷŷŷŷ – they are 0 thanks to a convenient cancellation.
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As an inhomogeneous anisotropic three-dimensional material, cartilage is suf-

ficiently complicated that completely characterizing even its linear elastic prop-

erties is a hard job. We are interested in understanding the behavior of carti-

lage and more general anisotropic rigid networks close to a rigidity transition.

Because the number of independent elastic constants for a homogeneous max-

imally anisotropic material grows very quickly with dimension ∼ d4/8, we re-

strict our computational analysis to a simpler, two-dimensional case and focus

on qualitative aspects of the transition (since many of the critical exponents seen

in rigidity percolation are not mean-field-like, we do not expect the exponents

to match an analysis performed for the corresponding three-dimensional prob-

lem).

For a model that undergoes a rigidity transition, we choose a central force

bond percolation model on a triangular lattice. At long wavelengths, the tri-

angular lattice is isotropic.5 When we randomly dilute the triangular lattice, its

long-wavelength elastic properties remain statistically isotropic, and we can talk

about average values for the two independent moduli as a function of bond oc-

cupation fraction. We investigate an anisotropic version of this dilution problem

by preferring bonds in the horizontal direction by some multiplicative factor r.

This breaks the 60◦ rotation symmetry of the randomly diluted triangular lattice

down to a network that is symmetric under independent reflections across any

horizontal or vertical axis. Specifically, we study the average response proper-

5A calculation similar to the ones performed above shows that imposing a 60◦ rotation sym-
metry in a two-dimensional linear elastic medium immediately reduces the number of indepen-
dent elastic constants to two.
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ties of the system with quenched disorder in the Hamiltonian

H =
1
2

∑
⟨i j⟩

ki j

∣∣∣ui − u j

∣∣∣2 ,
ki j ∼ p δ

(
ki j − k

)
+ (1 − p) δ

(
ki j

)
(isotropic),

ki j ∼
3pr

2 + r

(
1 +

4
3

(
1
r
− 1

) (
1 − cos2

(
θi j

)))
δ
(
ki j − k

)
+

+

(
1 −

3pr
2 + r

(
1 +

4
3

(
1
r
− 1

) (
1 − cos2

(
θi j

))))
δ
(
ki j

)
(anisotropic)

(5.16)

as we tune p and r, which are parameters governing the probability distribu-

tion of disorder.6 The more complicated expression in the anisotropic case can

be understood as follows: for bonds along the horizontal direction, we inde-

pendently randomly fill each with probability p1 = 3pr/ (2 + r). For bonds along

the other two directions, we independently randomly fill each with probabil-

ity p2 = p3 = 3p/ (2 + r). This guarantees that p1/p2 = p1/p3 = r, so that

bonds in the horizontal direction are a factor of r more likely to be filled, and

(p1 + p2 + p3) /3 = p, so that we have filled a fraction p of the total available slots

on average. Several filling configurations of the lattice are shown in Figure 5.1.

From the calculation regarding the elasticity tensor above, we expect to have

four independent elastic moduli for r > 1. These can be written as a bulk mod-

ulus + three shear moduli, or as four independent components of the elastic-

ity tensor sufficient to reconstruct the full linear elastic theory for the material

C11 = Cxxxx, C22 = Cyyyy, C12 = Cxxyy, and C33 = Cxyxy. C11, C22, and C33 can

be measured directly by applying small strains ϵxx, ϵyy, and ϵxy and measuring

2E/ϵ2. The final modulus can be measured through a bulk dilation of the ma-

terial ϵi j =
(
ϵxx + ϵyy

)
/2 δi j as the bulk modulus is

(
Cxxxx + 2Cxxyy +Cyyyy

)
/4 and

Cxxxx and Cyyyy can be independently measured. We study finite systems and
6Here θi j is the angle that the bond connecting nearest neighbor nodes ⟨i j⟩ makes with the

horizontal axis, so the probability distribution governing the filling of the bonds depends upon
the bond orientation.
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p = 0.3 p = 0.6 p = 0.9
r = 1.0 r = 1.0 r = 1.0

p = 0.5 p = 0.5 p = 0.5
r = 1.0 r = 1.5 r = 2.0

Figure 5.1: The anisotropically diluted triangular lattice for various values of p
and r. A fraction p of the total bonds is filled on average. The horizontal bonds
are r times more likely to be filled than the bonds along the other directions.

apply strains by adjusting the boundary conditions in an appropriate way. For

instance, an ϵxx strain can be simulated as follows: take a finite rectangle of the

relaxed system with periodic boundary conditions; say that the periodic do-

main has dimensions Lx and Ly. An application of a tiny ϵxx transforms Lx into

Lx(1 + ϵ). The lattice is then allowed to relax to reduce the potential energy

until force balance is achieved at every node. For a regular triangular lattice,

the nodes move affinely and the modulus can be easily computed in terms of

the microscopic spring stiffnesses k. For a given disorder realization where a

random set of bonds are removed, the nodal displacements are non-affine.

Once enough bonds are removed, eventually the lattice can completely re-
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lax under an infinitesimal strain. We detect this by tracking the linear elastic

moduli
〈
Ci jkℓ

〉
averaged over the distribution of bond disorder. In practice, we

set a small strain of ϵ = 10−3. One of the challenges of these simulations is that

the strain above which one sees nonlinear elastic behavior vanishes close to the

transition. Hence, for fixed strain, one inevitably crosses over into a regime

where the elastic energy is not quadratic in the applied strain very close to the

transition, which is not what we want if we are measuring the linear elastic

moduli. This can be avoided by setting the strain to be very small, and also by

confirming in the simulation that the energy is still quadratic in the strain for a

range of strains above 10−3.

In the isotropic case r = 1, the linear elastic moduli generally vanish as power

laws in deviations δp ≡ p − pc to a single critical filling fraction pc. We perform

a finite-size scaling analysis to extract critical exponents for finite size effects ν

and the vanishing of moduli fiso and find good agreement with previous results

in the literature [6, 3]:

Ci jkℓ ∼ L− fiso/νCi jkℓ

(
δp L1/ν

)
(5.17)

with fiso = 2.2 ± 0.3 and ν = 1.3 ± 0.2. In the anisotropic case, the moduli appear

to vanish at different locations on the phase diagram, leading to an intermedi-

ate phase where only one of the moduli (Cxxxx) remains nonzero. We confirm

these phase boundaries are different in the thermodynamic limit by tracking

their location as a function of L−1 and extrapolating to L−1 = 0. Furthermore,

the exponent with which Cxxxx appears to vanish is much larger than the other

moduli, with f aniso
xxxx = 4.0±1.0 and the others f aniso

i jkℓ,xxxx = 2.2±1.0 indistinguishable

from the isotropic case. For Cxxxx, then, there appears to be a pair of universality

classes that describe the critical behavior in the vicinity of r = 1. We can analyze

the data in this vicinity using crossover scaling: in addition to the usual two
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relevant variables L−1 and δp, there is a third important variable r−1 controlling

the degree of anisotropy. We manage to collapse the data in the vicinity of the

r = 1, p = pc isotropic critical point through the form

Cxxxx ∼ L− fiso/νCxxxx

(
δp L1/ν, (r − 1) Lζ/ν

)
. (5.18)

This collapse is quite challenging even having estimates for ν, fiso, and pc

from the isotropic collapse. This is because one needs to generate data at the

same values of the invariant scaling combinations to verify the collapse. It is

much harder to densely sample the two-dimensional manifold of the universal

scaling function. By sampling many values of p and r near the critical point, one

can get an estimate for ζ based on a collapse where points are not very close to

each other. One can then try to generate data at a constant value of (r − 1)Lζ/ν to

see if the collapse works. ζ then gets fiddled with and the procedure repeated

until the collapse is acceptable. Our result is that ζ = 0.25 ± 0.1, a rather small

number.

To bring the discussion back to real biological systems, what implications do

our results have for cartilage and other biological systems sitting near rigidity

transitions? First of all, we have shown that by tuning the degree of anisotropy,

rigid systems can greatly change the sensitivity of the linear response to external

perturbations. The rigidity transitions in anisotropic elastic systems appear to

exhibit their own classes of critical exponents, so in order to have a quantitative

theory of the long-wavelength elastic properties of these networks close to these

phase transitions, one needs to include anisotropy as a relevant tuning knob.

In the following manuscript, I spearheaded the analysis of the simula-

tion results (finite-size scaling in the isotropic case; two-variable scaling when

anisotropy is added) performed by William Wang (previously a CS undergrad
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here at Cornell) and assisted in comprehensive edits to the manuscript. William

Wang wrote the code necessary to strain the disordered elastic networks and

measure their response, performed the simulations, generated all figures and

wrote the first draft of the manuscript. Jim Sethna, Bulbul Chakraborty, and

Moumita Das provided theoretical guidance in crossover phenomena and the

connection of relevant experimental control knobs to renormalization group

eigendirections. Itai Cohen came up with the idea of more deeply investigat-

ing networks that are microscopically anisotropic inspired by real biological

systems like cellular cytoskeletons and cartilage fibers. Anna Barth, Navneet

Singh, Japheth Omonira, and Jonathan Michel provided their own perspectives

based upon their experimental and simulation results that guided the direction

of the manuscript.

5.2 Rigidity transitions in anisotropic networks: a crossover

scaling analysis

This is a reformatted version of the manuscript appearing in Soft Matter, 2025, 21,

3278-3289 [117].

5.2.1 Abstract

We study how the rigidity transition in a triangular lattice changes as a function

of anisotropy by preferentially filling bonds on the lattice in one direction. We

discover that the onset of rigidity in anisotropic spring networks on a regular

triangular lattice arises in at least two steps, reminiscent of the two-step melting
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transition in two dimensional crystals. In particular, our simulations demon-

strate that the percolation of stress-supporting bonds happens at different criti-

cal volume fractions along different directions. By examining each independent

component of the elasticity tensor, we determine universal exponents and de-

velop universal scaling functions to analyze isotropic rigidity percolation as a

multicritical point. Our crossover scaling approach is applicable to anisotropic

biological materials (e.g. cellular cytoskeletons, extracellular networks of tis-

sues like tendons), and extensions to this analysis are important for the strain

stiffening of these materials.

5.2.2 Introduction

Rigidity percolation in central-force lattice models has emerged as an important

tool for modeling structural networks in cells and cellular tissues [156, 3, 4, 157].

Such central-force lattices consist of harmonic springs connecting nodes. The

network is randomly filled by introducing springs between nodes to achieve

a density p, which denotes the fraction of occupied bonds in the network. At

low bond occupation, the bond network does not span the entire system. As

p increases, the network undergoes a percolation transition where a cluster of

bonds can now span the entire network. This tenuous cluster can only sup-

port stresses if there are angular forces between bonds [158]. In many practical

scenarios, such bond bending forces are small compared with bond stretching.

In such cases, the contribution to rigidity from bond bending is ignored. In

this scenario, the network remains floppy until p reaches the so-called rigid-

ity percolation threshold where bond stretching is activated under infinitesimal

deformation of the network.
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Rigidity percolation has been well studied in isotropic networks under dif-

ferent bending and stretching constraints [5, 159, 160]. However, less is un-

derstood about anisotropic networks. Anisotropic networks occur naturally in

many biological tissues, such as bone [161, 162] and tendon [163, 164], both

of which are composed of collagen fibrils oriented strongly in some direction.

Anisotropy is expected to alter the onset of rigidity percolation, which is known

to be sensitive to details of the bond distributions. For example, previous work

has shown that including structural correlation within isotropic networks can

result in significant changes in the critical bond occupation threshold for rigid-

ity percolation [20, 165]. Furthermore, studies have shown that straining a per-

colated but floppy network, such as by shearing it in one direction, can drive a

rigidity transition [166]. For example, straining the network preferentially along

the maximum extension axis activates bond stretching, which rigidifies the net-

work. Finally, previous computational studies have also modeled anisotropic

networks through an anisotropically diluted triangular lattice and found that

the onset of rigidity agrees well with a simple Maxwell constraint counting ar-

gument and that the system can be approximated using an effective medium

theory (see [3]). Missing from these analyses, however, are detailed investiga-

tions of whether the critical exponents and scaling functions characterizing the

rigidity transitions depend on these details of the bond distributions. Measur-

ing the critical exponents and how they depend on the bond distributions is

critical for determining whether such mechanical phase transitions are in the

same universality class, which informs the relevant physics governing these

transitions. Understanding this physics is an important step for learning how to

control these transitions in materials ranging from biological tissues to synthetic

fiber networks.
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Here, we will examine the critical exponents and locations of phase bound-

aries in anisotropic networks. Though our model is quite similar to ones pre-

viously investigated [3], we find slightly different critical exponents for the

isotropic rigidity percolation transition. Remarkably, we also discover that

when we tune away from isotropy, the network exhibits two rigidity transitions.

The first is associated with the component of the strain tensor for stretching

along the preferential filling direction. The second rigidity transition is associ-

ated with the remaining components of the strain tensor. As such we find that

the isotropic rigidity transition is a multi-critical point from which anisotropic

rigidity transitions emanate (Fig. A.2). It is unclear whether this intermedi-

ate, infinite anisotropy elastic phase will be present for generic lattices (see Sec-

tion 5.2.5), but similar infinite anisotropy mechanical responses should arise in

strain-stiffened networks (see Fig. 5.5).

5.2.3 Methods

Model for anisotropic rigidity percolation

We generate triangular lattices (coordination number z = 6) of L2 sites and peri-

odic boundary conditions in both directions. Bonds are diluted based on their

orientation, where p denotes the fraction of occupied bonds in the network.

Anisotropy is introduced during lattice generation by filling bonds preferen-

tially based on their orientation. We define the ratio r as the probability of bond

occupation along the horizontal direction divided by the probability of bond oc-

cupation in the other two independent directions. We then build lattices using

methods similar to those previously developed (see Appendix D.1 for details)
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and investigate the regime where r ≥ 1. Importantly, we are able to adjust r

without changing p, which allows us to shuffle bonds and investigate how long-

wavelength anisotropy affects the scaling of moduli in equally dense networks.

In these coordinates, r = 1 represents a completely randomly diluted triangular

lattice and r = ∞ a lattice which has bonds only in the horizontal direction. Our

choice of anisotropy for generic r results in four independent long-wavelength

components of the elasticity tensor, {Cxxxx, Cyyyy, Cxyxy, Cxxyy}, each of which can

be extracted for the various lattices.

Simulation details

We measure the components of the elasticity tensor for each random lattice re-

alization at different values of filling fraction p, anisotropy r, and linear system

size L. To measure these components, we first apply a small external strain εi j of

magnitude 10−3 to ensure we probe the linear response. In the regime of linear

elasticity, the energetic cost of such a deformation is quadratic in the strain:

E =
1
2
εi jCi jklεkl. (5.19)

We apply strains εxx, εyy, and εxy to measure the elastic coefficients Cxxxx, Cyyyy,

and Cxyxy directly. To measure Cxxyy, we perform a bulk compression and sub-

tract out the energetic contributions from the independently measured Cxxxx and

Cyyyy moduli. We introduce strains to the lattice by applying the proper transfor-

mation matrix to the positions of each of the nodes. For example, to stretch the

network in the horizontal direction (to apply strain εxx), the following matrix is
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applied:

T =

1 + γ 0

0 1

 , (5.20)

where we set γ to 10−3. Since we implement periodic boundary conditions in

both directions, all nodes are transformed in the same manner.

In order to measure the energetic costs of our imposed strains in the disor-

dered lattices, we minimize the central-force energy functional over the posi-

tions of the nodes. To capture the linear response, we truncate to leading order

in the displacement of vertices:

E =
1
2

∑
⟨i j⟩

ki j

(
ui j · r̂i j

)2
(5.21)

where ui j is the difference between the displacement vectors for vertices i and

j, and r̂i j is defined as the unit vector between vertices i and j in the initial

configuration. The spring constant ki j connecting sites i and j is either 0 or 1,

according to the random number seed, p, and r. For each type of imposed fixed-

amplitude strain, we minimize Equation (5.21) and use the resulting energy and

Equation (5.19) to extract the values of the independent moduli. To improve

convergence rates, a Cholesky factorization is computed [167] and used as a

preconditioner for a conjugate gradient method [168] (see Appendix D.2 for de-

tails). It is worth noting that Equation (5.21) is valid only in the regime of linear

response, which may be violated at higher strains. We verify that our choice of

strain, 10−3, is sufficiently small by computing the full untruncated energy for a

network size of 50x50 with p=0.645 and r=1.5. These parameters place this net-

work near both rigidity transitions (see Figure A.2) and therefore this network

would be most strongly expected to violate linear response. We find that this

lattice obeys linear response, with an energy scaling quadratically in strain, up
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to strains of 10−2. This indicates that nonlinearities in strain are negligible and

Equation (5.21) is valid in the parameter space we explore here.

We then individually perform scaling analyses for each independent com-

ponent of the elasticity tensor. Starting with a rigid network, we repeatedly re-

move bonds and minimize the energy for each strain until the network becomes

sufficiently “floppy” in all directions; here, a network is considered floppy in

a particular direction if the corresponding modulus falls below a threshold of

Gmin ≡ 10−8, which is the simulation tolerance. The moduli as a function of p

were averaged for each system size and orientation strength pair (L, r), sam-

pled over 102–104 random seeds. This procedure allows us to perform a scaling

analysis of each component of the elasticity tensor separately.

5.2.4 Results

Isotropic Networks

We begin by focusing on the long-wavelength isotropic case, where bonds are

removed without regard to their orientation (r = 1). We determine the value

of p where each lattice becomes able to support a stress, defined to be pc. To

extrapolate our results to infinite lattices, we conduct a finite-size scaling anal-

ysis (Appendix D.3). For a given system size, we find the rigidity threshold for

many different lattices and create a histogram of these pc values. We find that

for increasing lattice sizes, L, the width of the histogram for the threshold val-

ues pc decreases as L−1/ν. We also find that the mean value of the histogram,

⟨pc⟩L, approaches a value p∞c , the threshold in the infinite system, with the same
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power law:

⟨pc⟩L − p∞c ∼ L−1/ν. (5.22)

Our analysis determines that p∞c = 0.645 ± 0.002, depicted by the black dot

along the horizontal axis of Fig. A.2, and ν = 1.3 ± 0.2. The location of the

threshold at p∞c indicates a small deviation from the naı̈ve Maxwell constraint

counting, which states that the 2D triangular lattice to have 2 constraints per

site, p = 2/3 of the lattice must be occupied. The deviation from this prediction

in our measured value of p∞c is similar to what is found in other works [5].

Importantly, we find that in the isotropic system (r = 1) all the moduli share the

same threshold value p∞c .

Next, we perform a finite-size scaling analysis of each component of the elas-

ticity tensor, which admits a scaling

Ci jkl (p, L) = L− f iso
i jkl/νCiso

i jkl (X)

X ≡ (δp)L1/ν,

(5.23)

where δp ≡ p − p∞c . Thus, in principle each modulus component could have a

different scaling exponent, f iso
i jkl, and shape, Ciso

i jkl. The universal function Ciso
xxxx (X)

is plotted along with the appropriately rescaled data for Cxxxx in Fig. 5.3. We

find excellent scaling for the different system sizes. In the inset of Fig. 5.3, we

plot the collapsed data against the equivalent scaling variable |X|−ν, which is a

more common choice of variables in the literature, but leads to two branches of

the scaling function. We find similarly excellent collapses for all the modulus

data (see Fig. D.5 for the collapse of other components of the elasticity tensor).

For all of these analyses we use the threshold p∞c = 0.646, the critical exponent

ν = 1.3, and obtain f iso
i jkl = f iso = 2.2 ± 0.3. Thus, every independent component

of the linear elasticity tensor appears to vanish as |δp| f
iso

(see Appendix D.4).
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Figure 5.2: Rigidity percolation phase diagram and rigid clusters. The location
of the phase boundaries are found in the thermodynamic limit using a finite-size
scaling analysis. The insets show an anisotropic network close to its rigidity
percolation point for the Cxxxx modulus (left) and Ci jkl , Cxxxx moduli (right).
The shading corresponds to the energy contributed by each bond after a strain in
the x direction (gray indicating little to no stress and brighter indicating higher
stress.

Anisotropic Networks

We extend our analysis in the previous section to lattices with long-wavelength

anisotropy (r > 1), where we preferentially fill bonds in the x direction. We begin

with the determination of the phase boundary. For each value of r, we perform

a finite-size scaling analysis similar to the one we conducted for the isotropic

case: we create histograms of the values of p where Ci jkl vanishes, pi jkl
c (r), and
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Figure 5.3: Universal scaling function for the Cxxxx component of the elasticity
tensor at isotropy (r = 1). All data for this component of the elasticity tensor
collapse onto a single curve Ciso

xxxx when plotted against the finite-size scaling
variable X ≡ (δp)L1/ν. The inset shows the same collapse against the scaling
variable (|δp|νL)−1 (on a log-log scale). See Appendix D.4 for a similar analysis
of the other components of the elasticity tensor. We use p∞c = 0.646, ν = 1.3,
and f iso = 2.2 to obtain excellent collapse for all the components of the elasticity
tensor.

determine how their mean values extrapolate to the infinite system. For each

value of r we find that the mean location of the critical point is well described

by:

⟨pi jkl
c (r)⟩L − p∞,i jkl

c (r) ∼ L−1/ν′ . (5.24)

Remarkably, we find that for r > 1, the transition for the Cxxxx modulus is
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distinct from the threshold values for the other components of the elasticity ten-

sor. We find that the phase boundary for Cxxxx bends towards lower values of p

with increasing r (Fig. A.2). The transition curves for the other moduli appear

nearly identical for each system size and bend towards higher values of p with

increasing r. This separation indicates a region for which the network is only

rigid when strained along the preferred bond orientation direction. We verify

these phase boundaries are the same at isotropy but distinct for r > 1 by mea-

suring the separations between the histograms of pc values for different com-

ponents of the elasticity tensor as a function of system size (see Appendix D.5).

Thus, the transition from a floppy to a rigid phase occurs in two stages when

the system is anisotropic.

We note that for finite system sizes, Ci jkl never truly vanishes on average be-

cause if there are enough bonds remaining to create a rigid system-spanning

truss (p > O(1/L)), this configuration occurs with finite probability. How-

ever, we still expect that in the intermediate regime between ⟨pxxxx
c (r)⟩L and

⟨pi jkl
c (r)⟩L, finite systems will have an elasticity tensor with a principal axis in

the x-direction due to our formulation of anisotropy.

Next, we test the scaling behavior of the elasticity tensor components near

the critical points. In principle, including anisotropy could introduce correc-

tions to scaling that bend the phase boundary in a trivial way, leaving all critical

exponents the same as in the isotropic system. We tested this scenario, by fixing

r > 1 and attempting to collapse the data near the relevant pc(r) values for each

component of the elasticity tensor, keeping f aniso = f iso and ν′ = ν, but found

very poor collapse. This poor collapse suggests that the anisotropic phase tran-

sition is in an entirely different universality class, with different values for the
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critical exponents. We thus conjecture that the vicinity of r = 1 should be ana-

lyzed as a crossover scaling between two distinct critical points.

Inspired by renormalization group approaches, we analyze our data using

crossover scaling functions expected to be valid in the vicinity of the isotropic

critical point:

Ci jkl (p, r, L) = L− f iso/νCi jkl (X,Y)

X ≡ (δp)L1/ν, Y ≡ (r − rc)Lζ/ν
(5.25)

with rc ≡ 1. Note that Ci jkl(X, 0) is equal to the previously defined Ciso
i jkl(X) in

Equation (5.23). Based on the form of this crossover scaling function, we expect

that the moduli depend upon the anisotropy r only through a second scaling

variable, Y ; that is, we expect a scaling collapse of all of our data when plotted

against X and Y with a single undetermined exponent ζ > 0.

We first estimate ζ by examining the shape of the phase boundaries in the

infinite system away from isotropy. Specifically, as shown in Appendix D.6,

because the arguments of the universal scaling function are invariant scaling

combinations, this phase boundary must occur at a fixed value of X/Y1/ζ =

δp/ (r − rc)1/ζ (with corrections to scaling), so that the separation between the

two phase boundaries in Fig. A.2 scales as (r − rc)1/ζ . From this estimate based

on the shape of the phase boundaries, we find ζ = 0.25 ± 0.1.

Many other quantities share this crossover scaling ansatz and allow for in-

dependent estimates of ζ. The widths of the histograms of pc values as we tune

away from isotropy are also amenable to a crossover scaling analysis, with the

variable Y collapsing these widths (Appendix D.6). From this scaling collapse,

we similarly estimate ζ = 0.25 ± 0.1 and find nice collapse (Fig. D.9).
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This estimate for ζ and the scaling ansatz in Equation (5.25) can be used to

collapse the elasticity tensor components for 250,000 simulations consisting of

anisotropy values ranging between 1.0 ≤ r ≤ 2.0, bond occupation values rang-

ing between 0.6 ≤ p ≤ 0.68, and system sizes L ranging between 30 ≤ L ≤ 500.

We show a two variable scaling collapse for the Cxxxx and Cyyyy moduli in Fig. 5.5.

We find excellent collapse of each independent modulus onto a two dimensional

sheet. The overlaid data points consist of a portion of the data used to produce

the sheet and indicate various slices of constant Y : Y = 0, Y = 0.66, and Y = 1.65.

The Y = 0 curve (black) shows the finite-size scaling for isotropic systems and

is identical to that shown in Fig. 5.3. We observe similarly excellent collapse at

the two higher values of Y (Figs. D.11–D.12). For ease of visualization, we also

include height contours projected onto the X-Y plane. The height contours for

Cxxxx curve toward lower values of X as the scaling variable Y increases, reflect-

ing the fact that the corresponding phase transition curves toward lower values

of p as r increases. The other moduli, such as Cyyyy, show the opposite systematic

behavior, tending towards higher values of X for increasing Y .

The critical exponents determined thus far, including ζ, are properties of

the isotropic rigidity percolation critical point. We are also interested in the

anisotropic critical exponents, such as the critical exponent with which each mod-

ulus vanishes with p in an infinite anisotropic system ( f aniso
i jkl ). The universal scal-

ing function Ci jkl (X,Y) for the crossover between the isotropic and anisotropic

critical points in principle contains all of these anisotropic critical exponents in

its singularities in various asymptotic regimes. However, it is quite difficult to

get reliable high-precision fits to generic two-variable scaling functions that in-

clude precise information about their singularities. We instead independently

estimate f aniso
i jkl by examining the largest system sizes of simulations performed
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Figure 5.4: Crossover scaling of anisotropic rigidity percolation. Each inde-
pendent elastic modulus, a function of the variables (p, r, L), collapses onto a
two dimensional sheet when plotted against scaling variables X ≡ (δp)L1/ν and
Y ≡ (r − rc) Lζ/ν. (left) The scaling function Cxxxx (X,Y) and (right) the scaling
function Cyyyy (X,Y). The isotropic data (Y = 0, Fig. 5.3) is scattered in black, and
constant values of Y = 0.66 and Y = 1.65 are scattered in gray (Figs. D.11–D.14).
The height contours are projected onto the X-Y plane.

at r = 1.2, 1.5. In addition, we analyze the data for Y = 0.66, 1.65.

We find that the critical exponents for Cxxxx are distinct from those found

for the isotropic system while those for the other elasticity tensor components

cannot be distinguished from those found for the isotropic system:

f aniso
xxxx , f iso

xxxx

f aniso
i jkl ≈ f iso

i jkl (i jkl , xxxx)
(5.26)

with f aniso
xxxx = 4.0 ± 1.0, compared to our estimate of f iso = 2.2 ± 0.3. As usual in

crossover scaling, the multicritical point governs short length scales and regions

far from the critical lines emanating from it. We thus expect to find a crossover

from f aniso
xxxx to f iso

xxxx as networks move away from the anisotropic critical point, as

demonstrated in Fig. D.10. We also attempt to independently estimate νaniso, the

finite-size scaling exponent away from isotropy, using the collapse plots shown

in Fig. D.9 (Appendix D.6), but our estimates span a wide range of values 1.2 −
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Exponent Estimate
ν 1.3 ± 0.2
f iso 2.2 ± 0.3
ζ 0.25 ± 0.1
νaniso 1.2 − 3.2
f aniso
xxxx 4.0 ± 1.0

f aniso
i jkl (i jkl , xxxx) 2.2 ± 1.0

Table 5.1: Numerical estimates of critical exponents.

3.2. Our estimates for all scaling exponents are shown in Table 5.1.

5.2.5 Conclusions

We find that rigidity percolation in our model anisotropic system occurs in

at least two steps, with the modulus in the direction of alignment becoming

nonzero at lower volume fractions. Our estimate of at least one of the critical

exponents of the anisotropic transition, f aniso
xxxx , appears distinct from the corre-

sponding exponent for the isotropic transition f iso, which suggests that these

anisotropically diluted networks feature two distinct universality classes.

It was a surprise to us that the rigidity percolation transition for the isotropic

lattice broke up into several transitions when it became anisotropic. First, ob-

taining multiple transitions is contrary to the naı̈ve usage of Maxwell counting

to determine the location of the rigidity transition. As shown in the insets of

Fig. A.2, the rigid modes become anisotropic, and span horizontally before they

span vertically.

Second, our results are fundamentally different from connectivity percola-

tion, where regardless of the value of r there can only be one transition. The left

inset in Fig. A.2 shows several horizontal stress-supporting chains spanning the
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network. The critical point at which Cxxxx first becomes non-zero presumably

separates a phase where there are no stress-supporting chains from one where

there are a finite density of such chains. In regular percolation, two such paths

connecting the system horizontally that are separated by any finite distance will

have a finite probability per unit length of being connected by bonds extending

in the vertical direction. Hence, for ordinary percolation, as soon as one crosses

the horizontal percolation point in an anisotropic system, it must percolate in

the other directions as well. This argument suggests that lattices with bending

stiffnesses and angular springs, which are believed to become rigid at the con-

nectivity percolation threshold [158], lack this intermediate phase. However,

in typical situations where bending stiffnesses are much weaker than stretch-

ing stiffnesses, a remnant of this intermediate phase should be measurable even

when bending is included.

In retrospect, we should have expected separate transitions in central force

rigidity percolation on regular lattices. Maxwell counting tells us when the

number of zero modes can vanish in the absence of states of self stress, but

does not tell us whether the zero modes couple to a given mode of deforma-

tion [119, 169]. Straight lines of bonds supporting stress in a large system,

when connected vertically, may only contain contributions to the stress that

grow quadratically (i.e. non-linearly) in the strain: the length of a beam con-

necting (x, y) to (x′, y+ ϵ) grows as ϵ2, suggesting the corresponding linear elastic

modulus is 0. A similar nonlinear response to infinitesimal strains is found to

stabilize hypostatic jammed packings of ellipsoidal particles [170], in violation

of simple constraint-counting arguments. The perfect square lattice has no Cxyxy

shear modulus, and the perfect hexagonal lattice has no non-zero moduli ex-

cept the bulk modulus – why should anisotropic random lattices not possess
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separate transitions?

Since generic lattices have no straight lines of bonds, it is not clear to us

whether they will have intermediate phases with infinite anisotropy in linear

response. (Indeed, a non-generic lattice which supports horizontal strain under

tension has straight lines of bonds that buckle under compression making the

effective modulus under compression still zero). Even in this case, we expect

crossover scaling to be an important component of the analysis of anisotropic

generic lattice networks. Our analysis suggests that the scaling of anisotropic

generic networks could exhibit a crossover between distinct rigidity transition

universality classes.

The difference between generic and non-generic lattices is no longer crucial

after finite deformations; under tension a node connecting only two bonds will

naturally straighten out to 180◦ and not support perpendicular stresses to linear

order. Along these lines it might be interesting to investigate whether separate

rigidity transitions arise in floppy isotropic random lattices under finite defor-

mation. Preliminary results suggest strain stiffening leads to rigidity along the

extension axis without rigidity under some of the other modes of deformation

(see Fig. 5.5).

What kind of rigidity critical points do we expect? The Cxxxx transition where

horizontal stress-bearing chains first arise could be self-similar (with a single di-

verging correlation length), but could also be self-affine (with the vertical spac-

ing between chains diverging with a different power on the stress-supporting

side than the rigid cluster lengths diverge on the floppy side, akin to directed

percolation, where connectedness lengths are controlled by different critical ex-

ponents parallel and perpendicular to the preferred direction [171, 172, 173]).
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Figure 5.5: Generic, isotropic triangular lattice strained in the horizontal di-
rection until it becomes rigid, forming straight lines of bonds important for
rigidity. The bonds are shaded corresponding to the energy contributed. Pre-
liminary results suggest that one of the four tangent moduli (Cxyxy) remains zero
for a range of strains above the strain stiffening threshold, with Cxxxx being the
dominant modulus.

Whether the three other moduli become non-zero simultaneously or separately

in this model is not numerically resolved yet, but one expects that more com-

plicated anisotropies (say a 3D model with brick-like symmetry) will allow for

separate transitions for those moduli as well.

Finally, it would be interesting to consider whether the results presented here

have any bearing on biological networks. Many biological tissues, including

bone, tendon, muscle, and blood vessels, have an extracellular matrix that ex-

hibits preferential alignment, giving rise to anisotropic elastic moduli. It may be

possible to understand the extracellular matrices of these tissues as anisotropic
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networks which have crossed the rigidity percolation transition in the stiff di-

rection, but not the other directions. A quantitative description of these tissues

may require analyzing the effects of second-order constraints, changing the con-

tact number distribution, and exploring the crossover between this pair of zero-

bending stiffness transitions and a bending-dominated regime. Moreover, cells

are able to control how matrix elements are generated. Cells may generate net-

works with many different rigidity transitions to tune between, where the par-

ticular way matrix elements are laid down biases the thresholds of the different

components of the elasticity tensor. As such, the results presented here could

have profound implications for understanding more complicated networks in

many biological systems.
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CHAPTER 6

UNIVERSAL SCALING FUNCTIONS FROM THE NON-PERTURBATIVE

FUNCTIONAL RENORMALIZATION GROUP

6.1 An exact renormalization group for the Ising model in one

dimension

The renormalization group has been one of the great success stories in physics

over the past fifty years. Many techniques exist to implement the general proce-

dure that is usually presented in a mysterious way: “integrate out” (somehow)

the short-wavelength degrees of freedom, and then rescale the fields to recover

a new theory defined on the same length scales as the old. Real-space methods

are simple to visualize: one can explicitly remove certain degrees of freedom

and incorporate their fluctuations into fluctuations of other degrees of freedom.

Kadanoff’s block-spin renormalization group can be used to identify the (lack

of) phase transition in the one-dimensional Ising model. In fact, one can get al-

most all the way to an exact result for the correlation length in the model using

purely renormalization-group arguments.

With N spins, the partition function for the one-dimensional Ising model is

ZN =
∑
{si}

exp (−βHN ({si})) , HN = −J
N−1∑
i=1

sisi+1, si = ±1. (6.1)

All thermodynamic quantities (specific heat, magnetization, etc.) can be derived

in the thermodynamic (N → ∞) limit by computing the free energy per spin

f = lim
N→∞

(
−

1
Nβ

log (ZN)
)

(6.2)
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and then taking suitable derivatives. Does the system magnetize? At what tem-

perature does this happen? We will start with a crude real-space renormaliza-

tion group to answer these questions. The renormalization group describes how

system parameters change if we view the system on a larger length scale. For

instance, if we measure a length L with a ruler, and then increase the spacing

between our ruler increments by a factor of 3, the new length we measure is L/3.

The same thing happens with other scales of the system, like the temperature:

when viewed on longer length scales, the effective temperature of the system

will also change.

What does it mean if parameters don’t change under a change of length

scale; that is, what if we are at a fixed point of the RG operation? Because coarse-

graining does not affect the physics on the scale of the correlation length, but the

length scales are rescaled by some factor a, the correlation length after a single

renormalization group step satisfies

ξ → ξ′ = ξ/a and ξ = ξ′ =⇒ ξ = ξ/a =⇒ ξ = 0 or ξ = ∞. (6.3)

The first of these cases (ξ = 0) is typical of an infinite- or zero-temperature state,

where a spin value at a site tells you nothing about any other spin, even nearest-

neighbors: the spins are totally uncorrelated.1 The other is characteristic of a

system at its phase transition: there is no typical length scale, there are fractal

structures and fluctuations on all scales, etc. So fixed points of RG transforma-

tions can be used to find critical points, but not all fixed points of RG transfor-

mations are critical points.

We will now coarse-grain the one-dimensional Ising model through decima-

tion. There is only one parameter in the model, since the inverse temperature
1When the system has a magnetized phase, the overall magnetization is subtracted and we

look at the correlations between spin flips.
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β and energy scale J appear in the partition function only in the combination

βJ ≡ K. Suppose we do a coarse-graining of our system, transforming our old

partition function into a new one with only 1/3 as many spins. We do so by

grouping our spins together in sets of 3, and then replacing these groups with

a single spin according to the undemocratic rule that s3i = s′i (that is, we simply

ignore 2/3 of the spins, but we will perfectly account for the fluctuations of the

spins we have thrown away). Note that the length scale is already rescaled by

the new choice of index. The question is: can we figure out the new K describing

our system after performing this decimation?

If we write out Z, the exponential of the sum turns into the product of many

exponentials.

Z =
∑
{si}

. . . eKs0 s1eKs1 s2eKs2 s3 . . . (6.4)

We would like to write this in the new system, in terms of the new spin variables

s′i and a new inverse temperature K′. The sum over the unprimed variables can

be split into the sum over the primed variables and a sum over the unprimed

spins with indices not multiples of three (the spins that are ignored). We now

seek to perform the sum over the ignored spins.

Z =
∑
{s′i}

∑
si, i,3k

. . . eKs′0 s1eKs1 s2eKs2 s′1 . . . (6.5)

Now come some steps that will appear to be magic. The fact that this is a “trick”

is a hint that, for more complicated models, this procedure cannot be done ex-

plicitly. Write

eKs1 s2 = (1 + s1s2 tanh (K)) cosh (K) . (6.6)

Note that this is obviously not true in general (no si appear in exponentials!),

but it is true for both possible allowed values of s1s2 = ±1. Then inside the
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summand of the partition function,

· · ·
∑
s1,s2

eKs′0 s1eKs1 s2eKs2 s′1 . . . =

∑
s1,s2

. . . cosh3(K)
(
1 + s′0s1 tanh (K)

)
(1 + s1s2 tanh (K))

(
1 + s2s′1 tanh (K)

)
. . . =

= . . . 4 cosh (K)3
(
1 + (tanh (K))3 s′0s′1

)
. . .

(6.7)

since after expanding and summing, only terms even in s1 and s2 survive. We

now want to put this back into the usual form of the partition function. The

term in the parentheses looks like the original one. Define

tanh
(
K′

)
≡ (tanh (K))3 . (6.8)

Then the above term in the partition function is

= 4 cosh (K)3 (
1 + tanh

(
K′

)
s′0s′1

)
=

[
4

cosh (K)3

cosh (K′)

] (
1 + tanh

(
K′

)
s′0s′1

)
cosh

(
K′

)
=

4cosh
(
tanh−1

(
(tanh (K′))1/3

))3

cosh (K′)

 eK′s′0 s′1 ≡ e−g(K′)+K′s′0 s′1

(6.9)

Then the full partition function is exactly

Z =
∑
{s′i}

exp
(
−H′

({
s′i
}))
, H′ = Ng

(
K′

)
− K′

∑
i

s′i s
′
i+1. (6.10)

Apart from the shift that is independent of the spin configuration and hence

does not affect the distribution of states, we have gotten back a nearest-neighbor

Ising model. Equation 6.8 tells us how the inverse temperature rescales after a

single decimation step. We can imagine repeatedly applying the function

Kn → Kn+1 = tanh−1
(
tanh (Kn)3

)
(6.11)

and seeing how the inverse temperature flows. This recursion relation has only

two fixed points: when K = 0, it is mapped to 0, and when K = ∞, tanh(K) = 1
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and is hence mapped to K = ∞. Now note that, away from the fixed points,

tanh (Kn) < 1 and tanh−1(x) is monotonic so Kn+1 < Kn. This means that, away

from the fixed points, we always flow to the stable fixed point K∞ = 0 (infinite

temperature). The other fixed point, K = ∞ (zero temperature), is unstable. In

many sets of lecture notes, this completes the analysis of the decimation RG for

the 1D Ising model: there is no phase transition at finite temperature.

However, we can actually do much better than this. The exponent 3 that ap-

pears in the recursion relation of Equation 6.8 is specific to the fact that we have

transformed groups of 3 spins into a single spin. One can repeat the calculations

above, grouping any integer number of spins κ + 1 ≥ 2, and find an incremental

flow equation for K

tanh
(
K′

)
= (tanh (K))1+κ (6.12)

In the example where we group 3 spins together, κ = 2. Here, κ counts the

number of spins that are thrown away at each step per group. Note that this

transformation is exactly true at every integer, including κ = 0. Let’s assume

that we can analytically extend this transformation to non-integer values of κ

and write this as a continuous flow equation for K taking κ = dℓ. Then

dK = K′−K = tanh−1
(
(tanh (K))1+dℓ

)
−K =⇒

dK
dℓ
= lim

dℓ→0

 tanh−1
(
(tanh (K))1+dℓ

)
− K

dℓ

 .
(6.13)

Write

(tanh (K))1+dℓ
≈ tanh (K) + dℓ tanh (K) log (tanh (K)) = tanh (K)

(
1 + dℓ log (tanh (K))

)
(6.14)

and

tanh−1 (x (1 − ϵ)) = tanh−1 (x) +
x

x2 − 1
ϵ (6.15)
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with x = tanh (K) (and hence x/(x2 − 1) = − cosh (K) sinh (K)) to see

lim
dℓ→0

 tanh−1
(
(tanh (K))1+dℓ

)
− K

dℓ

 =
lim

dℓ→0

 tanh−1 (tanh (K)) + dℓ sinh (K) cosh (K) log (tanh (K)) − K + O
(
dℓ2

)
dℓ


(6.16)

giving

dK
dℓ
= cosh(K) sinh(K) log (tanh(K)) =

1
2

sinh (2K) log (tanh (K)) . (6.17)

This is negative for any K positive, verifying the result from the incremental

decimation. Written in terms of dimensionless temperature T ≡ 1/K, one has

dT
dℓ
= −

T 2

2
sinh

(
2
T

)
log

(
tanh

(
1
T

))
. (6.18)

The right-hand side is a well-defined power series in p = e−1/T near T = 0, but it

is not analytic in T . The first few terms are

dT
dℓ
=

T 2

2
−

T 2

3
e−4/T −

T 2

15
e−8/T − . . . (6.19)

where p enters in powers that are multiples of 4 and the prefactors (other than

the first one) are 1/n(n+2) where n is the nth odd number. This behavior, particu-

larly the vanishing of the linear term, is understood in the context of bifurcation

theory. Generically (that is, excluding very special cases), one can linearize flow

equations in the vicinity of a fixed point (see Chapter 4). These linearized flow

equations give eigenvalues of the flow that are related to critical exponents. The

fact that the flow cannot be linearized in the 1D Ising model is related to the fact

that we are at its lower critical dimension.

Because we have made no serious approximations at this stage, we can take

this analysis one step further. The correlation length transforms simply under

the renormalization group transformation:

dξ
dℓ
= −ξ. (6.20)
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This can be combined with the flow equation for the temperature to generate a

differential equation that describes the correlation length as a function of tem-

perature everywhere in the phase diagram:

dξ
dT
=

2ξ

T 2sinh
(

2
T

)
log

(
tanh

(
1
T

)) . (6.21)

This can be directly integrated, giving

ξ = −
c

log
(
tanh (1/T )

) . (6.22)

with an undetermined c. Here we have used the renormalization group to learn

something quantitative about correlations in the model without computing any-

thing about the correlation function
〈
sis j

〉
! We can go another step further. Be-

cause our expression for the correlation length is exact at all temperatures, we

can write the correlation function at all temperatures2 as well:

〈
sis j

〉
= exp

(
−
|i − j|
ξ

)
=

(
tanh

(
1
T

)) |i− j|
c

. (6.23)

From an exact transfer matrix solution to the 1D Ising model, it is known that

c = 1. The renormalization group is quantitative! But in practice, it cannot be

implemented in such an exact form for the vast majority of problems of interest.

6.2 Non-perturbative methods in the RG

In addition to this explicit real-space renormalization group, there is also the

more generalizable momentum shell renormalization group, where one can per-

form the upper sections of momentum integrals and incorporate their results

into scalings of fields and generation of new interactions. Momentum shell

2Here we must also use our knowledge that η = 1 for the 1D Ising model.
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renormalization group is usually done perturbatively in some small parame-

ter; the interaction strength, number of vector components, disorder strength,

distance to d = 4, etc. could control which Feynman diagrams one chooses to

evaluate or resum. In this sense, this technique is perturbative. There are other

techniques for performing the renormalization group procedure that are “non-

perturbative” in that they do not rely upon a small parameter to evaluate the

theory. However, there are of course still approximations that are made.

In the functional renormalization group, one chooses to work directly with

the free energy functional.3 We start with the partition function written as a

functional integral [174]

Z [J] =
∫
D

[
ϕ
]

e−S [ϕ]+
∫

ddr Jϕ (6.24)

with the action S = βH given by

S
[
ϕ
]
=

∫
ddr

{
1
2

(∇ϕ)2 +
r0

2
ϕ2 +

u0

4!
ϕ4

}
. (6.25)

To implement the renormalization group, we would like to start from a static

model whose thermodynamic properties are given by a Landau free energy, and

gradually incorporate more and more of the fluctuations until we reach a static

model whose thermodynamic properties fully capture the fluctuations relevant

to the problem at hand. This is done by modifying the action, introducing a shift

∆S k
[
ϕ
]
=

1
2

∫
dd p

(2π)dϕ (−p) Rk (p) ϕ (p) =
1
2

∫
ddr

∫
ddr′ ϕ (r) Rk

(
r − r′

)
ϕ
(
r′
)

(6.26)

where Rk (p) is the regulator function that plays the role of a cutoff in Wilson’s for-

mulation of the renormalization group. The idea behind it is that Rk (p) crosses

3In the following, I will write expressions mostly focusing on the scalar ϕ4 model since we
are interested in the manuscript in demonstrating our methods for the Ising model.
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over from being ∼ k2 in magnitude at small p to rapidly decaying to 0 at large p,

with a crossover between these two behaviors occurring at the scale k. We begin

our analysis at kin ≪ Λ, the scale at which the microscopic theory is defined,

but kin should be large.4 The regulator then has the effect of giving all of the

fluctuating modes up to scale kin a huge “mass” term, freezing all of their fluc-

tuations. As we decrease k to 0, we incorporate the effects of lower and lower

energy fluctuations. We will track the behavior of thermodynamic quantities as

we vary k from kin to 0.

We first add this regulator term to the action, giving

Zk [J] =
∫
D

[
ϕ
]

e−S [ϕ]−∆S k[ϕ]+
∫

ddr Jϕ. (6.27)

We then define a scale-dependent effective action Γk
[
ϕ
]

via a modified Legendre

transformation:

Γk
[
ϕ
]
= − log (Zk [J]) +

∫
ddrJϕ − ∆S k

[
ϕ
]
, (6.28)

where the second term would be the usual way the Legendre transformation

would be implemented (note that the effective action is a function of ϕ rather

than J, so J = J[ϕ] is the external field that minimizes the free energy given the

field configuration ϕ). The additional, and unusual, ∆S k
[
ϕ
]

that is included in

the definition of Γk
[
ϕ
]

is 0 when k = 0, and so it has no effect on the thermo-

dynamic quantities of the system with all fluctuations included. It is added to

simplify the flow equation for Γk
[
ϕ
]
, which we will now seek to derive by taking

a partial derivative with respect to k.

What terms are held fixed when the derivative with respect to k is taken? The

field ϕ is an internal coordinate of the functional Γk
[
ϕ
]
, so it must be held fixed.

4In practice, it is usually fine to start at kin = Λ [174].
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The external field J, however, must be considered as k-dependent to satisfy the

relation ϕ = δ/δJ
(
log (Zk)

)
, since Zk is k-dependent. This can be done in two

steps: first, take the derivative of log (Zk) with respect to k while holding J fixed.

Then, add back in a correction that results when we allow Jk to vary with k. We

will first take the derivative with respect to k holding J fixed. For the first term,

we find

− ∂k log (Zk) =
1
Zk

∫
D

[
ϕ
] (
∂k∆S k

[
ϕ
])

e−S [ϕ]−∆S k[ϕ]+
∫

ddr Jϕ

=
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) [ 1
Zk

∫
D

[
ϕ
]
ϕ (r) ϕ

(
r′
)

e−S [ϕ]−∆S k[ϕ]+
∫

ddr Jϕ

]
.

(6.29)

The term in square brackets looks like a correlation function of some kind, and

so it can likely be written in terms of functional derivatives of Wk ≡ log (Zk) with

respect to the external field J. Without repeating the tedious algebra, we know

some things about connected correlation functions:5

⟨ϕ(r)⟩ =
δWk

δJ(r)
,

⟨ϕ(r)ϕ(r′)⟩ − ⟨ϕ(r)⟩ ⟨ϕ(r′)⟩ =
δ2Wk

δJ(r)δJ(r′)
,

=⇒ ⟨ϕ(r)ϕ(r′)⟩ =
δ2Wk

δJ(r)δJ(r′)
+
δWk

δJ(r)
δWk

δJ(r′)
.

(6.30)

Hence,

−∂k log (Zk) =
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) [ δ2Wk

δJ(r)δJ(r′)
+
δWk

δJ(r)
δWk

δJ(r′)

]
. (6.31)

Now we want to compute this derivative allowing J to vary with k. We have

∂kWk

∣∣∣∣∣
ϕ

= ∂kWk

∣∣∣∣∣
J
+

∫
ddr

δWk

δJk(r)
∂kJk(r)

∣∣∣∣∣
ϕ

= ∂kWk

∣∣∣∣∣
J
+

∫
ddr ϕ(r)∂kJk(r)

∣∣∣∣∣
ϕ

. (6.32)

Unsurprisingly, this additional term that is generated is exactly cancelled by the

k derivative of the Legendre transformation term
∫

ddr Jϕ. The derivative of the

5Some of these formulas can be confusing because ϕ represents both the internal variable of
the field in the functional and its own expectation value.
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additional −∆S k that was added cancels the paired product of single functional

derivatives of Wk that appear. In summary, taking the derivative at constant ϕ,

we have

∂kΓk
[
ϕ
]
= −∂kWk + ∂k

∫
ddrJkϕ − ∂k∆S k

[
ϕ
]

= −∂kWk

∣∣∣∣∣
J
−

∫
ddr ϕ(r)∂kJk(r) +

∫
ddr ϕ(r)∂kJk(r) − ∂k∆S k

[
ϕ
]

= −∂kWk

∣∣∣∣∣
J
− ∂k∆S k

[
ϕ
]

=
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) [ δ2Wk

δJ(r)δJ(r′)
+
δWk

δJ(r)
δWk

δJ(r′)

]
−

−
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

)
ϕ (r) ϕ

(
r′
)

=
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) [ δ2Wk

δJ(r)δJ(r′)
+
δWk

δJ(r)
δWk

δJ(r′)

]
−

−
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) δWk

δJ(r)
δWk

δJ(r′)

=
1
2

∫
ddr

∫
ddr′ ∂kRk

(
r − r′

) [ δ2Wk

δJ(r)δJ(r′)

]
.

(6.33)

This double functional derivative of Wk is the propagator, which can also

be written as
(
Γ

(2)
k

[
ϕ
]
+ Rk

)−1
. (The additional Rk that appears is due to the ad-

ditional ∆S k in the definition of Γk). Hence, we have the exact result which is

known as Wetterich’s equation:6

∂tΓk
[
ϕ
]
=

1
2

Tr
[
∂tRk

(
Γ

(2)
k

[
ϕ
]
+ Rk

)−1
]

(6.34)

where the trace in this case is integration over both spatial variables. This is

occasionally written in diagrammatic form, which is more nontrivial and useful

for expressing the exact flow equations for the higher-order n-point 1PI vertices

Γ
(n)
k (Figure 6.1).

6Note that the partial derivative with respect to k on each side of Wetterich’s equation can
be replaced by the partial derivative with respect to any function of k and the above derivation
will still hold. Often, works in the NPRG literature will flow with respect to an RG time t ≡
log (k/Λ) which is 0 when k = Λ and goes to −∞ as k → 0. This is the opposite of typical real
space procedures, which might run a parameter ℓ = log (Λ/k) from 0 to ∞ to incorporate the
fluctuations on all scales.
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∂tΓk=
1

2

∂tRk≡ (Γk
(2)
+Rk)

-1≡

Figure 6.1: The diagrammatic expression of Wetterich’s equation; see also Equa-
tion 6.34.

This is still an impossible-to-solve functional equation.7 The simplifying as-

sumptions that are usually made to find approximate solutions are done at the

level of the effective action, keeping terms up to a certain number of spatial

derivatives. The simplest approximation, known as the local potential approxi-

mation (LPA), assumes that the effective action can be written entirely in terms

of an effective potential Uk (ϕ):

ΓLPA
k

[
ϕ
]
=

∫
ddr

{
1
2

(∇ϕ)2 + Uk

(
ϕ2

)}
. (6.35)

Within this approximation scheme, the propagator can be easily calculated in

momentum space:

(
Γ

(2)
k

[
ϕ
]
+ Rk

)−1
=

1
p2 + 2U′k

(
ϕ2) + 4ϕ2U′′k

(
ϕ2) + Rk(p)

(6.36)

where the ′ denotes derivatives of the function Uk

(
ϕ2

)
with respect to its argu-

ment. To recover an equation that one can proceed to solve numerically, one

7It is, for instance, equivalent to an infinite set of coupled partial differential equations for
the coefficients of each term in the derivative expansion.
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typically now makes a choice of regulator. There is a vast literature comprised

of methods of choosing the regulator. For instance, one can choose a family of

regulators that satisfies the asymptotic conditions of the regulator with a vari-

ational parameter, and set the variational parameter using some optimization

condition.8 Another technique is to choose a regulator that allows one to carry

through the calculations explicitly as easily as possible, a so-called “optimized

regulator” [174, 175]

Rk(p) =
(
k2 − p2

)
Θ

(
k2 − p2

)
=⇒ ∂tRk(p) = 2k2Θ

(
k2 − p2

)
. (6.37)

Then Wetterich’s equation becomes (dividing by V ≡
∫

ddr on each side and

translating the trace over the spatial variables into momentum space)

∂tUk =
1
2

∫
dd p

(2π)d

∂tRk(p)
p2 + 2U′k

(
ϕ2) + 4ϕ2U′′k

(
ϕ2) + Rk(p)

. (6.38)

The form of the regulator cuts off the momentum integral above k and makes

everything spherically symmetric, allowing us to evaluate the angular part of

the integral followed by the trivial radial part

∂tUk =
1
2

1
(2π)d

2πd/2

Γ
(

d
2

) 2k2

k2 + 2U′k
(
ϕ2) + 4ϕ2U′′k

(
ϕ2) ∫ k

0
dp pd−1

=
1
d

1
2dπd/2

1

Γ
(

d
2

) 2kd+2

k2 + 2U′k
(
ϕ2) + 4ϕ2U′′k

(
ϕ2) . (6.39)

This is now a single PDE, which was obtained essentially by truncating the ac-

tion to the order of the effective potential depending on static field configura-

tions. This can be integrated starting from an initial condition given by a Landau

free energy, such as UΛ(x) = f0 + (a0/2) x+ (g0/4) x2, to give the effective potential

including all fluctuations.9

8Some aspects of the flow depend upon the regulator, like the locations of fixed points. The
flows derived here differ from those used in the manuscript by multiplicative scale factors (see
just before Equation 6.47). The universal properties are independent of these scale factors, and
they are mostly (but not entirely) independent of the choice of regulator.

9Note that the internal variable of U is ϕ2 already to respect the Z2 symmetry.
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There are yet more simplifications that one can perform to treat the criti-

cal properties of the problem exactly. First, one rescales the fields and the pa-

rameters inside of the potential by their so-called “engineering dimensions” to

eliminate explicit references to the cutoff scale k. Because the physical system

becomes (approximately) scale-invariant at the critical point, the only length

scale is k−1, and so we expect quantities written in units of k−1 to flow to a fixed

point. By matching powers of k either at the outset before integrations have

been performed or in the current PDE, one finds Uk = kdŨk and ϕ2 = kd−2ϕ̃2.

When writing the flow for the rescaled effective potential in terms of the

rescaled field, there are two wacky additional terms that appear thanks to the

chain rule. One comes from ∂t currently being taken at constant ϕ2, while we

would like to write a flow that occurs at constant ϕ̃2. This can be amended by

noting that

∂t

∣∣∣∣∣
ϕ̃2
= ∂t

∣∣∣∣∣
ϕ2
+ ∂tϕ

2
∣∣∣∣∣
ϕ̃2
∂ϕ2 = ∂t

∣∣∣∣∣
ϕ2
+ (d − 2) ϕ2∂ϕ2 = ∂t

∣∣∣∣∣
ϕ2
+ (d − 2) ϕ̃2∂ϕ̃2 . (6.40)

The other term comes from the fact that the flow for Ũk can be written as

∂tŨk = ∂t

(
k−dUk

)
= −dŨk + k−d∂tUk. (6.41)

Putting this all together, leaving ′ to mean the derivative of the function with

respect to its field-like argument, we have

∂tŨk = −dŨk + (d − 2) ϕ̃2Ũ′k +
1
d

1
2dπd/2

1

Γ
(

d
2

) 2
1 + 2Ũ′k + 4ϕ̃2Ũ′′k

. (6.42)

Now all explicit references to k have been eliminated. Next, instead of allowing

the effective potential to flow from its mean-field form and become an arbitrary

function, we can try to get an approximate solution by projecting it back onto

the space of functions of the form Ũk(ϕ̃2) = f̃t+(ãt/2) ϕ̃2+(g̃t/4) ϕ̃4. This transforms

the PDE for Ũk into a set of coupled ordinary differential equations for only the
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first three coefficients of the expansion of Ũk – we simply expand the PDE to the

appropriate order in ϕ̃2 and match coefficients. Doing so gives

d f̃t

dt
+

1
2

dãt

dt
ϕ̃2 +

1
4

dg̃t

dt
ϕ̃4 = −d f̃t − ãtϕ̃

2 +

(
d
4
− 1

)
g̃tϕ̃

4+

+
2
d

1
2dπd/2

1

Γ
(

d
2

) 1
1 + ãt + g̃tϕ̃2 + 2g̃tϕ̃2

.
(6.43)

The final term gets expanded as a series in ϕ̃2:

1
1 + ãt + g̃tϕ̃2 + 2g̃tϕ̃2

=
1

1 + ãt

1

1 + 3g̃t
1+ãt
ϕ̃2

=
1

1 + ãt
−

3g̃t

(1 + ãt)2 ϕ̃
2 +

9g̃2
t

(1 + ãt)3 ϕ̃
4 + O

(
ϕ̃6

)
.

(6.44)

Hence we have the following:

d f̃t

dt
= −d f̃t +

2
d

1
2dπd/2

1

Γ
(

d
2

) 1
1 + ãt

,

dãt

dt
= −2ãt − 2

2
d

1
2dπd/2

1

Γ
(

d
2

) 3g̃t

(1 + ãt)2 ,

dg̃t

dt
= (d − 4) g̃t + 4

2
d

1
2dπd/2

1

Γ
(

d
2

) 9g̃2
t

(1 + ãt)3 .

(6.45)

In the special case d = 3, these become

d f̃t

dt
= −3 f̃t +

1
6π2

1
1 + ãt

,

dãt

dt
= −2ãt −

1
π2

g̃t

(1 + ãt)2 ,

dg̃t

dt
= −g̃t +

1
π2

6g̃2
t

(1 + ãt)3 .

(6.46)

Many aspects of these flow equations are non-universal, and some coefficients

can be changed through simple redefinitions of f̃t, ãt, and g̃t that do not modify

e.g. the universal linearizations of the flows near fixed points. For instance,
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choosing f = 6π2 f̃t, a = ãt, and g = g̃t/
(
3π2

)
, one finds the slightly simpler

d f
dt
= −3 f +

1
1 + a

,

da
dt
= −2a −

3g
(1 + a)2 ,

dg
dt
= −g +

18g2

(1 + a)3 ,

(6.47)

which are the forms of the flows that will be used throughout the manuscript.

The more general expression can be used in the usual way to locate the Gaus-

sian and Wilson-Fisher fixed points, linearize and find relevant and irrelevant

eigenvalues, etc.10 The relevant eigenvalue for d < 4 is

−λt =
1
3

2d − 5 +

√
121 +

d
2

(11d − 100)

 . (6.48)

For d = 3, this gives an estimate for ν:

νtrunc
LPA = −

1
λt
=

6

2 +
√

82
= 0.542721934 . . . (6.49)

This is not the most incredible estimate in the world. The ϵ expansion to linear

order predicts νϵ1 = 1/2 + ϵ/12 = 0.58333 . . . , closer to the CFT value of νCFT =

0.629971(4). However, most of the error in this version of the LPA comes from

the truncation of the potential to quartic order in the field. If one works directly

with the PDE for Ũk, one finds an estimate νLPA = 0.650, much closer to the CFT

value [174]. Thanks to several exponent relations true for the Ising model below

the upper critical dimension, there are only two independent critical exponents

related to relevant variables (e.g. ν and η). The magnetization exponent can

be written in terms of them as 2β = ν (d − 2 + η). In three dimensions, then, a

nonzero η is needed to predict anything other than β = ν/2. However, the LPA

10Because t flows backwards to implement the renormalization group, relevant eigenvalues
are negative and irrelevant ones are positive.

157



always predicts η = 0 due to a lack of wave function renormalization. The next-

simplest theory, LPA’11, modifies the coefficient attached to (∇ϕ)2 from 1/2 to

Zk/2, incorporates Zk into the flows of the effective potential, and gives nonzero

predictions for η.

There have been decades of study focused on applications of the functional

RG to classical and quantum field theories, the BKT transition, gravity, and nu-

clear physics. Most of the focus has been on examining the implied phases and

critical exponents near phase transitions. For the Ising model, the derivative ex-

pansion (for which the LPA is the zeroth-order term) has been pushed up to 6th

order, giving exponents indistinguishable from the conformal bootstrap predic-

tions νDE6 = 0.63012(16). We have been interested in the shapes of the universal

scaling functions that emerge near the critical point. As discussed in Chapter 4,

we have also been interested in the incorporation of universal corrections to

the leading singular behavior of response properties. We can use normal form

theory to extend the domain in parameter space over which the renormalization

group flow equations appear linear. The LPA within the NPRG gives a very nice

testing ground for some of these principles, since in computing the trajectories

of Ũk (either directly or through the truncation scheme) one fully computes the

shape of the free energy functional through Γk
[
ϕ
]
. Derivatives of the free en-

ergy with respect to various fields give response functions, susceptibilities, and

specific heats, which all have universal forms close to the transition.

In the following manuscript, I performed many detailed numerical tests of

theoretically derived scaling results. Itay Griniasty wrote the package that per-

forms the change of variables perturbatively in the vicinity of the matched fixed

points and did many other numerical and analytical checks. He also created the

11Pronounced “ell pee ay prime.”
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algorithm that propagates the partial derivatives along the critical and unsta-

ble manifolds, which we will also turn into a package. Jim Sethna suggested

the idea of using the powerful techniques from the NPRG to extract universal

scaling functions, as much of the focus in the past had been on the universal

critical exponents alone. He has also been deeply involved in the analysis of the

analytical and numerical work performed so far.

6.3 Extracting universal scaling functions from the NPRG

This section is a reformatted version of a manuscript to be submitted to Physical Review

B or E.

6.3.1 Introduction

The power of the nonperturbative functional renormalization group (NPRG) is

that it can explicitly coarse-grain a microscopic free energy to extract the uni-

versal behavior near the critical point for a particular system in a particular

dimension. The NPRG literature has focused on honing their tools, measuring

progress using the convergence to well measured properties at the critical point

– universal exponents, amplitude ratios, . . . Our mission is to extract two types

of predictions implicitly calculated in high-precision NPRG implementations

that are not readily available in conformal bootstrap or other methods. (1) We

want numerically accessible approximations of the universal scaling functions

for the Gibbs and Helmholtz free energies. In the future, we envision universal

scaling for higher correlation functions and for multivariable scaling functions
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including singular corrections to scaling, crossover scaling functions and mul-

ticritical points, and functions that continuously vary in dimension (perhaps

allowing faster convergence leveraging the normal-form bifurcation theories at

the upper and lower critical dimensions). (2) The NPRG explicitly calculates

the nonuniversal properties of the surrounding phases, which are often lack-

ing any other perturbatively solvable limiting description (i.e., the theory of

liquids [176], and the QCD phase diagram [177, 178]). All properties of these

phases are in principle given by the same analytic coordinate transformation

we will use to extract the universal scaling functions. Rather than referring to

the original NPRG calculations for predictions, we can summarize them using

the universal scaling functions and the coordinate transformations.

In this work, we first review the basic concepts underpinning the imple-

mentation of the NPRG (Section 6.3.2). We use the NPRG to write down the

parameter flows in the simplest case of the LPA applied to the 3D Ising model.

We then review the application of normal form theory to the renormalization

group. We show that the explicit nonlinear equations given by NPRGs lead to

situations where we can explicitly evaluate the map from the bare coordinates

to the nonlinear scaling fields of normal form theory. We implement this change

of coordinates, both perturbatively around the fixed point and via numerical in-

tegration of exact ODEs for partial derivatives (Section 6.3.3). This allows us to

predict standardized universal scaling functions to numerical precision within a

given NPRG. We give an example of this evaluation for the susceptibility of the

3D Ising model including the leading irrelevant correction (Section 6.3.4). We

end with speculations about extending the radius of the nonlinear coordinate

transformations using neural networks and implications for predicting phase

behavior in real experiments (Section 6.3.5).
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This work NPRG [174, 176] Cardy [34, Sec. 3.3] Raju et al. [49]

Gibbs free energy V = F + AΦ2 +GΦ4 U = f + aϕ2 + gϕ4 H(t, h) − mh H(t, h) − mh

Variables A,G, F,Φ a, g, f , ϕ K = {t, u, f ,m} θ = {t, u, f ,m}

Rescaled variables {a, g, f , ϕ}
{̃
a, g̃, f̃ , ϕ̃

}
. . . . . .

Nonlinear scaling fields {t, u, v} . . . u(K) = {ut , uu , u f , um} θ̃(θ) = {̃t, ũ, f̃ , m̃}

Cutoff and log factor ℓ, k = Λ exp(−ℓ) −t, k = Λ exp(t) ℓ, ξ = ξ0 exp(−ℓ) ℓ, ξ = ξ0 exp(−ℓ)

Table 6.1: Conventions on variable names. We use rather different conven-
tions in this manuscript from those traditional in the statistical mechanics lit-
erature [34], or our previous work [49] to conform to those in the NPRG lit-
erature [174]. Our work [49] emphasizes the analytic change of variables to
nonlinear scaling fields, so we originally used tildes to represent this, while
the NPRG literature uses tildes to represent the rescaled Gibbs free energy and
field. Particularly confusing is the NPRG log coarse-graining factor t, which is
not the reduced temperature and is minus the traditional variable ℓ. In this con-
text, under coarse-graining the relevant variables have negative eigenvalues at
the fixed point and the irrelevant variable have positive eigenvalues. Also, one
coarse-grains from the microscopic free energy to the macroscopic free energy
by integrating t backward from t0 to −∞.

6.3.2 Using normal forms to extract scaling functions

Our attempt here is to develop and test the machinery for extracting the univer-

sal scaling functions and the predictions for the surrounding phases in the least

complicated and most mainstream case: NPRG for the 3D Ising model, within

the LPA (without “field renormalization” or gradient corrections) in a three-

parameter approximation which truncates the potential to a quartic, giving a

Gibbs free energy

ΓLPA[Φ] =
∫

d3r
[
1
2

(∇Φ)2 + V(Φ)
]

V(Φ|A,G, F) = F + AΦ2 +GΦ4.

(6.50)

In this approximation, the NPRG provides ordinary differential equations

for the three parameters A, G, and F as the short wavelengths are coarse-

grained from a microscopic wavevector Λ to a wavevector or momentum scale

k = Λ exp(−ℓ), ℓ = ln(Λ/k). (Note that ℓ conventionally flows to larger values as
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the NPRG coarse-grains, see Table 6.1). We henceforth measure k in units of Λ.

As usual in the renormalization group (RG), one needs to rescale the fields and

the free energy in order for the system at its critical point to flow to a fixed point;

here
V = k−DV = k−3V = e3ℓV = f + aϕ2 + gϕ4

ϕ = k−(D−2)/2Φ = k−1/2Φ = eℓ/2Φ

a = k−2A = e2ℓA

g = kD−4G = k−1G = eℓG

f = k−DF = k−3F = e3ℓF.

(6.51)

and the nonlinear RG equations take the general form

da
dℓ
= 2a +

∞∑
i, j=0

Ai jaig j = 2a +
3g

(1 + a)2

dg
dℓ
= (4 − D)g +

∞∑
i, j=0

Gi jaig j = g −
18g2

(1 + a)3

d f
dℓ
= d f +

∞∑
i, j=0

Fi jaig j = 3 f −
1

1 + a
.

(6.52)

We note at the outset that the flows for a and g are coupled to each other but

do not depend upon f . If we work in the projected space of (a, g), as we will

commonly do, we can ignore the effects of f , which acts as a shift in the over-

all free energy as a function of Φ. The point a = g = 0 here is the mean-field

fixed point, so the linear terms in Equation 6.52 reflect the mean-field 3D crit-

ical exponents, where a and g both are relevant. The other fixed point, which

has an attractive direction in (a, g), is the Wilson-Fisher fixed point, located at

(aWF, gWF) = (−1/13, 96/2197). Table 6.1 provides a dictionary translating the no-

tation we use here and in previous work [49] to that used in the NPRG [176, 174]

and statistical physics [34] communities.

The traditional RG procedure is to start by linearizing the flow equations at
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the fixed point (aWF, gWF) = (−1/13, 96/2197) and using the linear flows to derive

the universal critical exponents (like β in M(T ) ∼ (Tc−T )β) between pairs of prop-

erties near the critical point and the forms of universal scaling functions (likeM

in M(T,H) = (Tc − T )βM(H/(Tc − T )βδ)) relating three or more quantities. This

procedure must be supplemented in cases like the 2D Ising model (where the

exact solution has a logarithmic divergence in the specific heat due to a resonance

that demands special attention) and the 4D Ising model (where both a resonance

and the marginal variable give logarithms). Recent work [49] systematizes and

generalizes this approach by applying a version of bifurcation normal form the-

ory to the nonlinear RG flow equations. For hyperbolic flows (like the 3D Ising

model we study here), one can linearize the RG flows order by order by a poly-

nomial change of variables. In Section 6.3.3, encouraged by normal form theory,

we shall explore methods to analytically or numerically change variables from

{a, g, f } to linearized variables {t(a, g, f ), u(a, g, f ), v(a, g, f )}, such that

dt
dℓ
= λtt =

1
ν

t,

du
dℓ
= λuu = −ωu,

dv
dℓ
= Dv.

(6.53)

where λt > 0 and λu < 0 are the nontrivial eigenvalues at the fixed point, t is

the relevant, temperature-like direction, u introduces the leading correction to

scaling due to the slowest-decaying irrelevant operator, and v tracks the coarse-

graining of the shift of the free energy. One can solve these equations and use

k = e−ℓ to show that

t = t0k−1/ν, u = u0kω, and v = v0k−D. (6.54)

What do we expect the universal scaling form to look like? We expect that

this free energy will depend on the linearized variables t, u, and v in invari-
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ant scaling combinations. It is usual to write these invariant combinations by

pulling out powers of the temperature t: Vt−Dν, ϕt−β, utων, vt−Dν, and ktν (in cases

where we do not coarse-grain all the way to k = 0). The form of the free energy

can then be written as

V = tDνV(ϕt−β, utων, vt−Dν, ktν). (6.55)

How do we extract the NPRG LPA universal scaling function for the Gibbs

free energy V? As discussed before, we will solve for the change of variables

t(a, g, f ), u(a, g, f ), v(a, g, f ) and their inverses a(t, u, v), g(t, u, v), f (t, u, v). We then

know

V(ϕ|a, g, f , k) = kD
(

f + aϕ2 + gϕ4
)
. (6.56)

But this is kD times a function of t = t0k−λt , u = u0k−λu , and v = v0k−D. Hence in

our approximation we find

V(ϕ|a, g, f , k) = kDV̂(ϕk1/2, tkλt , ukλu , vkD) (6.57)

with

V̂(ϕ, t, u, v) = f (t, u, v) + a(t, u, v)ϕ2 + g(t, u, v)ϕ4, (6.58)

and ν = 1/λt, ω = −λu, and β = ν/2.

Clearly, this last result β = ν/2 is due to our approximations; in general, the

relevant exponent relation gives β = (D − 2 + η)ν/2 = (1 + η)ν/2. Indeed, LPA

without a field renormalization is known to predict η = 0 [174, p. 9]. This is

fixed in what is termed LPA’, where the free energy has an extra term Z which

is incorporated into the flows, changing from (1/2)(∇Φ)2 + V(Φ) to (Z/2)(∇Φ)2 +

V(Φ).
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6.3.3 Changing coordinates to the normal form

First, we find a change of coordinates locally near the fixed point that has an

attractive direction. The change of coordinates matches the nonlinear LPA co-

ordinates, in which the flows are distorted, to a set of coordinates in which the

flows are perfectly linear everywhere (in this case). This leads to several inter-

esting singularities. In the original LPA coordinates (a, g), the flows have two

fixed points, (Gaussian and Wilson-Fisher), while the normal form coordinates

have only one fixed point with the eigenvalues of the more attractive Wilson-

Fisher fixed point. In the normal form coordinates, t = 0 defines the critical

manifold ac(g), which is the separatrix of the LPA flows. One only approaches

the Gaussian fixed point asymptotically as t = 0, u→ −∞, leading to a bunching

of contour lines12.

Another interesting singularity occurs in the inverse direction of the map.

When one computes the change of coordinates (t, u) → (a, g) along the critical

manifold by numerically integrating explicit equations of motion for the partial

derivatives, one finds a blowup in finite ℓ corresponding to a particular value

of u along the critical manifold. However, upon approaching this blowup, ar-

bitrarily large values of g are sampled, suggesting that the contour lines of the

map (a, g)→ (t, u) are bunched at a finite value of u, similar to the situation near

g = 0 in the inverse map which was due to the Gaussian fixed point. Each of

these singularities appears to be an artifact of the change of coordinates and the

choice of form of analytic corrections to scaling, and hence they do not seem

to have physical significance. However, one may describe the crossover from

12This can be fixed by applying these methods to a normal form that incorporates both fixed
points, such as the normal form of the transcritical bifurcation for the (4 − ϵ)-dimensional Ising
model with ϵ = 1.
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3D Ising to mean-field behavior using a normal form that captures both fixed

points.

To find a polynomial change of variables (a, g) ↔ (t, u) order by order we

employ the following strategy:

1. Map both flows to the normal form to first order following Wiggins [179].

2. The flow of (t, u) can also be written as LLPA ·
∂(t,u)
∂(a,g) , and so we can write a

system of first order ODEs for (t, u)[a, g]:

Lt,u = LLPA ·
∂(t, u)
∂(a, g)

(6.59)

where L are the normal form flows derived above.

3. We then iteratively solve for ∂i
a∂

j
g(t, u), iterating on n = i + j. For n = 1 the

eigenvectors of the linearized normal form flows from (a, g) are mapped

to those in (t, u) up to rescaling:

∂(t, u)
∂(a, g)

∣∣∣∣∣∣
WF

=

c1 0

0 c2

 . (6.60)

This final statement represents a pair of degrees of freedom in the mapping to

the normal form coordinates, since if the (linear) normal form flows for t and

u are satisfied, then they are also satisfied for t′ = c1t and u′ = c2u. There is

in principle another free parameter associated with the linear normal form flow

for v. In practice, shifting (c1, c2) rescales invariant scaling combinations in easily

identifiable ways. These free parameters can then be used to set the scale of the

universal scaling function, e.g., one can choose to make M = (−t)β exactly true

for the Ising model with h = 0 via a suitable redefinition of the scale of t.

Alternatively, one can set the scale of (c1, c2) by examining the region of con-

vergence of the series expansion of the coordinate transformation (a, g) ↔ (t, u).
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We can select c1 = 1 and choose c2 so that the scale of the convergence region

is similar in all directions. This is achieved by selecting c2 ≈ 10.1284. These are

the values we will take to report future numbers in this preliminary manuscript,

with the understanding that many of these numbers depend upon the choice of

(c1, c2). Another option would be to examine Table 6.2 and select c1 to set the

first entry to 1 and c2 to set the second entry to 1. Then all higher derivatives of

this function are standardized, universal numbers.

The implementation of this perturbative change of variables is general

enough that we implement it through a Mathematica package cov.wl, which

takes as input two (potentially nonlinear) flow equations, the fixed points to

match, the order of the expansion, and the names of variables, and outputs the

numerically computed expansion to that order. The routine automatically en-

sures that the eigenvalues at the fixed points match, which is a necessary condi-

tion for the normal forms to work. Later, when we propagate partial derivatives

of the coordinate transformation along the critical and unstable manifolds be-

yond the radius of convergence of the series expansion, we will use these per-

turbative solutions as initial conditions for the partial derivatives to arbitrary

order.

6.3.4 Extracting useful implementations of the universal scal-

ing functions

When an experimentalist adjusts their tuning knobs (a, g) to send their system

through a critical point, the critical manifold is crossed in a way that involves

both of the normal form coordinates t and u in general. The crossing of the
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critical manifold generically occurs far from the fixed point of any RG trajectory.

The many irrelevant variables involved guarantee that the critical behavior of

the system is set by the attractive fixed point of an RG transformation. Because

the normal form coordinates describe the behavior of the system arbitrarily far

from the fixed point13, one can translate between the experimentalist’s findings

and the universal predictions from normal form theory. This is what we seek to

do in this section.

Suppose an experimentalist measures the susceptibility of an experimental

system in the “LPA Ising” class, so that the flows for a and g perfectly describe

some appropriate RG procedure. Parameters intrinsic to the experimental sys-

tem that are not easily changed by the experimentalist set g = gexp, and the ex-

perimentalist reduces their knob a until the susceptibility diverges. We denote

∆a ≡ a − ac(gexp). Alongside the pure power-law divergence

χ(a, g) ∼ ∆a−γ, (6.61)

the experimentalist also notices deviations from the pure power law as ∆a grows

from 0. To emphasize these deviations, the experimentalist can plot ∆aγχ(a, g)

against ∆a and admire its deviations from a flat line. Some of these deviations

are associated with analytic corrections to scaling, while others are due to the

singular corrections to scaling coming from the least irrelevant variable. The

expansion of ∆aγχ(a, g) at constant g near this point in ascending powers of ∆a

13There may be convergence issues if the RG transformation has multiple fixed points and is
matched to a normal form that describes only one of them, as is the case in this section. These
issues can be fixed by using a nonlinear normal form [49], but one must then deal with much
more complicated invariant scaling combinations.
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is

∆aγχ = ∆aγt−γX (utων) =
(
∂t
∂a

)−γ
X (0)

+ ∆aωνu
(
∂t
∂a

)−γ+ων
X′(0)

− ∆a
γ

2

(
∂t
∂a

)−γ−1 (
∂2t
∂a2

)
X(0)

+ ∆a2ωνu
2

2

(
∂t
∂a

)−γ+2ων

X′′(0)

+ ∆a1+ων
[ (
∂t
∂a

)−γ+ων (
∂u
∂a

)
X′(0)

+
u
2

(−γ + ων)
(
∂t
∂a

)−γ+ων−1 (
∂2t
∂a2

)
X′(0)

]
+ O

(
∆a3ων

)
.

(6.62)

Here the terms in the expansion involving t and u and their partial derivatives

are evaluated at the point a = ac(gexp), g = gexp. We can make numerical predic-

tions for all of these corrections and then implement the experiment to check

the results.

Finding an expansion of the universal scaling function

We first use the normal form coordinates to determine a good expansion of the

universal scaling function. This can be done using the expansion of the sus-

ceptibility, for instance, around the fixed point of the RG transformation in the

normal form coordinates:

χ(t, u) =

t−γX (utων) = t−γX(0) + t−γ+ωνuX′(0)

+
1
2

t−γ+2ωνu2X′′(0) + O
(
u3

) (6.63)

The experimentalist measures the inverse of the second derivative of their free

energy, which is the thermodynamic value of A−1, where A is the coefficient on
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the quadratic term in the expansion of the free energy as a function of ϕ. Per-

forming the expansion of a−1 and comparing to the series for the scaling function

gives relationships between the derivatives of the scaling function and the val-

ues that certain combinations of parameters reach as t → ∞ up the unstable

manifold:
X(0) = lim

t→∞

tγ

a

X′(0) = − lim
t→∞

tγ−ων

a2

(
∂a
∂u

)
X′′(0) = lim

t→∞

tγ−2ων

a3

2 (
∂a
∂u

)2

− a
(
∂2a
∂u2

)
...

(6.64)

where all quantities are evaluated at u = 0.

To compute both these values and the remainder of the terms that appear

in the experimentalist’s expansion, we need a way to find all derivatives of the

map from (a, g)↔ (t, u) along the critical and unstable manifolds. In both cases,

these derivatives are needed outside the radius of convergence of the multivari-

able series solution near the attractive fixed point.

Finding derivatives of the map along flow trajectories

To find derivatives of the map from (a, g) ↔ (t, u) far from the fixed point, we

resort to numerical integration schemes. The initial conditions for flows of the

derivatives can be set at the fixed point by the multivariable series expansions.

We can find how these partial derivatives flow along invariant curves of the

RG. We will report the derivation for flows of ∂i
t∂

j
ua along the unstable manifold

which are necessary for the computation of the expansion of the universal scal-

ing function. The derivation of the flows for ∂i
t∂

j
ua along the critical manifold, or
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for the flows of ∂i
t∂

j
ug, ∂i

a∂
j
gt, or ∂i

a∂
j
gu along either manifold, follow similarly.

We will track ∂i
t∂

j
ua as a function of t along u = 0. We subtract and add a term

from the flow for this partial derivative:

d
dt
∂i

t∂
j
ua =

d
dt
∂i

t∂
j
ua − ∂i

t∂
j
u

d
dt

a + ∂i
t∂

j
u

d
dt

a (6.65)

On the right-hand side, we can write the first two total derivatives with respect

to t using the chain rule:

d
dt
= ∂t +

du
dt
∂u = ∂t +

Lu

Lt
∂u. (6.66)

The final place where the total derivative occurs can be written as

da
dt
=
La

Lt
, (6.67)

leading to
d
dt
∂i

t∂
j
ua =

(
∂t +
Lu

Lt
∂u

)
∂i

t∂
j
ua

− ∂i
t∂

j
u

(
∂t +
Lu

Lt
∂u

)
a + ∂i

t∂
j
u

(
La

Lt

) (6.68)

Although it appears that partial derivatives of higher order appear on the right-

hand side, the highest-order partials cancel out, leading to an ordinary differ-

ential equation for ∂i
t∂

j
ua depending only on the mixed partial derivatives of a

and g of order at most i in t and of order at most j in u. One can then simultane-

ously solve all of the ODEs for ∂i
t∂

j
ua and ∂i

t∂
j
ug and all lower-order partials using

the initial conditions from the series expansion. These give the partial deriva-

tives along flow trajectories, i.e. ∂i
t∂

j
ua (t, u(t)), of which the critical and unstable

manifolds are special cases.

Equipped with this scheme, we can use Eqn. 6.64 to compute numerical val-

ues for these coefficients. The result of the first 5 of these terms are tabulated in

Table 6.2. The other partials required for the evaluation of the series in Eqn. 6.62
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Quantity Value
X(0) 1.0059874(5)
X′(0) 0.286943(2)
X′′(0) −0.19938(2)
X(3)(0) 57.4782(2)
X(4)(0) 250.127(4)

Table 6.2: Some estimates for the Taylor series of X(utων).

can also be computed in this way and propagated out to the value of g at which

the experiment occurs.

Comparison of expansion prediction with a numerical experiment

With estimates for the expansion of the universal scaling function and other

partial derivatives of the map (a, g) ↔ (t, u) along the critical manifold, we

can now perform an experiment. The experimentalist fixes values of (a, gexp)

and varies a until they hit the critical manifold, measuring the thermodynamic

susceptibility. Their measurements can be found using the flow for a, tracking

χ = limℓ→∞ A−1
ℓ = limℓ→∞ e−2ℓaℓ. To emphasize the deviations from a pure power-

law divergence, we plot ∆aγχ against ∆a. The values for the critical exponents

within the LPA can be found by linearizing the flows for a and g in the vicinity

of the attractive fixed point, leading to

γ =
12

√
82 + 2

= 1.08544 . . . ,

ων =

√
82 − 2
√

82 + 2
= 0.638185 . . .

(6.69)

We suppose that the experiment is performed at gexp = gWF + 0.01 and

gexp = gWF + 0.05 and that the experimentalist begins their excursion towards

the critical point at ∆astart = 0.1. A to-scale illustration of this experiment in (a, g)

coordinates is shown in Fig. 6.2.
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Figure 6.2: An experimentalist tunes their a knob at fixed gexp, reaching the criti-
cal manifold. Shown are the cases where gexp = gWF + 0.01 and gexp = gWF + 0.05
with ∆astart = 0.1.

We report the first several partial derivatives needed to evaluate Eqn. 6.62

at this location along the critical manifold in Table 6.3. Inserting these values,

together with the values for the universal scaling function from Table 6.2, leads

to a prediction for what the experimentalist should measure upon approaching
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gexp = gWF + 0.01 gexp = gWF + 0.05
u 0.127792 0.343426
∂at 0.930383 0.910144
∂au −0.761318 −0.765994
∂2

at 0.109251 0.043786

Table 6.3: Some estimates for the partial derivatives of the coordinate transfor-
mation (a, g) ↔ (t, u) needed to evaluate Eqn. 6.62 at the point a = ac(gexp), for
two values of gexp.

the critical manifold; for instance, when gexp = gWF + 0.05, we find:

∆aγχ = 1.11423

+ 0.102782∆aων

− 0.029092∆a

− 0.011548∆a2ων

− 0.230356∆a1+ων + . . .

(6.70)

The comparison between two experiments and two expansions to O(∆a1+ων) is

shown in Fig. 6.3, demonstrating excellent agreement.

We can track the error that the expansion in powers of ∆a makes as we in-

crease the order of the expansion in Equation 6.62. These contour plots are

shown in Appendix E.1 and demonstrate improved accuracy everywhere in

(a, g) except near the Gaussian fixed point, which is not captured in our change

of coordinates to the linear normal form.

6.3.5 Discussion and outlook

Our coordinate transformation to the normal form can be implemented in a

number of ways. In this work, we performed a perturbative expansion that
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Figure 6.3: Deviations from the pure power-law divergence in an experiment
can be attributed to a combination of singular and analytic corrections to scal-
ing. In addition to information about the universal scaling function, informa-
tion about the analytic transformation from (a, g) ↔ (t, u) is needed to make
direct comparison to an experiment. Given an explicit set of RG equations and
a normal form, all information about this transformation can be computed. This
allows an experiment performed near the critical manifold in the (a, g) variables
(points) to be described completely in an expansion in ∆a with no fitting pa-
rameters (dashed lines). The blue curves are for gexp = gWF + 0.05, while the red
curves in the inset correspond to gexp = gWF + 0.01.

matched the flows of the nonlinear LPA equations for the 3D Ising model near

the Wilson-Fisher fixed point to normal form flow equations that are linear

everywhere. This perturbative solution has a limited region of convergence.

However, we can propagate the change of coordinates outside of the region of

convergence using numerical integration schemes, giving us reliable coordinate

transformations along the critical and unstable manifolds.

We can in principle determine the coordinate transformations between

(a, g) ↔ (t, u) far from the critical and unstable manifolds numerically. This
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can be effectively implemented using a neural network to learn the mapping

(a, g)→ (t, u), using the desired linear flows in (t, u) to write a loss function. This

determines the mapping over an array of points that can be placed far from the

critical and unstable manifolds. Ultimately, this allows one to fold the analytic

corrections into a numerically determined function that can be reported in a

.dat file as the weights associated with a particular neural network architecture.

Once this analytic change of coordinates is determined in a large region, the

form of the universal scaling function (which can be determined without refer-

ence to the points far from the unstable manifold) will describe the physics in

this larger region.

We also hope, in the future, to investigate how the change of coordinates

operates when we work with more complicated, nonlinear normal forms. We

expect better convergence properties for the change of variables when we have a

normal form that captures all of the fixed points present in the original nonlinear

flows. This may allow us to capture the crossover between the 3D Ising behavior

near the Wilson-Fisher fixed point and the tricritical Ising model near the g = 0

fixed point in 3D.

Finally, we hope to extend this work by standardizing the normal forms of

a variety of universality classes as in [49] and combining them with predictions

from much more sophisticated NPRGs (like DE6 [?]). The high-precision univer-

sal scaling functions extracted using the procedures demonstrated in this work

can then be made publicly available in repositories for experimentalists to ac-

cess, leading to information about universality classes that goes far beyond the

usual tabulation of critical exponents.
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CHAPTER 7

TOPOLOGICAL DEFECTS IN BENT-CORE LIQUID CRYSTALS: FUSION

AND BRAIDING

7.1 Classifying topological defects and characterizing their

combination rules in ordered media

Topological defects constitute a beautiful meeting of physics (free energies, or-

der parameters, symmetries) and mathematics (homotopy and group theory).

Most of the mathematics involved in the other projects discussed in this the-

sis comes from analytic function theory, differential equations, and bifurcation

theory. In contrast, the mathematics necessary to understand topological de-

fects deal primarily with homotopy theory and group theory. The results in this

chapter are also best understood through pictures, and I like drawing pictures.

The topological defects that I will focus on are those that occur in liquid crystals.

What is a liquid crystal? A liquid crystal is a material comprised of mi-

croscopic units that has less long-ranged translational order than a crystal (so

it is not a crystal, and can often flow like a liquid) but that has long-ranged

orientational order (molecules that are separated by long distances still prefer

to align in ordered phases). In this way, it has a type of order that is inter-

mediate between that of a liquid and that of a crystal. Some common ordered

phases of liquid crystals include nematic (no translational order), smectic (trans-

lational order in one direction, 2D liquid-like translational order in the others),

and cholesteric (layer-like structure with a regular twist angle between layers).

I will focus on the nematic phases, where there is no translational order and the
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Figure 7.1: Speculative nematic phases formed in a liquid crystal made of cone-
shaped molecules upon lowering the temperature (from left to right). Interme-
diate phases which break the symmetry in intermediate ways are possible.

free energy can be written for an order parameter involving local directors only.

Even specializing to nematic phases, there are a bewildering variety of sym-

metries that can be broken. The usual caricature of a nematic liquid crystal

involves smooth rod-like molecules that have symmetry group D∞h. However,

one must draw a distinction between the symmetries of the molecular compo-

nents of the nematic liquid crystal and the symmetries of the nematic phase

that is formed. For instance, we can imagine a nematic comprised of cone-

like molecules (Figure 7.1), so that the most orientationally ordered phase has

a vector-like symmetry (points in some direction). One can then imagine a free

energy functional that allows for three phases: a randomly oriented phase (at

the highest temperatures), a vector-ordered phase (at the lowest temperatures),

and a uniaxial nematic phase (at intermediate temperatures) where the cones

point along a particular direction, but randomly are aligned or antialigned. In

the intermediate phase, the symmetry of the phase is that of a uniaxial nematic,

and so to analyze elastic properties within the phase it is sufficient to work with

a field theory that involves a uniaxial nematic order parameter.
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Once we have characterized the symmetry of the phase, we can think about

the topological space in which the “zero temperature” order parameter lives.

For a Heisenberg magnet, for instance, the order parameter space is topologi-

cally S 2, since the magnetization can point in any direction in 3 dimensions, and

all of the spins are aligned (so the magnitude of the ordering is fixed). This is

in contrast to a “soft-spin” order parameter, where we imagine averaging the

direction of a collection of Heisenberg spins in some finite region. The soft spin

order parameter can detect the transition from the paramagnetic to the ferro-

magnetic phase: it is on average 0 ∈ R3 in the paramagnetic phase.

Let us classify the topological order parameter in the ordered phases of the

cone-shaped molecule. In the lowest-temperature phase, all of the cones are

aligned, and the order is vector-like since rotation about an axis passing through

the point of the cone and the center of the flat face is a symmetry. To find the

topological order parameter, we want to find a topological space where (1) each

point in the topological space corresponds to one and only one ordered state,

and (2) the topological space is “connected properly.” For vector order, S 2 does

the job, since each point on S 2 represents a direction that a vector can point, and

continuous rotations by π in any direction are smoothly connected to rotations

by −π. However, to prepare ourselves for more complicated examples, it is use-

ful to follow a workflow that works for any liquid crystal nematic phase. Instead

of trying to “guess” a topological space that is properly connected, we can start

with the very “large” order parameter space of SO(3). Each point in SO(3) cor-

responds to a configuration of a phase: one takes a proper rotation matrix from

the usual representation of SO(3) and applies it to an object with the symmetry

of the phase. However, the mapping from points in SO(3) to configurations is

not one-to-one: if one applies an element of SO(3) that corresponds to a sym-
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metry P of the phase, then one gets an equivalent configuration. To ensure that

each point in the order parameter space corresponds to a unique configuration,

we can take as our topological order parameter space the topological quotient

space SO(3)/P. This keeps the connectivity properties of SO(3) while ensuring

the mapping is one-to-one [180].

As an aside: why do we not take O(3) as a starting point? Mirror symme-

tries can be interesting. We will see that bent-core nematics, despite being achi-

ral on average, can organize themselves into chiral phases which break mirror

symmetries. These mirror symmetries split the order parameter space into dis-

connected components. When we go to classify the topological defects, the dis-

connected components of the order parameter space are counted by π0, which

allows for the identification of domain walls but does not have any interesting

group structure. For the chiral phases of these nematics, then, if the mirror sym-

metry is spontaneously broken, the phase can organize into bubbles of a par-

ticular chirality, separated by domain walls that represent a flip in the chirality

(similar to the Ising model domain walls). Once this organization is complete,

it is sufficient to complete the characterization of the topological defects within

each of the chiral bubbles, each of which lives within just one connected com-

ponent of the order parameter space. Staying away from domain walls allows

us to remain in a single connected component of the order parameter space and

classify the defects starting from the connected space SO(3) rather than O(3).

For the (speculative) most ordered phase of the conical molecules, the phase

is invariant under rotations about an axis pointing in the direction of the av-

erage ordering. This space of rotations can be thought of as the topological

space SO(2). The order parameter space corresponding to this phase, then, is
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SO(3)/SO(2) � S 2. This procedure allows us to also understand the order pa-

rameter space of the intermediate phase: in addition to rotations about a pre-

ferred axis being a symmetry, the phase is also invariant under a 180◦ rotation

about any axis perpendicular to the continuous symmetry axis. These trans-

formations together are sometimes called D∞h (as in, an infinite dihedral group

with a horizontal mirror plane). The order parameter space is then SO(3)/D∞h �

S 2/Z2 � RP
2 (the real projective plane). For completeness, the completely dis-

ordered phase looks the same under any transformation in SO(3), so its topo-

logical order parameter space is the trivial topological space SO(3)/SO(3) � e

with only one element. This situation, where molecules of a certain symmetry

can form nematic phases of a wide variety of intermediate symmetries, is taken

to its extreme in nematics that are formed of bent-core molecules. Because the

molecules are not very symmetric at all, it is possible for them to form many

phases of various intermediate symmetries in their quest to break the order pa-

rameter space all the way down to O(3).

Why is characterizing the topological order parameter space of liquid crys-

tals a useful endeavor? It will help us to understand the topological defects that

arise in the phase. Roughly speaking, a topological defect is a discontinuity in

the order parameter field of a material that cannot be removed by local defor-

mations of the order parameter field. These defects are highly stable, since they

require a large-scale rearrangement (which constitutes a high energy barrier)

or combination with another defect to remove. Perhaps the most well-known

defects are vortices in the XY model. I will use this system to illustrate how

topological order parameter spaces and homotopy theory are the right tools to

describe the existence of and combination rules for topological defects.
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The XY model involves vectors of fixed length that are confined to rotate

along a single axis. There is an energy functional that prefers local alignment of

these vectors, similar to the Ising model. When one performs a dynamical simu-

lation of a finite-size XY model based on the Metropolis algorithm, for low tem-

perature quenches, one does not immediately settle into an ordered phase. First,

one sees an intermediate dynamical regime where vortices form, before some of

the vortices move together and annihilate due to energetic effects.1 These vor-

tices are point-like objects where the order parameter field performs a complete

twist (or more generally, some integer number of twists). Because the order pa-

rameter changes rapidly near the defect “core,” these defects have much higher

energy than a uniform configuration of the order parameter. However, in or-

der to achieve a uniform configuration from an isolated defect, the system must

surmount an even higher energy barrier. In practice, the order parameter field

will smooth out under low-temperature quench dynamics by bringing together

defects with opposite “twists” that allow the order parameter field to smooth

out without creating system-spanning “rifts.”

How do we understand what kinds of defects are even possible in the XY

model or in more general systems? Abstracting the problem is useful here in

generalizing the results to other systems with different kinds of order. Let us

start with a two dimensional XY model. We may draw a loop somewhere in the

material and track how the order parameter varies as we travel along the loop

counter-clockwise. The topological order parameter space in the XY model is

the circle S 1. As we traverse the loop in real space, the order parameter changes,

and we can follow the path that is being traced out in the topological order

1The XY model in two spatial dimensions has no long-ranged order due to the Mermin-
Wagner theorem. There is a vortex unbinding BKT transition that separates a phase with expo-
nentially decaying order from a phase with algebraically decaying order. I am not focused on
the phase transitions in liquid crystals and other orientationally ordered materials in this thesis.
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parameter space S 1. Because we end at the same place we began (it is a loop in

real space), the order parameter takes the same value at the beginning and end

of the loop, and so the path that is traced out in order parameter space is also a

closed loop. We will now focus on the properties of the loops that are induced

in order parameter space.

If we have surrounded a portion of the material that is mostly ordered, the

order parameter may wiggle slightly on S 1 as we travel along the loop in real

space. However, the loop in order parameter space will be mostly localized

to a particular portion of the circle θ ∈ [θc − ∆θ, θc + ∆θ] with ∆θ ≪ π. In real

space, we can imagine smoothing out this configuration into a perfectly ordered

configuration in a continuous way by making all of the vectors align to point

at θc. This procedure also alters the loop that is induced in order parameter

space in a continuous way: we contract the loop on S 1 to a single point at θc

(Figure 7.2). Without thinking about the actual order parameter configuration,

then, we see that we can approach complete order in a continuous way for some

section of the material when the loop in order parameter space can be smoothly

contracted to a point.

In contrast, let’s consider the situation where we surround a vortex in real

space with our loop (say, one where the vector completes a full rotation counter-

clockwise as we traverse the loop counter-clockwise). The loop in the order

parameter space now wraps around S 1 once counterclockwise. Unlike in the

case of the mostly ordered section of the material, we cannot smoothly contract

the loop that wraps around S 1 once counterclockwise to a point, since a point

does not wrap around S 1 at all. The number of times this loop winds around S 1

is precisely the winding number, and it is topological in the sense that continuous
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Real space:
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Order parameter space:
X X X

Figure 7.2: In a region with no topological defects, one can smoothly deform the
order parameter field to the uniform configuration. In order parameter space,
the image of a (real space) labelling loop is smoothly contracted to a point. The
curve in order parameter space is offset from S 1 for visualization purposes.

deformations of the loop in S 1 cannot change this number. Any value in Z is a

winding number that gives a label to an isolated vortex defect.2 The positive

values (WLOG) correspond to the number of counter-clockwise rotations of the

order parameter field, while the negative values correspond to the number of

clockwise rotations of the order parameter field.

2In this and other cases, energetics place additional restrictions on conformations that are
actually observed. For instance, an isolated defect with winding number +2 may spontaneously
split into a pair of +1 defects that are repelled from each other. In this way, it is often the case
that only ±1 defects are seen because the system reduces its energy by relieving gradients in the
order parameter field near the core by performing these topologically allowed processes. In the
absence of these energetic considerations, the fully topological classification scheme is sufficient
to classify all defects and their combination rules.
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The labelling by winding number has an additional feature: if two loops in

order parameter space have the same winding number, then one can deform the

loops in order parameter space to be identical. This is somewhat hard to visual-

ize in the case of the order parameter space S 1. Imagine we have an isolated de-

fect configuration where the order parameter makes a single counter-clockwise

twist in a steady way, with the angle θ of the order parameter being equal to

the angle θp of a polar coordinate system in real space. This has winding num-

ber +1. Next, imagine another isolated defect configuration with angle θ = 2θp

for 0 < θp < π and angle θ = 0 for π ≤ θp ≤ 2π. This defect also has winding

number +1. One can deform the second configuration to look identical to the

first through a smooth deformation of the loop in order parameter space. These

two loops are then called homotopic. The study of these loops (and generaliza-

tions thereof) in topological spaces is called homotopy theory. The machinery

of homotopy theory allows us to classify loops in other, more general order pa-

rameter spaces. In this case, the fundamental group π1

(
S 1

)
encodes information

about loops on S 1. Unsurprisingly, π1

(
S 1

)
� Z, so loops are labelled by an inte-

ger that represents the number of times they wind around S 1. Loops that share

this number are homotopic to each other.

To understand what happens when two topological defects come together,

it is useful to imagine the following picture: once the defects are separated by

some distance ∼ a the lattice spacing, we can no longer practically distinguish

one defect from a pair of defects. So let us draw two defects near each other,

and surround both of them with a single loop: this is the way we would classify

the defect after the pair of defects is brought together. Now deform the loop

continuously in real space so that it first surrounds the right defect counter-

clockwise, returning to its original position, and then surrounds the left defect
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Real space:

X X X

Figure 7.3: A deformation of a labelling loop in real space surrounding a pair of
defects. The deformed labelling loop maps to a pair of loops in order parameter
space which are traversed in order. The labelling of loops in order parame-
ter space has a group structure under the operation of loop concatenation; this
group structure is described by π1 (OP).

counterclockwise, returning to its original position (Figure 7.3). The combined

loop still registers the same topological invariant, since it was continuously de-

formed and did not pass through any of the defects. But now the loop in order

parameter space can be thought as two loops traversed in order: first, a labelling

loop for the right defect; next, a labelling loop for the left defect. The two loops

in order parameter space can be concatenated since they each begin and end

at the same point. For the case of the XY model, if the first loop has a wind-

ing number n1, while the second loop has a winding number n2, the net loop has

winding number n1+n2. In addition to the labelling of vortices by Z, the vortices

also have combination rules that are given by the group structure (Z,+).

This is not a coincidence: for a general topological space OP, the fundamen-

tal group π1 (OP) is a group, with elements and a rule for combining them. The

elements in the group are given by the different classes of homotopically distinct

loops emanating from a single point3 in the order parameter space. The group

3This point is arbitrary but must be the same starting and ending point for all loops in the
classification procedure.
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operation is given by the labelling of a loop formed by sequential concatena-

tion of a pair of loops. In the case where the fundamental group of the order

parameter space is non-abelian, the labelling and description of combinations

of defects is significantly more complicated. Already one can foresee problems

with the generalization of the procedure in the XY model: if I bring together a

defect labelled by g1 and a defect labelled by g2, do I recover an element g1g2

or an element g2g1? In fact, the unambiguous labelling of topological defects

by elements of the fundamental group does not extend to the case where the

fundamental group is non-abelian.

The first step to resolving this issue is in identifying a deficiency in the la-

belling procedure for loops in topological spaces. We call two topological de-

fects identical if we can smoothly deform one into the other (in real space). If we

surround a defect with a loop and perform this deformation, the induced loop

in order parameter space can continuously wiggle around any way it likes, and

it is not necessary for any part of the loop to remain fixed in order parameter

space. This is called a free homotopy of loops. In contrast, the labelling that

the fundamental group describes is for a based homotopy of loops. In order to

define the operation of loop concatenation that gives rise to the group structure,

all loops must start and end at the same point. This based homotopy can miss

the fact that two loops can be freely homotopic to each other. Two loops may be

freely deformed into each other, but this deformation may require the base point

to be detached. This distinction only occurs in spaces that have a non-abelian

homotopy group.4

Before we look at the specifics, note two facts: (1) A loop traced backwards

is assigned the inverse group element of a loop traced forwards, since the net

4A great example is for the figure-eight space, which is the plane with two holes.
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X

(ℓ1,g1) (ℓ2,g2)

Base point X X X

Figure 7.4: In the so-called figure-eight space (the plane with two holes), loops
can be freely homotopic but not homotopic based at X. Shown is a free homo-
topy that transforms loop ℓ1 into loop ℓ2. There is no continuous way to make
these loops equivalent without detaching them from their base point. This is an
indicator that π1 of this space is non-abelian.

loop formed by tracing these loops in succession can be contracted to a point.

(2) Loop concatenation at the base point gives a product structure. One must

be consistent with the choice of right or left multiplication in the group. We

will take consecutive loop concatenations to represent right multiplication in the

group, so that tracing out (ℓ1, g1) followed by (ℓ2, g2) gives the loop (ℓ1ℓ2, g1g2).

So how do we label topological defects when the fundamental group of the

order parameter space is non-abelian? In some sense, the labelling by elements

of the fundamental group is too restrictive, since loops that are freely homotopic

may be assigned different elements of the fundamental group. However, they

do still share a feature, which I will now illustrate. Suppose we have two loops

(ℓ1, g1) and (ℓ2, g2) that are freely homotopic to each other. This means that we

can make ℓ1 look identical to ℓ2 if we allow for arbitrary continuous deformation

of ℓ1 (see Figure 7.4).
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X

(ℓ1,g1) (ℓ2,g2)

Base point X X X

Figure 7.5: The free homotopy illustrated in Figure 7.4 is easily converted to a
based homotopy. We imagine first leaving the base point along the dark green
curve, then traversing the black loop, and then travelling backwards along the
dark green curve. Once the free homotopy is complete, the dark green curve
becomes a pair of loops that start and end at the base point that have tracked
the motion of the base point under the free homotopy.

After this deformation is performed, we can inspect what happened to the

base point. Because ℓ2 starts and ends at the base point, we can draw a contin-

uous path for the base point that starts and ends at the original location of the

base point (so that it is a loop – call it (ℓ3, g3)) (see Figure 7.5).

If ℓ1 and ℓ2 could be deformed into each other without moving the base point,

then ℓ3 is contractable to a point, and g1 = g2 since ℓ1 and ℓ2 are equivalent under

based homotopy. In contrast, if ℓ3 is homotopically nontrivial, then ℓ1 and ℓ2

are assigned different elements of the fundamental group even though they are

freely homotopic. However, if we first “undo” the tangling of the base point

(trace out ℓ3), then trace out ℓ2, and then “redo” the tangling of the base point

(trace out ℓ3 backwards), we recover a loop that is in the same based homotopy
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class as ℓ1. From the multiplication structure of the group, this means that

g3g2g−1
3 = g1 (7.1)

where g1 and g2 represent the group elements assigned to the loops that are

freely homotopic and g3 is the group element assigned to the loop representing

the trajectory of the base point in the path that deforms ℓ1 into ℓ2. The element g3

can be any element of π1 (OP). Two elements of a group g1 and g2 that are related

in this way are said to be in the same conjugacy class. Hence, conjugacy classes of

the fundamental group label topologically distinct defects.5 Conjugacy classes

partition groups. To understand how two defects combine, we must define an

operation on conjugacy classes. The natural way this is done is as follows: for

two conjugacy classes C1 and C2, generate the multiset C1 ∗ C2 of all pairwise

products g1g2 where g1 ∈ C1 and g2 ∈ C2, including duplicate group elements. If

C1 has N1 elements and C2 has N2 elements, then C1 ∗C2 will always have N1×N2

elements.

The elements in C1 ∗ C2 can always be written as a combination of several

conjugacy classes from the original group. Why? Suppose g1g2 is in the set

C1∗C2. We want to be sure that an arbitrary conjugate group element gc is also in

C1∗C2. Because gc is conjugate to g1g2, there is an element g3 such that g3g1g2g−1
3 =

gc. Because C1 is a conjugacy class, g3g1g−1
3 ∈ C1. Because C2 is a conjugacy class,

g3g2g−1
3 ∈ C2. Taking the product of these elements gives gc, so gc ∈ C1 ∗ C2.

This procedure further shows that C1 ∗ C2 as a multiset can be partitioned into

conjugacy classes, with the possibility of complete conjugacy class appearing

multiple times. Hence one can write operations like C1 ∗C2 = 4C3+C4. Note that

a requirement for this statement to be true is that N1 × N2 = 4N3 + N4 – this gives

5For an abelian group, each element represents its own conjugacy class, so it is sufficient to
label defects by elements of the group itself.
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a simple sanity check for the tedious group theoretic calculations performed

by simply counting the number of elements in each conjugacy class. Finally,

one can show that C1 ∗ C2 = C2 ∗ C1 so that this operation is commutative: if

g1g2 ∈ C1 ∗C2, then it is also in C2 ∗C1 since g1g2 =
(
g1g2g−1

1

)
g1 ∈ C2 ∗C1.

This operation has physical relevance. When multiple conjugacy classes ap-

pear on the right-hand side of the operation, such as in C1 ∗ C2 = 4C3 + C4,

this means that upon bringing a defect of type 1 and type 2 together, the re-

sulting defect depends upon the specifics of the way in which the defects are

brought together. We may end up with a defect of type 3 or of type 4, depend-

ing upon the other defects living in the local environment that the defects are

being dragged through. A classic example of this arises in orthorhombic biaxial

nematics, which can be thought of as the most ordered phase of right rectangu-

lar prism molecules with three nonequal side lengths. A defect can be formed

by a π rotation about an axis passing through one of the faces (call the normal to

this face x̂). A topologically equivalent defect is formed by a −π rotation about

the same axis.6 If one brings together defects registering locally as π and −π rota-

tions about the same axis, they will annihilate and give the completely ordered

configuration. However, if one brings together two defects locally registering as

+π, one gets a defect that represents a complete 2π swirl of the order parameter

field which cannot be untangled. The order parameter space for this phase is

SO(3)/D2, and π1 (SO(3)/D2) � H, the quaternions. The conjugacy classes of H

are (using the Pauli matrix representation):

C0 = {1} , C0 = {−1} , Cx = {±iσx} , Cy =
{
±iσy

}
, Cz = {±iσz} . (7.2)

The conjugacy class multiplication table is shown in Table 7.1.

6The deformation that takes these two defects into each other is the classic “escape into the
third dimension.”
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C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

Cx Cx Cx 2C0 + 2C0 2Cz 2Cy

Cy Cy Cy 2Cz 2C0 + 2C0 2Cx

Cz Cz Cz 2Cy 2Cx 2C0 + 2C0

Table 7.1: The conjugacy class multiplication table for an orthorhombic biaxial
nematic phase.

The relevant entry for bringing together two Cx defects is Cx ∗Cx = 2C0+2C0.

This means that, depending upon the way these defects are brought together,

we may end up with a trivial configuration C0 or a full twist C0. More details

on how braiding of defects is related to conjugation by certain group elements

is contained in the manuscript for the case of phases with trihedral symmetry.

In the following manuscript, I wrote all parts except for the beginning of the

Introduction. I performed the group-theoretic calculations necessary to under-

stand the braiding and fusion rules in the different symmetry-allowed phases. I

also generated all figures, and came up with general ways to draw defects in liq-

uid crystals whose symmetries form a point group of SO(3). Leo Radzihovsky

assisted in writing the Introduction giving broader context to the classification

and its relevance and taught me about the exotic Landau theories needed to un-

derstand interesting orientational order. This project came into existence after

a conversation that we had at the Boulder School 2022: Hydrodynamics Across

Scales.
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7.2 Topological defects in nematic phases of bent-core liquid

crystals

This section is a reformatted version of a manuscript to be submitted to Physical Review

E.

7.2.1 Abstract

Motivated by a growing family of bent-core liquid crystals – “bananas” and

twist-bent heliconical nematics – that require higher orientational order param-

eters to characterize their spontaneous chiral and other novel fluid phases, we

systematically classify and study their topological defects utilizing the machin-

ery of homotopy theory. In addition to the exhaustive classification, focusing on

the optically isotropic tetrahedratic phase characterized by a third rank tensor,

we demonstrate that it exhibits non-abelian topological defects that may help to

identify this otherwise elusive order. Our defect classification complements the

earlier Landau order-parameter, symmetry breaking characterization of banana

fluid phases [181].

7.2.2 Introduction

Driven predominately by competing entropic effects, liquid crystals exhibit a

rich variety of phases that spontaneously break spatial symmetries that are in-

termediate between a fully disordered homogeneous and isotropic fluid and a

three-dimensional crystal. Studies of spontaneously anisotropic fluid phases of
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conventional calamitics and discotics were launched by Reinitzer’s 1890s dis-

covery of cholesterics and are well-characterized by a rank-2 traceless symmet-

ric tensor capturing their dielectric tensor and associated optical anisotropy.

Synthesis of new molecular materials has driven a steady discovery of novel

liquid crystalline phases. These include a rich variety of spontaneously chiral

ferroelectric states of bent-core “banana” [182, 183, 184, 185, 186, 187, 188, 189,

190, 191] and heliconical (twist-bend) nematics [192, 193, 194, 195, 196, 197],

a holy grail of basic scientific exploration and crucial to liquid crystal display

technology.

Such bent-core liquid-crystalline fluids have been extensively studied by

Lubensky and Radzihovsky [181, 198] who exhaustively characterized them

by Landau symmetry breaking and associated tensor order parameters, sum-

marized in Fig. 7.7. In addition to reproducing conventional uniaxial and

orthorhombic biaxial nematics, they also discovered a variety of novel fluid

phases, such as the optically isotropic tetrahedratic T phase, characterized by

a nonzero symmetric third-rank tensor (angular momentum ℓ = 3) order pa-

rameter and its nematically ordered NT (neither uniaxial nor biaxial, but rather

exhibiting a 4-fold improper S 4 rotational symmetry about its nematic axis) and

spontaneously chiral (NT + 2)∗ cousins.

Such a Landau order-parameter classification from the disordered high-

temperature side is a powerful approach that is a starting point for treatment

of the associated phase transitions into the ordered phases. Complementarily,

states and phase transitions can also be characterized from the ordered low-

temperature side in terms of the associated Goldstone modes and correspond-

ing topological defects. This is the quest we undertake in the current work.
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Namely, utilizing the powerful machinery of homotopy theory, we fully clas-

sify the topological defects in the nematic phases of bent-core molecules sum-

marized in Fig. 7.7. One of the most interesting findings of our work is new

non-abelian defects and fusion rules that appear in the tetrahedratic T and tri-

hedral N + 3 phases.

Following this Introduction, in Section 7.2.3, we review the symmetry-

allowed phases for the bent-core liquid crystals. In Sections 7.2.4 and 7.2.5,

we review the non-abelian defect classification procedure in orthorhombic bi-

axial nematics, along with our methods for drawing representative defects for

systems with orientational order. Several of the allowed phases of a liquid crys-

tal formed of banana molecules have the same symmetries (and hence the same

topological defects) as the fully ordered phase of orthorhombic biaxial nematics.

In Section 7.2.6, we identify the defects in all nematic phases of the bent-core liq-

uid crystal, focusing on the triadic and tetrahedratic phases, and write out their

combination rules. Exhaustive classification of defects and combination rules in

all phases is confined to the supplemental information.

7.2.3 Phases and their symmetries

Table 7.2 lists the phases we consider, their symmetries, and the nonvanishing

order parameters that characterize them, with notation inherited from [181].

This list includes phases with all symmetries that can be constructed from the

order parameters pi, Qi j, and T i jk except for the lowest-symmetry phase with

C1 symmetry, which we do not consider (but this phase would have the same

topological line and point defects as the N + V phase). All other point-group
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Figure 7.6: Image of a bent-core NOBOW molecule. Instantaneously, a
molecule can be found in a chiral nonplanar configuration (as shown on the
right), but it fluctuates equally between chiralities. On average it is planar and
therefore achiral. The condensed phases of these planar bent-core molecules
can break a wide variety of symmetries unrelated to the symmetries of the con-
stituent molecules.

symmetries including cubic, icosahedral, simple tetrahedral (T ), and even lower

symmetries such as S 2, C3, and C2h cannot be characterized without the intro-

duction of 4th- or higher-rank tensor order parameters. As is customary, we

denote the Isotropic phase by I and the Nematic phase by N. The N phase has

D∞h symmetry, and it is completely characterized within the space of pi, Qi j,

and T i jk by the single uniaxial order parameter S . In general, the N phase will

also have nonvanishing components of all even rank tensors (explicitly induced
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Figure 7.7: A flowchart capturing phases and phase transitions between liquid
crystal phases of banana molecules, reproduced from [181]. Order parameters
which become nonzero at each of the transitions are indicated, as well as the
symmetry groups of each phase. Order parameters in parentheses also become
nonzero due to nonlinear couplings.
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Phase Symmetry Order Parameter Connected OP Space π1 π2

V C∞v p3, S , T1 SO(3)/C∞ � S 2 0 Z

N D∞h S SO(3)/D∞ � RP2 Z2 Z

N + 2 D2h S , B1,2 SO(3)/D2 H 0
N + 3 D3h S , T2,3 SO(3)/D3 Dic3 0
T Td T6,7 SO(3)/T 2T 0
NT D2d S , T6,7 SO(3)/D2 H 0
(NT + 2)∗ D2 S , B1, T6, T7 SO(3)/D2 H 0
V + 2 C2v p3, S , B1, T1, T6; SO(3)/C2 Z4 0

or p1, S , B1, T2, T4

V + 3 C3v p3, S , T1, T2,3 SO(3)/C3 Z6 0
(VT + 2)∗ C2 p3, S , B1, T1, T6, T7; SO(3)/C2 Z4 0

or p1, S , B1, T2, T4, T5

N + V C1h p1, p3, S , B1, Q3, SO(3) Z2 0
T1, T2, T4, T6

Table 7.2: Anisotropic liquid phases of banana-shaped molecules, their symme-
tries in the Schoenflies notation, and their nonvanishing order parameters. The
notation for the order parameters (B1,2, etc.) is inherited from [181] as the am-
plitude in a basis expansion of the tensors that enter the Landau free energy.
Some of the phases, such as the N + V phase, can be characterized by other sets
of symmetry-equivalent order parameters, involving, for example, linear com-
binations of p1 and p2 rather than p1 alone. For the enumeration of the order
parameter space, we work directly with the connected component SO(3) so do-
main walls that are allowed between chiral phases are ignored. The first and
second homotopy groups, π1 and π2, are related to the labelling of and combina-
tion rules for line and point defects in three dimensions, respectively.

through Tr(QnT2n) coupling), but we will ignore them, focusing on the nontrivial

order parameters of rank 3 or less that actually drive the ordering transitions.

There is a phase with vector or, equivalently, C∞v symmetry, which we denote

by V . The predominant order parameter of this phase is the vector p, which we

take to be along n (i.e., nonzero p3). Once p3 orders, it explicitly induces S and

T1 order parameters, through the pi p j pkT i jk and pi p jQi j couplings, respectively.

One crucial point, relevant for the Goldstone modes in each of the phases, is

that only the vector-ordered V phase and the uniaxial nematic N phase have a

continuous part of their symmetry group. The Goldstone modes in these cases
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are well-known as spin waves as they differ from each other only by an addi-

tional broken discrete symmetry. A hydrodynamic theory of general biaxial ne-

matics with all three rotational symmetries broken [199] describes the dynamics

of the Goldstone modes of each of the other liquid phases retaining only discrete

symmetry subgroups of SO (3).

7.2.4 Homotopy theory of defects

The homotopy theory of topological defects has been successful in describing

classes of nonequivalent defects and how they combine in systems that have

exotic order parameter spaces. By surrounding a discontinuity in the order

parameter field with two points (for π0), a curve (for π1), or a surface (for π2),

one finds a mapping to the corresponding hypersurface in the order parameter

space. If the hypersurface induced in the order parameter space can be con-

tracted to a single point, then the configuration in real space can be smoothly

patched without tearing the order parameter field. Otherwise, the labelling (for

π0) or the assigned group element (for πn≥1) is related to the character of the

defect and indicates how it interacts with other defects.

Focusing on the fundamental group, π1, we are able to label point defects in

two spatial dimensions or line defects in three spatial dimensions. When the

fundamental group is abelian, one can label the defects by elements of the fun-

damental group and find addition rules for bringing defects together. For the

XY model in two spatial dimensions, the point defects are vortices. The order

parameter space of the set of two-dimensional vectors of unit length is S 1, and

π1

(
S 1

)
= Z, which is abelian. This means that vortices are measured by their
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“charge,” and add as the integers do. If π1 is non-abelian, however, the defects

are labelled and interact in a more complicated way [180]. The abiguity of multi-

plication order is fixed by a labelling of defects according to the conjugacy classes

of the fundamental group, and the defect resulting from the combination of two

defects depends upon the path by which they are brought together. Perhaps the

best-known example of this occurs in orthorhombic biaxial nematics, where π

rotational defects about the three nonequivalent perpendicular axes interact in

interesting ways.

The labelling by conjugacy classes of the fundamental group arises from

the differences between based and free homotopies of loops. If we privilege a

point in the order parameter space (a reference configuration of our liquid crys-

tal molecule), and ask whether loops are homotopic keeping the reference con-

figuration fixed, we find the based homotopy group, which is isomorphic to

the fundamental group of the space independent of which point we choose to

privilege. Physical topological defects are considered equivalent if one can be

smoothly deformed into the other, without the restriciton of keeping a particular

point with fixed orientation; this deformation corresponds to a free homotopy

of loops in the order parameter space. Two loops in order parameter space are

freely homotopic (and hence correspond to the same type of physical topologi-

cal defect) if their fundamental group elements lie in the same conjugacy class

[180]. In the special case of an abelian fundamental group, the conjugacy classes

are the group elements themselves, and so we can label defects with group ele-

ments.

To identify the order parameter space of a liquid crystal allowed to rotate in

three dimensions, one typically begins with the full space group of distance-
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Figure 7.8: A visualization of banana molecules condensing into (a) the N + 3
phase and (b) the T phase. Each of these phases has a non-abelian first homo-
topy group characterizing the line defects, which leads to path-dependence in
the combination rules.

preserving transformations in three dimensions, O(3). O(3) has two discon-

nected components. These are relevant for π0, which is used to classify domain

walls in chiral liquid crystals. After identifying domain walls, it suffices to work

with a single connected component (SO(3)) as one can parameterize continu-

ous paths around other types of isolated defect. The order parameter space of

the liquid crystal can be written as the quotient space SO(3)/M, where M is the

group of rotational symmetries of the liquid crystal phase in question. In the

continuum theory, each point in the space corresponds to a unique orientation

of an object with symmetry group M, given a reference configuration (the iden-

tity in SO(3)/M). In the case of the banana molecules, different types of ordering

can arise that break spatial symmetries, characterized by the invariant space M.

For example, in the Tetrahedratic T -phase, the bent-core molecules order to lie

on the edges of tetrahedra (as illustrated in Fig. 7.8(b)), and so this phase has a

symmetry that is the full tetrahedral point group Td.
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Computing the homotopy groups of defects whose symmetry group is a

point subgroup of SO(3) is straightforward. Following [180], one lifts SO(3) to

its universal cover SU(2), and the point subgroup P to its corresponding double

group 2P. Then, using the fundamental theorem on the fundamental group, the

fundamental group is the double group itself:

π1 (SO(3)/P) � π1 (SU(2)/2P) � 2P. (7.3)

When the fundamental group is discrete, the higher homotopy group π2 is triv-

ial [180], and there are no topologically stable point defects in three dimensions.

This is the case for all nematic phases of the banana liquid crystal except for

the vector phase and the uniaxial nematic phase, both of which have well-

understood point and line defects. A more complete elaboration of this pro-

cedure will be laid out for the orthorhombic biaxial nematic phase in the next

section.

Taking inspiration from the labelling of loops in based homotopy classes,

one can draw representatives of each type of defect in real space by parameter-

izing a smooth path in SU(2) from the identity to the element in 2P representing

the defect label, and then applying the corresponding element in SO(3) (via the

two-to-one homomorphism identifying u (n̂, θ) = exp (i (θ/2) n̂ · σ) ∈ SU(2) with

the rotation matrix R (n̂, θ) ∈ SO(3)) to the reference configuration along a closed

path in real space surrounding the defect. Specifically, suppose we would like to

draw a point defect in two dimensions labeled by an element p = u
(
n̂p, θp

)
∈ 2P.

Using polar coordinates in real space, we can create an order parameter field

that is continuous everywhere except for the origin by applying the rotation

matrix R
(
n̂p, θp × (θ/2π)

)
to each molecule located at a point (r, θ) in real space.

Then loops surrounding the origin starting and ending at the reference config-

uration would measure a defect of value p.
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For liquid crystals that have order parameter spaces with a non-abelian fun-

damental group, defects can change their character (the homotopy group ele-

ment which they are assigned) as they are braided around other defects if one

does not keep the labelling loop consistent. A visual description of this can be

seen in Figure 7.9. As one braids one defect around another, the measurement

path with respect to the reference configuration is smoothly deformed to wind

around one of the defects. Specific examples of this will be shown in the biaxial

phases, the tetrahedratic T -phase, and the triadic N + 3 phase.

7.2.5 Warmup: orthorhombic biaxial nematics

Perhaps the most well-known example of a liquid crystalline molecule that has

non-abelian topological defects is the orthorhombic biaxial nematic. Because

this is also a symmetry of several of the phases of the liquid crystal comprised

of bent-core molecules (N + 2, NT , (NT + 2)∗), it is instructive to enumerate and

illustrate these topological defects in a way that extends naturally to the defects

in the phases with more interesting broken discrete symmetry groups.

Isolated defect classification and drawing representatives

One can represent these molecules as rectangular prisms with three nonequal

sides. The symmetry group of this molecule, considered as a subgroup of SO(3),

is the dihedral point group D2. This group is abelian and has the following

group presentation:

D2 =

〈
α, β

∣∣∣∣α2 = β2 = (αβ)2 = 1
〉
. (7.4)
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Figure 7.9: A demonstration of the result of braiding two defects that is valid
in systems with abelian or non-abelian fundamental groups. A red point defect
is wound around a brown point defect in two dimensions while the order pa-
rameter field at the base point X is kept fixed as a reference configuration. (a)
The purple path winding counterclockwise around the red defect measures a
defect with group element β ∈ π1 (OP), where OP is the order parameter space.
(b – c) As the red defect is looped around the brown one, all changes in the or-
der parameter field are continuous. The loop is assigned group element β at all
times. (d) the purple path is deformed into three paths that all start and end at
the base point X, traversed in order 1 → 2 → 3. Since the full path is assigned
homotopy group element β, we have that β = αβ̂α−1 =⇒ β̂ = α−1βα, where
α ∈ π1 (OP) is the group element measured for the brown defect. β̂ and β are
hence in the same conjugacy class, but may be different group elements in a
non-abelian group.
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The order parameter space of the liquid crystal is then SO(3)/D2. To compute

the first homotopy group using the fundamental theorem on the fundamental

group, we first lift the point group D2 ⊂ SO(3) to its corresponding double group

2D2 ⊂ SU(2). This is done in a straightforward way from the perspective of the

group presentation:

2D2 =

〈
α, β

∣∣∣∣α2 = β2 = (αβ)2 = −1
〉
. (7.5)

We now see immediately that, making the identifications α → −iσx and β →

−iσy, 2D2 � H, the quaternions. Completing the calculation, one has

π1 (SO(3)/D2) � π1 (SU(2)/H) � H. (7.6)

Because the fundamental group π1 is discrete, π2 (SO(3)/D2) = 0 and there are

no nontrivial point defects allowed in three dimensions for the orthorhombic

biaxial nematic phases [180]. Because π1 (SO(3)/D2) is non-abelian, the physical

defects are labelled by conjugacy classes of the fundamental group to keep the

labelling consistent for arbitrary labelling loops (see Figure 7.9). The conjugacy

classes of H are

C0 = {1} , C0 = {−1} ,

Cx = {±iσx} , Cy =
{
±iσy

}
, Cz = {±iσz} .

(7.7)

Although these conjugacy classes have been suggestively labelled, it can often

be difficult to visualize these defects when the fundamental groups are more ex-

otic. The following procedure (illustrated in Figure 7.10) for drawing represen-

tative defects will work for any point subgroup of SU(2). First, choose a refer-

ence configuration of a liquid crystal molecule. In this case, we choose a rectan-

gular prism to have the x̂, ŷ, and ẑ axes normal to the small, medium, and large

faces by surface area, respectively (Figure 7.10(c)). Then, choose a defect label
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Figure 7.10: A procedure for drawing defects labelled by elements in SU(2),
for the particular example of orthorhombic biaxial nematics. (a) SU(2) with the
eight points in 2D2 � H labelled in red. A path is parameterized in SU(2) con-
necting the identity to −iσx. Because −iσx ∈ H, this is a closed loop in SU(2)/H.
(b) SO(3) with the four points in D2 labelled in red and green. The red and
green points that are connected by a red-green curve are the same transforma-
tion in SO(3). Under the two-to-one homomorphism φ, the parameterized path
in SU(2) is mapped to a path in SO(3). Because −iσx ∈ 2D2, φ (−iσx) ∈ D2. This
means that the path is also a closed loop in SO(3)/D2, the order parameter space.
(c) The chosen reference configuration for the orthorhombic biaxial nematic has
the unit normals for the small, medium, and large sides parallel to the x̂, ŷ, and
ẑ axes, respectively. (d) The defect is drawn by applying the rotations along the
curve in (b) to the reference configuration in (c) as we wind around a closed
loop in real space. This could be thought of as a loop encircling a point defect
in two dimensions or a line defect core in three dimensions.
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in the fundamental group: we will choose −iσx ∈ π1 (SO(3)/D2) for this demon-

stration. We parameterize a path in SU(2) from the identity element 1 to −iσx.

Because each element in SU(2) can be written as u (n̂, θOP) = exp (i (θOP/2) n̂ · σ),

a natural choice of path is to fix n̂ and vary θOP from 0 to θmax
OP > 0. Here the sub-

script OP means that this angle refers to rotation angles in the order parameter

space. In this case, we can take n̂ = −x̂ and θOP ∈ [0, π] (Figure 7.10(a)).

This path in SU(2) can be projected down to a distinct path in SO(3) using

the two-to-one homomorphism φ from SU(2) to SO(3) that identifies u (n̂, θOP)

with the rotation R (n̂, θOP) about the axis n̂ counterclockwise by an angle θOP.

By construction, the projected path will begin at the identity element of SO(3)

and end at an element of D2, which must also be the identity in the quotient

space OP = SO(3)/D2. In this way, elements of π1 (OP) can be used to draw

loops of certain homotopy classes in OP (Figure 7.10(b)).

Finally, one can draw a point defect corresponding to −iσx in real space as

follows: take the closed loop in SO(3)/D2 and dilate the “time” coordinate θOP so

that it varies from 0 to 2πwhile tracing out the same path in SO(3)/D2. One now

has a continuous mapping from θ ∈ [0, 2π] to rotation matrices. Draw a field of

molecules that begin all in the reference configuration. Then to each molecule

at physical space polar coordinate (r, θ), θ ∈ [0, 2π], apply the rotation matrices

that are parameterized along the loop in SO(3)/D2. In this example, this means

applying the rotation matrix R (−x̂, θ/2) to each molecule at physical space polar

coordinate (r, θ). The result of this is the expected 180◦ swirl clockwise about x̂

(Figure 7.10(d)).

Because the fundamental group is non-abelian, this drawn defect should be

labelled a Cx defect. If one follows the same procedure, starting with +iσx, then
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one would get a defect that swirls about the same axis but in the opposite direc-

tion. The fact that ±iσx both belong to the conjugacy class Cx tells us directly that

these defects can be smoothly deformed to look like each other (via “escape into

the third dimension,” rotating every molecule about e.g. the ŷ axis by π). This

deformation in real space would correspond to a free homotopy of loops in the

order parameter space. We have included a video of such a smooth deforma-

tion, together with the corresponding free homotopy of loops in SO(3)/D2. At

each frame of the video, the path shown in SO(3) is a closed loop in the OP space

(which can be seen by the fact that the configuration of the physical molecules

varies continuously in real space around the loop). At the end of the video, the

loop starts and ends at an element of D2, which are elements of the symmetry

group of the molecule.

Defect combination and braiding

When the fundamental group of the OP space is abelian, the unique group prod-

uct of the two group elements of the combining defects determines the label of

the net defect. The label of the defect also depends on the choice of reference

configuration: a π swirl of the orthorhombic biaxial nematic, for instance, can

be thought of as a clockwise or counterclockwise swirl of any of the x̂, ŷ, and ẑ

axes, depending on the choice of reference configuration. After a reference con-

figuration is chosen with coordinate axes fixed, the label of a particular defect

can depend on the path chosen to encircle it, if it is in the vicinity of additional

defects. To see this, consider Fig. 7.9(a) and Fig. 7.9(c). One can label the red

defect via the loop starting at the reference configuration X in Fig. 7.9(a), and

one would record an element β ∈ π1 (OP). One could just as well label the defect
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using the loop in Fig. 7.9(c), and one would record an element β̂ = α−1βα. This

is relevant for defect combination in the group.

In the following sections, we will not go into such detail. We will enumerate

the homotopy groups and conjugacy classes, and we will show some represen-

tatives of each type of defect for phases where the symmetries are particularly

interesting. In the supplemental material, examples of each kind of defect in

many more of the phases are shown.

7.2.6 Defect enumeration and combination in bent-core liquid

crystal phases

The first and second homotopy groups of all of the possible symmetry-allowed

phases of the banana molecules are shown in the final two columns of Table 7.2.

The only phases with nontrivial point defects in three dimensions (π2 , 0) are V

(vector) and N (uniaxial nematic). There are no stable line defects in the V phase,

and the point defects are labelled by and combine like integers (under addition).

In the N phase, the point defects are not simply labelled by Z, since the point

defects can change their sign by winding around a line defect, and hence there is

a path dependence in the way point defect addition occurs [180]. Because these

phases are well-understood, and the fundamental groups of all other phases are

discrete, there are no further interesting topological point defects to discuss in

three dimensions.

There are four other phases whose fundamental groups are abelian and

whose defects can hence be labelled by group elements. These are the V + 2,
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V + 3, (VT + 2)∗, and N + V phases. All of these have a finite number of defect

types that add as in the cyclic group Zn. For instance, in the V+2 phase, there are

three types of defect that could be labelled 1+, 2+, and 3+, and whose combina-

tion is governed by addition modulo 4 (with 0+ representing the topologically

trivial configuration).

There are three phases (N + 2, NT , and (NT + 2)∗) whose fundamental group

is the quaternions H, and whose defects are labelled by conjugacy classes of H

(of which there are 4 + the trivial field configuration). This is the same defect

classification as for orthorhombic biaxial nematics, whose defects are also well-

understood and fully classified in e.g. [180] and the previous section.

This leaves just two phases whose topological defects we need to enumerate:

the tetrahedratic T -phase and the triadic N + 3 phase. As we show next, each

of these has a non-abelian fundamental group and hence can display braiding

statistics, entanglement of line defects, and path dependence in defect addition.

We seek to fully enumerate and illustrate the types of defect in each of these

phases and connect them to experimental observables of the bent-core molecule

liquid crystal system.

Tetrahedratic T -phase

Within the tetrahedratic T -phase, the orientationally-ordered units are clusters

of six bent-core molecules lying on the edges of tetrahedra. The fundamental

group of the order parameter space of a liquid crystal comprised of such or-

dered clusters is the binary tetrahedral group 2T , which is a non-abelian group

with 24 elements. These elements are most simply written in terms of Pauli
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C0 C0 CQ Cw1 C−w1 Cw2 C−w2

C0 C0 C0 CQ Cw1 C−w1 Cw2 C−w2

C0 C0 C0 CQ C−w1 Cw1 C−w2 Cw2

CQ CQ CQ 6C0 + 6C0 + 4CQ 3Cw1 + 3C−w1 3Cw1 + 3C−w1 3Cw2 + 3C−w2 3Cw2 + 3C−w2

Cw1 Cw1 C−w1 3Cw1 + 3C−w1 3Cw2 +C−w2 Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ

C−w1 C−w1 Cw1 3Cw1 + 3C−w1 Cw2 + 3C−w2 3Cw2 +C−w2 4C0 + 2CQ 4C0 + 2CQ

Cw2 Cw2 C−w2 3Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ 3Cw1 +C−w1 Cw1 + 3C−w1

C−w2 C−w2 Cw2 3Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ Cw1 + 3C−w1 3Cw1 +C−w1

Table 7.3: Combination rules for defects in the tetrahedratic T -phase. When
there are multiple classes resulting from the product of two conjugacy classes,
then the resulting defect depends upon the path along which two defects are
brought together.

matrices. The 24 elements include the 8 elements of H =
{
±1,±iσx,±iσy,±iσz

}
as a subgroup, together with the 16 additional elements of the form w±±±± ≡(
±1 ± iσx ± iσy ± iσz

)
/2:

2T = H ∪
{

1
2

(
±1 ± iσx ± iσy ± iσz

)}
(7.8)

with the usual multiplication rules in SU(2). There are 7 conjugacy classes of the

binary tetrahedral group, and hence 6 distinct types of defect:

C0 = {1} , C0 = {−1} , CQ =
{
±iσx,±iσy,±iσz

}
,

Cw1 = {w++++,w++−−,w+−+−,w+−−+} ,

Cw2 = {w+++−,w++−+,w+−++,w+−−−} ,

C−w1 = −Cw1 , C−w2 = −Cw2 .

(7.9)

The conjugacy class multiplication table, which shows how defects of different

classes combine, is shown as Table 7.3.

Understanding and visualizing the configuration of the banana molecules

lying on the edges of the tetrahedral clusters around these defects is again
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done through the two-to-one homomorphism between SU(2) and SO(3). Take,

for instance, a defect represented by w++++ = exp
(
iπ3 (1, 1, 1) /

√
3 · σ

)
. A

smooth path in SU(2) from 1 to w++++ is traced out when the rotation matrix

R
((

1/
√

3, 1/
√

3, 1/
√

3
)
, 2π

3

(
θ

2π

))
is applied to each point (r, θ) in real space. This

defect, together with a reference configuration of the tetrahedron, is illustrated

in Figure 7.11. It corresponds to a 2π/3 vortex, where the tetrahedral clusters are

rotated by 2π/3 around one of their 3-fold axes as the defect is encircled. The

defect may change its appearance upon braiding around other kinds of defect

(or equivalently, choosing a different measurement loop), but it will always be

measured to lie in the Cw1 conjugacy class of 2T .

Triadic N + 3 phase

Within the triadic N + 3 phase, the bent-core molecules organize into planar

triangular clusters, lying on the edges of an equilateral triangle that is free to

rotate in three dimensions (Fig. 7.8(a)). The fundamental group of the order

parameter space of a liquid crystal comprised of this molecule is the 12-element

non-abelian dicyclic group Dic3 (which is the double group of the 6-element

dihedral group D3). Once again, these elements can be written in terms of Pauli

matrices. There are 6 conjugacy classes of the dicyclic group Dic3, and hence 5

types of defect:

C0 = {1} , C0 = {−1} ,

C1 =

{
exp

(
±i
π

3
σz

)}
, C2 = −C1,

Ceven =

{
iσx, iσxexp

(
±i

2π
3
σz

)}
, Codd = −Ceven.

(7.10)

The conjugacy class multiplication table, which shows how defects of different

classes combine, is shown as Table 7.4.
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Figure 7.11: A tetrahedratic defect. (a) A reference configuration of the tetrahe-
dron is shown; the blue axis is x̂, which passes through the center of two edges.
The red axis is (x̂ + ŷ + ẑ)/

√
3, which passes through a vertex and the center of a

face. (b) For a defect labelled w++++ (the red point), the tetrahedron originally in
the reference configuration executes a rotation counterclockwise by 2π/3 about
the red axis as the defect is traversed counterclockwise in real space. It can be
smoothly deformed into any other defect in the Cw1 class.
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C0 C0 C1 C2 Ceven Codd

C0 C0 C0 C1 C2 Ceven Codd

C0 C0 C0 C2 C1 Codd Ceven

C1 C1 C2 2C0 +C2 2C0 +C1 2Codd 2Ceven

C2 C2 C1 2C0 +C1 2C0 +C2 2Ceven 2Codd

Ceven Ceven Codd 2Codd 2Ceven 3C0 + 3C1 3C0 + 3C2

Codd Codd Ceven 2Ceven 2Codd 3C0 + 3C2 3C0 + 3C1

Table 7.4: Combination rules for defects in the triadic N + 3 phase.

The path dependence of defect addition in this non-abelian group, together

with the braiding statistics, can be best demonstrated through a sequence of

snapshots (or a video). Suppose we begin with a +2/3 defect (labelled by el-

ement β2 = exp
(
i2π

3 σz

)
∈ C2) next to a flip defect (labelled by element α =

iσx ∈ Ceven). The +2/3 defect β2 can be split into two +1/3 defects (labelled

by β1 = exp
(
iπ3σz

)
∈ C1. This is the meaning of C1 ∗ C1 = 2C0 + C2 in the class

multiplication table for the triadic phase: one way of bringing together two C1

defects gives us a C2 defect. Next, we take one of the defects labelled β1 and

wind it around defect α, a process identical to what is shown in Figure 7.9. This

gives us a defect labelled by β̂1 = (iσx)−1 exp
(
iπ3σz

)
(iσx) = exp

(
−iπ3σz

)
∈ C1. Our

+1/3 defect has transformed into a −1/3 defect! However, the labelling by the

conjugacy class C1 has remained consistent. Now we bring together the +1/3

and the −1/3 defects and use one to annihilate the other, giving us the C0 trivial

configuration. This procedure illustrates the path dependence of the combina-

tion of two C1 defects when in the vicinity of other defects.
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7.2.7 Summary

Motivated by a large class of newly synthesized and experimentally exten-

sively studied bent-core “banana” liquid crystals [200], in this manuscript we

presented an exhaustive characterization of bent-core fluid phases in terms of

their topological defects. Our study thus complements an earlier Landau order-

parameter approach [181] that predicted a web of phases and associated phase

transitions. Focusing on the most exotic tetrahedratic fluid 7 with tetrahedral

Td symmetry, using homotopy machinery we demonstrated that its vortex line

defects are non-abelian and have fully characterized their braiding and fusion

properties. We expect our prediction to be a useful experimental diagnostic of

this (linear-)optically isotropic tetrahedral fluid. We also complete this analysis

for all other symmetry-allowed nematic phases.
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APPENDIX A

APPENDIX OF CHAPTER 2

This Appendix is a reformatted version of a manuscript appearing on the arXiv as “Uni-

versal scaling for disordered viscoelastic matter II: Collapses, global behavior and spatio-

temporal properties.” This was later reformatted into the S.I. of [9].

A.1 Abstract

Disordered viscoelastic materials are ubiquitous and exhibit fascinating invari-

ant scaling properties. In a companion article [9], we have presented compre-

hensive new results for the critical behavior of the dynamic susceptibility of

disordered elastic systems near the onset of rigidity. Here we provide addi-

tional details of the derivation of the singular scaling forms of the longitudinal

response near both jamming and rigidity percolation. We then discuss global

aspects associated with these forms, and make scaling collapse plots for both

undamped and overdamped dynamics in both the rigid and floppy phases. We

also derive critical exponents, invariant scaling combinations and analytical for-

mulas for universal scaling functions of several quantities such as transverse

and density responses, elastic moduli, viscosities, and correlation functions. Fi-

nally, we discuss tentative experimental protocols to measure these behaviors

in colloidal suspensions.
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A.2 Introduction

Disordered elastic systems encompass a wide range of materials, from amor-

phous solids [201] and network glasses [15] to biopolymer fiber networks [5],

articular cartilage [4], confluent cell tissues [202, 25] and even machine learn-

ing [26]. Their theoretical development has not only led to a much deeper un-

derstanding of traditionally difficult problems as the glass transition; it has also

pushed the boundaries of science to incorporate new frameworks such as topo-

logical mechanics [203, 204], non-reciprocal phase transitions [205] and novel

mechanical metamaterials [206, 207, 208, 21]. In a companion article [9], we have

employed a systematic analysis of the invariant scaling of the dynamic suscepti-

bility to determine the universal critical behavior of several classes of disordered

viscoelastic materials near the onset of rigidity. Here we present a derivation of

the theoretical results shown in [9], and discuss additional details for scaling

collapses, the global behavior of universal scaling functions, and general scal-

ing forms for diverse spatio-temporal properties such as moduli, viscosities and

correlation functions.

Jamming [14] and Rigidity Percolation (RP) [15] provide two of the most suit-

able approaches to characterize the fascinating scaling behavior that is exhibited

by several classes of disordered viscoelastic materials near the onset of rigid-

ity [16]. Both are often modeled by elastic networks close to Maxwell’s thresh-

old for mechanical stability [17], and represent transitions from a rigid phase to

a floppy one when the average coordination number becomes smaller than the

isostatic value. RP is usually described in terms of networks in which bonds

between sites are randomly removed, and is characterized by a second-order

transition for all elastic moduli [1, 23]. In turn, jamming is usually described
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in terms of disordered arrangements of spheres that exhibit an unusual critical

behavior, with a first-order transition for the bulk modulus and a second-order

transition for the shear modulus.

Whereas effective-medium theories have been routinely employed in the

derivation of the critical behavior associated with RP [1, 22, 23], a genuine finite-

dimensional effective-medium theory for jamming had remained elusive until

recently [2]. Incidentally, a phenomenological theory providing a synthesis of

available numerical work on the universal critical scaling of jamming has also

been proposed recently [40]. Here we show how to combine these two develop-

ments [2, 40] to derive the scaling behavior of a large class of disordered elas-

tic materials near jamming and rigidity percolation. Our results are based on

a scaling Ansatz for the longitudinal response that is akin to the one consid-

ered in Ref. [40]. They go beyond the results of [40] by incorporating rigidity

percolation in addition to jamming, as well as wavelength and frequency de-

pendencies in addition to static results. We use the effective-medium theory

of Ref. [2] to both validate our scaling forms and to extract analytical formulas

for the universal scaling functions. Our results go beyond the results of [2] by

incorporating the analysis of a wide variety of physical quantities, particularly

spatio-temporal properties such as dynamic response and correlation functions.

The remainder of this article is organized as follows. In Sec. A.3, we present

a brief review of key results of Ref. [2] (Sec. A.3.1), and a derivation of the

critical exponents and universal scaling functions for the longitudinal response

(Sec. A.3.2). To validate the theory of Sec. A.3.2, we present in Sec. A.4 scaling

collapse plots near both jamming and rigidity percolation, for undamped and

overdamped dynamics, in the rigid and floppy phases, and discuss the global
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behavior of the longitudinal response. We then use results from Sec. A.3.2 to

derive the universal scaling behavior of several additional quantities in Sec. A.5

— the transverse dynamic response, moduli and viscosities, density response

and correlation functions. Finally, we end with an outlook in Sec. A.7.

A.3 Theory

Here we present a brief review of key results from Ref. [2], which we use in the

derivation of critical exponents and universal scaling functions for the longitu-

dinal response (Sec. A.3.2) and other quantities (Sec. A.5).

A.3.1 Effective-medium theory for jamming and rigidity perco-

lation

We use the honeycomb-triangular lattice (HTL) model [2] to describe both static

and dynamical properties of jamming and rigidity percolation (RP) near the

threshold of mechanical stability. The HTL model combines suitable properties

of two periodic lattices: The honeycomb lattice (solid lines in Fig. A.1) with fi-

nite bulk modulus B > 0 and zero shear modulus G = 0, and two triangular

lattices (dashed and dotted lines) with finite B,G > 0. In simulations, bonds

(harmonic elastic interactions) of the honeycomb lattice and the triangular lat-

tices have unit spring constant and are populated 1 with probability pB and pN,

respectively. In the effective-medium theory, the honeycomb and triangular lat-

1This is a special case of the more general model in which the bond occupation probability
can be different for the two triangular lattices.
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Figure A.1: Illustration of the honeycomb-triangular lattice model. In simula-
tions, bonds of the honeycomb lattice (solid lines) and the two triangular lattices
(dashed and dotted lines) are populated with probability pB and pN, respec-
tively. In the effective medium theory, the fully-occupied honeycomb and tri-
angular sub-lattices have frequency-dependent effective spring constants kB(ω)
and kN(ω), respectively, satisfying a set of self-consistent equations.

tices are fully populated with bonds with complex frequency-dependent effec-

tive spring constant kB(ω) and kN(ω), respectively.

We use the Coherent Potential Approximation [41, 1, 22] (CPA) to derive a

set of self-consistent equations for kB(ω) and kN(ω), and then describe elastic and
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phonon properties of the HTL model near jamming and RP. The derivation of

the CPA self-consistent equations is standard, and we do not include it here.

Here the randomly-diluted lattice is modeled by homogeneous lattices with ef-

fective spring constants satisfying the set of equations [2]:

kα =
pα − hα
1 − hα

, (A.1)

where pα and kα are the occupancy probability of each bond and the effec-

tive spring constant for sub-lattice α ∈ {B,N}, respectively. The functions

hα = hα(pB, pN, ω) are defined by

hα =
1

z̃αNc

∑
q

Tr
[
Dα(q) · G(q, ω)

]
, (A.2)

where Nc is the total number of cells, ω is the frequency, q is the wavevector, and

Dα(q) and z̃α are the dynamical matrix and the number of bonds per unit cell

for sub-lattice α, respectively. The trace is taken over an mD-dimensional space,

where m is the number of sites per unit cell and D is the spatial dimension. The

Green’s function G is defined by

G(q, ω) =

∑
α

Dα(q) − ω2I

−1

, (A.3)

where I is an identity matrix. Note that
∑
α Dα depends on all effective spring

constants kα, so that Eq. A.1 self-consistently determines the values of all kα for

given pB, pN and ω.

Elastic moduli can be expressed in terms of the effective springs constants by

taking the long-wavelength limit of the dynamical matrix while ensuring that

internal degrees of freedom are relaxed before the limit of small wavevector is

taken. The HTL has isotropic elasticity, with bulk and shear moduli given by

B =
3
4

kB +
9
2

kN, G =
9
4

kN, (A.4)
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Figure A.2: Phase diagram of the HTL model in terms of bond occupation prob-
abilities for the honeycomb (pB) and triangular (pN) lattices. The gray line is an
RP line that terminates at a multicritical jamming point J (red disk). The dia-
gram also shows the pair of scaling variables δpB and δp.

respectively. These definitions along with solutions of the CPA equations allow

us to draw the zero-frequency phase diagram shown in Fig. A.2.

Using a perturbation analysis, one can write the asymptotic equations for

the low-frequency behavior of kB and kN near the jamming point J [2]:

kB ≈
kN

kN + δpB/b1
, (A.5)

kN ≈ b2 |δp|


√

1 − c
ω̃(ω)
|δp|2

± 1

 , (A.6)

where b1, b2 and c are constants, the plus and minus signs on the second equa-
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tion correspond to the rigid and floppy phases, respectively, and

ω̃(ω) ≡


ρω2, for undamped dynamics,

i γω, for overdamped dynamics,
(A.7)

where ρ and γ represent the mass density and a drag coefficient, respectively.

Using Eqs. (A.5) and (A.6), we can write,

kB ≈

1 + δpB

b |δp|
( √

1 − c ω̃(ω)/|δp|2 ± 1
)
−1

, (A.8)

where b ≡ b1 · b2 is constant. From Eq. (A.8), we can derive the scaling behavior

of the frequency-dependent bulk modulus:

B(ω) ≈ a
[
1 +

δpB/|δp|φ

M±(ω/|δp|zν)

]−1

, (A.9)

where a is a constant corresponding to the bulk modulus of the fully-populated

honeycomb lattice in our model. The exponent φ = 1, and the product z ν = 1

and 2 for undamped and overdamped dynamics, respectively. The universal

scaling functionM is given by

M±(v) ≡ b ×


√

1 − c ρ v2 ± 1, (undamped),√
1 − i c γ v ± 1, (overdamped).

(A.10)

where b and c are constants, and the plus and minus correspond to solutions

in the elastic and floppy states, respectively. In Sec. A.3.2, we use Eq. (A.9) to

derive the scaling behavior of the longitudinal response.

In turn, the scaling behavior for the shear modulus G follows directly from

the asymptotic behavior of kN in Eq. (A.6):

G(ω) ≈ g |δp|βGM±(ω/|δp|zν), (A.11)

where βG = 1 and g is a constant.
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Note that these scaling forms were obtained using an approximation that is

valid near the multicritical point J. Some of the nonuniversal constants change

as one moves away from the J point towards larger values of δpB (see e.g. the

slope of the shear modulus in Ref. [2]). Though these constants depend on

model details, we expect the functional forms to be universal.

A.3.2 Critical exponents and universal scaling function for lon-

gitudinal response

Now we use the results presented in Sec. A.3.1 to derive the critical exponents

and universal scaling functions for the longitudinal response near both jamming

and RP, for undamped and overdamped dynamics in the solid and fluid phases.

In the long wavelength limit, the longitudinal component of the dynamic

response function χL of an isotropic viscoelastic material is given by [36, 209]

χL =

{
−ρω2 − i γω + q2

[
B(ω) + 2

D − 1
D

G(ω)
]}−1

. (A.12)

The complex elastic moduli B(ω) = B′ + iB′′ and G(ω) = G′ + iG′′ can be decom-

posed into storage (B′ and G′) and loss (B′′ and G′′) components. Interestingly,

we observe a nonzero loss modulus in our effective-medium results even if there

is no dissipation term in the dynamics (i.e. if γ = 0.) This happens because the

dynamical CPA involves an average over disorder that maps simple springs

into Kelvin-Voigt elements (combinations of springs and dashpots [209]), which

lead to nonzero imaginary parts if the frequency is sufficiently high. Physically,

this is the way CPA incorporates scattering of long-wavelength phonons off the

disordered lattice.
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For G/B≪ 1 (near jamming) we can write

χL ≈
[
−ρω2 − i γω + q2 B(ω)

]−1

≈
{
−ρω2 − i γω + a q2

×

[
1 +

δpB/|δp|φ

M±(ω/|δp|zν)

]−1

−1

(A.13)

where φ = 1, z ν = 1 and 2 for undamped and overdamped dynamics, respec-

tively, and we have used the asymptotic form for the bulk modulus [Eq. (A.9)].

Now we multiply both sides of (A.13) by |δp|2 to write

|δp|2χL ≈

−ρ
(
ω

|δp|

)2

− i γ
ω

|δp|2

+a
(

q
|δp|

)2 [
1 +

δpB/|δp|φ

M±(ω/|δp|zν)

]−1

−1

. (A.14)

Let us define the nonuniversal scaling factors [34],

χ0 ≡ c, q0 ≡
1
√

ac
, δ0 ≡ b, (A.15)

ω0 ≡


1/
√
ρ c, for the undamped case,

1/(γ c), for the overdamped case,
(A.16)

which lead to the scaling form:

χL

χ0
≈ |δp|−γL

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (A.17)

with

L(u, v,w) =

 u2

1 + w/
( √

1 − ṽ(v) ± 1
) − ṽ(v)


−1

, (A.18)

where L is a universal scaling function, the exponents γ = 2 and ν = 1 for

jamming, and

ṽ(v) =


v2, for the undamped case,

i v, for the overdamped case.
(A.19)
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The exponents γ, z and ϕ are associated with the susceptibility, correlation time,

and crossover behavior, respectively [34, 37]. As we show in Sec. A.5, our ex-

ponent ν for the correlation length is associated with traditional definitions for

diverging length scales ℓ∗ and ℓc (see e.g. [38]), and should not be confused with

exponents for the finite-size scaling of the probability density ∆ ∼ L1/ν, as re-

ported in calculations based on the pebble game [59].

At fixed δpB, the limit δp → 0 leads to RP criticality (cf. Fig. A.2). Thus,

we can study the crossover to rigidity percolation by considering the invariant

scaling combination δpB/|δp|φ ≫ 1, so that, from Eq. (A.14):

|δp|2χL ≈

−ρ ( ω
|δp|

)2

− i γ
ω

|δp|2

+a
(

q
|δp|

)2
|δp|φ

δpB

M±

(
ω

|δp|zν

)−1

. (A.20)

Since δpB is an irrelevant variable for rigidity percolation, we define q0 ≡√
δpB/(a c). Now the term |δp|φ has to be incorporated into the invariant scal-

ing combination for q, leading to ν = 1/2 for RP. Since the product z ν depends

only on the type of dynamics (undamped or overdamped,) the exponent z must

also change for rigidity percolation. The longitudinal response then behaves as:

χL

χ0
≈ |δp|−γL̄

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.21)

where

L̄(u, v) =
[
u2

( √
1 − ṽ(v) ± 1

)
− ṽ(v)

]−1
. (A.22)

Table A.1 lists the values of the critical exponents γ, z, ν, φ, βB and γB for both

jamming and RP, and for both undamped and overdamped (between parenthe-

ses, if different from undamped) dynamics. The exponents for the bulk modu-

lus βB and bulk viscosity γG are defined by equations (A.34) and (A.43), respec-

227



γ z ν φ βB γB

Jamming 2 1 (2) 1 1 0 1 (2)
Rigidity Percolation 2 2 (4) 1/2 - 1 0 (1)

Table A.1: Critical exponents (cf. Eqs. (A.17), (A.21), (A.33) and (A.41)) extracted
from the longitudinal response function near jamming and rigidity percolation
for undamped and overdamped (between parentheses, if different from un-
damped) dynamics.

tively, in Sec. A.5. Note that previous studies [38, 39] of the response of friction-

less jammed spheres to a sinusoidal perturbation report exponents ν that are

in-between the ones presented here.

Our formulation of Eqs. (A.17) and (A.21) represents a deliberate effort to

emphasize model-independent (universal) features. Note e.g. that our model

definition of the non-universal scaling factor q0 is different for jamming and RP;

the latter involves a term that increases as one moves away from the jamming

multicritical point. Besides, our formulation allows for the suitable incorpora-

tion of analytic corrections to scaling [47, 48, 34, 49], which can be added in a

case-by-case basis. In general, we expect these corrections to appear through

the introduction of nonlinear scaling fields,

uq(q, ω, δJ) =
q
q0
+ . . . (A.23)

uω(q, ω, δJ) =
ω

ω0
+ . . . (A.24)

uJ(q, ω, δJ) =
δJ

δ0
+ . . . (A.25)

which would replace q/q0, ω/ω0 and δJ/δ0 in Eqs. (A.17) and (A.21). Here the

dots represent higher-order terms and perhaps linear terms in the other vari-

ables (rotating the axes). These nonlinear scaling fields can be viewed as the

difference between the lab parameters and Nature’s natural variables, or as the

coordinate transformation removing the (hypothetical) nonlinear terms in the
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renormalization group to their hyperbolic normal form [49]. In order to use our

scaling predictions to describe behavior far from the critical point, one must first

determine the appropriate scaling fields uq, uω and uJ for the particular system.

A.4 Scaling and global asymptotic behavior for longitudinal

response

Our universal scaling forms for the longitudinal response provide a valuable

tool both to investigate invariant critical behavior and to quickly assess the

overall global behavior of χL. In this section, we employ full EMT solutions to

validate the universal scaling functions L and L̄ [see Eqs. (A.18) and (A.22)], by

means of scaling collapse plots for both overdamped (Sec. A.4.1) and undamped

(Sec. A.4.2) dynamics. We then show how to use our solutions to quickly explore

the invariant global behavior exhibited by χL.

A.4.1 Overdamped dynamics

Equations (A.17) and (A.21) imply that solutions for |δp|γχL as a function of one

of the three invariant scaling combinations (the other two kept constant) should

lie on the curves given by Eqs. (A.18) and (A.22), respectively. Hence, plots for

different values of |δp| should collapse for several paths approaching jamming

or RP. Figure A.3 shows an example of a scaling collapse plot of the rescaled

longitudinal response as a function of rescaled frequency for overdamped dy-

namics at fixed q/|δp|ν and δJ/|δp|φ, and for paths approaching jamming (first

row) and RP (second row) from both the rigid and floppy phases (see inset in
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each panel). Although there are model-specific predictions for the nonuniversal

scaling factors, we choose them to best fit the collapsed data.

In the elastic phase [(a) and (c)], one observes a crossover to a regime domi-

nated by dissipation (the imaginary part of χL in red) as the frequency increases.

Note that L′ plateaus at low frequency, but decays to zero at high frequency.

In turn, L′′ decays to zero both at low and high frequencies, though it decays

slower than L′ at large v, except in the limit of very large u and v, where both L′

and L′′ decay as v−1/2. Thus, there is a frequency scale in which L′ ∼ L′′, charac-

terizing a crossover to a regime where the imaginary dissipative part dominates

the dynamic response. From Eq. (A.18), we find that ω ∼ D∗q2 in this regime,

leading to the definition of an effective diffusion constant

D∗ ∼ |δp|(z−2)ν. (A.26)

Using the exponents shown in Table A.1, we find that D∗ ∼ O(1) and ∼ |δp|

for jamming and RP, respectively. In terms of rescaled variables, this crossover

happens at v ∼ u2 (see Fig. 2(b) and (d) of our companion manuscript [?]). In

the liquid phase [(b) and (d)], L′ behaves as in the elastic phase, butL′′ diverges

rather than vanishing at low v due to the predominant viscous response of the

fluid state.

Equations (A.18) and (A.22) also imply that our universal functions for

the longitudinal response L(u, v,w) and L̄(u, v) generally behave as uαvβ with

the exponents α and β depending on the region in the u (rescaled wavector) ×

v (rescaled frequency) plane. To illustrate and map this global behavior, we

show in Fig. A.4 the power-law regions for which L(u, v,w) ∝ uαvβ and L̄(u, v) ∝

uαvβ, with (α, β) very close to their asymptotic values. The first and second rows

correspond to our scaling forms for jamming and RP, respectively. To generate
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Figure A.3: Scaling collapse plots showing the universal behavior of the longi-
tudinal response as a function of rescaled frequency near jamming (first row)
and RP (second row), for overdamped dynamics. Blue disks and red trian-
gles are full solutions of the EMT equations for the real and imaginary parts
of |δp|γχL/χ0, respectively. Solid and dashed curves are the universal scaling
predictions of Eqs. (A.18) and (A.22). We consider points approaching jam-
ming and RP along the paths indicated in the inset graphs of each panel. We
use q/|δp|ν = 0.1 (closed symbols) and 1 (open symbols) in all panels, and
δpB/|δp|φ equal to

√
5/4 from the rigid side (a), and equal to 2 from the floppy

side (b). Full solutions run at |δp| = 10−2, 10−3, and 10−4 for RP and a range
|δp| ∈ [5× 10−2, 5× 10−6] for jamming show convergence to our universal asymp-
totic predictions.
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⇠ u�2v�1
<latexit sha1_base64="eX9eCrvR7rcrcv28RY1E/HHxM8w=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBjSWpgi6LblxWsA9oY5lMJ+3QySTMTIol5FfcuFDErT/izr9x2mahrQcu93DOvcyd48ecKe0431ZhbX1jc6u4XdrZ3ds/sA/LLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749uZ355QqVgkHvQ0pl6Ih4IFjGBtpL5d7ikWouQxPa9laGKam/XtilN15kCrxM1JBXI0+vZXbxCRJKRCE46V6rpOrL0US80Ip1mplygaYzLGQ9o1VOCQKi+d356hU6MMUBBJU0Kjufp7I8WhUtPQN5Mh1iO17M3E/7xuooNrL2UiTjQVZPFQkHCkIzQLAg2YpETzqSGYSGZuRWSEJSbaxFUyIbjLX14lrVrVvajW7i8r9Zs8jiIcwwmcgQtXUIc7aEATCDzBM7zCm5VZL9a79bEYLVj5zhH8gfX5A8N0k5w=</latexit>

⇠ u�2v0
<latexit sha1_base64="8lzSBiDTC6n8tB12VKcNf+HYDr0=">AAAB+nicbVBNT8JAEJ3iF+JX0aOXjcTEi6RFEz0SvXjERD4SKGS7LLBht212txhS+1O8eNAYr/4Sb/4bF+hBwZdM8vLeTGbm+RFnSjvOt5VbW9/Y3MpvF3Z29/YP7OJhQ4WxJLROQh7Klo8V5Sygdc00p61IUix8Tpv++HbmNydUKhYGD3oaUU/gYcAGjGBtpJ5d7CgmUNxNzispmnQTJ+3ZJafszIFWiZuREmSo9eyvTj8ksaCBJhwr1XadSHsJlpoRTtNCJ1Y0wmSMh7RtaIAFVV4yPz1Fp0bpo0EoTQUazdXfEwkWSk2FbzoF1iO17M3E/7x2rAfXXsKCKNY0IItFg5gjHaJZDqjPJCWaTw3BRDJzKyIjLDHRJq2CCcFdfnmVNCpl96Jcub8sVW+yOPJwDCdwBi5cQRXuoAZ1IPAIz/AKb9aT9WK9Wx+L1pyVzRzBH1ifP1Lgk2Q=</latexit>

⇠ u�2v�0.5
<latexit sha1_base64="WvlCzuSczxBmDSB+LReEtp0Rmo4=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSC1FSQDBWsDAWiT6kNlSO67RWbSeynUolivgVFgYQYuU/2Pgb3DYDtBzp6h6dc698fYKYUaVd99sqLC2vrK4V10sbm1vbO/buXkNFicSkjiMWyVaAFGFUkLqmmpFWLAniASPNYHgz8ZsjIhWNxL0ex8TnqC9oSDHSRuraBx1FOUwe0tNKBkemuc5F1rXLruNOAReJl5MyyFHr2l+dXoQTToTGDCnV9txY+ymSmmJGslInUSRGeIj6pG2oQJwoP51en8Fjo/RgGElTQsOp+nsjRVypMQ/MJEd6oOa9ifif1050eOWnVMSJJgLPHgoTBnUEJ1HAHpUEazY2BGFJza0QD5BEWJvASiYEb/7Li6RRcbwzp3J3Xq5e53EUwSE4AifAA5egCm5BDdQBBo/gGbyCN+vJerHerY/ZaMHKd/bBH1ifP65dlBI=</latexit>

⇠ u2v�1.5
<latexit sha1_base64="KYJrerQS5zIim5Iu5de5KEzsDl0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpJURZdFNy4r2Ae0aZlMJ+3QmUmYmRRCiL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7jx8xqrTjfFuFtfWNza3idmlnd2//wD48aqkwlpg0cchC2fGRIowK0tRUM9KJJEHcZ6TtT+5mfntKpKKheNRJRDyORoIGFCNtpIFd7inKYdxPaxmc9tNzt3qVDeyKU3XmgKvEzUkF5GgM7K/eMMQxJ0JjhpTquk6kvRRJTTEjWakXKxIhPEEj0jVUIE6Ul86Pz+CpUYYwCKUpoeFc/T2RIq5Uwn3TyZEeq2VvJv7ndWMd3HgpFVGsicCLRUHMoA7hLAk4pJJgzRJDEJbU3ArxGEmEtcmrZEJwl19eJa1a1b2o1h4uK/XbPI4iOAYn4Ay44BrUwT1ogCbAIAHP4BW8WU/Wi/VufSxaC1Y+UwZ/YH3+AEGHk9w=</latexit>

⇠ u�2v0
<latexit sha1_base64="8lzSBiDTC6n8tB12VKcNf+HYDr0=">AAAB+nicbVBNT8JAEJ3iF+JX0aOXjcTEi6RFEz0SvXjERD4SKGS7LLBht212txhS+1O8eNAYr/4Sb/4bF+hBwZdM8vLeTGbm+RFnSjvOt5VbW9/Y3MpvF3Z29/YP7OJhQ4WxJLROQh7Klo8V5Sygdc00p61IUix8Tpv++HbmNydUKhYGD3oaUU/gYcAGjGBtpJ5d7CgmUNxNzispmnQTJ+3ZJafszIFWiZuREmSo9eyvTj8ksaCBJhwr1XadSHsJlpoRTtNCJ1Y0wmSMh7RtaIAFVV4yPz1Fp0bpo0EoTQUazdXfEwkWSk2FbzoF1iO17M3E/7x2rAfXXsKCKNY0IItFg5gjHaJZDqjPJCWaTw3BRDJzKyIjLDHRJq2CCcFdfnmVNCpl96Jcub8sVW+yOPJwDCdwBi5cQRXuoAZ1IPAIz/AKb9aT9WK9Wx+L1pyVzRzBH1ifP1Lgk2Q=</latexit>

⇠ u�2v�0.5
<latexit sha1_base64="WvlCzuSczxBmDSB+LReEtp0Rmo4=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSC1FSQDBWsDAWiT6kNlSO67RWbSeynUolivgVFgYQYuU/2Pgb3DYDtBzp6h6dc698fYKYUaVd99sqLC2vrK4V10sbm1vbO/buXkNFicSkjiMWyVaAFGFUkLqmmpFWLAniASPNYHgz8ZsjIhWNxL0ex8TnqC9oSDHSRuraBx1FOUwe0tNKBkemuc5F1rXLruNOAReJl5MyyFHr2l+dXoQTToTGDCnV9txY+ymSmmJGslInUSRGeIj6pG2oQJwoP51en8Fjo/RgGElTQsOp+nsjRVypMQ/MJEd6oOa9ifif1050eOWnVMSJJgLPHgoTBnUEJ1HAHpUEazY2BGFJza0QD5BEWJvASiYEb/7Li6RRcbwzp3J3Xq5e53EUwSE4AifAA5egCm5BDdQBBo/gGbyCN+vJerHerY/ZaMHKd/bBH1ifP65dlBI=</latexit>

⇠ u2v�1.5
<latexit sha1_base64="KYJrerQS5zIim5Iu5de5KEzsDl0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpJURZdFNy4r2Ae0aZlMJ+3QmUmYmRRCiL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7jx8xqrTjfFuFtfWNza3idmlnd2//wD48aqkwlpg0cchC2fGRIowK0tRUM9KJJEHcZ6TtT+5mfntKpKKheNRJRDyORoIGFCNtpIFd7inKYdxPaxmc9tNzt3qVDeyKU3XmgKvEzUkF5GgM7K/eMMQxJ0JjhpTquk6kvRRJTTEjWakXKxIhPEEj0jVUIE6Ul86Pz+CpUYYwCKUpoeFc/T2RIq5Uwn3TyZEeq2VvJv7ndWMd3HgpFVGsicCLRUHMoA7hLAk4pJJgzRJDEJbU3ArxGEmEtcmrZEJwl19eJa1a1b2o1h4uK/XbPI4iOAYn4Ay44BrUwT1ogCbAIAHP4BW8WU/Wi/VufSxaC1Y+UwZ/YH3+AEGHk9w=</latexit>

L̄0 ⇠ u2v�2
<latexit sha1_base64="BfMsQ6iy1Ek+y2q6WdDLzfrG0fI=">AAACE3icbVDLSsNAFJ34rPUVdelmsAgiWJIo6LLoxoWLCvYBTVom00k7dCYJM5NCCfkHN/6KGxeKuHXjzr9x0mahrQcuHM65l3vv8WNGpbKsb2NpeWV1bb20Ud7c2t7ZNff2mzJKBCYNHLFItH0kCaMhaSiqGGnHgiDuM9LyRze53xoTIWkUPqhJTDyOBiENKEZKSz3z1PWRSF2O1BAjlt5lWdeNBeUEupJymHRTJ4PjbnrmZD2zYlWtKeAisQtSAQXqPfPL7Uc44SRUmCEpO7YVKy9FQlHMSFZ2E0lihEdoQDqahogT6aXTnzJ4rJU+DCKhK1Rwqv6eSBGXcsJ93ZkfL+e9XPzP6yQquPJSGsaJIiGeLQoSBlUE84BgnwqCFZtogrCg+laIh0ggrHSMZR2CPf/yImk6Vfu86txfVGrXRRwlcAiOwAmwwSWogVtQBw2AwSN4Bq/gzXgyXox342PWumQUMwfgD4zPHz2Nnlo=</latexit>

L̄0 ⇠ u2v0
<latexit sha1_base64="YvKuOO8BCoDfSDwe4kp0znxcuBE=">AAACEnicbVC7TsMwFHXKq5RXgJHFokKCpUoKEowVLAwMRaIPqUkrx3Vbq7YT2U6lKso3sPArLAwgxMrExt/gtBmg5UhXOjrnXt17TxAxqrTjfFuFldW19Y3iZmlre2d3z94/aKowlpg0cMhC2Q6QIowK0tBUM9KOJEE8YKQVjG8yvzUhUtFQPOhpRHyOhoIOKEbaSD37zAuQTDyO9AgjltyladeLJOUEeopyGHeTagon3cRJe3bZqTgzwGXi5qQMctR79pfXD3HMidCYIaU6rhNpP0FSU8xIWvJiRSKEx2hIOoYKxInyk9lLKTwxSh8OQmlKaDhTf08kiCs15YHpzG5Xi14m/ud1Yj248hMqolgTgeeLBjGDOoRZPrBPJcGaTQ1BWFJzK8QjJBHWJsWSCcFdfHmZNKsV97xSvb8o167zOIrgCByDU+CCS1ADt6AOGgCDR/AMXsGb9WS9WO/Wx7y1YOUzh+APrM8fwWieIQ==</latexit> L̄00 ⇠ u0v�1

<latexit sha1_base64="+Su7UPwuFrvmXLRhoZOHP832xJ8=">AAACHHicbVBLSwMxGMz6rPW16tFLsAheLLutoMeiFw8eKtgHdLclm6ZtaLK7JNlCCftDvPhXvHhQxIsHwX9jtt2Dtg6EDDPfRzITxIxK5Tjf1srq2vrGZmGruL2zu7dvHxw2ZZQITBo4YpFoB0gSRkPSUFQx0o4FQTxgpBWMbzK/NSFC0ih8UNOY+BwNQzqgGCkj9eyqFyChPY7UCCOm79K0q71YUE7g/EqhJymHSVc7KZx09bmb9uySU3ZmgMvEzUkJ5Kj37E+vH+GEk1BhhqTsuE6sfI2EopiRtOglksQIj9GQdAwNESfS17NwKTw1Sh8OImFOqOBM/b2hEZdyygMzmaWQi14m/ud1EjW48jUN40SREM8fGiQMqghmTcE+FQQrNjUEYUHNXyEeIYGwMn0WTQnuYuRl0qyU3Wq5cn9Rql3ndRTAMTgBZ8AFl6AGbkEdNAAGj+AZvII368l6sd6tj/noipXvHIE/sL5+AJf5okI=</latexit>

⇠ u�2v�0.5
<latexit sha1_base64="WvlCzuSczxBmDSB+LReEtp0Rmo4=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSC1FSQDBWsDAWiT6kNlSO67RWbSeynUolivgVFgYQYuU/2Pgb3DYDtBzp6h6dc698fYKYUaVd99sqLC2vrK4V10sbm1vbO/buXkNFicSkjiMWyVaAFGFUkLqmmpFWLAniASPNYHgz8ZsjIhWNxL0ex8TnqC9oSDHSRuraBx1FOUwe0tNKBkemuc5F1rXLruNOAReJl5MyyFHr2l+dXoQTToTGDCnV9txY+ymSmmJGslInUSRGeIj6pG2oQJwoP51en8Fjo/RgGElTQsOp+nsjRVypMQ/MJEd6oOa9ifif1050eOWnVMSJJgLPHgoTBnUEJ1HAHpUEazY2BGFJza0QD5BEWJvASiYEb/7Li6RRcbwzp3J3Xq5e53EUwSE4AifAA5egCm5BDdQBBo/gGbyCN+vJerHerY/ZaMHKd/bBH1ifP65dlBI=</latexit>

⇠ u�4v1
<latexit sha1_base64="m7SPDEtYK3nMafojHi9lrZZHKo8=">AAAB+nicbVBNT8JAEJ36ifhV9OhlIzHxImmRRI9ELx4xkY8ECtkuW9iw3Ta7Wwyp/BQvHjTGq7/Em//GBXpQ8CWTvLw3k5l5fsyZ0o7zba2tb2xubed28rt7+weHduGooaJEElonEY9ky8eKciZoXTPNaSuWFIc+p01/dDvzm2MqFYvEg57E1AvxQLCAEayN1LMLHcVClHTTi8oUjbupO+3ZRafkzIFWiZuRImSo9eyvTj8iSUiFJhwr1XadWHsplpoRTqf5TqJojMkID2jbUIFDqrx0fvoUnRmlj4JImhIazdXfEykOlZqEvukMsR6qZW8m/ue1Ex1ceykTcaKpIItFQcKRjtAsB9RnkhLNJ4ZgIpm5FZEhlphok1behOAuv7xKGuWSe1kq31eK1ZssjhycwCmcgwtXUIU7qEEdCDzCM7zCm/VkvVjv1seidc3KZo7hD6zPH1d7k2c=</latexit>

⇠ u�2v1
<latexit sha1_base64="/hPBAdjy442DFBgPzlGlcUchAco=">AAAB+nicbVBNT8JAEJ3iF+JX0aOXjcTEi6RFEz0SvXjERD4SKGS7LLBht212txhS+1O8eNAYr/4Sb/4bF+hBwZdM8vLeTGbm+RFnSjvOt5VbW9/Y3MpvF3Z29/YP7OJhQ4WxJLROQh7Klo8V5Sygdc00p61IUix8Tpv++HbmNydUKhYGD3oaUU/gYcAGjGBtpJ5d7CgmUNxNzispmnQTN+3ZJafszIFWiZuREmSo9eyvTj8ksaCBJhwr1XadSHsJlpoRTtNCJ1Y0wmSMh7RtaIAFVV4yPz1Fp0bpo0EoTQUazdXfEwkWSk2FbzoF1iO17M3E/7x2rAfXXsKCKNY0IItFg5gjHaJZDqjPJCWaTw3BRDJzKyIjLDHRJq2CCcFdfnmVNCpl96Jcub8sVW+yOPJwDCdwBi5cQRXuoAZ1IPAIz/AKb9aT9WK9Wx+L1pyVzRzBH1ifP1Rlk2U=</latexit>

L̄00 ⇠ u0v�1
<latexit sha1_base64="+Su7UPwuFrvmXLRhoZOHP832xJ8=">AAACHHicbVBLSwMxGMz6rPW16tFLsAheLLutoMeiFw8eKtgHdLclm6ZtaLK7JNlCCftDvPhXvHhQxIsHwX9jtt2Dtg6EDDPfRzITxIxK5Tjf1srq2vrGZmGruL2zu7dvHxw2ZZQITBo4YpFoB0gSRkPSUFQx0o4FQTxgpBWMbzK/NSFC0ih8UNOY+BwNQzqgGCkj9eyqFyChPY7UCCOm79K0q71YUE7g/EqhJymHSVc7KZx09bmb9uySU3ZmgMvEzUkJ5Kj37E+vH+GEk1BhhqTsuE6sfI2EopiRtOglksQIj9GQdAwNESfS17NwKTw1Sh8OImFOqOBM/b2hEZdyygMzmaWQi14m/ud1EjW48jUN40SREM8fGiQMqghmTcE+FQQrNjUEYUHNXyEeIYGwMn0WTQnuYuRl0qyU3Wq5cn9Rql3ndRTAMTgBZ8AFl6AGbkEdNAAGj+AZvII368l6sd6tj/noipXvHIE/sL5+AJf5okI=</latexit>

⇠ u�2v�1
<latexit sha1_base64="eX9eCrvR7rcrcv28RY1E/HHxM8w=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBjSWpgi6LblxWsA9oY5lMJ+3QySTMTIol5FfcuFDErT/izr9x2mahrQcu93DOvcyd48ecKe0431ZhbX1jc6u4XdrZ3ds/sA/LLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749uZ355QqVgkHvQ0pl6Ih4IFjGBtpL5d7ikWouQxPa9laGKam/XtilN15kCrxM1JBXI0+vZXbxCRJKRCE46V6rpOrL0US80Ip1mplygaYzLGQ9o1VOCQKi+d356hU6MMUBBJU0Kjufp7I8WhUtPQN5Mh1iO17M3E/7xuooNrL2UiTjQVZPFQkHCkIzQLAg2YpETzqSGYSGZuRWSEJSbaxFUyIbjLX14lrVrVvajW7i8r9Zs8jiIcwwmcgQtXUIc7aEATCDzBM7zCm5VZL9a79bEYLVj5zhH8gfX5A8N0k5w=</latexit> ⇠ u�2v�0.5

<latexit sha1_base64="WvlCzuSczxBmDSB+LReEtp0Rmo4=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSC1FSQDBWsDAWiT6kNlSO67RWbSeynUolivgVFgYQYuU/2Pgb3DYDtBzp6h6dc698fYKYUaVd99sqLC2vrK4V10sbm1vbO/buXkNFicSkjiMWyVaAFGFUkLqmmpFWLAniASPNYHgz8ZsjIhWNxL0ex8TnqC9oSDHSRuraBx1FOUwe0tNKBkemuc5F1rXLruNOAReJl5MyyFHr2l+dXoQTToTGDCnV9txY+ymSmmJGslInUSRGeIj6pG2oQJwoP51en8Fjo/RgGElTQsOp+nsjRVypMQ/MJEd6oOa9ifif1050eOWnVMSJJgLPHgoTBnUEJ1HAHpUEazY2BGFJza0QD5BEWJvASiYEb/7Li6RRcbwzp3J3Xq5e53EUwSE4AifAA5egCm5BDdQBBo/gGbyCN+vJerHerY/ZaMHKd/bBH1ifP65dlBI=</latexit>

⇠ u�4v1
<latexit sha1_base64="m7SPDEtYK3nMafojHi9lrZZHKo8=">AAAB+nicbVBNT8JAEJ36ifhV9OhlIzHxImmRRI9ELx4xkY8ECtkuW9iw3Ta7Wwyp/BQvHjTGq7/Em//GBXpQ8CWTvLw3k5l5fsyZ0o7zba2tb2xubed28rt7+weHduGooaJEElonEY9ky8eKciZoXTPNaSuWFIc+p01/dDvzm2MqFYvEg57E1AvxQLCAEayN1LMLHcVClHTTi8oUjbupO+3ZRafkzIFWiZuRImSo9eyvTj8iSUiFJhwr1XadWHsplpoRTqf5TqJojMkID2jbUIFDqrx0fvoUnRmlj4JImhIazdXfEykOlZqEvukMsR6qZW8m/ue1Ex1ceykTcaKpIItFQcKRjtAsB9RnkhLNJ4ZgIpm5FZEhlphok1behOAuv7xKGuWSe1kq31eK1ZssjhycwCmcgwtXUIU7qEEdCDzCM7zCm/VkvVjv1seidc3KZo7hD6zPH1d7k2c=</latexit>

⇠ u�2v1
<latexit sha1_base64="/hPBAdjy442DFBgPzlGlcUchAco=">AAAB+nicbVBNT8JAEJ3iF+JX0aOXjcTEi6RFEz0SvXjERD4SKGS7LLBht212txhS+1O8eNAYr/4Sb/4bF+hBwZdM8vLeTGbm+RFnSjvOt5VbW9/Y3MpvF3Z29/YP7OJhQ4WxJLROQh7Klo8V5Sygdc00p61IUix8Tpv++HbmNydUKhYGD3oaUU/gYcAGjGBtpJ5d7CgmUNxNzispmnQTN+3ZJafszIFWiZuREmSo9eyvTj8ksaCBJhwr1XadSHsJlpoRTtNCJ1Y0wmSMh7RtaIAFVV4yPz1Fp0bpo0EoTQUazdXfEwkWSk2FbzoF1iO17M3E/7x2rAfXXsKCKNY0IItFg5gjHaJZDqjPJCWaTw3BRDJzKyIjLDHRJq2CCcFdfnmVNCpl96Jcub8sVW+yOPJwDCdwBi5cQRXuoAZ1IPAIz/AKb9aT9WK9Wx+L1pyVzRzBH1ifP1Rlk2U=</latexit>

Figure A.4: Overdamped asymptotic exponents for universal longitudinal re-
sponse. Diagram in the u (rescaled wavevector) ×v (rescaled frequency) plane,
showing regions of distinct power-law behavior of the jamming (first row) and
RP (second row) universal scaling functions for overdamped dynamics in both
the rigid and floppy phases. The first and second (third and fourth) columns
correspond to the real (imaginary) parts of L and L̄. We use w = 1 for jamming.

each panel, we numerically calculate the exponents using fα ≡ ∂ logL/∂ log u

and fβ ≡ ∂ logL/∂ log v for jamming and similar formulas for RP. We then plot

the regions in which | fα − α| < 0.1 and | fβ − β| < 0.1, for several values of α and β.

Figure A.4 offers a vivid pictorial view allowing an easier assessment of the

global behavior associated with our universal forms for jamming and rigid per-

colation. By comparing the two rows, notice how the change in universality

class is also reflected in the behavior of the universal scaling functions. For

instance, although jamming and RP exhibit similar qualitative features for the

imaginary part [(c), (d), (g) and (h)], RP shows additional regimes for the real

part, which do not appear in jamming [compare e.g. (a) and (e) or (b) and (f)].
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A.4.2 Undamped dynamics

Now we repeat the analysis of section A.4.1 using ω̃(ω) = ρω2 in Eq. (A.7),

i.e. for the undamped case. Figure A.5 shows a scaling collapse plot for the

rescaled longitudinal response as a function of rescaled frequency at fixed val-

ues of q/|δp|ν for jamming and RP (first and second rows, respectively), and at

fixed values of δJ/|δp|φ for jamming. We consider several values of |δp| corre-

sponding to points approaching jamming and RP along the paths shown in the

insets of Fig. A.3, so that e.g. the path for panel A.5(a) is the same as the one

shown in the inset of panel A.3(a). The real part of |δp|γχL/χ0 can be negative;

hence it is shown in linear scale in the insets of each panel of Fig. A.5. Note that

the full solutions of our effective-medium theory equations converge to our uni-

versal scaling functions, except in the limit of very low frequencies, which we

briefly discuss below.

The asymptotic solutions derived in [2] do not capture the small but nonzero

imaginary parts of the effective spring constants at frequencies smaller than

∼ ω∗ (the characteristic crossover to isostaticity) when there is no damping. This

feature has important consequences for energy dissipation in systems believed

to exhibit behavior related to RP. The corrections to scaling appear as singu-

lar perturbations to the self-consistency equations and vanish as powers of |δp|

in dimensions larger than three. Moreover, the scaling variables contain log-

arithms in two dimensions. This analysis is beyond the scope of the present

work, and will be presented in a separate manuscript.

Figure A.6 shows the global asymptotic behavior of our universal scaling

functions for the longitudinal response near jamming (first row) and RP (sec-

ond row). We use the same approach that we have used to make Fig. A.4, as
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(a) (b)

(c) (d)

Figure A.5: Scaling collapse plots showing the universal behavior of the longi-
tudinal response as a function of rescaled frequency near jamming (first row)
and RP (second row), for undamped dynamics. Blue disks and red triangles
are full solutions of the EMT equations for the real and imaginary parts of
|δp|γχL, respectively. Solid and dashed curves are the universal scaling predic-
tions of Eqs. (A.18) and (A.22). We consider points approaching jamming and
RP along the same paths indicated in the inset graphs of each panel of Fig. A.3;
for instance, the path for panel (a) is the same as the one shown in the inset of
Fig. A.3(a), etc. We use q/|δp|ν = 0.1 (closed symbols) and 1 (open symbols) in
all panels, and δpB/|δp|φ equal to

√
5/4 from the rigid side (a), and equal to 2

from the floppy side (b). Full solutions run at |δp| = 10−2, 10−3, and 10−4 for both
jamming and RP show convergence to our universal asymptotic predictions.
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Figure A.6: Undamped asymptotic exponents for universal longitudinal re-
sponse. Diagram in the u (rescaled wavevector) ×v (rescaled frequency) plane,
showing regions of distinct power-law behavior of the jamming (first row) and
RP (second row) universal scaling functions for undamped dynamics in both
the rigid and floppy phases. The first and second (third and fourth) columns
correspond to the real (imaginary) parts of L and L̄. We use the crossover in-
variant scaling combination w = 1.

described in Sec. A.4.1. Notice that the lack of an imaginary part of our scal-

ing functions at low frequency is indicated by gray regions on the left sides of

panels (c), (d), (g) and (h). Again, it is straightforward to compare jamming and

RP, or the behavior in the rigid and floppy phases. As in the overdamped case,

the finite bulk modulus at jamming leads to a disparate global behavior of the

scaling forms, in comparison with RP.

A.5 Derivation of the scaling behavior of other quantities

Our scaling Ansatz for the longitudinal response [Eqs. (A.17) and (A.21)], along

with our explicit formulas for the universal functions [Eqs. (A.18) and (A.22)],
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allow us to derive more general scaling forms for many quantities. Here we

present a derivation of the universal scaling functions and critical exponents

for the transverse dynamic response, bulk and shear moduli, bulk and shear

viscosities, density response and correlation functions.

A.5.1 Transverse dynamic response

To extract the universal scaling functions and critical exponents associated with

the transverse dynamic response, we follow the same steps that we used in

Sec. A.3.2. We start with the long-wavelength limit of the transverse component

of the dynamic response function χT of an isotropic viscoelastic material [209,

36, 210, 37]:

χT =
{
−ρω2 − iγω + q2 G(ω)

}−1
. (A.27)

Near jamming, the complex shear modulus G(ω) satisfies Eq. (A.11), so that

χT ≈

{
−ρω2 − iγω + q2g|δp|βGM±

(
ω

|δp|zν

)}−1

, (A.28)

where z ν = 1 and 2 for undamped and overdamped dynamics, respectively.

Multiplying both sides by |δp|2, we obtain

|δp|2χT ≈

−ρ
(
ω

|δp|

)2

− i γ
ω

|δp|2

+ g
(

q
|δp|1/2

)
M±

(
ω

|δp|zν

)}−1

, (A.29)

which leads to
χT

χ0
≈ |δp|−γTL̄

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.30)

where L̄ is given by Eq. (A.22), and the nonuniversal scaling factors χ0, q0 andω0

are not necessarily the same as the ones used for the longitudinal response. The
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critical behavior of χT does not change if one approaches RP instead of jamming.

The exponent γT = γ = 2, and the exponents z and ν are the same as the ones for

the longitudinal response near RP (see Table A.1).

A.5.2 Elastic moduli and viscosities

We have already reviewed the scaling behavior of the elastic moduli in Sec. A.3.1

[see Eqs. (A.9) and (A.11)]. Here we present an alternative approach that lever-

ages the connection between the dynamic response and the moduli leading to

critical exponents and universal scaling functions for B and G.

Near jamming, Eq. (A.12) leads to

B ≈
1

2 q
∂χL

−1

∂q
. (A.31)

Using Eq. (A.17), we then find,

B ≈ χ0
−1 1

2 q
|δp|γ
∂L−1

∂q

=
(χ0 q0

2)−1

2 ((q/q0)/|δp|ν)
|δp|γ−2ν ∂L−1

∂((q/q0)/|δp|ν)
, (A.32)

so that,
B
B0
≈ |δp|βBB

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (A.33)

where B0 is a a nonuniversal scaling factor,

βB = γ − 2 ν, (A.34)

and

B(u, v,w) =
1

2 u
∂

∂u

[
1

L(u, v,w)

]
. (A.35)

Near rigidity percolation, the universal function B(u, v,w) → B̄(u, v), which is

given by Eq.(A.35) with L replaced by L̄.
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To derive the scaling for the shear modulus, we follow the same steps de-

scribed in the last paragraph. Now we explore the connection between G and

the transverse response χT. Equation (A.27) leads to

G =
1

2 q
∂χT

−1

∂q
, (A.36)

which is valid near both jamming and RP. Using Eq. (A.30), we then find,

G ≈ χ−1
0

1
2 q
|δp|γT

∂L̄−1

∂q

=
(χ0q0

2)−1

2 ((q/q0)/|δp|ν)
|δp|γT−2ν ∂L̄−1

∂((q/q0)/|δp|ν)
, (A.37)

so that,
G
G0
≈ |δp|βGG

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.38)

where G0 is a nonuniversal scaling factor,

βG = γT − 2 ν, (A.39)

with γT = 2 and ν = 1/2 for RP (see Table A.1). The universal scaling function

G(u, v) =
1

2 u
∂

∂u

[
1

L̄(u, v)

]
. (A.40)

As expected, the scaling of G near both RP and jamming is the same as the

scaling behavior of B near RP.

To extract the scaling behavior for the bulk and shear viscosities, we use the

definitions ζ = B′′(ω)/ω and η = G′′(ω)/ω, so that,

ζ

ζ0
= |δp|−γBZ

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (A.41)

η

η0
= |δp|−γGE

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.42)

where ζ0 and η0 are nonuniversal scaling factors,

γB = (2 + z) ν − γ, (A.43)

γG = (2 + z) ν − γT, (A.44)
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with the exponents z and ν on the r.h.s. of Eqs. (A.42) and (A.44) corresponding

to the ones listed in Table A.1 for RP, and

Z(u, v,w) =
1
v

Im [B(u, v,w)] , (A.45)

E(u, v) =
1
v

Im [G(u, v)] , (A.46)

are the universal scaling functions. Near RP,Z(u, v,w)→ Z̄(u, v), which is given

by Eq. (A.45) withB replaced by B̄. As expected, E does not change near rigidity

percolation.

A.5.3 Density Response

The derivation of the density responseΠ proceeds from the equations of motion,

in a way that is similar to the derivation of χL [36]. Whereas χL ≡ uL/ fL is

defined in Fourier space as the ratio of the longitudinal part of the displacement

field uL to its conjugate external field fL, the density response can be defined as

Π ≡ n/h, where n is the density and h is the density conjugate field. For small

displacements,

n ≡ n0 (1 − i q uL) (A.47)

where n0 is a constant given by the average background density. The appro-

priate conjugate field in Fourier space that linearly couples to the density in

the Hamiltonian is h ≡ fL/(i q n0). Recasting the equation of motion for u as an

equation of motion for n leads to a factor of q2 originating from the divergence

operator in Eq.(A.47) and another factor of q that is present in the definition of

h. Thus,

Π = d′q2χL, (A.48)

where d′ is a constant.
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Equations (A.48) and (A.17) lead to

Π ≈ χ0 q0
2d′

(
q/q0

|δp|ν

)2

|δp|2 ν |δp|−γL, (A.49)

resulting in the scaling form:

Π

Π0
≈ |δp|−(γ−2ν)P

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (A.50)

which reduces to
Π

Π0
≈ |δp|−(γ−2ν)P̄

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.51)

near RP, where Π0 is a nonuniversal scaling factor, and

P(u, v,w) = u2L(u, v,w), (A.52)

P̄(u, v) = u2L̄(u, v). (A.53)

A.5.4 Correlation functions

We end this section with derivations of the scaling behavior of the Ursell

function S nn(q, ω) (the structure factor for isotropic fluids at nonzero q) and

the scaling behavior of the density-density correlation function in real space:

S nn(r, r′, t, t′) = ⟨n(r, t)n(r′, t′)⟩ − ⟨n(r, t)⟩⟨n(r′, t′)⟩.

Using the fluctuation-dissipation theorem [36, 210],

ω S nn(q, ω) = 2 T Im
[
Π(q, ω)

]
, (A.54)

where T is the temperature, and Eq. (A.50), we obtain

S nn(q, ω) ≈ Π0
2 T
ω

Im
[
|δp|−(γ−2ν)P

]
=

2 T Π0 ω0
−1

(ω/ω0)/|δp|zν
|δp|−zν−(γ−2ν)Im [P] , (A.55)
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so that

S nn(q, ω)
S̃ 0

≈ |δp|−[γ+(z−2)ν]

× S

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν
,
δpB/δ0

|δp|φ

)
, (A.56)

which reduces to:

S nn(q, ω)
S̃ 0

≈ |δp|−[γ+(z−2)ν]S̄

(
q/q0

|δp|ν
,
ω/ω0

|δp|zν

)
, (A.57)

near RP, where S̃ 0 is a nonuniversal scaling factor, and

S(u, v,w) =
1
v

Im [P(u, v,w)] , (A.58)

S̄(u, v) =
1
v

Im
[
P̄(u, v)

]
. (A.59)

The two-time density-density correlation function S nn(r− r′, t− t′) is given by,

S nn(r − r′, t − t′) =
∫

dω
∫

dq e−iω(t−t′)+iq·(r−r′)

× S nn(q, ω)

=

∫
d
(
ω/ω0

|δp|zν

) ∫
d
(
q/q0

D

|δp|ν

)
|δp|(z+D)νω0 q0

D

× exp
{

i
[
q/q0

|δp|ν
·

(r − r′)/ℓ0
|δp|−ν

−
ω/ω0

|δp|zν
(t − t′)/t0

|δp|−zν

]}
× S nn(q, ω), (A.60)

where ℓ0 ≡ q0
−1 and t0 ≡ ω0

−1 are nonuniversal scaling factors. Using Eq. (A.56),

we then obtain

S nn(r, r′, t, t′)
S 0

≈ |δp|(2+D)ν−γ

× S

(
(r − r′)/ℓ0
|δp|−ν

,
(t − t′)/t0

|δp|−zν ,
δpB/δ0

|δp|φ

)
, (A.61)

which reduces to

S nn(r, r′, t, t′)
S 0

≈ |δp|(2+D)ν−γ

× S̄

(
(r − r′)/ℓ0
|δp|−ν

,
(t − t′)/t0

|δp|−zν

)
, (A.62)
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near RP, where

S(ρ, s,w) =
∫

du dv ei(u·ρ−vs) ImP(u, v,w)
v

, (A.63)

S̄(ρ, s) =
∫

du dv ei(u·ρ−vs) Im P̄(u, v)
v

. (A.64)

Note that Eqs. (A.61) and (A.62) lead to natural definitions of diverging

length and time scales, ℓ = |δp|−νℓ0 and τ = |δp|−zνt0, respectively. Inter-

estingly, the time scale divergence is the same for jamming and RP, with

zν = 1 for undamped dynamics, and 2 for overdamped dynamics. As it

should be anticipated, our characteristic length scale diverges as |δp|−1 for jam-

ming, and as |δp|−1/2 for RP. These divergences should be compared with tra-

ditional definitions of ℓc ∼ |∆z|−1/2 and ℓ∗ ∼ |∆z|−1, as discussed in the litera-

ture [56, 57, 58, 38, 39].

A.6 Connections with experiments

The scaling behavior for quantities such as the moduli, viscosities, and correla-

tion functions derived in Sec. A.5 provide an approach for experimentally vali-

dating our results. These quantities are commonly measured in a number of rel-

evant experimental systems including emulsions, foams, colloidal particles and

granular materials [14, 211, 212, 213, 214, 215, 216]. A careful experiment map-

ping out how one or more of these quantities evolve upon approaching rigidity

could be compared to the critical exponents or even the analytical forms of our

universal scaling functions near the jamming and rigidity percolation transi-

tions.

One approach for experimental validation is to directly fabricate disordered
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elastic networks such as those shown in Fig. A.1 using 3D printers or laser-

cut 2D sheets [207]. A number of networks could be created at different dis-

tances from the RP or jamming point. A set of experiments apply compression

or shear could then measure the bulk or shear moduli. Measuring how the mod-

uli change with distance from RP or jamming should then allow experimental

measurement of both the critical scaling exponents and the universal functions.

The scaling forms we derive might also apply to common experimental

glass-formers such as colloidal suspensions. The density-density correlation

function provide an accessible path to experimentally validate our universal

scaling function. Recent advances in locating colloidal particles using optical

microscopy allow highly precise measurements of particle positions and even

local stresses [60, 61, 62, 63]. These techniques can be applied to settling system

of colloidal silica particles to observe the approach to jamming. Measurements

of the two-time density-density correlation function for volume fractions ap-

proaching either RP or jamming could be compared to our analytical forms and

used to experimentally measure the critical exponents involved. Alternatively,

experimental scattering data could allow for relatively easy comparison with

our structure factor derivations above. Either approach would allow fitting to

our universal scaling functions.

A number of difficulties still remain for this experimental validation ap-

proach. One obstacle is noise in experimental measurements of the density-

density correlation function. While state-of-the-art methods for locating parti-

cles are very precise, the density-density correlation function still becomes noisy

at longer ranges so measurements of correlation scaling will require much care.

Additionally, the scaling variables δpB and δp are defined based on knowledge
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of the volume fraction for jamming and rigidity percolation. The jamming and

rigidity percolation volume fractions are well known for monodisperse hard

spheres, but are different for a binary sample (which is often needed to prevent

crystalization) and may have to be calculated for any specific sample. Since our

universal scaling form applies to a whole class of systems, we remain confident

that the right system and experimental protocol could experimentally validate

our results.

A.7 Summary

In this paper, we have presented a detailed analysis of the universal scaling

behavior of disordered viscoelastic materials near the onset of rigidity. Com-

bining an Ansatz for the longitudinal dynamic response with a semi-analytical

effective-medium theory, we have been able to extract critical exponents and ex-

plicit formulas for universal scaling functions associated with a variety of quan-

tities, such as elastic moduli, viscosities and correlation functions. We expect

these scaling forms to apply to a large number of systems, from colloidal sus-

pensions and soft gels to the density fluctuations in certain classes of strange

metals [65].

Possible extensions of our analysis include the incorporation of ingredients

such as an anisotropic distribution of bonds, which plays an important role

in the behavior of colloidal suspensions undergoing shear thickening or shear

jamming transitions [68]. Other extensions involve the inclusion of thermal ef-

fects [217, 218], normal forms or corrections to scaling at the upper critical di-

mension [49], and an annealed [34] or partially-annealed [64] distribution of
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bonds; the latter might be better suited for a description of the fluid phase. Fi-

nally, it would be interesting to investigate the effects on the critical scaling of

jamming or RP caused by quenched random fields modeling active behavior.
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APPENDIX B

APPENDIX OF CHAPTER 3

This Appendix is a reformatted version of the S.I. of [65].

B.1 Supplementary Information

B.1.1 Effective medium theory

As noted in the main text, we model the system as a layered structure consist-

ing of two-dimensional randomly populated lattices of harmonic springs. The

local deformations associated with the configurations (e.g. compression) are

assumed to capture the fluctuations associated with an underlying electronic

liquid; see Fig. B.1. We make an analogy between the strongly overdamped

plasmon in a class of strange metals and the strongly overdamped phonon in

viscoelastic systems near the onset of rigidity. One of the features of rigidity

percolation (and jamming) is a nearly flat density of states at the transition,

which corresponds to an anomalously large number of low-energy excitations

into which an excited phonon can decay. This is captured in randomly popu-

lated networks analytically by an effective-medium theory known as the coher-

ent potential approximation (CPA) [2].

In this model, we begin with a fully occupied lattice with unit elastic coef-

ficients (harmonic springs) and randomly dilute the lattice, keeping each bond

with probability p. To study the dynamics of the disordered system, the CPA

self-consistently replaces the Green’s function of this randomly populated lat-

tice with a spatially homogeneous disorder-averaged Green’s function. The self-
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Figure B.1: The density-density response is connected to longitudinal fluctua-
tions of the displacement. Shown here is a local compression wave increasing
the local density of charged particles; the precise composition of the charged
low-energy excitations is not known.

energy calculated in this framework is typically recast as a frequency-dependent

elastic coefficient K (ω). More generally, given several bond occupation proba-

bilities {pα}, the CPA gives frequency-dependent elastic coefficients for each sub-

lattice {Kα (ω)}, where α = 1, 2 . . . is the sublattice index. This method faithfully

reproduces the zero-frequency athermal phase diagram and phase transitions

predicted by Maxwell’s constraint counting arguments, where the number of

constraints is equal to the number of degrees of freedom [2]. There is also ex-

perimental evidence that it properly reproduces the low-frequency behavior of

other microscopically disordered systems undergoing rigidity transitions, such

as soft gels [219, 220].

A specific type of phase transition that these randomly populated lattices

can undergo is broadly known as rigidity percolation, when a disordered elastic

network loses rigidity in a continuous fashion at p = pc. This can be seen by

examining the effective bulk modulus B and the shear modulus G of a bond-

diluted lattice, defined by how the potential energy of the lattice U changes in
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response to small linearized strains ui j:

∆U =
B
2

(
uxx + uyy

)2
+ 2G

[
u2

xy +
1
4

(
uxx − uyy

)2
]
. (B.1)

The predicted zero-frequency bulk and shear moduli of these diluted lattices

grow continuously from 0 across such a transition, as p grows larger than pc.

The density-density response near jamming is discontinuous across the critical

point due to the jump in the bulk modulus, as opposed to the response near

RP. The MEELS phenomenology is better captured in terms of RP, even though

the nature of the anomalous low-energy excitations in the vibrational density

of states is the same for both. This paper focuses on the universal behavior of

rigidity percolation, that is, the characteristics of the phase transition that do not

depend on the underlying microscopic lattice geometry.

For a single sublattice in two dimensions, the self-consistent equation for the

elastic coefficients reads

p − K (ω)
1 − K (ω)

=
1
z

1
sBZ

∫
BZ

d2q Tr
[
D (q,K (ω))

(
D (q,K (ω)) − ω2I

)−1
]

(B.2)

where p is as defined earlier, D(...) is the dynamical matrix, and z is the average

number of bonds per unit cell. The derivation of the more general form of this

expression can be found, for instance, in the supplemental material of [2].

By expanding the dynamical matrix for a general 2D isotropic lattice in the

long-wavelength limit as

Di j (K (ω)) = B (K (ω)) q2q̂iq̂ j +G (K (ω)) q2δi j, (B.3)

we can evaluate the integral and solve the self-consistency equations. The com-

bination KL ≡ B + G is the only combination of moduli that enters the longi-

tudinal response (and the density-density response), and must be proportional
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to the only microscopic coupling in the problem K . Writing the self-consistent

equation for KL and expanding to linear order in the distance to the continuous

critical point δp ≡ p − pc, one finds an expression involving only certain invari-

ant scaling combinations. The coupling is found as the self-consistent solution

to

±1 − K̃L± =
ω̃′2

K̃L±

log
− K̃L±

ω̃′2Z̃

 , (B.4a)

K̃L± ≡
KL±

KL0 |δp|
, (B.4b)

ω̃′ ≡
ω

ω′0 |δp|
, (B.4c)

Z̃ ≡ Z0 |δp| . (B.4d)

Here KL0, ω′0, and Z0 are non-universal constants of order unity, and we choose

their values from the bond-diluted mechanical triangular lattice with nearest-

neighbor bonds for all plots. The + and − in the self-consistent equations refer

to the “solid” (p > pc) and “floppy” (p < pc) sides of the transition, respectively.

Asymptotically close to the transition, the solution to the above self-consistent

effective medium equation is given by

K̃′L±
(
ω̃′′

)
= ±1 +

√
1 − ω̃′′2, (B.5)

with K̃′L± ≡ KL±/K′′L0 |δp| and ω̃′′ ≡ ω/ω′′0
(
|δp| /

∣∣∣log (|δp|)
∣∣∣1/2). The logarithm that

appears in this scaling variable for the frequency is unique to 2 dimensions and

does not affect the qualitative results of any of our calculations; this will be

elaborated upon in a future manuscript [108]. The imaginary part of the square

root should be interpreted as non-positive for causality reasons. The dissipation

that is calculated within the CPA framework aims to capture phonon scattering

off of “defects” introduced by the disorder. The vanishing of the imaginary part

of KL (ω) at small but finite frequency does not survive universal corrections to
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scaling; when the full CPA self-consistency equation is solved on the solid side

(δp > 0), then Im (KL) < 0 for all ω > 0.

B.1.2 Universal scaling of the density-density response

The frequency-dependent elastic coefficient derived in the previous section can

be used to determine the effective bulk and shear moduli of the elastic medium,

which can be used to determine the long-wavelength density-density response.

The form of our long-wavelength density-density response is calculated as fol-

lows: the equation of motion for an isotropic elastic sheet without external

damping reads

ρ Ü = B∇ (∇ · U) +G∇2U + fext (B.6)

where ρ is the (constant) average background density and U is a small dis-

placement field. B and G are proportional to K (ω), and are hence frequency-

dependent and complex. Assuming the local perturbation due to the external

forcing field to be small, we expand n ≈ n0 (1 − ∇ · U) = ρ/m (1 − ∇ · U); see

Fig. B.1.

We then use the definition of the susceptibility as the change in the density as

a result of the perturbing conjugate field, Π ≡ −δn/δh. Note that the additional

negative sign in front of the susceptibility compared to [9, 45] is related to differ-

ing definitions for the susceptibility; we adopt the experimentalists’ convention

[66] where the imaginary part is negative for positive frequencies. Just as U

and f are thermodynamic conjugates (because they enter the energy density as
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U · f ), so are δnq = in0q · Uq and δhq = f Lext
q /in0q. Thus,

(
−ρω2 + (B +G) q2

)
δnq = n2

0q2δhq, (B.7)

Π ≡ −
δnq

δhq
=
ρ2q2

m2

1
ρω2 − KL (ω) q2 . (B.8)

This allows us to write a universal form for the density-density response at

rigidity percolation on both sides of the transition:

Π̃ =
q̃2

ω̃′′2 −
(√

1 − ω̃′′2 ± 1
)

q̃2
(B.9)

where the appropriate scaling is found to be q̃ ≡ q/q0

(
|δp|1/2 /

∣∣∣log (|δp|)
∣∣∣1/2) and

Π̃ ≡ Π |δp| /Π0. The O(1) constants q0 and Π0 are non-universal. Since the scal-

ing of B, G, and ω near rigidity percolation has already been fixed by the self-

consistency equation, the scaling of q is found by balancing powers of δp in the

denominator of the expression for Π. In practice, the corrections to scaling that

fix the imaginary part at low frequencies are significant enough (they vanish

as ∼
∣∣∣log |δp|

∣∣∣−1/2
) that we numerically solve the self-consistent equations with Z̃

included to find a more faithful representation of the CPA predictions. Finally,

the effects of the long-ranged Coulomb interaction are added using the RPA (as

described in the main text):

χ(q, ω) =
Π(q, ω)

1 − V(q)Π(q, ω)
(B.10)

with the 3D Coulomb interaction V(q) = 4πe2/q2.

The qualitative features that the CPA predicts for χ reflect what is expected

of a lattice near a rigidity transition: sharply defined quasiparticles exist only

at the longest wavelengths, and rapidly broaden with increasing q into an inco-

herent bump at a frequency ∆ω⋆ set by the distance to the rigidity percolation

transition. If we are near the critical point, experimental probes of the response
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will inevitably probe only the region of large q̃, which leads to a q-independent

shape of the response. In this model, a coherent quasiparticle can still be found

near the center of the BZ.

For large values of q̃, there is a range of frequencies where χ′′ ∼ ω−1 de-

cays slowly. For an experimental probe, this may indicate the violation of f -sum

rules. However, at frequencies large enough, χ′′ eventually decays as ∼ ω−3 as

predicted by Drude theory. Although the paradigm of proximity to a critical

point with a large number of anomalously low-frequency modes serves to ex-

plain the q-independent shape of the response outside of the very center of the

BZ, the shapes of the universal forms of the electronic response do not have

the plateaus measured by the experiment. Because we have control over how

our response depends on the distance to the critical point, we can investigate

how long-wavelength disorder in a sample, represented by a distribution of dis-

tances to the critical point δp, modifies the observed form of the density-density

response.

B.1.3 Averaging over the long-wavelength sample disorder

We imagine an experimental sample prepared on average close to a critical point

δp, where different regions of the sample are allowed to have slightly different

distances to the critical point with spread σ. The effect of this long-wavelength

disorder is then represented by averaging the response over many distances to

the critical point using a Gaussian of center δp and width σ:

χδp(q, ω) =
∫ ∞

−∞

d
(
∆p′

)
Pσ(∆p′) χδp′(q, ω) (B.11)

Pσ[∆p′] =
1

√
2πσ2

e−(∆p′)2/2σ2
, (B.12)

252



where χδp(q, ω) is the response at a fixed distance (δp) from RP, and we choose

a Gaussian distribution, Pσ[∆p], with width σ and ∆p′ ≡ δp′ − δp. One could

imagine other methods for averaging over the effect of the long-wavelength dis-

order. In this case, we adopt the procedure where the susceptibility (related to

an inverse stiffness at zero frequency) is estimated as an arithmetic mean of the

susceptibilities of different portions of the sample; this means that a large sus-

ceptibility in any portion of the sample corresponds to a large average suscep-

tibility. One could also estimate the susceptibility as the inverse of the average

inverse susceptibility, which would suppress the susceptibility if there is a small

susceptibility in any portion of the sample. For an inhomogeneous medium, the

effective susceptibility is bounded between these two options [221].

The solution to the full self-consistency equations including the corrections

to scaling cannot be written in terms of elementary functions, so we estimate

the convolution by picking many values of δp, computing χ′′ over a range of

frequencies by solving the full self-consistency equations, and performing an

appropriate weighted average of the χ′′ at the experimental values of q (which

correspond to asymptotically large q̃ for windows of δp very close to the critical

point). These averaged responses χ′′ are compared with the measured imag-

inary part of the density-density response from the experiment. We seek to

describe the universal behaviour of the electronic response, and so we will not

capture the additional lattice phonon seen in the experimental data at the lowest

frequencies in [67]. The plots in Fig. B.2 are generated near rigidity percolation

using a width of σ = 1.2 × 10−3 in probability space. The central distances to RP

chosen are δp = 1.0 × 10−3 and δp = 1.4 × 10−3 and exhibit q-independence over

a selected range of frequencies for q ≫ |δp|1/2 /
∣∣∣log (|δp|)

∣∣∣1/2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.2: Scaling regimes of the disorder-averaged susceptibilities near the
rigidity transition. Plots (a)–(d) show fixed δp = −10−3 near the transition on
the liquid side with increasing σ, demonstrating the emergence of the disorder-
averaged plateau. Plots (e)–(h) show the effect of varying δp into the solid side
at fixed σ = 10−3. In this case, the disorder-averaging becomes less relevant and
the peak shifts into higher frequencies with the predicted scaling. The region of
exactly 0 imaginary part in (a) is eliminated by corrections to scaling. Plots are
similar at large q on the solid and liquid sides.

Without disorder averaging, for q ≫ |δp|1/2 /
∣∣∣log (|δp|)

∣∣∣1/2, the susceptibility

has a broad bump near ω⋆ associated with the decay of the quasiparticle into

the anomalous low-frequency modes. When disorder averaging is performed,

a sequence of these bumps leads to the emergence of a low-frequency plateau

terminating near ω⋆. Above the plateau, this theory predicts a region where

χ′′ ∼ ω−1 crossing over into a region where χ′′ ∼ ω−3 (the high-frequency Drude

scaling). In the experiment, an exponent 1 ≤ α ≤ 3 is measured out to the highest

frequencies.

The imaginary part of the susceptibility χ′′ is odd in ω but contains a plateau

that extends down to the lowest frequencies with increasing q. This results in a

sharp feature at the lowest frequencies where the plateau ends and the response
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(a) (b)

Figure B.3: Low frequency behavior of the disorder-averaged response, includ-
ing an anomalous “sharp” feature at the lowest frequencies where the plateau
crosses over into a power-law regime enforcing χ′′(q, 0) = 0. (a) is shown on a
linear-linear scale, while (b) is shown on a log-log scale.

crosses over into power-law behavior to ensure χ′′(q, 0) = 0. The location of this

feature can be deduced from Fig. B.2, where the green (−χ′′ ∼ q0ω0) and red

(−χ′′ ∼ q4ω2) regions touch. Plots of the lowest frequency behavior are shown

below in Fig. B.3 for the sake of completeness. In the experiment, the low fre-

quency behavior shows a prominent feature tied to the lattice phonons, which

is not included in our present theory.
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APPENDIX C

APPENDIX OF CHAPTER 4

This is a reformatted version of the supplementary material of [108].

C.1 Scaling variables in terms of isotropic elastic sheet param-

eters

Here we expound upon the calculation mentioned in the main text that even-

tually leads to the universal scaling functions for the vanishing modulus. We

take the perspective of a long-wavelength limit of a bond percolation CPA that

is explicitly isotropic at long-wavelengths; this recovers the CPA for amorphous

spring networks developed in [44]. First, we write the dynamical matrix and

Green’s function for an isotropic elastic sheet, with Lamé parameters λ and µ.1

This is typically done in the reverse order using the constitutive relations (i.e.

coarse-graining a lattice system with dynamical matrix D), recovering the long-

wavelength stiffness tensor Ki jkℓ. For a lattice with real-space unit cell volume V

and n sites in the unit cell, we have

Ki jkℓ =
n
V

[
1
2
∂2DSS

∂q j∂qℓ
−
∂DSF

∂q j

(
DFF

)−1 ∂DFS

∂qℓ

]
ik

∣∣∣∣∣∣
q=0
, (C.1)

where the dynamical matrix is written in the center-of-mass basis and the la-

bels S and F represent the “slow” and “fast” normal modes [222] (essentially

separating the acoustic modes from the optical). We are interested mainly in a

1We find it easier to work with Lamé parameters than with the bulk and shear moduli be-
cause the forms of the transverse and longitudinal parts of the Green’s function and dynamical
matrix are dimension-independent when written in terms of the Lamé parameters. However, µ
and λwill be viscoelastic generalizations of their static versions in the same way that µ (ω) is the
viscoelastic generalization of the static shear modulus.
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scaling that picks out low-frequency behavior, so we focus on the case n = 1

with no fast modes (investigating how the more general form interacts with the

CPA is a fruitful avenue for future work, and is necessary to fully understand

the jamming behavior of e.g. the system studied in [2]). In this case, the relation

simply reads

Ki jkℓ =
1

2V
∂2Dik

∂q j∂qℓ

∣∣∣∣∣∣
q=0
. (C.2)

Using the form of Ki jkℓ for an isotropic elastic medium, we find

D(q) = V (λ + 2µ) q2 q̂iq̂ j + Vµq2
(
δi j − q̂iq̂ j

)
,

G(q, ω) =
1

V (λ + 2µ) q2 − w′
q̂iq̂ j+

+
1

Vµq2 − w′
(
δi j − q̂iq̂ j

)
.

(C.3)

The frequency variable is taken to be w′ ≡ mω2 for undamped dynamics and

w′ ≡ iΓω for overdamped dynamics (in principle one can have a bulk viscosity

ζ and shear viscosity η; this eventually gets reabsorbed into a definition of the

scaling variable). This decomposition is convenient because the longitudinal

and transverse parts are orthogonal:(
q̂iq̂ j

) (
q̂ jq̂k

)
= q̂iq̂k,(

δi j − q̂iq̂ j

) (
δ jk − q̂ jq̂k

)
= (δik − q̂iq̂k) ,(

q̂iq̂ j

) (
δ jk − q̂ jq̂k

)
= 0.

(C.4)

We can compute the integrand that appears in the CPA self-consistent equation

(Equation 4.7) for this isotropic sheet:

DG =
(λ + 2µ) q2

(λ + 2µ) q2 − w
q̂iq̂k +

µq2

µq2 − w
(δik − q̂iq̂k) , (C.5)

so

Tr (DG) =
(λ + 2µ) q2

(λ + 2µ) q2 − w
+ (d − 1)

µq2

µq2 − w
. (C.6)
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where we have redefined w ≡ w′/V = ρω2 or iγω. Using the fact that the shear

modulus is being considered as the only independent modulus that is being

depleted, we can write λ/λF = µ/µF and so

Tr (DG) =
(λF/µF + 2) µq2

(λF/µF + 2) µq2 − w
+ (d − 1)

µq2

µq2 − w
. (C.7)

Now we rearrange the integral a bit.

1
z̃

?
BZ

ddq Tr (DG) =
1
z̃

1
sBZ

∫
BZ

ddq Tr (DG)

=
1
z̃

S d−1

Vdqd
D

∫ qD

0
dq qd−1 Tr (DG)

=
1
z̃

d
qd

D

∫ qD

0
dq qd−1 Tr (DG)

(C.8)

where S d−1 is the surface area of the unit d−1 sphere embedded in d-dimensional

space and Vd is the volume of the d-dimensional ball; we have used the fact that

S d−1/Vd = d in all dimensions d. Now we subtract pc = d/̃z from either side of

the self-consistent equation. On the side involving just the modulus, the result

is
(p − d/̃z) − (1 − d/̃z) µ/µF

1 − µ/µF
=

δp − |δp|M
1 − |δp|M/(1 − d/̃z)

≈ δp − |δp|M,

M ≡
µ/µ0

|δp|
,

µ0 ≡
µF

(1 − d/̃z)
.

(C.9)

We are justified in ignoring the denominator because it contributes terms with

one higher power in |δp| when written in terms of the scaling variables. When

we eventually carefully consider the side involving the frequency, we will find

terms that scale as |δp| and |δp|d/2, indicating we are safe to ignore the contribu-

tion from the denominator until d = 4. Even above d = 4, there are more relevant

terms that dictate the appropriate scaling behavior of the real part of the modu-

lus, and the low-frequency imaginary part cannot be fixed by including further
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polynomial terms like these in the self-consistent equation. We describe this

physically important range of frequencies with a dangerously irrelevant vari-

able. Note that the exponents on the invariant scaling combination combining µ

and δp are independent of dimension; this is reflected in the RG flow equations

that we write down.

Now we subtract pc from the side involving the frequency. We write

d
z̃
=

1
z̃

?
BZ

ddq
(λ + 2µ) q2 − w
(λ + 2µ) q2 − w

+

+
(d − 1)

z̃

?
BZ

ddq
µq2 − w
µq2 − w

(C.10)

and subtract the first piece from the longitudinal contribution and the second

piece from the transverse contributions. This only serves to replace the numer-

ators (λ + 2µ)q2 → w and µq2 → w, giving us

1
z̃

d
qd

D

∫ qD

0
dq

wqd−1

(λF/µF + 2) µq2 − w
+

+
1
z̃

d(d − 1)
qd

D

∫ qD

0
dq

wqd−1

µq2 − w

(C.11)

or

1
z̃

d
qd

D

∫ qD

0
dq

qd−1

(λF/µF+2)
w µq2 − 1

+

+
1
z̃

d(d − 1)
qd

D

∫ qD

0
dq

qd−1

µ

wq2 − 1
.

(C.12)

We now perform a substitution ξ = (q/qD)2. This serves the dual purpose of

nondimensionalizing the integration variable and casting the integrals into a

canonical form to be identified with a special function. The integrals become

−
d
2̃z

∫ 1

0
dξ
ξd/2−1

1 − ξ µwL

−
d (d − 1)

2̃z

∫ 1

0
dξ
ξd/2−1

1 − ξ µwT

,

wL ≡
w

(λF/µF + 2) q2
D

, wT ≡
w
q2

D

.

(C.13)
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Now each of these integrals are of the form∫ 1

0
dξ
ξd/2−1

1 − ξz
=

=

∫ 1

0
dξ ξd/2−1 (1 − ξ)(d/2+1)−d/2−1 (1 − ξz)−1

= B
(
d
2
, 1

)
2F1

(
1,

d
2

;
d
2
+ 1; z

)
=

2
d 2F1

(
1,

d
2

;
d
2
+ 1; z

)
(C.14)

where B(z1, z2) is the beta function and 2F1(a, b; c; z) is the ordinary hypergeo-

metric function, as can be verified in 9.111 of [141] (and using the beta function

identity B (z, 1) = 1/z). The frequency-dependent part of Equation 4.7 in the

isotropic case (with pc subtracted out) is then exactly

−
1
z̃ 2F1

(
1,

d
2

;
d
2
+ 1;

µ

wL

)
−

−
(d − 1)

z̃ 2F1

(
1,

d
2

;
d
2
+ 1;

µ

wT

)
.

(C.15)

The parameter µ is found self-consistently and is some complex number in the

appropriate scaling limit. The imaginary parts of the viscoelastic moduli are

nonpositive to respect the causality of the Green’s function. As mentioned in the

main text, taking the scaling limit amounts to sending the argument of the hy-

pergeometric functions to∞, so we are interested in expansions of 2F1 (α, β; γ; z)

about its branch point at z = ∞. For this we look at the second identity in 9.132

of [141], assume d is not even for now and write

Γ
(

d
2

)2

Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

)2F1

(
1,

d
2

;
d
2
+ 1;

µ

wL

)
=(

−
wL

µ

)
2F1

(
1, 1 −

d
2

; 2 −
d
2

;
wL

µ

)
+

+Γ

(
d
2

)2 Γ
(
1 − d

2

)
Γ
(

d
2 − 1

) (
−

wL

µ

)d/2

.

(C.16)
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The hypergeometric function involving z = wL/µ is 1 for z = 0 and can otherwise

be expanded in a power series in z, which contributes terms higher-order in |δp|.

Writing out the side with the frequency dependence now, grouping terms with

the same powers of wL/T:

≈
1
z̃

Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

)
Γ
(

d
2

)2

wL + (d − 1)wT

µ
−

−
1
z̃
Γ

(
d
2
+ 1

)
Γ

(
1 −

d
2

)
wd/2

L + (d − 1)wd/2
T

(−µ)d/2 .

(C.17)

The scaling variables asymptotically close to the critical point are now ready to

be defined, but they depend upon whether we are above or below d = 2. We

investigate each case separately below.

C.1.1 Scaling variables above 2 dimensions

First, assume d > 2 so that the first term contributes the leading-order frequency

behavior. Then we define a scaling for the frequency f :

|δp| F ≡
1
z̃

Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

)
Γ
(

d
2

)2

wL + (d − 1)wT

µ
. (C.18)

This corresponds to:

F =
f / f0

|δp|
,

f0 = q2
D

Γ
(

d
2

)2

Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

) z̃/µF
1

λF+2µF
+ (d − 1) 1

µF

,

(C.19)

essentially setting f0 = c2q2
D, where c is a weighted combination of the longitu-

dinal and transverse sound speeds in the undepleted membrane.

This definition of the scaling variable also makes the first term of the

frequency-dependent side of the self-consistent equation |δp| F. These scaling
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variables are then inserted into the other term, and the variable U is defined so

that the final term is + |δp|U(−F)d/2 (note that Γ(1−d/2) is negative for 2 < d < 4).

This gives us

U ≡ u/u0 |δp|d/2−1 ,

u/u0 = z̃d/2−1
Γ
(

d
2 + 1

) (
−Γ

(
1 − d

2

))
Γ
(

d
2

)d(
Γ
(

d
2 + 1

)
Γ
(

d
2 − 1

))d/2 ×

×


(

1
λF+2µF

)d/2
+ (d − 1)

(
1
µF

)d/2((
1

λF+2µF

)
+ (d − 1)

(
1
µF

))d/2

 .
(C.20)

The large prefactor involving Γ functions can be simplified to bring the expres-

sion into the form

u/u0 = −̃zd/2−1
(
d − 2

d

)d/2
πd
2

csc
(
πd
2

)
×

×


(

1
λF+2µF

)d/2
+ (d − 1)

(
1
µF

)d/2((
1

λF+2µF

)
+ (d − 1)

(
1
µF

))d/2


(C.21)

where the term involving csc is negative for 2 < d < 4. The self-consistent

equation for d > 2 defining the universal scaling function is then (dividing both

sides by |δp|)

±1 − M = F + U (−F)d/2 , (C.22)

as claimed in the main text.

C.1.2 2 dimensions as a limit

To take the limit d → 2, we first factor out one power of −F from the self-

consistent equation valid for d > 2. We then define

F′ ≡
F

Γ
(

d
2 − 1

) (C.23)
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to remove the divergence in the definition of F while retaining the same critical

exponents (for now). The equation becomes

±1 − M =

−F′
(−F′Γ

(
d
2
− 1

))d/2−1

U − 1
Γ (d

2
− 1

)
.

(C.24)

Bring U inside the power of d/2 − 1 and write it as U2/(d−2) = (u/u0)2/(d−2)
|δp|.

Then define (u/u0)′2/(d−2) ≡ (u/u0)2/(d−2) Γ (d/2 − 1) . The self-consistent equation

becomes

±1 − M =

−F′
((
−(u/u0)′

2
2−d F′ |δp|

)d/2−1
− 1

)
Γ

(
d
2
− 1

)
,

(C.25)

as claimed in the main text. Now we need only to compute u2/u02 =

limd→2+(u/u0)′2/(d−2). This yields

u2/u02 = z̃
µ

µF
λF+3µF
F (λF + 2µF)

λF+2µF
λF+3µF

λF + 3µF
. (C.26)

The self-consistent equation in d = 2 is then

±1 − M = −F′ log
(
−(u2/u02)F′ |δp|

)
, (C.27)

but as mentioned in the main text, this is not written in terms of the proper scal-

ing variables. This result can also be derived without hypergeometric functions

by directly performing the integral in d = 2, but it becomes less clear how this

result is continuously connected to d = 3, or d < 2. It can also be understood

(equivalently) as the branch point of the hypergeometric function at z = ∞ trans-

forming from a power-law-like branch to a logarithmic branch for d even. This

kind of resonance behavior, where the term with the exponent d/2 interacts with

another term with an integer power to give a logarithm, happens in every even

dimension. For even dimensions above 2, the logarithm is associated with a
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correction that vanishes close to the critical point, but it is necessary to retain to

understand the low-frequency imaginary part of the viscoelastic modulus.

In the right scaling variables, we can absorb this additional logarithmic di-

vergence into the definition of the invariant scaling combination involving f in

d = 2, giving

±1 − M = F2, (C.28)

by analogy to the scaling variable for f in all dimensions d > 2. We can examine

what this implies about how f scales with δp. We have

F2 = −F′ log
(
−(u2/u02)F′ |δp|

)
(C.29)

or

(u2/u02)F2 |δp| = −(u2/u02)F′ |δp| log
(
−(u2/u02)F′ |δp|

)
(C.30)

where F2 is the invariant scaling combination. We invert this with the W func-

tion:

−(u2/u02)F′ |δp| =
(u2/u02)F2 |δp|

W ((u2/u02)F2 |δp|)
(C.31)

reinstalling the definition of F′ = f / f ′0/ |δp|, we have (up to constants)

f ∼
(u2/u02)F2 |δp|

W ((u2/u02)F2 |δp|)
(C.32)

in d = 2, which is also supported by the RG flow equations.
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C.1.3 Scaling variables below 2 dimensions

Below 2 dimensions, the term involving wd/2
L/T is dominant at low frequencies.

We define a scaling variable for the frequency f :

|δp| (−Fd)d/2
≡

1
z̃
Γ

(
d
2
+ 1

)
Γ

(
1 −

d
2

)
×

×
wd/2

L + (d − 1) wd/2
T

(−µ)d/2

(C.33)

Note that for d < 2, Γ (1 − d/2) is now positive. This corresponds to:

Fd =
f / f0d

|δp|2/d
,

f0d = q2
D

1

Γ
(

d
2 + 1

)2/d
Γ
(
1 − d

2

)2/d×

×
z̃2/d/µF((

1
λF+2µF

)d/2
+ (d − 1)

(
1
µF

)d/2
)2/d ,

(C.34)

another constant that is similar to c2q2
D. This sets the first term in the self-

consistent equation to be − |δp| (−Fd)d/2. We again insert the definitions of the

scaling variable Fd into the remaining term, and define an additional variable

Ud so that the final term is − |δp|UdFd. This gives us

Ud ≡ (ud/u0d) |δp|2/d−1 ,

ud/u0d = z̃2/d−1
−Γ

(
d
2 − 1

)
Γ
(

d
2

)2
Γ
(

d
2 + 1

)2/d−1
Γ
(
1 − d

2

)2/d×

×

(
1

λF+2µF

)
+ (d − 1)

(
1
µF

)
((

1
λF+2µF

)d/2
+ (d − 1)

(
1
µF

)d/2
)2/d .

(C.35)

Note that for d < 2, Γ (d/2 − 1) is now negative. The self-consistent equation for

d < 2 defining the universal scaling function is then (dividing both sides by |δp|)

±1 − M = − (−Fd)d/2
− UdFd, (C.36)

as claimed in the main text.
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C.1.4 Scaling in even dimensions greater than 2

To understand the scaling in even dimensions d > 2 one needs to retain three

terms from the evaluation of the integral: the dominant piece from the hyper-

geometric function, the non-analytic piece going as ∼ (−w/µ)d/2, and the ⌊d/2⌋th

term of the power series expansion of the hypergeometric function (note that the

first and third of these coincide when d = 2). The latter two terms will interact

in the limit d/2 → k+ for k an integer > 1 and produce a logarithmic singularity

in a way similar to the 2 dimensional case. Keeping these terms, and writing

things in terms of scaling variables valid above d > 2 gives

±1 − M = F − Ûd (−F)⌊d/2⌋ + U (−F)d/2 . (C.37)

Here Ûd is an invariant scaling combination associated with some other irrele-

vant variable ∼ |δp|⌊d/2⌋−1. As in dimension 2, pull out a factor of Ûd (−F)⌊d/2⌋ from

the last two terms, and one finds

±1 − M = F+

+Ûd (−F)⌊d/2⌋
(

U

Ûd

(−F)d/2−⌊d/2⌋
− 1

)
.

(C.38)

Similar to the case in d = 2, we can redefine Ûd to Û′d to pull out a divergence

in even dimensions, and take the limit as d/2→ ⌊d/2⌋ to recover (making the δp

dependence of the irrelevant variables explicit)

±1 − M = F+

+cd |δp|⌊d/2⌋−1 (−F)⌊d/2⌋ log (−udF |δp|) .
(C.39)

This shows that the scaling exponents for all relevant variables in d > 2 are the

same; the F term sets the scaling and the remaining term is a correction that van-

ishes. The only novelty is that the non-analyticity that fixes the low-frequency
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imaginary part is now a logarithmic singularity, rather than a power-law singu-

larity. As in other d > 2 this correction term must be retained to capture the low-

frequency dissipation in the microscopically undamped case. As in other inte-

ger dimensions, the self-consistent integral can be expressed directly in terms

of rational functions and logarithms (without referring to special functions) to

verify these formulas.

C.1.5 Density of states scaling

The density of states is given in the undamped case as

D (ω) =
ω

π

∫
BZ

ddq Im (Tr (G)) . (C.40)

This is evaluated for an isotropic system similarly to the previous section:

D (ω) =
ω

πV
Im

[∫ qD

0
dq

S d−1qd−1

(λF/µF + 2) µq2 − w
+

+ (d − 1)
∫ qD

0
dq

S d−1qd−1

µq2 − w

]
.

(C.41)

A trick to eliminate more tedious manipulation is to multiply and divide by a

particular factor:

D (ω) =
ω

π

z̃Vdqd
D

Vw
Im

 d
z̃qd

D

∫ qD

0
dq

wqd−1

(λF/µF + 2) µq2 − w
+

+ (d − 1)
d

z̃qd
D

∫ qD

0
dq

wqd−1

µq2 − w

 . (C.42)

The term in brackets can be identified, to leading order in the scaling variables,

as

D (ω) ≈
ω

π

z̃Vdqd
D

Vw
Im

[
δp − |δp|M

]
= − |δp|

z̃Vdqd
D

πmω
Im [M] (C.43)
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Figure C.1: Density of states for a nearly floppy 3D viscoelastic membrane.
The dangerously irrelevant variable controls the low-frequency density of states
in the undamped case. The rescaled density of states has a square-root cusp at
U = 0 (δp = 0) [2, 9]; as discussed in section 4.2.4, the continuum CPA, and our
universal scaling limit, do not show the ω4 contribution to the density of states
found from quasilocalized modes [138]. See Figure 4.3 for the excess density of
statesD (Ω,U) /Ω2.

For d > 2, this gives the following scaling form (written in terms of scaling

variables for ω rather than for f = w/µ):

D(ω) = D0D (Ω,U) ,

D (Ω,U) = −
Im [M (Ω,U)]

Ω

(C.44)

where D0 is a non-universal constant. This remarkably simple scaling form is

true within the CPA [52], but not in general. Setting U = 0 allows us to exactly

evaluate this; in this scaling limit there is only a nonzero density of states for

Ω > 1/2 and it is flat at high frequency. We have

D (Ω, 0) =

√
4Ω2 − 1

2Ω
. (C.45)

The density of states is shown for d = 3 and various values of U in Figure C.1.

268



For d < 2, we have:

D(ω) =
D0d

|δp|1/d−1/2Dd (Ωd,Ud) ,

Dd (Ωd,Ud) = −
Im [Md (Ωd,Ud)]

Ωd
.

(C.46)

ωD(ω) can also be written in terms of F and U. This leads, using Equation 4.31

for d > 2, to

ωD(ω) = D′0 |δp| D(F,U),

D (F,U) = −Im [M (F,U)]
(C.47)

For d < 2, we use Equation 4.32 to write

ωD(ω) = D′0d |δp| Dd (Fd,Ud)

Dd (Fd,Ud) = −Im [Md (Fd,Ud)] .
(C.48)

In d = 2, we use Equation 4.35 to write

ωD(ω) = D02 |δp| D2 (F2) ,

D2 (F2) = −Im [M2 (F2)] .
(C.49)

This properly incorporates all of the logarithmic corrections yielding the the-

ory curves on Figure C.2. For the triangular lattice in two dimensions (see

next section for all specifics of lattice constants and microscopic stiffness pa-

rameters), we can reinstall the non-universal constants in the definitions of the

scaling variables to make a direct comparison to the numerically determined

density of states. To highlight the logarithmic shifts, we define MT ≡ µ/ |δp| and

ΩT ≡ ω/ |δp|. In these variables, the asymptotic form of the density of states

for an elastic sheet with the same long-wavelength parameters as the triangular

lattice is

D2 = −
32π

3
√

3

Im (MT)
ΩT

, (C.50)
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Figure C.2: Density of states for the diluted triangular lattice computed within
the CPA. We plot rescaled numerical solutions (thin lines) against our scaling
solutions (thick lines) at two distances from the critical point δp =

{
10−2, 10−4

}
,

again demonstrating nice agreement with the scaling form. The shift in the
rescaled frequency Ω∗T where we cross over to a flat density of states and the
vertical shift in the location of the plateau are both due to logarithmic correc-
tions present in the upper critical dimension.

where MT is the solution to

±1 −
4

3
√

3
MT = −

1

3π
√

3

Ω2
T

MT
log

(
−

31/4

4π
Ω2

T

MT
|δp|

)
. (C.51)

(See Appendix C.4 for details.) The plot of the comparison is shown in Fig-

ure C.2 for δp = 10−2 and δp = 10−4. The slow leftward drift of the onset of the

plateau in the DOS and the upward drift of the location of the plateau in the

DOS are both related to d = 2 being the upper critical dimension of the theory.

One often identifies the excess soft modes in glassy systems by plotting the

density of vibrational states divided by the expected form from a Debye model

of a crystal. This amounts to dividing the universal scaling functionD byΩd−1 in
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dimension d; as the density of states is flat for Ω ≳ 1, these plots unsurprisingly

show a bump (Figure 4.3).

C.1.6 Green’s function scaling

For completeness, we report the scaling form of the Green’s function. For the

case of the continuous transition, we write the long-wavelength form associated

with an elastic sheet:

VG(q, ω) =
1

(λ + 2µ) q2 − w
q̂iq̂ j+

+
1

µq2 − w

(
δi j − q̂iq̂ j

)
.

(C.52)

This can be rewritten in terms of f :

VG(q, ω) =
1

µ
(
(λF/µF + 2) q2 − f

) q̂iq̂ j+

+
1

µ
(
q2 − f

) (
δi j − q̂iq̂ j

) (C.53)

so q2 and f have identical scaling asymptotics in all dimensions (this can also be

seen from the RG flow Equations 4.28). The non-universal constants that set the

scale for q differ for the transverse and longitudinal parts, but the form of the

universal scaling function is identical: in dimensions d > 2,

Q ≡
q/qL/T

0

|δp|1/2
, GL/T (q, ω) =

GL/T
0

|δp|2
G (Q, F,U) ,

G (Q, F,U) =
1

M (F,U)
(
Q2 − F

) . (C.54)

Similarly, in dimensions d < 2, we have

Qd ≡
q/qL/T

0d

|δp|1/d
, GL/T (q, ω) =

GL/T
0d

|δp|1+2/dGd (Qd, Fd,Ud) ,

Gd (Qd, Fd,Ud) =
1

Md (Fd,Ud)
(
Q2

d − Fd

) . (C.55)

271



In d = 2 there are similar logarithmic corrections to the scaling variables as in all

other linear response quantities.

These forms imply diverging length scales at the transition: ℓc ∼ |δp|−1/2 for

d > 2, ℓc ∼ |δp|−1/d for d < 2, and ℓc ∼ |δp|−1/2
∣∣∣log |δp|

∣∣∣1/2 in d = 2 (noted also

in Table 4.2). If a phonon has a wavelength shorter than ℓc, it is strongly over-

damped. In the case of jamming, the transverse shear mode is associated with

a diverging length scale of the type analyzed here and elsewhere [9, 45] but the

longitudinal mode has a different scaling.

C.2 Renormalization group flows from scaling combinations

Here we detail the procedure of writing down our deduced renormalization-

group flow equations, (Section 4.2.5). First, we take for granted that the

wavevector, as an inverse length, coarse grains as

dq
dℓ
= q. (C.56)

This can be taken as a definition of the coarse-graining procedure. Let us first

focus on flows above the upper critical dimension and ignore the irrelevant vari-

able. The frequency variables scale as f ≡ w/µ ∼ δp, and the modulus scales as

µ ∼ δp. From the form of the Green’s function,
(
µq2 − µ f

)−1
∼ δp−γ, which means

that q ∼ δp1/2 gives a nontrivial scaling limit. These mean-field power laws de-

termine the coefficients on the linear parts of the flow equations, i.e. the terms

linearized about the hyperbolic fixed point above d = 2. We have for d > 2 the
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normal form:

dq
dℓ
= q,

dδp
dℓ
= 2δp,

dµ
dℓ
= 2µ,

d f
dℓ
= 2 f .

(C.57)

Now we include the effects of an upper critical dimension of 2. Assuming

that a variable that was originally irrelevant undergoes a transcritical bifurca-

tion and becomes relevant below d = 2, we can write the flow equations with

help from normal form theory [49]. Normal form theory tells us the minimal

number of terms we need to keep assuming we have made an analytic change

of coordinates, i.e., we have preserved information about the singularity close

to the critical point. We write a flow equation for this speculative coupling u

irrelevant above 2 dimensions that undergoes a bifurcation and flows to a new

stable point for d < 2. We must keep terms linear in u that appear in the other

flow equations; these serve to modify the critical exponents below the upper

critical dimension. We have

dq
dℓ
= q,

dδp
dℓ
= 2δp − λpu δp,

dµ
dℓ
= 2µ − λµu µ,

d f
dℓ
= 2 f − λ f u f ,

du
dℓ
=

1
A

(2 − d) u − u2

(C.58)

where A > 0 and we rescale u to set the coefficient of the quadratic term in

its flow equation to −1. As this theory is simple and exactly solvable, we have
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many resonances where there are integer relationships between coefficients in the

RG flow equations. We will ignore these for now, but normal form theory gives

a prescription to keep additional terms in the flow equations. These are then

tuned to capture what would otherwise be interpreted as large corrections to

scaling. We check directly that the coefficient D on the cubic term of the flow for

u, +Du3, is 0 through a calculation similar to the one performed in Appendix C.3.

The critical value of u below d = 2 is uc = (2 − d) /A. We know that, below

d = 2, f ∼ δp2/d and so q ∼ δp1/d. After coarse-graining for a while, we can set

u = uc in the flow equations to get accurate exponents for the invariant scaling

combinations. We write

d log q
d log δp

=
1

2 − λpuc
=

1
2 − λp (2 − d) /A

=
1
d
,

d log µ
d log δp

=
2 − λµuc

2 − λpuc
=

2 − λµ (2 − d) /A
2 − λp (2 − d) /A

= 1,

d log f
d log δp

=
2 − λ f uc

2 − λpuc
=

2 − λ f (2 − d) /A
2 − λp (2 − d) /A

=
2
d
.

(C.59)

These are solved by

λµ = λp = A, λ f = 0. (C.60)

We now look at how u scales with δp: above d = 2, we have

d log u
d log δp

=
(2 − d)

2A
= −

1
A

(
d
2
− 1

)
. (C.61)

Below d = 2, we have (expanding about the stable RG fixed point δu = u − uc)

d log δu
d log δp

= −
(2 − d)

dA
= −

1
A

(
2
d
− 1

)
. (C.62)

The positive constant A sets the scale of uc for d < 2. We will determine A = 1

by looking at the scaling implied by the RG flow equations in 2 dimensions and

choosing A to match the asymptotic scaling found for the frequency directly in

d = 2 from the CPA.
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C.3 Scaling for frequency in 2 dimensions

Here we derive the scaling of f with δp in the upper critical dimension d = 2;

other scalings (such as the one for q) follow similarly. This closely follows the

Supplemental Material of [49]. We will use

du
dℓ
= −u2,

dδp
dℓ
= 2δp − A u δp,

d f
dℓ
= 2 f .

(C.63)

Divide the flow equation for δp by the flow equation for u to find

dδp
du
=

2δp − Auδp
−u2 . (C.64)

This is integrated to give

log
(
δp
δp0

)
= 2

(
1
u
−

1
u0

)
+ A log

(
u
u0

)
. (C.65)

It is useful to define a variable

s ≡
1
u
. (C.66)

We coarse-grain to δp = 1. Then

− log (δp0) = 2 (s − s0) − A log
(

s
s0

)
. (C.67)

Rearrange this into a particular form:

−
2
A

s + log
(
−

2
A

s
)
= log

(
y (s0) δp1/A

0

)
,

y(s0) ≡ −
2
A

s0 exp
(
−

2
A

s0

)
.

(C.68)

Note that this form is one of the definitions of the Lambert W function,

W(z) + log (W(z)) = log(z). (C.69)
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Hence,

−
2
A

s = W
(
y(s0)δp1/A

0

)
(C.70)

or

s = −
A
2

W
(
y(s0)δp1/A

0

)
. (C.71)

Now we use the flow equation for u directly, coarse-graining from ℓ0 = 0 to ℓ:

ℓ =
1
u
−

1
u0
= s − s0. (C.72)

We are now prepared to determine how f0 varies with δp0 in the upper critical

dimension. Directly integrating the flow equation for f , we find

f
f0
= e2ℓ = e2(s−s0) =

e2s

e2s0
. (C.73)

All δp0 dependence is through s (not s0). So to find our invariant scaling combi-

nation (or the functional dependence of f0 on δp0), we write

f0 ∼ e−2s. (C.74)

Inserting our functional form for s, using the relation

ea W(z) =
za

W(z)a , (C.75)

and calling the argument of the W function z, we have

f0 ∼ eAW(z) ∼
zA

W(z)A . (C.76)

(We assume A is an integer, which we will see in a moment, to ignore further

branch subtleties). Reinstalling the definition of z, and calling x(u0) = y(s0), we

have

f0 ∼

(
x(u0)δp1/A

0

)A

W
(
x(u0)δp1/A

0

)A =
x(u0)A δp0

W
(
x(u0)δp1/A

0

)A , (C.77)

Comparing this with the scaling of f determined from the asymptotics of the

theory in d = 2 allows us to identify A = 1. This gives the result for the flow
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equations and the invariant scaling combination in the main text. Note that

f ∼ δp (as it does in d > 2) with additional log and log-log corrections coming

from the W function.

C.4 Details of the triangular lattice numerics

Here we directly compare our continuum, isotropic expansion of the CPA to the

lattice CPA for the bond-diluted triangular lattice. (As noted earlier, the rigidity

transition of the diluted triangular lattice is not described correctly by our CPA

analysis [117]. The static critical exponents for the triangular lattice have lengths

which scale as |δp|−ν and moduli which scale as |δp| f , with ν ∼ 1.3 ± 0.2 and

f ∼ 2.2 ± 0.3; CPA predicts ν = 1/2 and f = 1, and log corrections.)

To make this comparison with no numerically determined fitting param-

eters, we must know the values of the non-universal constants µ0, f02 ≡

limd→2+ f0Γ (d/2 − 1), and u2/u02. We take the triangular lattice with nearest-

neighbor bonds of strength k and bond length a = 1. The dynamical matrix

is

D =

Dxx Dxy

Dyx Dyy

 (C.78)

with

Dxx = 4k
(

sin2
(qx

2

)
+

1
4

sin2

qx

4
+

√
3

4
qy

+
+

1
4

sin2

qx

4
−

√
3

4
qy

 ), (C.79)

Dxy = Dyx =
√

3k
(

sin2

qx

4
+

√
3

4
qy

−
− sin2

qx

4
−

√
3

4
qy

 ), (C.80)
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Dyy = 3k
(

sin2

qx

4
+

√
3

4
qy

+
+ sin2

qx

4
−

√
3

4
qy

 ). (C.81)

The Brillouin zone is a hexagon with side length 4π/3, so the area of the Brillouin

zone is sBZ = 8π2/
√

3 and so qD =

√
8π/
√

3. For small qx and qy, we expand the

dynamical matrix to quadratic order and find

Dxx =
3
8

k
(
q2

x + q2
y

)
+

3
4

kq2
x + O(q4),

Dxy = Dyx =
3
4

kqxqy + O(q4),

Dyy =
3
8

k
(
q2

x + q2
y

)
+

3
4

kq2
y + O(q4).

(C.82)

The long-wavelength isotropic form of the dynamical matrix is

D(q) = V (λ + 2µ) q2 q̂iq̂ j + Vµq2
(
δi j − q̂iq̂ j

)
. (C.83)

with V =
√

3/2 (a hexagon with side length 1/
√

3). Comparing the two, we find

that the triangular lattice is isotropic at long wavelengths with λ = µ =
√

3k/4.

The triangular lattice has an average of z̃ = 3 bonds per site, identifying pc =

2/3. This is all of the information we need to make the comparison between

the triangular lattice CPA numerics and the asymptotic scaling forms for the

weakened isotropic elastic sheet. Measuring the stiffnesses in units of k, we

have

λF = µF =

√
3

4
,

z̃ = 3,

d = 2.

(C.84)

This leads to

µ0 ≡
µF

1 − d/̃z
=

3
√

3
4
,

f02 =
6π
√

3
ρ
,

u2/u02 =
37/4

4
.

(C.85)
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Setting ρ arbitrarily to 2 (which sets the microscopic mass m to
√

3), we have an

ansatz for the scaling form of the viscoelastic modulus of the diluted triangular

lattice, rescaling to MT = µ/ |δp| and ΩT = ω/ |δp|:

±1 −
4

3
√

3
MT = −

1

3π
√

3

Ω2
T

MT
log

(
−

31/4

4π
Ω2

T

MT
|δp|

)
. (C.86)

This is compared with the full CPA for the bond-diluted triangular lattice:

p − k/kF

1 − k/kF
=

1
z̃

?
BZ

d2q Tr (DG) , (C.87)

where all expressions are for the full triangular lattice (hexagonal BZ, dynamical

matrix and Green’s function with triangular lattice symmetry, etc.) and kF = 1.

The diluted triangular lattice’s effective long-wavelength shear modulus is then

µ =
√

3k/4, and µ/ |δp| is compared with MT (Figure 4.4). Any discrepancies that

can be seen by eye are due to corrections to scaling from higher-order terms in

the dynamical matrix and Green’s function, which are generically anisotropic.

These corrections vanish close to the critical point, and the behavior of this

anisotropic triangular lattice near the critical point predicted by the CPA is well-

described by this emergent isotropic theory.

279



APPENDIX D

APPENDIX OF CHAPTER 5

This appendix is a reformatted version of the appendices of [117].

D.1 Bond filling protocol

One method for filling the lattice is to choose some number of bonds n to ran-

domly occupy, and set p = n/N, where N is the total number of possible bonds.

This has the disadvantage that changes in p can only be measured to a sensitiv-

ity 1/N. To characterize the behavior very close to the critical point, we instead

fill our lattice in a way that is statistically equivalent, but allows measurements

at continuous values of p. In the isotropic case, the algorithm is as follows: first,

a random number si taken uniformly between 0 and 1 is assigned to each bond

i. At a filling parameter value p, all bonds i with assigned random numbers

si < p are filled, and the independent components of the linear elasticity ten-

sor are measured through applied shears. For different random number seeds,

the “jumps” in the linear moduli associated with the addition of single stress-

supporting bonds to the rigid backbone occur at different values of p (which

are not multiples of 1/N). When the measurements are averaged over several

random number seeds, we find that the measurements of moduli quickly con-

verge to a smooth function of p at a given system size L, except at the smallest

values of p. This algorithm is modified to include our anisotropy parameter r in

a straightforward way.

We start by picking a random number seed, and then assigning a (uniformly
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chosen) random number si between 0 and 1 to each bond. The bonds are as-

signed and then sorted based on a key, ki, which corresponds to the value of

bond occupation fraction p for which the bond would be added based on the

anisotropy parameter r:

kx
i =

(2 + r)sx
i

3r
, ky

i =
(2 + r)sy

i

3
, (D.1)

where sx
i are assigned to bonds in the horizontal direction and sy

i are assigned to

the other bonds. The bonds are then removed according to their keys, highest

to lowest. Note that this formulation allows for finding the bond configuration

while continuously varying both p and r.

D.2 Numerical methods

We minimize the energy given in Equation (5.19), which can be equivalently

written as

E =
1
2

u⊤Hu, Hi j =
∂2E
∂ui∂u j

, (D.2)

where H is the Hessian matrix and u is a length N × d vector containing the

displacements from the initial node position.

To handle periodic boundary conditions, we split the Hessian into two parts:

Hpbc, which is computed using only the bonds that span across the network, and

Hin with bonds which do not. The energy is therefore computed as:

E =
1
2

u⊤Hinu +
1
2

(u + c)⊤Hpbc(u + c), (D.3)

in which c “corrects” the displacements for nodes that are connected across the

network and depends on the particular strain. The energy is then minimized by
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finding a zero-force configuration, solving the following linear system:

(Hin + Hpbc)urelaxed = −Hpbcc (D.4)

An affine displacement is used as an initial guess. The sparsity structure

allows matrices to be stored in compressed sparse row format, reducing mem-

ory usage and improving the speed of operations. A Cholesky factorization for

(Hin + Hpbc) is computed [167] and used as a preconditioner. For large system

sizes, we use GPUs to accelerate numerical computations, such as matrix factor-

izations and matrix-vector products.

We note that for systems that have under-constrained nodes, the null space

of (Hin + Hpbc) has a non-zero dimension; as such we do not consider the non-

affinity parameter (which sums the squared displacements from an affine trans-

formation) as a method of analysis or for extracting critical exponents.

D.3 Details of finite-size effects

To obtain a consistent estimate of p∞c and ν, we consider the distribution of the

rigidity percolation threshold for each modulus at isotropy (r = 1). We take pi jkl
c

to be the smallest value of p at which Ci jkl is rigid. For a given system size L, the

value of pi jkl
c is sampled from an underlying distribution:

pi jkl
c (L) ∼ ρi jkl

L , ρ
i jkl
L ∈ ∆[0, 1]. (D.5)

Histograms of pi jkl
c are plotted in Fig. D.1. As the system size increases, the

distributions become increasingly sharp and the means shift systematically. In
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Figure D.1: Histograms of rigidity percolation threshold pc as a function of
system size L at isotropy. The estimated density functions for each independent
elastic modulus are plotted. Each distribution becomes increasingly sharp with
larger system size.

the limit of infinite system size, we assume that each distribution converges to

a delta function about p∞c .

For each system size, we compute both the means ⟨pi jkl
c ⟩L and standard de-

viations σi jkl
L of each distribution. We expect systematic shifts in the means and

standard deviations (i.e., the first and second moments) to scale as a power law
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Figure D.2: (left) Mean of pc and (right) standard deviations of the pc distri-
bution at isotropy as a function of system size. The fitted curves match those
in Equation D.6 and the fitted lines on the right figure have slope −1/ν.

with respect to L governed by a single critical exponent ν:

⟨pi jkl
c ⟩L − p∞c ∼ L−1/ν

σ
i jkl
L ∼ L−1/ν

(D.6)

We perform a joint non-linear least squares fit [223], with p∞c and ν the same

for all curves (we assume they are equal for each modulus at isotropy). Fig-

ure D.2 depicts ⟨pi jkl
c ⟩L (left) and σi jkl

L (right) as a function of L. The fits give an

estimate of p∞c = 0.645 ± 0.002 and ν = 1.3 ± 0.2.

Furthermore, we find a universal scaling function for the distributions ρi jkl
L

with respect to our previously defined scaling variable X ≡ (δp)L1/ν:

ρ
i jkl
L (p) ∼ L1/νRi jkl(X). (D.7)

We find that X collapses the density functions, with the resulting histograms

shown in Fig. D.3.
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Figure D.3: Universal scaling of rigidity distributions at isotropy for each in-
dependent modulus. The histograms all collapse when plotted against the scal-
ing variable X.

D.4 Details of modulus scaling collapse

At isotropy, each modulus grows as a power law above rigidity percolation

threshold Ci jkl ∼ (δp) f iso . Figure D.4 depicts the uncollapsed finite-size scaling

data at isotropy; the systematic deviations are clear.

We find the exponent f iso by considering the largest available system size

(L = 500) and performing a least-squares fit of the modulus, finding a range of

f iso as we vary pc slightly. With f iso = 2.2, p∞c = 0.646, and ν = 1.3, we plot
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Figure D.4: Unscaled modulus data across various system sizes at isotropy
(r = 1). The smaller system sizes have a higher probability of becoming rigid at
lower values of p.

the data against the proposed scaling variables and find a nice collapse for all

independent moduli, shown in Fig. D.5. The number of samples we average

over ranges from 104–102 for system sizes L ∈ [30, 200] and 20 samples of L =

500.

Using the value of f iso = 1.4± 0.1 and ν = 1.4± 0.2 quoted in [5], we find best

collapse with p∞c = 0.65 shown in Fig. D.6, which gives good collapse for lower

values of system size, but does not collapse the modulus for our largest system.
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Figure D.5: Universal scaling function of all independent elastic moduli at
isotropy (r = 1). The independent components of the elasticity tensor each col-
lapse onto a single curve Ciso

i jkl when plotted against the finite-size scaling vari-
able X ≡ (δp)L1/ν. In this isotropic case, there are only two independent moduli
in the long-wavelength elasticity tensor (B and G, for instance).

D.5 Separation of phase transitions

Here we present our numerical evidence for the separation of the two phase

transitions (one for Cxxxx, and at least one additional for Ci jkl with i jkl , xxxx)

as L → ∞. We do this by analyzing the systematic dependence on L of the

distributions of pc for each modulus away from isotropy, i.e., we perform large

numbers of simulations at various system sizes for fixed r = 1.5 (away from
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Figure D.6: Universal scaling function of all independent elastic modulus us-
ing previously reported exponents [5]. The data for the range L ∈ [30, 200]
comparable to the earlier work does give a good collapse. Having the larger
system size (L = 500) explains why we find different exponents.

isotropy) and examine how these distributions depend upon L. An example of

these distributions can be seen in Fig. D.7, where at L = 75 (first column) the

distributions of pc for the Cxxxx and the Cyyyy moduli have significant overlap,

but when we look at L = 200 (second column) the distributions are beginning to

separate for r > 1.

Sample-to-sample, there are lattices that can support rigidity in some shear

directions but not others. There are two basic scenarios. (1) In the case where

including anisotropy ends up simply giving analytic corrections to scaling that
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Figure D.7: Histograms of rigidity percolation threshold pc for Cxxxx (blue)
and Cyyyy (green) for the same system size. The means are consistent at isotropy
(r = 1) and distinct from each other at higher anisotropy (r = 1.5).

bend a single phase boundary, all moduli will vanish at the same location at

L = ∞, but the amplitudes of the finite-size effects may be different. Singling

out the Cyyyy modulus for the sake of comparison, this means that

〈
pi jkl

c

〉
L
−

〈
pyyyy

c
〉

L ∼ L−1/ν. (D.8)

This is the same as the asymptotic scaling for the spreads of these distribu-

tions, σi jkl
L ∼ L−1/ν, as all distributions are controlled by the exponents of the

isotropic critical point in this supposition. If we measure the separation be-

tween the means as a function of system size in terms of the number of standard
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deviations of the distribution at that system size, using the more democratic

σ2
L = (σi jkl

L )2 + (σyyyy
L )2, then, we should find〈

pi jkl
c

〉
L
−

〈
pyyyy

c
〉

L√
(σi jkl

L )2 + (σyyyy
L )2

∼ ci jkl, (D.9)

for some constant ci jkl, which is flat as a function of system size.

(2) In the case where including anisotropy leads to genuinely new critical

phenomena and a pair of phase transitions, the finite-size effects of the mean

and standard deviation are controlled by the finite-size scaling exponent of each

anisotropic rigidity transition νaniso. If we split into a pair of phase transitions,

then the spreads σi jkl of each distribution will narrow with increasing L, but the

separation of the means is asymptotically constant as L→ ∞. This would make〈
pi jkl

c

〉
L
−

〈
pyyyy

c
〉

L√
(σi jkl

L )2 + (σyyyy
L )2

∼ L1/νaniso
, (D.10)

where νaniso is the largest of the (potentially different) finite-size scaling expo-

nents associated with the new, anisotropic transition.

We begin by performing this measurement of the separations between the

distributions of pc for all moduli at the isotropic transition, where all moduli

vanish at the same location in p as L→ ∞ (Fig. D.8 (left)).

As expected, this measure of the separation in the means is flat for the

isotropic case as a function of system size, confirming that these moduli van-

ish at the same asymptotic location and that the finite-size effects controlling

the mean and the standard deviation have the same systematic dependence on

L.

When we perform the same analysis for the anisotropic case (r = 1.5), we see

systematic growth in this measure as a function of system size (Fig. D.8 (right,
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Figure D.8: Separation of rigidity percolation threshold mean ⟨pc⟩ from that of
the Cyyyy modulus as a function of system size at isotropy (left) and anisotropy
(right).

blue)), suggesting that the locations of pc for different moduli are genuinely

different in the thermodynamic limit. This is moderately strong quantitative

evidence for the information that can roughly be seen by eye in Fig. D.7.

D.6 Estimate of anisotropic scaling exponents

At infinite system size, the phase diagram curves in Fig. A.2 contain important

information about the critical exponent ζ near the isotropic transition. We find

ζ by fitting the differences between the Cxxxx curves and the Ci jkl curves (where

i jkl , xxxx) to a power law, resulting in a value of ζ = 0.25 ± 0.1. The individual

phase boundaries have an important linear correction to scaling, as the unstable

eigenvector is not along the r-axis, but has a slope m. Hence the two phase

boundaries are of the form δp = m(r − rc) + W(r − rc)1/ζ , with a fixed value of

W defining a curve along which the invariant scaling combination is constant.
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Because ζ is small, this correction cannot be neglected. By fitting the differences

between the phase boundaries, we bypass this linear correction to scaling.

Furthermore, we can consider the standard deviations of the rigidity per-

colation threshold distributions (as in Appendix D.3) for r > 1 and consider a

scaling function with respect to our scaling variable Y = (r − 1)Lζ/ν

σi jkl(L, r) ∼ L−1/νSi jkl((r − 1)Lζ/ν) (D.11)

We find that standard deviation is best collapsed with ζ = 0.25 ± 0.1, shown

in Fig. D.9. The determined value of the exponent ζ appears to collapse σL1/ν

for all moduli except for Cxxxx at larger values of the scaling variable. We also

note the nice overlap of data performed at different values of (r, L) but the same

value of the scaling variable Y .

We can in principle use information from these collapse plots to make a pre-

diction for the value of the finite-size scaling exponent close to the anisotropic

phase transition νaniso. First, we note that if we fix r > 1 and send L → ∞, the

spread in the distributions of pc will narrow as σ ∼ L−1/νaniso , as the finite-size ef-

fects are (at large enough system sizes) controlled by the critical exponents of the

anisotropic critical point. In the scaling function for the distributional spreads of

pc, this corresponds to the asymptotic limit Y → ∞. Forcing the asymptotics of

the numerically determined crossover scaling function to agree with the asymp-

totics expected at the anisotropic critical point will give us a prediction for νaniso.

Suppose this scaling function has asymptotic behavior Si jkl (Y) ∼ Yα at large

Y . Then in the limit L→ ∞with r > 1 fixed,

σL1/ν ∼ Yα ∼ Lζα/ν and σ ∼ L−1/νaniso
(D.12)
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Figure D.9: Universal scaling of rigidity distributions near isotropy for each
independent modulus. The widths of the histograms all collapse onto a single
curve when plotted against the finite-size scaling variable Y . There appear to be
deviations in the collapse of the Cxxxx modulus at higher values of Y .

together give

νaniso =
ν

1 − ζα
, (D.13)

where ν is the value of the finite-size scaling exponent at the isotropic fixed

point. With α = 1.0 ± 0.5, this gives a prediction of νaniso = 1.7, but values

between 1.2− 3.2 are consistent with our error bars reported in Table 5.1. This is

ultimately due to the poor numerical determination of ζ and α. These could also

in principle be different for the different i jkl; this would be detected through

different values of α for each modulus since both ν and ζ are properties of the
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Figure D.10: Estimate of anisotropic scaling exponent of each modulus from
our largest system size. The behavior of the Cxxxx modulus suggests a crossover
between the anisotropic and isotropic scaling exponents, whereas for the other
moduli, the behavior appears to be governed by the same isotropic exponent.

isotropic fixed point.

We estimate the exponent with which each modulus vanishes at their corre-

sponding anisotropic phase transition ( f aniso
i jkl ) by considering our largest system

size at two values of r away from isotropy (r = 1.2 and r = 1.5). The location of

the phase transition is determined by averaging the value of p with which each

modulus for each lattice becomes rigid.

To search for which value of ζ best collapses the two variable scaling func-

294



10−1

102

105

C
xx

xx
(r

−
r c

)−
fis

o
/
ζ

(L, r)
(75, 1.29)
(100, 1.27)
(125, 1.26)
(150, 1.25)
(500, 1.2)

W ijkl
c (Y ) C

yy
yy

(r
−

r c
)−

fis
o
/
ζ

0 10 20

10−1

102

105

C
xy

xy
(r

−
r c

)−
fis

o
/
ζ

0 10 20

C
xx

yy
(r

−
r c

)−
fis

o
/
ζ

Y = (r − rc)Lζ/ν = 0.66

W = δp
(r−rc)1/ζ

Figure D.11: Scaling collapse of all the moduli at constant Y = 0.66. The esti-
mate of Wc is shown with the dashed black line.

tion, we obtain simulations of constant Y across various system sizes. We test a

value of ζ by first fixing our largest system size and then solving for the value

of r as a function of system size that results in the same value of Y . Figures D.11

and D.12 show a scaling collapse of all the moduli with ζ = 0.25 and with a

constant value of Y = 0.66 and Y = 1.65, respectively. The scaling function for

each modulus vanishes at a given value of W, which we denote as W i jkl
c (Y), as it

is dependent on the value of Y . We note that further away from isotropy (Y = 0),

there are additional corrections to scaling, resulting in a worse collapse at higher

values of Y .
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Figure D.12: Scaling collapse of all the moduli at a constant Y = 1.65. The
estimate of Wc is shown with the dashed black line.

We again obtain an estimate of the scaling exponents in Figures D.13 and

D.14 by plotting the rescaled moduli as a function of distance from Wc. The plots

suggest crossover for the Cxxxx modulus, with f aniso
xxxx governing the behavior for

lower values of W − Wc and f iso for the high W − Wc regime. Furthermore, the

other three moduli appear to vanish with a critical exponent indistinguishable

from f iso within our estimated error bars.
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Figure D.13: Estimate of anisotropic scaling exponent of each modulus at a
constant Y = 0.66. The simulation data is the same as found in Fig. D.11.
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Figure D.14: Estimate of anisotropic scaling exponent of each modulus at a
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APPENDIX E

APPENDIX OF CHAPTER 6

This appendix is a reformatted version of the appendix of the manuscript to be submitted

to Physical Review B or E.

E.1 Contour plots of error in expansion for χ(a, g)

The relative error that the expansion in Equation 6.62 makes with the experi-

mental value of χ(a, g) can be plotted in the original LPA coordinates, giving

contour plots of the relative error. First, we show the result of directly integrat-

ing A−1 until its asymptotic value as a function of the starting LPA coordinates

(a, g) as a contour plot in Figure E.1.

As required, the susceptibility diverges as one approaches the critical mani-

fold, with a leading power law related to the eigenvalues of the fixed point that

attracts flows on the critical manifold. We then plot the relative error associ-

ated with higher and higher order truncations of Equation 6.62. The relative

errors associated with truncating Equation 6.62 to order ∆a0, ∆aων, ∆a1, ∆a2ων,

and ∆a1+ων are shown as Figures E.2, E.3, E.4, E.5, and E.6, respectively. The rel-

ative error improves order by order especially along the critical manifold. The

expansion fails in an interesting region near the Gaussian fixed point.
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Figure E.1: The numerically determined values of χ(a, g) as a function of the
starting LPA coordinate. As required, the susceptibility diverges upon ap-
proaching the critical manifold.
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Figure E.2: The relative error that the expansion of Equation 6.62 truncated to
order ∆a0 makes with a direct integration of χ(a, g) shown as a contour plot in
(a, g).
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Figure E.3: The relative error that the expansion of Equation 6.62 truncated to
order ∆aων makes with a direct integration of χ(a, g) shown as a contour plot in
(a, g).
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Figure E.4: The relative error that the expansion of Equation 6.62 truncated to
order ∆a1 makes with a direct integration of χ(a, g) shown as a contour plot in
(a, g).
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Figure E.5: The relative error that the expansion of Equation 6.62 truncated to
order ∆a2ων makes with a direct integration of χ(a, g) shown as a contour plot in
(a, g).
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Figure E.6: The relative error that the expansion of Equation 6.62 truncated to
order ∆a1+ων makes with a direct integration of χ(a, g) shown as a contour plot
in (a, g).
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APPENDIX F

APPENDIX OF CHAPTER 7

This appendix is a reformatted version of the supplementary information of the

manuscript to be submitted to Physical Review E.

F.1 Supplementary information

To complement the full analysis in the main text following [180], we include an

image of each inequivalent type of defect in each symmetry-allowed ordered

phase, along with a defect combination table for the finite groups. For simplic-

ity, most defects are shown as point defects in 2D but can also be thought of as

cores of line defects in 3D. Often there is freedom in choosing the coordinate

system that is pinned to a defect and transported along the path of transforma-

tions in the order parameter space, so what is provided is one possible way of

labelling the defects up to automorphism.

F.1.1 Isotropic I phase

The isotropic phase is the most symmetric, with all of SO(3) being a symmetry.

The connected order parameter space is SO(3)/SO(3) which is the trivial topo-

logical space. There is only one orientation possible, and all homotopy groups

are trivial.

306



F.1.2 Vector V phase

The connected order parameter space for the vector phase is SO(3)/C∞ = S 2.

This can be visualized as an arrow of unit length at each point in space. The

fundamental group is trivial (can’t lasso a basketball), indicating that there are

no nontrivial line defects in 3D. However, the second homotopy group is non-

trivial, suggesting the existence of nontrivial point defects in 3D. These are the

well-known skyrmions, characterized by their wrapping number Q ∈ Z. Topo-

logical index +1, +2, and −1 are shown below. Plotted are the representatives

m = {cos (Qϕ) sin (θ) , sin (Qϕ) sin (θ) , cos (θ)} (F.1)

where Q is the topological charge. That this wraps S 2 in configuration space

exactly Q times for |Q| > 0 can be seen by considering that the longitude slices

ϕ ∈ ((n − 1) 2π/ |Q| , n2π/ |Q|), n = 1, . . . ,Q, each individually cover S 2 and cannot

be “combed out.” The topological index can also be explicitly computed by

performing a stereographic projection of the field m to (x, y) ∈ R2 and computing

Qsk ≡ −
1

4π

∫
dx dy

(
∂xm × ∂ym

)
·m = Q

∫
dx dy

1

π
(
1 + x2 + y2)2 = Q. (F.2)

F.1.3 Nematic N phase

The (uniaxial) nematic phase is the only phase in the diagram that can sup-

port topologically stable line and point defects, and these interact in nontrivial

ways. The phase can be visualized by placing rods with circular cross section at

each point in space. The order parameter space is RP2, which can support only

one topologically nontrivial kind of line defect. The topologically distinct point

defects are labelled by the positive integers Z+, since the point defects can be
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Figure F.1: Sketches of skyrmion point defects in the vector V phase. The
skyrmions have charges (a) Q = +1, (b) Q = +2, and (c) Q = −1.

transported around the line defects to change their sign. See section VII.E.3 of

[180] for a complete treatment of this phase.

F.1.4 Tetrahedratic T phase

The tetrahedratic T phase has symmetry group equal to the tetrahedral point

group T , representing symmetries of a tetrahedron. The molecules can hence be

visualized as tetrahedra. There are no stable point defects because the symmetry

group of the molecule is discrete but π1 (SO(3)/T ) � 2T which is a non-abelian

group of order 24. Because the first homotopy group is non-abelian, we must

compute the conjugacy classes to find the unambiguous labelling of the defects.

There are 7 conjugacy classes and hence 6 distinct types of defect. One can

think of all defects as combinations of 2π/3 rotations about an axis normal to a

face and π rotations about axes that pass through the centers of two edges not

sharing a face.

For simplicity, a reference configuration of the tetrahedron is chosen and all
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C0 C0 CQ Cw1 C−w1 Cw2 C−w2

C0 C0 C0 CQ Cw1 C−w1 Cw2 C−w2

C0 C0 C0 CQ C−w1 Cw1 C−w2 Cw2

CQ CQ CQ 6C0 + 6C0 + 4CQ 3Cw1 + 3C−w1 3Cw1 + 3C−w1 3Cw2 + 3C−w2 3Cw2 + 3C−w2

Cw1 Cw1 C−w1 3Cw1 + 3C−w1 3Cw2 +C−w2 Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ

C−w1 C−w1 Cw1 3Cw1 + 3C−w1 Cw2 + 3C−w2 3Cw2 +C−w2 4C0 + 2CQ 4C0 + 2CQ

Cw2 Cw2 C−w2 3Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ 3Cw1 +C−w1 Cw1 + 3C−w1

C−w2 C−w2 Cw2 3Cw2 + 3C−w2 4C0 + 2CQ 4C0 + 2CQ Cw1 + 3C−w1 3Cw1 +C−w1

Table F.1: Combination rules for defects in the tetrahedratic T -phase. When
there are multiple classes resulting from the product of two conjugacy classes,
then the resulting defect depends on the path along which two defects are
brought together.

representatives of defects are drawn as rotations about the (1/
√

3, 1/
√

3, 1/
√

3) ≡

a1 axis (passing through the center of a face and a vertex) and the (1, 0, 0) ≡ a2

axis (passing through the centers of two edges not sharing a face). With a fixed

choice of reference configuration, one can enumerate choices of defects from 2T :

Cw1 : w++++ = (1 + iσx + iσy + iσz)/2 = exp
(
i
(
π

3

)
a1 · σ

)
=

2π
3

rotation about a1.

C−w1 : w−−−− = (−1−iσx−iσy−iσz)/2 = exp
(
i
(
−

2π
3

)
a1 · σ

)
= −

4π
3

rotation about a1.

Cw2 : w+−−− = (1 − iσx − iσy − iσz)/2 = exp
(
i
(
−
π

3

)
a1 · σ

)
= −

2π
3

rotation about a1.

C−w2 : w−+++ = (−1 + iσx + iσy + iσz)/2 = exp
(
i
(
2π
3

)
a1 · σ

)
=

4π
3

rotation about a1.

CQ : iσx = exp
(
i
(
π

2

)
a2 · σ

)
= π rotation about a2.

C0 : −1 = exp (i (π) a2 · σ) = 2π rotation about a2. (Note any other axis also works.)

F.1.5 Biaxial phases: N + 2, NT , (NT + 2)∗

The biaxial phases have symmetry group equal to D2, representing symmetries

of a rectangular parallellepiped. There are no stable point defects because the
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Figure F.2: Sketches of defects of each class in the tetrahedratic T -phase. (a)
A reference configuration of an object with the symmetry of the T -phase. (b –
g) Examples of each type of defect given the reference configuration, labelled
according to the conjugacy classes of the binary tetrahedral group 2T .
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C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

Cx Cx Cx 2C0 + 2C0 2Cz 2Cy

Cy Cy Cy 2Cz 2C0 + 2C0 2Cx

Cz Cz Cz 2Cy 2Cx 2C0 + 2C0

Table F.2: Combination rules for defects in the biaxial phases N +2, NT , (NT +2)∗.

symmetry group of the molecule is discrete but π1 (SO(3)/D2) � H (the quater-

nions) which is a non-abelian group of order 8. Because the first homotopy

group is non-abelian, we must compute the conjugacy classes to find the un-

ambiguous labelling of the defects. There are 5 conjugacy classes and hence 4

distinct types of defect. These involve swirling by π around each of the non-

equivalent axes together with a full 2π swirl (about any axis). Fix a reference

configuration, and call the three mutually orthogonal principal axes ex, ey, and

ex × ey ≡ ez. For this choice of reference configuration, we can then enumerate

choices of defects from H:

Cx : iσx = exp
(
i
(
π

2

)
ex · σ

)
= π rotation about ex.

Cy : iσy = exp
(
i
(
π

2

)
ey · σ

)
= π rotation about ey.

Cz : iσz = exp
(
i
(
π

2

)
ez · σ

)
= π rotation about ez.

C0 : −1 = exp (i (π) ez · σ) = 2π rotation about ez. (Note any other axis also works.)

F.1.6 Triadic N + 3 phase

The triadic N+3 phase has a symmetry group equal to D3, representing symme-

tries of equilateral triangular prism. There are no stable point defects because
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Figure F.3: Sketches of defects of each class in the biaxial phases. (a) A reference
configuration of an object with the symmetry of these phases. (b – e) Examples
of each type of defect given the reference configuration, labelled according to
the conjugacy classes of the quaternions H.

the symmetry group of the molecule is discrete but π1 (SO(3)/D3) � Dic3 (the 12-

element dicyclic group) which is a non-abelian group of order 12. Because the

first homotopy group is non-abelian, we must compute the conjugacy classes to

find the unambiguous labelling of the defects. There are 6 conjugacy classes and

hence 5 distinct types of defect. These involve swirling by ±n2π/3 about the axis

normal to the equilateral triangle (n = 1, 2, 3; the clockwise and counterclock-

wise swirls are topologically the same defect), a flip about an axis perpendicular

to to the swirling one together with an even number of 2π/3 swirls, and a flip

about an axis perpendicular to to the swirling one together with an odd number

of 2π/3 swirls. For simplicity, a reference configuration of the triangular prism

is chosen and all representatives of defects are drawn as rotations about the ez
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C0 C0 C1 C2 Ceven Codd

C0 C0 C0 C1 C2 Ceven Codd

C0 C0 C0 C2 C1 Codd Ceven

C1 C1 C2 2C0 +C2 2C0 +C1 2Codd 2Ceven

C2 C2 C1 2C0 +C1 2C0 +C2 2Ceven 2Codd

Ceven Ceven Codd 2Codd 2Ceven 3C0 + 3C1 3C0 + 3C2

Codd Codd Ceven 2Ceven 2Codd 3C0 + 3C2 3C0 + 3C1

Table F.3: Combination rules for defects in the triadic N + 3 phase.

axis (the cylinder axis of the prism, about which rotations by multiples of 2π/3

are symmetries) and the ex axis (passing through the center of a rectangular face

and the center of an opposite edge, about which rotations by multiples of π are

symmetries). With a fixed choice of reference configuration, one can enumerate

choices of defects from Dic3:

C1 :
(
1 + iσz

√
3
)
/2 = exp

(
i
(
π

3

)
ez · σ

)
=

2π
3

rotation about axis ez.

C2 :
(
−1 + iσz

√
3
)
/2 = exp

(
i
(
2π
3

)
ez · σ

)
=

4π
3

rotation about axis ez.

Ceven : iσx = exp
(
i
(
π

2

)
ex · σ

)
= π rotation about axis ex.

Codd : −iσx = exp
(
i
(
−
π

2

)
ex · σ

)
= −π rotation about axis ex.

C0 : −1 = exp (i (π) ex · σ) = 2π rotation about axis ex (Note any other axis also works.)

F.1.7 Vortex V + 3 phase

The vortex V + 3 phase has symmetry C3 and molecules can be visualized as a

pyramid with an equilateral triangular base and other sides equal but not equi-

lateral. There are no stable point defects but π1 (SO(3)/C3) � Z6 and so there are

five stable line defects that add like the integers modulo 6. The defect labelled
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Figure F.4: Sketches of defects of each class in the triadic N + 3 phase. (a) A
reference configuration of an object with the symmetry of the N + 3 phase. (b
– f) Examples of each type of defect given the reference configuration, labelled
according to the conjugacy classes of Dic3.

by 3+ is its own inverse and represents a full 2π swirl, much like the lone type

of defect in the N + V phase. The defects labelled by 1+ and 2+ represent CCW

1/3 and 2/3 turns about an axis normal to the equilateral triangle, respectively.

Their inverses, 5+ ≡ −1+ and 4+ ≡ −2+ represent CW 1/3 and 2/3 turns about

that same axis, respectively.

If we choose a reference configuration of the pyramid and call ez the axis

about which rotations by 2π/3 are a symmetry, the defects can be written as:

1+ :
(
1 + iσz

√
3
)
/2 = exp

(
i
(
π

3

)
ez · σ

)
=

2π
3

rotation about ez.

2+ :
(
−1 + iσz

√
3
)
/2 = exp

(
i
(
2π
3

)
ez · σ

)
=

4π
3

rotation about ez.

3+ : −1 = exp (i (π) ez · σ) = 2π rotation about ez. (Note any other axis also works.)
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Figure F.5: Sketches of defects of each class in the vortex V + 3 phase. (a) A
reference configuration of an object with the symmetry of the V + 3 phase. (b
– f) Examples of each type of defect given the reference configuration, labelled
according to the elements of Z6.

0+ 1+ 2+ 3+ 4+ 5+
0+ 0+ 1+ 2+ 3+ 4+ 5+
1+ 1+ 2+ 3+ 4+ 5+ 0+
2+ 2+ 3+ 4+ 5+ 0+ 1+
3+ 3+ 4+ 5+ 0+ 1+ 2+
4+ 4+ 5+ 0+ 1+ 2+ 3+
5+ 5+ 0+ 1+ 2+ 3+ 4+

Table F.4: Combination rules for defects in the vortex V + 3 phase.

4+ ≡ −2+ :
(
−1 − iσz

√
3
)
/2 = exp

(
i
(
−

2π
3

)
ez · σ

)
= −

4π
3

rotation about ez.

5+ ≡ −1+ :
(
1 − iσz

√
3
)
/2 = exp

(
i
(
−
π

3

)
ez · σ

)
= −

2π
3

rotation about ez.
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0+ 1+ 2+ 3+
0+ 0+ 1+ 2+ 3+
1+ 1+ 2+ 3+ 0+
2+ 2+ 3+ 0+ 1+
3+ 3+ 0+ 1+ 2+

Table F.5: Combination rules for defects in the vortex phases V + 2 and (VT + 2)∗.

F.1.8 Vortex V + 2, (VT + 2)∗ phases

The vortex V + 2 and (VT + 2)∗ phases have symmetry C2 and molecules can

be visualized as a pyramid with a rectangular (but not square) base. There are

no stable point defects but π1 (SO(3)/C2) � Z4 and so there are three stable line

defects that add like the integers modulo 4. The defect labelled by 2+ is its own

inverse and represents a full 2π swirl, much like the lone type of defect in the

N + V phase. The defect labelled by 1+ represents a CCW 1/2 turn about an axis

normal to the rectangle. Its inverse, 3+ ≡ −1+ represents a CW 1/2 turn about

that same axis. If we choose a reference configuration of the pyramid and call ez

the axis about which rotations by π are a symmetry, the defects can be written

as:

1+ : iσz = exp
(
i
(
π

2

)
ez · σ

)
= π rotation about ez.

2+ : −1 = exp (i (π) ez · σ) = 2π rotation about ez. (Note any other axis also works.)

3+ ≡ −1+ : −iσz = exp
(
i
(
−
π

2

)
ez · σ

)
= −π rotation about ez.

F.1.9 N + V phase

The N + V phase is the least symmetric, with its order parameter space being all

of SO(3). The phase can be represented by an object with no rotational symme-

try at each point in space. There are no stable point defects, and π1 (SO(3)) = Z2
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Figure F.6: Sketches of defects of each class in the V + 2 and (VT + 2)∗ phases.
(a) A reference configuration of an object with the symmetry of the V + 2 and
(VT + 2)∗ phases. (b – d) Examples of each type of defect given the reference
configuration, labelled according to the elements of Z4.
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Figure F.7: Sketches of the lone defect in the N + V phase. (a) A reference con-
figuration of an object with no symmetries beyond the identity operation in
SO(3). (b) The only defect given the reference configuration. The defects are
labelled according to the elements of Z2 (i.e., the defect is labelled by the only
non-identity element in the group).

C0 C0

C0 C0 C0

C0 C0 C0

Table F.6: Combination rules for defects in the N + V phase.

indicating there is only one type of line defect (a full 2π swirl). When two de-

fects are brought together, they can be unravelled and the order parameter field

can be patched. Choose any axis and call it e1. Then the only defect can be

represented as

C0 : −1 = exp (i (π) e1 · σ) = 2π rotation about e1. (Note any other axis also works.)
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