
Supporting Information for
Your main manuscript title

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

Corresponding Author: Pratik Chaudhari (pratikac@seas.upenn.edu)

This PDF file includes:

Figs. S1 to S18
Table S1
SI References

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari1 of 26

mailto:pratikac@seas.upenn.edu

S.1. Notation

Symbol Description

N Number of samples

C Number of classes

xn Input sample with index n ∈ {1, . . . , N}
yn Label assignment of sample with index n ∈ {1, . . . , N}
y∗

n Ground-truth label of sample with index n ∈ {1, . . . , N}
w Weights of the deep network

y⃗∗ Ground-truth labels for each of the N samples, y⃗∗ =
(y∗

1 , . . . , y∗
N)

y⃗ Label assignment for each of the N samples, y⃗ ∈ {1, . . . , C}N

pn
w(yn) Probability that sample xn belongs to class yn ∈ {1, . . . , C},

pn
w(yn) ≡ pw(yn | xn)

Pw(.) Probabilistic model with weight w; assigns a probability to every
sequence y⃗

P∗ Truth (P∗ = δy⃗∗ (y⃗))

P0 Ignorance, has pn
0 (c) = 1/C for all classes c and samples n

dB Bhattacharyya distance between two probability distributions

dG
Geodesic distance (great circle distance) between two probability
distributions

g(w) Fisher Information Metric (FIM) at weight configuration w

(
√

pn
u(c))c=1,...,C Point on a (C − 1)-dimensional sphere

P α
u,v

Geodesic between probability distributions Pu and Pv parame-
terized by α ∈ [0, 1]

T Number of recorded checkpoints

(w(k))k=0,···T A sequence of recorded checkpoints in the weight space

sw Progress of a probabilistic model Pw with weights w

α Interpolating parameter along a geodesic, α ∈ [0, 1]

τ̃w
A sequence of probabilistic models recorded during training, also
denoted by (Pw(k))k=0,···T

τw
A continuous curve in the space of probabilistic models, also
denoted by (Pw(s))s∈[0,1]

dtraj(τu, τv) Distance between trajectories τu and τv

D

Matrix (∈ Rm×m) of pairwise Bhattacharyya distances between
m probabilistic models, entries of this matrix are denoted by
Dij , Duv etc. depending upon the context

W

Matrix (∈ Rm×m) of centered pairwise Bhattacharyya distances,
W = −LDL/2 where Luv = δuv − 1/m performs the center-
ing

Xw
Coordinates (∈ Rp,m−p) of the InPCA embedding of a model
with weights w

1 −

√∑
ij

(
Wij −

∑d

k=1
ΛkkUikUkj

)2∑
ij

W 2
ij

Explained stress, used to estimate the fraction of the entries of
the centered pairwise distance matrix W that are preserved by
an embedding; equivalent to explained variances in standard
PCA (up to the square root)

1 −

∑
ij

∣∣Dij −∥Xi−Xj∥2
∣∣∑

ij
Dij

Explained pairwise distances, used to estimate the fraction of
the entries of the pairwise Bhattacharyya distance matrix D that
are preserved by an embedding

2 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

S.2. Derivation of the joint probability of predictions and the Bhattacharyya distance

The quantity in [1] is the joint likelihood of all the labels given the weights. Observe that

Pw(y⃗) ≡ p({(xn, yn)}N
n=1 ; w)

= p(x1, . . . , xN) pw(y1, . . . , yN | x1, . . . , xN)

(a)= p(x1, . . . , xN)
N∏

n=1

pw(yn | x1, . . . , xN)

(b)= p(x1, . . . , xN)
N∏

n=1

pw(yn | xn)

(c)=

(
1
N

N∑
n=1

δxn (xn)

)
N∏

n=1

pw(yn | xn)

=
N∏

n=1

pw(yn | xn).

In this calculation, we have used the assumption that (a) predictions on two samples are independent of each other given the
weights and the input samples (if we marginalize on the weights, they are certainly dependent), (b) we are performing inductive
inference, i.e., p(yn | x1, . . . , xn) = p(yn | xn), and (c) the samples are frozen to the ones in the training set for the analysis, i.e.,
the distribution p(x1, . . . , xn) ≡

(1
N

∑N

n=1 δxn (xn)
)

= 1. So we actually do not need to use the assumption that the training
samples x1, . . . , xN are independent of each other to write down the joint likelihood that factorizes over the samples in the
training set. Certainly, if the training samples are independent, then this derivation also holds. Let us note that training
samples being independent of each other is one of the most common assumptions in machine learning. This assumption is used
to derive, for instance, the maximum likelihood estimator in (1, Equation 1.61).

The expression for the Bhattacharyya distance between two probability distributions Pu and Pv in [2] can be derived as
follows. Note that y⃗ can take a total of CN distinct values, and each yn ∈ {1, . . . , C}.

dB(Pu, Pv) .= − 1
N

log
∑

y⃗

√
Pu(y⃗)

√
Pv(y⃗)

= − 1
N

log
∑

y⃗

N∏
n=1

√
pn

u(yn)
√

pn
v (yn)

= − 1
N

log
∑

y1

· · ·
∑

yN−1

N−1∏
n=1

√
pn

u(yn)
√

pn
v (yn)

(∑
yN

√
pN

u (yn)
√

pN
v (yn)

)
...

= − 1
N

log
N∏

n=1

∑
c

√
pn

u(c)
√

pn
v (c)

= − 1
N

∑
n

log
∑

c

√
pn

u(c)
√

pn
v (c).

Calculations like the one above hold in general, the joint entropy of two independent random variables is the sum of their
individual entropy. Just like the familiar cross-entropy loss used for training deep networks is an average over the samples, the
Bhattacharyya distance is also an average over the training samples.

S.3. Details of the experimental setup

Datasets The experimental data in this paper was obtained by training deep networks on two datasets.
• The CIFAR-10 dataset (2) has N = 50, 000 RGB images in the training set of size 32× 32 from C = 10 different categories

(airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). The test set has N = 10, 000 images. Both train
and test sets have an equal number of images in each category.

• The ImageNet dataset (3) has C = 1000 categories and a total of N = 1.28 × 106 RGB images of size 224 × 224 in the
training dataset. Different categories have slightly different numbers of images in the train set, but all categories have at
least 1000 images. The test set consists of N = 50, 000 images, with 50 images from each category.

Neural architectures For CIFAR-10, we used six neural architectures. These architectures were chosen and and configurations
were chosen to ensure that these networks could fit all the images in the training dataset, i.e., achieve zero training error, for

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari3 of 26

most training methods.
(i) A multi-layer perceptron with rectified linear unit (ReLU) nonlinearities (fully-connected network) with 4 hidden layers,

of size [1024, 512, 256, 128] respectively.
(ii) An “all convolutional network” (AllCNN (4)) with 5 convolutional layers followed by an average pooling layer; first three

layers have 96 channels and the latter two have 144 channels.
(iii) Two different wide residual networks (5). The larger one has 16 layers and [64, 256, 1024, 4096] channels for the convolu-

tional layers in the four blocks, and the smaller network has 10 layers with [8, 32, 128, 512] channels for the four blocks.
Both networks have a “widening factor” of 4. We modified the implementation at https://github.com/meliketoy/wide-
resnet.pytorch.

(iv) The ConvMixer architecture (6) is a convolutional network but it uses very large receptive fields and maintains the same
size for the activations across successive layers. We did not make any changes to the architecture from the original paper.

(v) The ViT architecture (7) is a self-attention based network that uses a set of disjoint patches of size 4×4 from the input
images. This network does not use convolutional operations and instead uses the so-called self-attention layer that is
popularly in natural language processing. We use a linear layer size of 512, 8 self-attention heads and 6 transformer
blocks (layers). We used the implementation from https://github.com/lucidrains/vit-pytorch.

We do not use Dropout (8) in any of the networks. All networks except ViT have a batch-normalization (9) layer after each
convolutional or fully-connected layer, except ViT which uses layer normalization (10).

For ImageNet, we used three architectures.
(i) A smaller residual network (11) with 18 layers (ResNet-18). This residual network is different from the wide residual

network used for CIFAR-10, primarily in that there are fewer channels in each block. A ResNet is architecturally similar
to a wide residual network with a widening factor of 1. We replaced each strided convolution with a convolution followed
by a BlurPool layer (12).

(ii) A larger residual network with 50 layers (ResNet-50). This is one of the most popular networks for training on ImageNet
and widely used as a benchmark architecture in the field.

(iii) The ViT architecture which is similar to the one used for CIFAR-10 above except that the receptive field of the first layer
is larger due to the larger images in ImageNet. We trained a smaller variant of ViT called ViT-S (with 22 million weights)
which was introduced in (13). It operates on patches of size 16 × 16 and has 6 self-attention heads and 12 transformer
blocks.

Training multiple models on ImageNet is computationally expensive. To mitigate this, we used efficient data loaders, computed
gradients in half-precision, and chose effective training hyper-parameters (FFCV (14) for training ResNets and timm (15) for
training ViTs).
Training procedure For both datasets, we normalize images in the train and test sets by the channel-wise mean and variance of
the images in the training dataset. For CIFAR-10, we also augmented training images by randomly cropping a region of size
32× 32 after padding the original image by 4 pixels on each side, and performing horizontal flips with a probability of 0.5; our
data contains models trained with and without such data augmentation.

All the networks are initialized using the default PyTorch weight initialization as follows. For fully-connected layers with
an input dimension d, all weights and biases are sampled independently from a uniform distribution on [−d−1/2, d−1/2]. For
convolutional layers with c channels and a k × k convolutional kernel, all weights and biases are sampled independently from a
uniform distribution on [−(ck)−1/2, (ck)−1/2].

AllCNN ConvMixer Fully
Connected

ViT Small
ResNet

Large
ResNet

0

100

200

300

400

500

Fig. S.1. Number of networks that did not train beyond 90% error
for Adam (green), SGD (blue) and SGD with Nesterov’s acceleration
(orange). These models are not included in our analysis.

We started with 3120 different configurations, 520 for each network
architecture. Some networks did not finish training due to numerical
errors during gradient updates, and we excluded them from our analysis.
Fig. S.1 shows how many of the configurations did not finish training for
each network architecture. Our data, with 2,296 different configurations,
therefore contains fewer ViTs and Large ResNets than other architectures.

For CIFAR-10, we used three different optimization methods, stochas-
tic gradient descent (SGD), SGD with Nesterov’s momentum (with a
coefficient of 0.9) and Adam (16), three different batch sizes (200, 500 and
1000) and three different values of the weight decay coefficient (ℓ2 regu-
larization) ({0, 10−3} when training with SGD and SGD with Nesterov’s
momentum, and {0, 10−5} when training with Adam). Fully-connected
networks trained on augmented data are trained for 300 epochs to achieve
zero training error, all other networks are trained for 200 epochs. One
epoch corresponds to using each sample in the training dataset exactly
once to compute a gradient update (i.e., mini-batches are sampled without
replacement). As the batch-size in SGD is increased, the stochasticity of
the weight updates decreases and this makes the iterations more suscep-
tible to converging near local minima of the loss function, and thereby
obtain poor test error. It has been noticed empirically that keeping the ratio of the learning rate to batch-size invariant helps
mitigate this deterioration of test error for large batch sizes (17). This has also been argued theoretically via an analysis of
the equilibrium distribution of SGD (18). Therefore, for SGD and SGD with Nesterov’s acceleration, we fixed this ratio to
5 × 10−4, i.e., for a batch size 200, we use a learning rate of 0.1, and increase the learning rate proportionally for larger batch
sizes. For Adam, this ratio was 5 × 10−6, i.e., we used a learning rate of 0.001 for a batch-size of 200. For all experiments, we

4 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/lucidrains/vit-pytorch

decreased the learning rate using a cosine annealing schedule over the course of training, i.e., for all networks the learning rate
decays to zero at the end of training.

Residual networks on ImageNet were trained using SGD with Nesterov’s acceleration for 40 epochs with a batch-size of 1024.
The learning rate was decreased linearly from 0.5. We used a weight decay coefficient of 5 × 10−5; no weight decay was applied
to parameters associated with batch-normalization. To reduce the training time, we used mixed-precision training. We also
used progressive resizing, i.e., we trained on images of size 196 × 196 for the first 34 epochs before using the full-sized images
(224 × 224) for the remaining 6 epochs. We use random horizontal flips and random-resize-crops for data augmentations.
For datasets with a large number of classes such as ImageNet, it helps to use label smoothing (19), we used this with the
smoothing parameter set of 0.9. This amounts to training towards a slightly different truth P∗ where the correct category has
a probability of 0.9 and the remainder 0.1 is distributed uniformly across the other 999 categories (instead of them being zero).

ViT architectures are difficult to train well with SGD, especially on large datasets such as ImageNet. We therefore trained
ViTs on ImageNet using AdamP (20) with a cosine-annealed learning rate schedule and an initial learning rate of 0.001. We
trained for 200 epochs using a batch-size of 1024 and weight decay of 0.01 without any dropout. These networks also require a
more extensive set of data augmentations, we used horizontal flips with probability 0.5, cropping the image to get a patch of
the desired size at a random location (images in ImageNet are not of the same size), and mixup regularization (21) which
uses mini-batches that consist of convex combinations (with a random parameter) of images and ground-truth probability
distributions.

ResNet-18 ResNet-50 ResNet-101
Architecture

10
3

10
2

10
1

10
0

Bh
at

ta
ch

ar
yy

a
di

ve
rg

en
ce

 to
 ig

no
ra

nc
e

ResNet-18 ResNet-50 ResNet-101
Architecture

10
3

10
2

10
1

10
0

Fig. S.2. Bhattacharyya distance from ignorance P0 for networks at
the beginning of training for standard off-the-shelf implementations of
ResNet (left). If we initialize the estimates of the mean and standard
deviation of the batch-normalization layers by doing a forward pass
on a few mini-batches, then networks are close to ignorance at the
beginning of training (right).

Some ImageNet models are not initialized near ignorance P0 We noticed that
some randomly initialized models have a large Bhattacharyya distance
from ignorance P0. For example, the distance between a randomly
initialized ResNet-50 model and ignorance is as much as 0.91 times
the Bhattacharyya distance between ignorance and truth dB(P0, P∗).
We found that this is due to the batch-normalization layer (9) being
incorrectly initialized at the beginning of training. Batch-normalization
subtracts the channel-wise mean of the activations (computed from
samples in a mini-batch) and divides the result by an estimate of the
channel-wise standard deviation of the activations (computed using the
samples in the mini-batch). During training, typical deep learning libraries
such as PyTorch maintain an exponentially moving average of the mean
and standard deviation of activations of mini-batches. And it is these
averaged estimates that are used to compute the output probabilities for
test data. In PyTorch, the mean is initialized to zero and the standard
deviation is initialized to 1. This causes the magnitude of the activations
to be very large in the final few layers at initialization and that is why
the probabilistic model is very far from ignorance at initialization, as
shown in Fig. S.2.

This phenomenon is seen in most popular off-the-shelf implementations of a ResNet, and could also be present in other
architectures. When training in a supervised learning setting, this finding of ours is only marginally relevant because the
estimates of the mean and standard deviation stabilize to reasonable values within 5–10 mini-batch updates. But there are
many sub-fields of machine learning, few-shot learning (22), meta-learning (23) to name some, where the number of mini-batch
updates of a trained model is a key parameter and where our finding has practical relevance. To fix this issue, we can initialize
the batch-normalization mean and variance estimates—easily—by doing a forward pass on a few mini-batches from the training
data before beginning the training. This ensures that the model starts training from near ignorance. When we collected data
from our training trajectories on ImageNet, we did not have this fix. We therefore did not plot the first checkpoint for the
ImageNet experiments in Figs. 2d and 5d.

S.4. Addendum to Methods

S.4.1. InPCA creates an isometric embedding. InPCA, like standard PCA, relies on an embedding directed by the centered
pairwise distances [6]. Observe that the centering in [6] is the same as the centering performed in standard PCA, indeed it
ensures that rows and columns of the pairwise distance matrix W sum to zero. Since InPCA involves pairwise Bhattacharyya
distances, not pairwise Euclidean distances, such a centering is not trivially equivalent to a translation of points in a vector
space. We show next that the embedding created using InPCA is isometric, i.e., it satisfies [7]. The argument developed below
also holds for other embedding techniques, e.g., the IsKL method discussed in [3] that uses the symmetrized Kullback-Leibler
divergence as the distance between probability distributions.

Given a real symmetric matrix D ∈ Rm×m, we can write Dij =
∑

k
UikΛkkUjk where the eigenvalues Λkk ∈ R and columns

of U are the eigenvectors. We can define an “eigen-embedding” of such a matrix:

R ∋ Xik ≡
√

|Λkk|Uik; i, k ≤ m

and a quasi inner-product ⟨a, b⟩D

.=
∑

k
sign(Λkk)akbk for a, b ∈ Rp,m−p, with metric signature (p, m − p) derived from the p

positive eigenvalues of D. The quasi inner-product of the points in an eigen-embedding of a real symmetric matrix D allows us

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari5 of 26

to reconstruct the entries of D:
Dij = ⟨Xi, Xj⟩D . [1]

Now consider a finite symmetric premetric space M = (M, D) with |M | = m points∗. If D is a matrix of pairwise distances
between these points, then it has a vanishing diagonal. The embedding of −D/2 denoted by

{
Xi ∈ Rp,m−p

}m

i=1 satisfies
⟨Xi, Xi⟩−D/2 = −Dii/2 = 0 for any i ≤ m. Now observe that the distance between any Xi and Xj is the squared Minkowski
interval between them, i.e.,∑

k

∥Xik − Xjk∥2
−D/2 = ⟨Xi − Xj , Xi − Xj⟩−D/2 = −(Dii + Djj − 2Dij)/2 = Dij . [2]

In other words, the m points in M can be isometrically embedded in a Minkowski space as the eigen-embedding of −D/2. The
centering operation using a matrix Lij = δij − 1/m which we use to compute W = −LDL/2 ensures that

Wij =
〈
Xi − X, Xj − X

〉
−D/2

where Rp,m−p ∋ X = m−1∑
i
Xi is the mean of the eigen-embedding of −D/2; in other words, the centered pairwise distance

matrix is equal to the cross-covariance matrix in a Minkowski space.

Theorem 1. Given a finite symmetric premetric space M = (M, D) with |M | = m points, if D ∈ Rm×m is the matrix of
pairwise distances between these points, then the eigen-embedding of W = −LDL/2 where Lij = δij − 1/m is the centering
matrix, is isometric to M.

Proof. Let the eigen-embeddings of −D/2 and W be {Xi}m
i=1 and {Yi}m

i=1 respectively. We know that the eigen-embedding of
−D/2 is isometric to M. From [1], we have that ⟨Yi, Yj⟩ = Wij and so ⟨Yi − Yj , Yi − Yj⟩W = Wii + Wjj − 2Wij . Since the
centered pairwise distance matrix is equal to the cross-covariance matrix, we also have Wij =

〈
Xi − X, Xj − X

〉
−D/2 and

therefore

⟨Yi − Yj , Yi − Yj⟩W =
〈
Xi − X, Xi − X

〉
−D/2 +

〈
Xi − X, Xj − X

〉
−D/2 − 2

〈
Xi − X, Xj − X

〉
−D/2

= ⟨Xi − Xj , Xi − Xj⟩−D/2

= Dij .

S.4.2. Relationship between progress and error. Progress is related to the error but they are not the same. Suppose we have a
model P that predicts very confidently, i.e., pn(c) ∈ {0, 1} for all c ∈ {1, . . . , C} and all samples n. The progress of this model
is given by

α∗ = argmin
α∈[0,1]

dG(P, P α
0,∗)

= (1 − ϵ) cos−1
(

sin((1 − α)dn
G)

sin(dn
G) cos(dn

G) + sin(αdn
G)

sin(dn
G)

)
+ ϵ cos−1

(
sin((1 − α)dn

G)
sin(dn

G) cos(dn
G)
)

where ϵ = N−1∑
n

1{argmaxc pn
w(c) ̸= y∗

n} is the fraction of errors made by the model on the N samples and dn
G = cos−1(1/

√
C)

if there are C classes. We can show that if ϵ < 1 − 1/
√

C, then the progress α∗ = 1. This suggests that progress and error are
not directly analogous to each other: models with high progress do not necessarily have small errors. In practice, if the number
of samples N is small and the number of classes is large, then we will find instances of models with high progress and high
error. This is not often the case in our experiments for the training data, but we do see very high progress for some models on
the test data (see Fig. 8).

S.4.3. Emphasizing different models using a weighted embedding. To study the details of the model manifold, we have found
it useful to emphasize certain models in the visualization. There are many works (24–27) that do similar things, e.g., those
that modify the underlying objective of MDS to optimize a weighted Euclidean distance (but this does not do a good job of
preserving pairwise distances between points), or those that learn a set of orthogonal transformations to highlight points of
interest. We can also repeat models while computing InPCA: this shifts the center of mass and,at the same time transforms
the visualization (via rotations and Lorentz boosts). It emphasizes the repeated models in the visualization. However, such a
naive approach is computationally expensive because the size of the distance matrix D increases due to these repetitions.

We present a different approach called weighted-InPCA next. Let D ∈ Rm×m be the matrix of pairwise Bhattacharyya
distances Duv = dB(Pu, Pv) and let µu ∈ N be multiplicity of the model with weights u, i.e., the relative importance that we
would like for it in the visualization. The normalized multiplicities are µ̂u = µu/

∑
v′ µv′ . Weighted-InPCA is a modification of

InPCA. It (a) uses a different centering matrix Luv = δuv − µ̂u, (b) performs an eigen-decomposition of W diag(µ̂u), i.e., each
column of W is multiplied by µ̂u, and (c) then scales back each of the eigenvectors Ui using the expression Ui/

√
U⊤ diag(µ̂)U .

This procedure gives the same embedding as the one obtained by repeating points before calculating standard InPCA and is
also equivalent to the procedure in [9] when the weights µu of the new points are zero.

∗A premetric space satisfies two properties: that the distance between two points is non-negative, and the distance of a point from itself is zero.

6 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

2 4 6 8 10
Dimensions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ex
pl

ai
ne

d
Pa

irw
ise

 D
ist

an
ce

N = 50
N = 500
N = 5000
Original

(a) Train manifold

2 4 6 8 10
Dimensions

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Ex

pl
ai

ne
d

Pa
irw

ise
 D

ist
an

ce

N = 10
N = 100
N = 1000
Original

(b) Test manifold

Fig. S.3. The explained pairwise Bhattacharyya distances (computed using [12]) of the embedding when projected onto the principal components computed using a subset of
the samples in the train and test data. Even for very small values of N , the explained pairwise distance is close to the explained distance of the original embedding computed
from all the samples.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari7 of 26

(a) Train N = 5000 (b) Train N = 500 (c) Train N = 50

(d) Test N = 1000 (e) Test N = 100 (f) Test N = 10

Fig. S.4. Projecting the original probabilistic models and pairwise Bhattacharyya distances computed on all samples into InPCA coordinates created using a distance matrix on
a subset of samples ((a-c) for N = 5000, 500, 50 respectively for the train data and (d-f) for N = 1000, 100, 10 respectively for test data). On the train data, even with as
few as 1% of the samples, these embeddings are qualitatively similar to the original embeddings (Figs. 2a and 5a). For the test data, explained pairwise distances is low
in Fig. S.3b and manifolds are more diffuse.

8 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

S.4.4. Computing pairwise distances in InPCA using only a subset of the samples gives a faithful representation of the train
and test manifolds. We computed the InPCA coordinates using a subset of the samples in the train and test sets to calculate
the pairwise Bhattacharyya distance matrix. Using the procedure in [9], we then embedded the models in the original pairwise
distance matrix computed using all samples into these InPCA coordinates. Figs. S.3 and S.4 show that the explained pairwise
distances by the top three dimensions of these new InPCA embeddings is quite high. This suggests that our visualization
methods could be used effectively, even for large datasets with a large number of samples N , by sub-sampling the data before
computing InPCA.

S.5. Addendum to Results

0.0 0.5 1.0
Progress

0.000

0.005

0.010

0.015

Di
st

an
ce

 to
 m

ea
n

tra
je

ct
or

y

Fig. S.5. Towards the end of training at large values of
progress, models trained with augmentation (orange) have
larger tube widths than models trained without augmentation
(blue), on the train manifold. The corresponding figure for the
test manifold looks similar.

S.5.1. Further analysis of the train trajectories.

Understanding the differences between the trajectories of different configurations Us-
ing the interpolated trajectories, for each configuration, we calculated the
Euclidean mean of the probabilities of the models corresponding to different
weight initializations at the same progress. The distance of the model to such
a configuration-specific mean model gives us an understanding of the “tube
width”, i.e., how different in prediction space models with the same progress but
corresponding to different weight initializations are. Fig. S.6a shows that—for
all configurations, for all values of progress—models are very close to their
respective mean model. The median tube width is about 0.05 in terms of Bhat-
tacharyya distance throughout training; this should be compared to the abscissae
of Fig. 7a where a cut at a distance of 0.05 separates all configurations (except
some AllCNNs, and very few fully-connected and ConvMixer architectures).
The dendrogram in Fig. 7a averages models for the same progress; Figs. S.6a
and S.6b indicate that such averaging is a reasonable thing to do. The test
manifold in Fig. S.6b is similar, except that tube widths increase slightly with
progress. This suggests that networks with different weight initializations train
along very similar trajectories in prediction space.

One can dig deeper into the differences in models caused by weight initial-
ization. Tube widths of different architectures at the same progress are similar
on the train manifold, but there are more pronounced differences on the test manifold. We have found that variations coming
from optimization methods and regularization do not result in large tube widths. In general, towards the end of training, at
large values of progress, models trained with augmentation have larger tube widths than models trained without augmentation,
on both train and test manifolds (Fig. S.5). Training a deep network is a non-convex optimization problem, and as such the
solution depends upon the initialization of weights in a non-trivial way. Each point in the prediction space corresponds to a
large set of weight configurations that lead to this same prediction. Our results therefore suggest that, even if different weight
initializations could lead to different eventual weights for these non-convex optimization problems, the probabilistic models
obtained at the end of training are very similar (they are more similar on the training data than the test data).

We next study the distances of models along the interpolated trajectories to the geodesic. On the train manifold (Fig. S.7a),
all models are very close to the geodesic at the beginning (small progress) and at the end of training (large progress). At
intermediate progress, all trajectories have large distances to the geodesic; as we discussed above this deviation away from the
geodesic could be an indicator of the range of difficulties of learning different samples. Trajectories corresponding to different
architectures and optimization methods are at different distances from the geodesic at intermediate progress. Train trajectories
of AllCNN are closest to the geodesic; there are marked differences between the three optimization algorithms in this case. But
this is not so for other architectures. For test trajectories (Fig. S.7b), the distance to the geodesic is roughly the same, and
larger that that of the train manifold, for all architectures and all values of progress. At large progress, test trajectories of
fully-connected and ViT networks are very far from the geodesic; this is also visible in Fig. 5.

Models initialized at very different parts of the prediction space converge to the truth along a similar manifold. The manifold
in our analysis is the set of probabilistic models explored during the training process; this is a subset of the space of all
probabilistic models (which is the simplex in [0, 1]NC and not low-dimensional). Our manifold is a subset of the manifold of all
probabilistic models that can be expressed by the network {Pw(y⃗) : ∀w} (which is also not expected to be low-dimensional)
because the training process does not explore all parts of the weight space. To understand why our trajectories seem to lie
on effectively low-dimensional manifolds, using CIFAR-10, we created three different tasks by randomly assigning labels to
the images, e.g., each image of a dog is labeled independently as any of the 10 possible classes. This gives us three random
initial models denoted by P

(k)
0 for k ∈ {1, 2, 3}, and we can now train networks to fit these random labels. Both train and test

manifolds of training to such random tasks are effectively low-dimensional. This suggests that the low-dimensionality is not
necessarily due to there being learnable patterns in the labels.

We next performed a second stage of training where networks were initialized to the endpoints of the trajectories to P
(k)
0 for

k ∈ {1, 2, 3} (models do not reach these points exactly during training), and trained on the actual CIFAR-10 task, i.e., to the
actual truth P∗. In this case, we only trained one particular configuration (AllCNN architecture, SGD without Nesterov’s
acceleration, no augmentation or weight-decay) from 10 different weight initializations chosen to be near P

(k)
0 . This two-stage

training procedure also results in effectively low-dimensional train and test manifolds (Figs. S.10a and S.11); the top three

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari9 of 26

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

 to
 m

ea
n

tra
je

ct
or

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.2

0.4

0.6

0.8
Di

st
an

ce
 to

 m
ea

n
tra

je
ct

or
y

(b)

Fig. S.6. A boxplot (horizontal line denotes median, boxes denote 25 percentile, whiskers denote 1.5× the inter-quantile (25–75 percentile) range) of the Bhattacharyya
distance between a model and the Euclidean mean of probabilities of models with the same configuration but obtained from different weight initializations for train (a) and test
(b) trajectories. There are minor differences in tube widths of different configurations and therefore we have not distinguished them here. All tube-widths are quite small, which
indicates that training trajectories whose configurations only differ in weight initializations are tightly clustered together in the prediction space.

10 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

0.0 0.5 1.0
Progress

0.0

0.1

0.2

0.3

Di
st

an
ce

 to
 g

eo
de

sic

(a)

0.0 0.5 1.0
Progress

0.0

0.5

1.0

1.5
Di

st
an

ce
 to

 g
eo

de
sic

Architecture
AllCNN
ConvMixer
Fully Connected
ViT
Small ResNet
Large ResNet
Optimizer
sgdn
adam
sgd

(b)

Fig. S.7. Bhattacharyya distance of models with different configurations to the geodesic at different progress for train (a) and test (b) trajectories.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari11 of 26

(a) (b)

(c) (d)

Fig. S.8. Comparison of two principal components of an InPCA embedding using test data of all models on CIFAR-10 colored by test loss (a), by test error (b), by whether they
are within a Bhattacharyya distance < 0.3 from models marked A, B, and C on the geodesic in (c), and by whether they are within a distance 0.45 from the models marked A–E
in (d). These figures should be studied together with Fig. 5c.

12 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

adam
adam
sgdn
sgdn

sgd
sgd
sgd
sgd

sgdn
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd

adam
adam
adam
adam
adam
adam
sgdn
sgdn
sgdn

sgd
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

sgd
sgd
sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

adam
sgdn

sgd
sgd

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd

adam
adam
adam
adam
adam
adam
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
sgdn

adam
adam
sgdn
sgdn
sgdn
sgdn
sgdn

geodesic
sgd
sgd
sgd

adam
adam
adam

sgd
adam
adam
adam
sgdn

sgd
sgd

adam
sgdn
sgdn

sgd
sgdn
sgdn
sgdn

sgd
sgd

adam
adam
adam
adam

sgd
sgd
sgd

adam
adam
adam
adam

sgd
sgdn

adam
adam
adam
adam
sgdn
sgdn

sgd
sgd
sgd
sgd
sgd

adam
sgdn
sgdn

sgd
sgdn
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
sgdn

500
500
500
500
200
200
500
500

1000
1000
1000
1000

500
500

1000
1000

500
500
200
200
200
200
200
200

1000
1000
1000

500
200
200
500
200
500

1000
1000
1000

200
200
200
200
200
200
200
200
200
200
500

1000
1000

500
500
200
200
200
200
200
200
200
200
200
500
500

1000
500
500

1000
1000

200
200
200
200
200
500
500
200
200
200
500
500

1000
200
200
500
200
200
200
200
200
500
500
500

1000
1000

200
200

1000
500

1000
500
500

1000
500

1000
1000

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

1000
1000

500
500

1000
500
500

1000
1000
1000
1000
1000
1000
1000

500
500
500
500
500
500
500
500
500
500

1000
1000
1000
1000

500
500

1000
na

1000
200
200
200
200
200
500
200
200
200
200
500
200
200
200
200
500

1000
500
500

1000
500
200
200
200
200
200
200
500
500
500
500
500

1000
200

1000
1000
1000
1000
1000
1000
1000

500
200
200
500
200
200
500

1000
500
200
200
200
200
200
500
500
500
500

1000
1000
1000
1000

200
1000

0.00125
0.00125

0.25
0.25

0.1
0.1

0.25
0.25

0.5
0.005
0.005
0.005

0.0025
0.0025
0.0025
0.0025

0.00125
0.00125

0.0005
0.0005

0.001
0.001

0.0005
0.001
0.005

0.5
0.5

0.25
0.1
0.1

0.25
0.1

0.25
0.5
0.5
0.5
0.1
0.1

0.001
0.001
0.001

0.0005
0.0005
0.0005

0.1
0.1

0.25
0.5
0.5

0.25
0.25

0.1
0.1

0.001
0.0005
0.0005
0.0005

0.001
0.001

0.1
0.25
0.25

0.5
0.0025
0.0025
0.0025
0.0025

0.001
0.001

0.0005
0.0005
0.0005

0.00125
0.00125

0.001
0.1
0.1

0.25
0.25

0.5
0.1
0.1

0.25
0.1
0.1
0.1
0.1
0.1

0.25
0.25
0.25

0.5
0.5
0.1
0.1
0.5

0.25
0.5

0.25
0.25

0.5
0.25

0.5
0.5
0.1
0.1
0.1

0.001
0.1
0.1
0.1

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.001
0.001

0.0005
0.0005
0.0005

0.1
0.1
0.5
0.5

0.25
0.25

0.5
0.25
0.25

0.5
0.005
0.005

0.0025
0.0025
0.0025
0.0025

0.25
0.0025
0.0025

0.00125
0.00125
0.00125
0.00125

0.0025
0.0025

0.25
0.005
0.005

0.5
0.5

0.25
0.25

0.5
na

0.5
0.1
0.1

0.0005
0.0005

0.001
0.25

0.0005
0.0005
0.0005

0.1
0.25

0.1
0.0005

0.1
0.1

0.25
0.5

0.25
0.25

0.5
0.25

0.0005
0.0005

0.001
0.001

0.1
0.1

0.25
0.0025

0.00125
0.00125

0.0025
0.5
0.1

0.005
0.0025
0.0025

0.005
0.5
0.5
0.5

0.25
0.1
0.1

0.25
0.0005

0.1
0.25

0.5
0.25

0.1
0.0005
0.0005

0.001
0.001

0.00125
0.00125

0.0025
0.0025
0.0025
0.0025

0.005
0.005
0.001

0.5

1e-05
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001

0.0
1e-05
1e-05

0.0
1e-05

0.0
1e-05

0.0
1e-05

0.0
1e-05
1e-05

0.0
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0

1e-05
1e-05

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001
0.001
1e-05

0.0
1e-05

0.0
0.0
0.0
0.0

0.001
1e-05

0.0
0.0

1e-05
0.0

1e-05
0.001
1e-05

0.0
0.0

1e-05
0.001

0.0
0.001
0.001

0.0
0.0
0.0

0.001
0.001

0.0
0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0
0.0
0.0

0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001

0.0
0.001
1e-05

0.0
0.0

1e-05
0.001
0.001

0.0
1e-05

0.0
1e-05
0.001
0.001

0.0
0.0

0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0

1e-05
1e-05

0.0
1e-05

0.0
0.0
0.0

1e-05
1e-05

0.0
0.0

1e-05
1e-05

0.0
0.0
0.0

1e-05
0.0

0.001
0.001
0.001
0.001

na
0.0

0.001
0.0

1e-05
0.0

0.001
0.001

0.0
1e-05
0.001

0.0
0.0
0.0

0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0
0.0

1e-05
0.0

1e-05
0.0
0.0

0.001
0.001

0.0
0.0

1e-05
1e-05
0.001

0.0
0.0
0.0

1e-05
1e-05

0.0
0.001

0.0
0.0
0.0

0.001
0.001
0.001
0.001
0.001
0.001

0.0
0.0

1e-05
0.0
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.001

0.0

none
none

simple
none
none
none
none
none

simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

simple
none
none
none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none

simple
simple
simple

none
none
none

simple
simple
simple
simple
simple
simple

none
none
none
none
none

simple
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none

simple
simple
simple
simple

none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none

simple
simple
simple

none
simple

none
simple

na
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple

none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

0.0 0.1 0.2 0.3 0.4
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64

allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn

wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn

wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64

wr-10-4-8
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64

wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer

geodesic
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc

Arch Opt BS LR WD Aug

(a)

(b)

0.00 0.02 0.04
Feature Importance

Architecture

Batch Size

Optimizer

Augmentation

Weight Decay

(c)

Fig. S.9. (a): dendrogram obtained from hierarchical clustering of pairwise distances (averaged over weight initializations) between trajectories using distances calculated on
testing samples. X-labels correspond to architecture, optimization algorithm, batch-size, learning rate, weight-decay coefficient and augmentation strategy. Compared to the
equivalent figure on training data Fig. 7a, trajectories still form clear clusters according to architecture, the distances between different trajectories are in general larger on
test data, and the clusters of large and small wide ResNets are less distinguishable. (b) the first two components of an InPCA embedding (without averaging over weight
initializations) of these trajectories, each point is one trajectory; explained stress of top two dimensions is 73.7%. (c) variable importance from a permutation test (p < 10−6)
using a random forest to predict pairwise distances. These three plots suggest that for test data, architecture is still the primary distinguishing factor of trajectories in the
prediction space, and the picture of different trajectories is very similar to those evaluated on training data, even though they appear to have a larger difference in the InPCA
embedding.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari13 of 26

(a)

(b)

Fig. S.10. (a) shows the top three dimensions of an InPCA embedding of some configurations with AllCNN architectures when networks are initialized near ignorance and
trained to truth P∗ (light brown), and when they are first trained to tasks P

(k)
0 for k = 1, 2, 3 with random labels (stream of brown points heading towards these corners) and

then further trained to the truth P∗. Trajectories from random tasks join the original train manifold before heading to truth (black curves in (a) for trajectories that begin at
different random tasks and red in (b) for trajectories corresponding to different weight initializations from the same random task). These trajectories are very different from
geodesics. We have drawn smooth curves denoting trajectories by hand to guide the reader. Note that the trajectories that begin at corners with random labels rejoin the
trajectories that begin from near ignorance quite close to ignorance but along paths

14 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

dimensions explain more than 87% of the stress. It is interesting to note that the networks don’t just forget the wrong labels
before learning the correct ones, trajectories rejoin the original training trajectory at a variety of points before following it to
the truth.

In Fig. S.10b we show the training trajectories to (light red) and from (red) P
(1)
0 , together with the geodesics connecting P0,

P∗ and P
(1)
0 . The geodesic from P

(1)
0 to the truth does not pass near ignorance P0. In fact, a random task P

(k)
0 agrees with

the truth on approximately 1/C of the samples, and the Bhattacharyya distance of the geodesic from P
(k)
0 to the truth is

at least a distance log(C)/(2C) + ((C − 1) log(C/2))/(2C) (≈ 0.83 for C = 10) from ignorance. As a reference, the distance
between training trajectories of two different configurations is about 0.15 in Fig. 7a. Unlike the geodesic from P

(k)
0 , trajectories

from P
(1)
0 come much closer to ignorance; the smallest distance from P0 ranges from 0.1–0.5 for different weight initializations.

There is a large spread in the models near ignorance and trajectories with different weight initializations join along separate
paths (Fig. S.10b). After progress of 0.27 ± 0.15 (which is typically achieved within 3 epochs), most models have a distance of
less than 0.15 from models that began training from ignorance P0. This suggests a remarkable picture for the train manifold:
not only do trajectories that begin near ignorance P0 lie on it, but even if trajectories begin at very different parts of the
prediction space, they still join this manifold before heading to the truth. Conclusions on test data in §S.5.2 are similar.

S.5.2. Further analysis of trajectories on the test data.

Dendrogram and InPCA embedding of test trajectories Fig. S.9 shows a dendrogram, similar to the one in Fig. 7a, obtained from
hierarchical clustering of pairwise distances (averaged over weight initializations) between trajectories using distances calculated
on the test samples. Fig. S.9b shows an InPCA embedding of the test trajectories and Fig. S.9c shows a variable importance
plot using a random-forest to predict the pairwise distances between test trajectories. The conclusions drawn from these plots
on the test data are very similar to those on the train data in Fig. 7 discussed in the main paper.

Characterizing the details of the test manifold We will first study the spread of points away from the test manifold. Con-
sider Fig. S.8a, which shows points in the first two components colored by their distance to truth P∗. Points colored purple
have the smallest distance and the best test loss. This is corroborated by Fig. S.8c where we took three points on the geodesic
and colored models in terms of whether they are within a Bhattacharyya distance of 0.3 from these centers. Points that are
away from the test manifold at early training times are colored yellow in Fig. S.8a; they consequently have high errors (90% in
many cases, colored yellow in Fig. S.8b). We checked that these are the same models that are far from the train manifold near
ignorance P0 (yellow in Fig. 3b). Some (about half) of these models did not reach zero training error, and correspondingly they
also have poor test error.

In Fig. S.8a, we see that there is a large number of models that form a sliver of the manifold near truth P∗; these are
primarily ConvMixer and Large ResNet architectures. Their test errors are < 10% (see Fig. S.8b), and their Bhattacharyya
distance to the truth is < 1. In the train manifold, the spread in the visualization was coming due to InPCA amplifying small
differences in the models, all with zero error, towards the end of training. In the test manifold, these models also have similar
predictions (as seen in Fig. S.8c) but they do not have zero error. InPCA is again identifying differences in the underlying
probabilistic models.

Fig. S.11. Predictions on test set of a subset of AllCNN
models (the same set as in Fig. S.10) trained from ignorance
(light brown) and from three different corners (dark brown).
Networks trained from corners still seem to come close to the
normally trained models mid-training, but they divert from the
main manifold and end at a higher testing error in the later
part of training.

For the same error, models on the test manifold show a large spread
(see Fig. S.8b) as compared to those on the train manifold in Fig. 3c. In
particular, different ConvMixer networks which eventually reach low test errors
predict similarly at intermediate levels of train/test error, not only on the train-
ing data but also on the test data (blue/purple in Fig. S.8c). But fully-connected
networks predict very differently from each other at intermediate errors (error
of, say 0.3–0.4 in Fig. S.8b), i.e., their spread is more pronounced on the test
manifold. This could indicate that architectures with strong inductive biases
(e.g., convolutions) explore a smaller part of the prediction space, even on the
test data. It has implications for theoretical analyses of generalization in deep
learning using ideas such as algorithmic stability.

Using PC2 and PC3, in Fig. S.8d, we chose five specific endpoints, cor-
responding to fully-connected and ViT networks trained with and without
augmentation (B–E), and for comparison, one more endpoint from the trajec-
tory of ConvMixer trained with augmentation (A). We colored models in terms
of whether they lie within a Bhattacharyya distance < 0.45 from their closest
center. Models colored purple are far from all centers. For fully-connected and
ViT networks, models having the same test error can lie in very different parts
of the test manifold. For example, for test error within 0.3–0.4 (see Fig. S.8b)
some models lie on the manifold (e.g., green in Fig. S.8c), some on one branch
(e.g., one of the purple branches or the smaller green branch in Fig. 5c), while
some others can lie on other branches (e.g., other purple branches in Fig. 5c).

Models initialized at very different parts of the prediction space converge to the truth
along a similar manifold For the test data, there is a larger spread in how
models initialized near P

(k)
0 join the main manifold, and also how their end-

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari15 of 26

points are different from endpoints of trajectories that begin near ignorance P0
(see Fig. S.11).

S.5.3. Observations remain consistent with other intensive distances. We can also use other distances in place of the Bhat-
tacharyya distance. For example, the IsKL method (28) uses the symmetrized Kullback-Leibler (KL) divergence to compute
the distances between pairs of points D in [6]

dsKL(Pu, Pv) = 1
N

N∑
n=1

C∑
c=1

(pn
u(c) − pn

v (c)) log
(

pn
u(c)

pn
v (c)

)
. [3]

For exponential families, we can obtain an analytical formula for the IsKL embedding and in this case, the embedding has at
most twice the number of dimensions as the dimensionality of the sufficient statistic (for CIFAR-10, this has 9 × 105 dimensions).
Our models Pu and Pv are vectors that lie on a sphere of radius N (probabilities of each image sum up to 1). We could also
use the geodesic distance on this sphere

√
N cos−1

N∏
n=1

C∑
c=1

√
pu(yn)

√
pv(yn);

but this has poor behavior in high dimensions because points along the trajectory jump abruptly from ignorance to truth.
This is similar to the saturation of the Hellinger distance in high dimensions that is discussed in the main text. Since our
models live on a product space of hyper-spheres (samples in the dataset are independent of each other) we can use the geodesic
distance on the product of spheres instead

dG(Pu, Pv) = 1
N

∑
n

cos−1
∑

c

√
pn

u(c)
√

pn
v (c). [4]

Fig. S.12. The top three dimensions of the IsKL embedding using the train data for
a subset of the models trained on CIFAR-10 (this is the same subset as in Fig. 6a).
The IsKL embedding carries a different kind of information than the InPCA embedding
in Figs. 2a and 5a. Trajectories exhibit a larger spread towards the end of training and
truth P∗ (not seen here) is at infinity. The IsKL embedding emphasizes the differences
among the trajectories towards the end of training.

All the above distances respect the natural Fisher Infor-
mation Metric in probability space. The IsKL, InPCA and
Geodesic embeddings carry different pieces of information
on the structure of the space of probability distributions.
For example, IsKL places truth P∗ infinitely far away, and
it therefore stretches the last part of the training trajecto-
ries in our experiments. This allows us to investigate the
behavior of trajectories towards the end of training in more
detail (although we do not do so in this paper). We have
noticed in smaller-scale experiments that IsKL captures a
slightly higher explained stress in the top three dimensions
that InPCA. The geodesic embedding maps geodesics to
straight lines which may be useful to construct a simpler,
more interpretable, set of coordinates.

Embeddings using standard principal component analysis (PCA)
Our data consists of probability distributions and therefore
a meaningful embedding of such data should seek to preserve
distances between probability distributions. But it is reason-
able to ask how well standard dimensionality reduction and
embedding techniques, e.g., standard principal component
analysis (PCA), can reveal the inherent low-dimensional
structure in the data. For this calculation, we created a
matrix of pairwise distances

Duv = 1
N

∑
n

∑
c

(pn
u(c) − pn

v (c))2

and computed the eigen-decomposition of this matrix (after centering) to get the coordinates. One should note two important
choices here: (a) the Euclidean distance between the probability distributions pn

u(·) and pn
v (·) treats them as standard vectors

in RC , and (b) the averaging over the samples using N−1 ensures that Duv remains non-trivial even for a large number of
samples.

We show an embedding calculated using PCA for the train and test manifolds in Fig. S.13a and Fig. S.13c respectively. In
both cases, an embedding using PCA suggests that the data lies on an effectively low-dimensional manifold, the explained
variance is quite large (91% and 86% in the first three dimensions for train and test manifolds respectively). This is consistent
with the results we have discussed using InPCA in the main text. But because it uses an unusual distance between probability
distributions, PCA distorts the structure of the manifold as compared to InPCA. The salient differences are as follows: (a)
trajectories corresponding to different architectures are very close to each other in Fig. 2a and Fig. 7a but there are marked
differences in these trajectories in Fig. S.13a; (b) the geodesic is far from all trajectories in the original data but this is not so

16 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

(a) (b) (c) (d)

Fig. S.13. The top three dimensions of an embedding obtained using standard PCA for all the networks on CIFAR-10 using train data (a) and the test data (c). The explained
variance in (b,d) for train and test data respectively is very high but the structure of the low-dimensional manifold identified by PCA is very different from that obtained by InPCA
in Figs. 2a and 5a. In particular, although this embedding is low-dimensional it does not respect the natural metric in probability space because the second derivative of the
divergence is not the same Fisher Information Matrix as that of, say, the Bhattacharya distance.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari17 of 26

in the PCA embedding; (c) the cloud of points that lie away from the main manifold, which we have analyzed in Fig. 3, is
not visible in the PCA embedding. For the test manifold, we see some similarities between Figs. 5a and S.13c: (a) there are
multiple branches for fully-connected and ViT networks; and (b) networks that obtain good test error (ConvMixer and Large
ResNet) are closer to the truth. There are also some differences: (a) the geodesic is far from all trajectories in the InPCA
embedding while it is close to the trajectories of the Small ResNet in the PCA embedding; (b) InPCA reveals the fact that
trajectories of AllCNN are closest to the geodesic in terms of the Bhattacharyya distance for both train and test manifolds
(Fig. S.7) but PCA does not show this.

Altogether, while we can corroborate the claim that the trajectories explore an effectively low-dimensional manifold of
predictions on both the train and test data using both methods, PCA distorts the structure of the manifold and conclusions
that one may derive from the embedding are not consistent with those derived from analysis of the trajectories in the original
high-dimensional space. Also, observe that InPCA distinguishes the small differences between the probability distributions
towards the end of training while PCA does not.

S.5.4. Harmonic mean of an ensemble of deep networks has a better test error. We saw previously that a small network with
higher eventual test error trains along the same manifold as that of a large network with lower eventual test error, more slowly.
There is a classical technique that also achieves better test errors, namely ensembling. We therefore investigated whether an
ensemble also exhibits higher progress towards the truth than that of the individual models that constitute the ensemble.

The standard way of building an ensemble in machine learning is to calculate the arithmetic mean of the class probabilities;
this corresponds to the ℓ2 distance in the space of probability distributions. As Table S.1 shows, different distances correspond
to different ways of computing the centroid. We choose five other candidates: (i) the arithmetic mean of the square roots
of the probabilities, which corresponds to the centroid of the Hellinger distance, (ii) the geometric mean, (iii) the harmonic
mean, (iv) the centroid of the Bhattacharyya distance, which can be calculated using an iterative procedure given in (29), and
(v) Jeffrey’s centroid which corresponds to the symmetric KL-divergence which is known in closed-form (30). In Fig. S.14,
for 30 different weight initializations, for both train and test trajectories pertaining to one particular configuration (AllCNN
architecture, trained with SGD without augmentation or weight-decay), we show these different centroids, after the same
number of mini-batch updates for each model.

0.0 0.2 0.4 0.6 0.8 1.0
Index of sorted eigenvalues / total dimension

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
Ei

ge
nv

al
ue

CIFAR
Non-sloppy
Sloppy

Fig. S.15. Eigenvalues of the the input correlation matrix E[xx⊤]
for 32×32 RGB images x in CIFAR-10 (blue), i.e., x ∈ R3072, non-
sloppy synthetic inputs (x ∈ R200) sampled from an isotropic zero-
mean Gaussian (orange) and sloppy synthetic inputs (x ∈ R200)
sampled from a Gaussian distribution with zero mean and covariance
matrix whose eigenvalues decay as λi = 50c exp(−ci) for c = 0.5
(green).

The arithmetic mean lies noticeably outside the manifold in the vi-
sualization for both train and test manifolds. Different centroids have
different trajectories in the embedding. But the harmonic mean (green)
makes the highest progress towards the truth on the test manifold and
also has the lowest test error at the end Fig. S.14b. This suggests that
ensembles that use the harmonic mean of the probabilities to compute
the final model could lead to a slightly better test error.

S.6. Experiments using synthetic data

Datasets We sampled N = 5000 samples for the training set and N =
1000 samples for the test set from a d = 200 dimensional Gaussian
with mean zero and a diagonal covariance Λ = diag(λ1, . . . , λd). We
experimented with two types of data: those sampled from an isotropic
Gaussian (Λ = Id×d) and those sampled from a Gaussian distribution
with a covariance matrix that has eigenvalues that decay linearly on a
logarithmic scale, i.e., λi = 50ce−ci. The latter setup is the so-called
sloppy dataset (31, 32). We can control the sloppiness of the dataset by
choosing different values of c, i.e., larger the value of c, sharper the decay.
We created a 5-class classification problem using labels from a teacher (a
fully-connected network with one hidden layer of width 50). The largest
logit among the 5 logits of the teacher is taken to be the ground-truth
label. We train student networks of different architectures using these
teacher-generated labels using the cross-entropy loss. All networks were
trained with batch-normalization and without dropout.

Neural architectures and training procedure We studied the difference in
training trajectories when networks are trained on data with different
sloppiness. We used two values: c = 0.001 (which is effectively non-sloppy
data) and c = 0.5 (which is sloppy data). We trained 160 different configurations: (1) fully connected networks of one and
two hidden layers (both with a width of 512), (2) training with SGD and SGD with Nesterov’s momentum of coefficient 0.9,
(3) two values of batch-size 200 and 500, (4) two values of the weight decay coefficient {0, 10−5}, and (5) 10 different weight
initializations.

Analysis Train and test manifolds are effectively low-dimensional for both sloppy and non-sloppy data. Fig. S.16a shows how
the explained stress increases in the top few dimensions of the InPCA embedding; it reaches 99% in the first 10 dimensions of an
InPCA embedding. In general, when inputs are sloppy (larger value of c is more sloppy inputs), the explained stress is slightly
lower. We speculate that this is due to the increased difficulty of the underlying optimization problem which makes the details
of the optimization procedure, e.g., the learning rate, important—and thereby leads to a larger spread in the models of different

18 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

Divergence d(p, q) Centroid (p(1), p(2), . . .)∑
n

(pn − qn)2 ∝
∑

k
p

(k)
n Arithmetic mean (AM)∑

n
(√pn − √

qn)2 ∝
∑

k

√
p

(k)
n Sqrt. Arithmetic mean∑

n
(log pn − log qn) ∝ (

∏
k

p
(k)
n)1/N Geometric mean (GM)∑

n
n(p−1

n − q−1
n) ∝ (

∑
k

1/p
(k)
n)−1 Harmonic mean (HM)

− log
(∑

n

√
pn

√
qn

)
Bhattacharyya centroid (29)∑

n
(pn − qn) log(pn/qn) AM/W (eAM/GM) Jeffrey’s centroid (30)

Table S.1. Different divergences and their corresponding centroids. We have showed the formulae for two N-dimensional probability
distributions (pn)n=1,...,N and (qn)n=1,...,N and the centroid of a set of distributions {p(1), p(2), . . . }. The Lambert omega function is
denoted by W (·) and e is Euler’s number.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari19 of 26

0.5 0.1 0.3
PC1

0.2

0.0

0.1

PC
2

AM
GM
HM
Sqrt AM
Bhattacharyya
Jeffrey's

(a)

0.0 0.2 0.4 0.6 0.8
Progress

0.2

0.4

0.6

0.8

Te
st

 E
rro

r

0.7
0.20

0.25

(b)

Fig. S.14. (a): the top two principal components obtained from InPCA for the train data for one particular configuration on CIFAR-10 (AllCNN architecture, trained with SGD
without augmentation or weight-decay). We computed the arithmetic mean (AM), geometric mean (GM), harmonic mean (HM), the arithmetic mean of the square roots of
probabilities appropriately normalized (Sqrt AM), the Bhattacharya centroid and Jeffrey’s centroid for models with the same progress. It is noticeable that different means do
not always lie on the manifold. In particular, the arithmetic mean and the harmonic mean are the farthest away visually. (b): the test error as a function of progress for the
different ways of computing the mean. The test errors are AM (25.0%), GM (20.9%), HM (18.9%), Sqrt AM (22.8%), Bhattacharyya centroid (23.1%), Jeffrey’s centroid (22.7%):
therefore computing the harmonic mean of the probabilities of the models in the ensemble leads to a slightly better test error than computing the arithmetic mean of their
probabilities which is typically done in machine learning.

20 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

configurations. The explained stress on test data is essentially the same. As the embeddings in Fig. S.16 show qualitatively,
when input data is not sloppy, training trajectories show a more clear separation between different training configurations. It is
therefore important to choose the architecture (in this case) when we fit models on non-sloppy data. On the other hand, if
input data is sloppy, choosing the architecture or the parameters of the optimization algorithm carefully is less important. We
noticed that the larger spread of the points in the InPCA embedding towards the end of training near P∗ in Fig. S.16b is
coming from models trained with SGD with Nesterov’s acceleration. A heuristic explanation of this phenomenon, using a
linear regression objective for sloppy vs. non-sloppy data, is that overshoots in the weight space caused by momentum terms in
Nesterov’s acceleration lead to more diverse trajectories if the underlying objective is not isotropic.

We next investigated the effect of initialization. We sample weights of the fully-connected layers from a standard Gaussian
distribution without scaling down the variance like that in the default PyTorch initialization. Due to this, the largest output
probability of the network at initialization is close to 1 (as opposed to close to 0.2 for the standard initialization when there
are 5 classes). Effectively, such models are near the corners of the probability simplex. We sampled 10 such corners and 50
weight initializations using the standard initialization for each corner; this gives 50 different probabilistic models (each, for
two optimization algorithm: SGD and SGD with Nesterov’s acceleration, and two values of weight-decay) near each of the 10
corners to begin training from. We only used a one hidden-layer fully-connected network for training from the corners. These
networks were trained towards the truth P∗ with a fixed batch size (100) and two values of the weight decay coefficient (0 and
10−5). For both sloppy and non-sloppy data, this gives 200 trajectories from each of the 10 corners to be used for analysis.
With the number of trajectories fixed to 200, we performed an InPCA embedding of models along trajectories starting from
different corners, e.g., 200 trajectories from one corner, 100 trajectories each from two corners, 40 trajectories each from 5
corners, etc.

Again, as Figs. S.17a and S.17b show for non-sloppy and sloppy data respectively, the explained stress of an InPCA
embedding of models along these trajectories in the top few dimensions is high. The explained stress captured by the top three
dimensions for sloppy data is higher; this is because trajectories beginning from different corners look very similar in Fig. S.17c
for such data. For non-sloppy data, even if the explained stress is lower in the top three dimensions (the InPCA embedding
in Fig. S.17c shows a clearer separation between trajectories), the explained stress is much higher if the embedding has more
dimensions. This is indicative of the difficulty in optimization for sloppy input data (one can also see a larger spread towards
the end of training in Fig. S.17c for sloppy data).

The initial 200 probability distributions (corresponding to 50 weight initializations, 1 architecture, 2 different optimization
algorithms and 2 different values of weight-decay) do not lie on a low-dimensional manifold, see Fig. S.18a. In fact, the 200
probability distributions corresponding to models at an intermediate point of training (after 0.5% of the total number of epochs)
also do not lie on a low-dimensional manifold, see Fig. S.18b. So it is remarkable that in Fig. S.17, the manifold formed by 200
trajectories across 4 training configurations that begin that these initializations can be embedded into a low-dimensional space
faithfully (dynamics in the prediction space is clearly nonlinear). This is yet another evidence of the effectiveness of InPCA at
plucking out structure in high-dimensional data.

These experiments on synthetic data suggest that, both initialization near ignorance in the prediction space and the spectral
properties of the input data, could be the reason for the low-dimensionality of the train and test manifolds.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari21 of 26

0 20 40
Dimension

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ex
pl

ai
ne

d
st

re
ss

c
0.001
0.1
0.3
0.5
0.8
1.0

(a) (b)

Fig. S.16. (a): the explained stress in the top few dimensions (X-axis) of an InPCA embedding of models along training trajectories when input data are sampled from a
Gaussian distributions with zero mean and covariance matrix whose eigenvalues decay as λi = 50c exp(−ci) for different values of c. For all values of c (small values
indicate that inputs were sampled from a near-isotropic Gaussian and large values indicate that input data were sampled from a Gaussian with a sloppy covariance matrix), the
explained stress is high. (b): the top three dimensions of an InPCA embedding of models along train and test trajectories for synthetic sloppy and non-sloppy input data for two
different architectures (1-hidden-layer fully-connected networks in dark green and 2-hidden-layer fully-connected networks in light green) and multiple training configurations for
each architecture.

22 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

0 20 40
Dimension

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pl

ai
ne

d
st

re
ss

Corners
1
2
5
10

(a) Non-sloppy input data

0 20 40
Dimension

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pl

ai
ne

d
st

re
ss

Corners
1
2
5
10

(b) Sloppy input data (c)

Fig. S.17. (a,b): the explained stress of an InPCA embedding of training trajectories that are initialized at different parts (“corners”) of the prediction space for non-sloppy and
sloppy data respectively. For each setting we have chosen the same number of trajectories, i.e., 200 trajectories for 1 corner, 100 trajectories each from 2 corners etc. (c): the
top three dimensions of an InPCA embedding of models along train trajectories for sloppy and non-sloppy input data; colors indicate trajectories trained from different corners
P

(k)
0 . For sloppy input data, trajectories that begin at different corners quickly converge to the same manifold before heading to the truth P∗, but there is a larger spread in the

points near the truth.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari23 of 26

0 20 40 60
Index of sorted eigenvalues (by magnitude)

10 9

10 7

10 5

10 3

10 1

101

103

Corners
1
10

Data
Sloppy
Nonsloppy

(a)

0 50 100 150 200
Index of sorted eigenvalues (by magnitude)

10 9

10 7

10 5

10 3

10 1

101

103

Corners
1
10

Data
Sloppy
Nonsloppy

(b)

Fig. S.18. (a,b): eigenvalues of the pairwise distance matrix D (see [6]) of InPCA of models trained from corners at the beginning of training and after 0.5% of the training
epochs, respectively. Our goal was to slice the tube of trajectories of networks with different weight initializations corresponding to the same configuration and investigate
the dimensionality of the constituent models in this slice. In both cases, for both sloppy and non-sloppy input data, even if the slice is not low-dimensional the trajectories
themselves in Fig. S.17 are effectively low-dimensional.

24 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

References

1. Christopher M Bishop et al. Neural Networks for Pattern Recognition. 1995.
2. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.
3. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.
4. Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for Simplicity: The All

Convolutional Net. arXiv:1412.6806 [cs], April 2015.
5. Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference 2016, 2016.
6. Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.
7. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa

Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021.

8. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way
to prevent neural networks from overfitting. JMLR, 15(1):1929–1958, 2014.

9. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In International Conference on Machine Learning, pages 448–456, 2015.

10. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv:1607.06450 [cs, stat], July 2016.
11. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
12. Richard Zhang. Making convolutional networks shift-invariant again. In International conference on machine learning,

pages 7324–7334. PMLR, 2019.
13. Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through attention. In International conference on machine learning, pages
10347–10357. PMLR, 2021.

14. Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander Madry. ffcv. https:
//github.com/libffcv/ffcv/, 2022.

15. Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.
16. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference for Learning

Representations, 2015.
17. Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing

Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.
18. Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges to limit cycles

for deep networks. In Proc. of International Conference of Learning and Representations (ICLR), 2018.
19. Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image classification with

convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 558–567, 2019.

20. Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and
Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers on scale-invariant weights. In International
Conference on Learning Representations (ICLR), 2021.

21. Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017.

22. Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for few-shot image classification.
In Proc. of International Conference of Learning and Representations (ICLR), 2020.

23. Sebastian Thrun and Lorien Pratt. Learning to Learn. 2012.
24. Nhat Vo, Duc Vo, SungYoung Lee, and Subhash Challa. Weighted nonmetric MDS for sensor localization. In 2008

International Conference on Advanced Technologies for Communications, pages 391–394. IEEE, 2008.
25. K Ruben Gabriel and Shmuel Zamir. Lower rank approximation of matrices by least squares with any choice of weights.

Technometrics, 21(4):489–498, 1979.
26. Michael Greenacre. Weighted metric multidimensional scaling. In New Developments in Classification and Data Analysis:

Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society,
University of Bologna, September 22–24, 2003, pages 141–149. Springer, 2005.

27. Ludovic Delchambre. Weighted principal component analysis: a weighted covariance eigendecomposition approach. Monthly
Notices of the Royal Astronomical Society, 446(4):3545–3555, 2015.

28. Han Kheng Teoh, Katherine N. Quinn, Jaron Kent-Dobias, Colin B. Clement, Qingyang Xu, and James P. Sethna.
Visualizing probabilistic models in Minkowski space with intensive symmetrized Kullback-Leibler embedding. Physical
Review Research, 2(3):033221, August 2020. ISSN 2643-1564.

29. Frank Nielsen and Sylvain Boltz. The burbea-rao and bhattacharyya centroids. IEEE Transactions on Information Theory,
57(8):5455–5466, 2011.

30. Frank Nielsen. Jeffreys centroids: A closed-form expression for positive histograms and a guaranteed tight approximation
for frequency histograms. IEEE Signal Processing Letters, 20(7):657–660, 2013.

31. Rubing Yang, Jialin Mao, and Pratik Chaudhari. Does the data induce capacity control in deep learning? In Proc. of

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari25 of 26

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/
https://github.com/rwightman/pytorch-image-models

International Conference of Machine Learning (ICML), 2022.
32. Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. The geometry of nonlinear least squares with applications

to sloppy models and optimization. Physical Review E, 83(3):036701, March 2011. ISSN 1539-3755, 1550-2376.

26 of 26Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari

	Notation
	Derivation of the joint probability of predictions and the Bhattacharyya distance
	Details of the experimental setup
	Addendum to Methods
	InPCA creates an isometric embedding
	Relationship between progress and error
	Emphasizing different models using a weighted embedding
	Computing pairwise distances in InPCA using only a subset of the samples gives a faithful representation of the train and test manifolds

	Addendum to Results
	Further analysis of the train trajectories
	Further analysis of trajectories on the test data
	Observations remain consistent with other intensive distances
	Harmonic mean of an ensemble of deep networks has a better test error

	Experiments using synthetic data

