
INFORMATION GEOMETRY FOR NONLIENAR
LEAST-SQUARES DATA FITTING AND NUMERICAL

CALCULATION OF THE SUPERCONDUCTING
SUPERHEATING FIELD

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mark K. Transtrum

August 2011

c© 2011 Mark K. Transtrum

ALL RIGHTS RESERVED

INFORMATION GEOMETRY FOR NONLIENAR LEAST-SQUARES DATA

FITTING AND NUMERICAL CALCULATION OF THE

SUPERCONDUCTING SUPERHEATING FIELD

Mark K. Transtrum, Ph.D.

Cornell University 2011

This thesis consist of two parts, each of which consist of two chapters. First we ex-

plore the information geometric properties of least squares data fitting, particularly

for so-called “sloppy” models. Second we describe a calculation of the supercon-

ducting superheating field, relevant for advancing gradients in particle accelerator

resonance cavities.

Parameter estimation by nonlinear least squares minimization is a ubiquitous

problem that has an elegant geometric interpretation: all possible parameter values

induce a manifold embedded within the space of data. The minimization problem

is then to find the point on the manifold closest to the data. By interpreting

nonlinear models as a generalized interpolation scheme, we find that the manifolds

of many models, known as sloppy models, have boundaries and that their widths

form a hierarchy. We describe this universal structure as a hyper-ribbon. The

hyper-ribbon structure explains many of the difficulties associated with fitting

nonlinear models and suggests improvements to standard algorithms. We add a

“geodesic acceleration" correction to the standard Levenberg-Marquardt algorithm

and observe a dramatic increase in success rate and convergence speed on many

fitting problems.

We study the superheating field of a bulk superconductor within the Ginzburg-

Landau, which is valid only near Tc, and Eilenberger theory, which is valid at

all temperatures. We calculate as functions of both the Ginzburg-Landau pa-

rameter κ and reduced temperature t = T/Tc the superheating field Hsh and the

critical momentum kc describing the wavelength of the unstable perturbations to

flux penetration. By mapping the two-dimensional linear stability theory into a

one-dimensional eigenfunction problem for a linear operator, we solve the problem

numerically. Within the Ginzburg-Landau theory, We demonstrate agreement be-

tween the numerics and analytics, and show convergence to the known results at

both small and large κ. Within the Eilenberger theory we demonstrate agreement

with the results of Ginzburg-Landau theory near Tc, but find discrepancies with

the temperature-dependent results for large κ. We speculate that this discrepancy

is due to a lack of convergence at low temperatures due to small length scales of

the perturbations analogous to the small length scales associated with the vortex

cores of the mixed state.

BIOGRAPHICAL SKETCH

The author was born and raised in a small town in Southeastern Idaho, before

moving to Pinedale, Wyoming during High School. He attended a year of school

at Brigham Young University in Provo, Utah before spending two years in the

area around Rome, Italy serving a mission for the Church of Jesus Christ of Latter

Day Saints. Upon returning to BYU, he received a BS with a double major in

Physics and Mathematics. While in Provo, he married his wife Jenny, who then

accompanied him to Ithaca where he has pursued graduate studies in Physics.

Upon graduating, Mark and Jenny, now joined by their one-year-old daughter

Camilla, will move to Houston, Texas where Mark will study modeling of complex

biological systems at M. D. Anderson Cancer Center.

iii

To my beautiful wife, who agreed to follow me to Ithaca. The road has indeed

been long.

iv

ACKNOWLEDGEMENTS

It is my personal belief that all science should begin with an acknowledgement of

the intellectual predessors upon which the current work is built. I am therefore

happy to first acknowledge my indebtedness to the many colleagues and students

of my advisor, Jim Sethna, who have thought about Sloppy Models over the last

decade. The list must include Chris Myers, Kevin Brown, Josh Waterfall, Ryan

Gutenkunst, and Bryan Daniels to name a few.

I would also like to acknowledge the contribution of my own colleagues and

coauthors. Ben Machta, whose insights into the sloppy model geometry and al-

gorithm development were very helpful, and Gianluigi Catelani, whose help in

understanding Eilenberger theory was crucial, each deserve due recognition. Many

others have offered helpful suggestions and guidance; I would be remiss not to

mention Saul Teukolsky, Georg Hoffstaetter, Cyrus Umrigar, and the other mem-

bers of the Sethna group, all of whom have provided help feedback and made work

exciting and enjoyable.

Of course my advisor Jim Sethna deserves much credit. His guidance and direc-

tion at several critical moments were crucial. In addition he has taught me more

about doing science that I could ever describe here, and much that I probably don’t

yet realize. His obvious enjoyment in solving a challenging problem is contagious

and has made that last few years a lot of fun.

Finally but most importantly, I would like to acknowledge my family, partic-

ularly my wife, to whom I dedicate this thesis, and my daughter Camilla, whose

love and support I value immensely. Thank you.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Introduction to Sloppy Models . 1
1.2 Least squares fitting algorithms . 4
1.3 Introduction to superconducting cavities 6

2 Geometry of nonlinear least squares with applications to sloppy
models and optimization 8
2.1 Abstract . 8
2.2 Introduction . 9
2.3 The Model Manifold . 13
2.4 Bounded Manifolds . 26
2.5 The Model Graph . 38
2.6 Priors . 44
2.7 Extended Geodesic Coordinates . 52
2.8 Curvature . 58

2.8.1 Intrinsic (Riemann) Curvature 61
2.8.2 Extrinsic Curvature . 62
2.8.3 Parameter-effects Curvature 69
2.8.4 Curvature in Sloppy Models 73
2.8.5 Curvature on the Model Graph 81
2.8.6 Optimization Curvature . 84
2.8.7 Curvature and parameter evaporation 88

2.9 Applications to Algorithmics . 92
2.9.1 Modified Gauss-Newton Method 94
2.9.2 Levenberg-Marquardt Algorithm 96
2.9.3 Delayed Gratification . 99
2.9.4 Geodesic Acceleration . 104
2.9.5 Algorithm Comparisons . 110

2.10 Conclusions . 113

3 Improvements to the Levenberg-Marquardt algorithm 116
3.1 Abstract . 116
3.2 Introduction . 116
3.3 Geometric Motivations . 121
3.4 The Levenberg-Marquardt algorithm 124

vi

3.4.1 Choosing the damping parameter 125
3.4.2 Parameter space metric . 131
3.4.3 Convergence Criteria . 133

3.5 Geodesic Acceleration . 135
3.6 Uphill steps . 142
3.7 Updating the Jacobian Matrix . 146
3.8 Conclusion . 154

4 Superheating field of superconductors within Ginzburg-Landau
theory 158
4.1 Abstract . 158
4.2 Introduction . 158
4.3 Ginzburg-Landau theory and stability analysis 162
4.4 Numerical Results . 166
4.5 Summary and outlook . 174

5 Superheating field of superconductors within Eilenberger theory176
5.1 Abstract . 176
5.2 Introduction . 176
5.3 Eilenberger equations . 179
5.4 Numerical Methods . 181
5.5 Results . 189

5.5.1 Small κ . 193
5.5.2 Large κ . 195
5.5.3 Convergence . 196

5.6 Comparison with experiments . 201
5.7 Conclusions . 203

A Appendices to chapter 2 205
A.1 Information Geometry . 205
A.2 Algorithms . 209

B Appendix to Chapter 3 212
B.1 Test Problems . 212

C Appendices to chapter 4 222
C.1 Order parameter and vector potential in the large κ limit 222
C.2 Superheating field in the large-κ limit 224

Bibliography 229

vii

LIST OF TABLES

2.1 Fraction of nonevaporated parameters 92
2.2 Algorithm performance on an exponential model 111

3.1 Cost and arc-length function for the bold method 145

viii

LIST OF FIGURES

2.1 Fitting a nonlinear function to data 14
2.2 Sloppy Eigenvalues . 17
2.3 Skewed Coordinates . 25
2.4 Hyper-ribbon . 27
2.5 Interpolating function . 29
2.6 Cross-sectional widths . 33
2.7 Gradient and Newtonian directions in data and parameter space . 39
2.8 The Model Graph . 43
2.9 Gradient and Newtonian directions in parameter space 45
2.10 Algorithm performance with priors 51
2.11 Geodesic Coordinates . 55
2.12 Cost contours in geodesic coordiantes 59
2.13 Intrinsic curvature . 63
2.14 Ruled surface . 64
2.15 Geodesic Curvature . 66
2.16 Shape operator . 68
2.17 Parameter effects curvature . 71
2.18 Model manifold cross sections . 77
2.19 Curvatures and widths on the model manifold 78
2.20 Curvature anisotropy on the model manifold 79
2.21 Caricature of the model manifold 82
2.22 Curvature on the model graph . 83
2.23 Curvature and algorithm step size 87
2.24 Probability of best fit lying on the boundary 89
2.25 Geodesics of the Rosenbrock function 101
2.26 Delayed gratification and greedy steps 103
2.27 Geodesic acceleration in the Rosenbrock Valley 106
2.28 Effect of damping on geodesic acceleration 107
2.29 Algorithm performance on the Rosenbrock function 112

3.1 Cost contours in parameter space 118
3.2 Cost contours in geodesic coordinates 122
3.3 Relative success rates . 127
3.4 Relative Fit Qualit . 128
3.5 Relative inverse NJEV . 129
3.6 Eigenvalues for problem C . 130
3.7 Geodesic acceleration in a canyon 137
3.8 Performance of the geodesic acceleration algorithm 141
3.9 Performance of the bold method 147
3.10 Performance of geodesic acceleration and bold 148
3.11 Performance using Broyden’s update 152
3.12 Performance using acceleration, bold, and Broyden’s update 153

ix

3.13 Summary of algorithms’ performances 156

4.1 Solving for the 1-D Ginzburg-Landau superheating field 168
4.2 Numerical Hsh and analytical approximation 169
4.3 Critical momentum vs. κ . 170
4.4 Profile of the order parameter at Hsh 171
4.5 Profile of the critical perturbation 172
4.6 Critical momentum and Abrikosov vortex spacing 173

5.1 Piecewise cubic hermite interpolating polynomials 182
5.2 Penetration depth λ vs. T . 190
5.3 Thermodynamic critical field vs. T 191
5.4 Superconducting coherence length ξ vs. T 192
5.5 Ginzburg Landau parameter κ(T) vs. T 193
5.6 Zero-field order parameter ∆0 vs. T 194
5.7 Unconverged superheating field for moderate κ per Hc 195
5.8 Unconverged superheating field for moderate κ 196
5.9 Unconverged superheating field of niobium vs. T 197
5.10 Unconverged critial κ vs. T . 198
5.11 Unconverged superheating field for large κ 199
5.12 Unconverged critical momentum kc for large κ 200
5.13 Experimentally measured superheating field 202

B.1 Success rate of several algorithms 217
B.2 Fit quality for several algorithms 219
B.3 Inverse NJEV for various algorithms 221

x

CHAPTER 1

INTRODUCTION

This thesis focuses on two very different topics. First, we consider the infor-

mation geometric properties of nonlinear least squares data fitting, particularly

the properties of so-called “sloppy” models. We use these geometric ideas to not

only understand properties of nonlinaer models, but to also inspire algorithms for

finding best fits. Second we study the metastability of the superconducting Meiss-

ner state in an external magnetic field, relevant for the advancing the accelerating

gradients in superconducting rf resonance cavities. In this chapter we give a brief

introduction to each of these topics.

1.1 Introduction to Sloppy Models

Inferring unknown model parameters from data can be a challenging problem when

there are more than a few parameters. A typical approach is to construct a least

squares cost function quantifying the deviation of model predictions from exper-

iment which is then minimized. The resulting best fit parameters represent the

most likely parameter values, in a maximum likelihood sense, assuming that the

errors are Gaussian distributed. In the quadratic approximation, the correlation

matrix of parameter uncertainties is then given by the inverse Fisher information

matrix. This matrix is usually very ill conditioned, implying that some parameter

combinations are very poorly constrained by the data. The ill-posed nature of this

inverse problem is the hallmark feature of sloppy models.

Although large inverse problems of this sort have been observed to be ill-posed

for some time, only recently has a systematic study of the origin of this phenomenon

1

been undertaken. In the context of systems biology, where differential equation

models involving large numbers of reaction parameters and relatively little data

makes parameter inference nearly impossible, it was observed that not only was

the Fisher information horribly ill-conditioned, but that its the eigenvalues had a

peculiar structure. In particular, the eigenvalues were nearly evenly spaced on a log

scale[18], implying that not only were some parameter combinations unconstrained,

but that parameter combinations were constrained in a hierarchical manner, with

each combination allowed to fluctuate by roughly a constant factor more than the

previous.

The peculiar eigenvalue structure of the model in reference [18] was later shown

to be shared by many other systems biology models[48]. The general insensitivity

of model behavior to specific parameter values has interesting consequences for bi-

ology, such as robustness and evolvability[30]; however, the properties of sloppiness

are not unique to biological problems. Sloppiness is also observed in models of par-

ticle accelerators, interatomic potentials, insect flight, variational quantum wave

functions, scaling functions of critical phenomenon, and artificial neural networks.

The ubiquity of the phenomenon of sloppiness is puzzling. On the one hand,

the observation of sloppiness in so many diverse contexts suggests some sort of

universality. Indeed, the Fisher information matrices of a class of sloppy models can

be shown to belong to a universal ensemble. This matrix class is characterized by

the Vandermonde matrix which is responsible for the peculiar sloppy spectrum[99].

Why a Vandermonde matrix would arise in each context is still puzzling. There

are no shortages of possible explanations for sloppiness: over parameterizations,

insufficient data, permutation invariance, reaction saturation, etc., but no single

explanation is sufficiently broad to explain all the observed instances. Perhaps

2

sloppiness has many causes that each result in the same eigenvalue structure.

On the other hand, the eigenvalues of the Fisher information are dependent

on how the model has been parameterized, suggesting that sloppiness cannot be

anything more than bad parameterization. In each case, one could argue, that

if the modeler had been sufficiently clever to choose a more natural parameteri-

zation (from a phenomenological point of view) that sloppiness would never have

been observed. In this regard, the universality of sloppiness appears to be a con-

sequence of the psychological preference for humans to choose parameter ill-suited

to describing model behavior, rather than any mathematical reason.

The work presented in chapter 2 seeks to resolve this dilemma by approaching

the problem from an information geometric viewpoint. In this approach, models

are associated with geometric manifolds with parameters as coordinates. We then

search for geometric properties of sloppiness, independent of the parameterization.

If any universal properties exist for sloppy model manifolds then we can under-

stand that sloppiness implies something about the model itself and not just its

parameterization. Furthermore, the hope is that such an investigation may re-

veal some connection among the various disparate models from which sloppiness

emerges. Are variation quantum wave functions statistically similar to systems

biology models for any deep reason, or merely by coincidence?

We find that several geometric properties exist common to many sloppy models.

Specifically, sloppy models are bounded with a hierarchy of widths. This hierarchy

of widths is closely related to the hierarchy of eigenvalues of the Fisher information:

large eigenvalues correspond to long directions on the manifold. Furthermore,

there is a hierarchy of curvatures and parameter-effects curvatures as well. These

hierarchies can each be explained by a simple picture that unites sloppy models

3

from the disparate fields. We view models as a type of generalized interpolation

scheme. Whenever there are more parameters than effective degrees of freedom

in the model, then the hierarchy of model widths and curvatures will arise. The

current picture is that whether the model is describing a particle accelerator or

insect flight, the mechanics of the modeling is the same: a function is constructed to

interpolate between observed observations. One usually understand that a model

is useful because of its ability to make predictions for new experiments. However,

a model is not always able to predict an outcome with a desired uncertainty. By

understanding models as a generalized interpolation scheme, we can understand

that uncertainties in predictions become small when a model is interpolating in

a high-dimensional space, but that uncertainties become large when the model is

required to extrapolate.

1.2 Least squares fitting algorithms

In addition to providing insight about the nature of nonlinear modeling, the infor-

mation geometry picture provides motivation into the practical difficulties associ-

ated with finding fits. Most fitting algorithms suffer from parameter evaporation,

in which parameters are quickly pushed to extreme values, causing the algorithm

to get lost on plateaus in parameter space. This phenomenon is caused by the nar-

row widths of the model manifold, and parameter evaporation can be understood

geometrically as the algorithm running into the model boundary. Furthermore,

even when the algorithms avoid the boundaries, they become sluggish as they

must follow the narrow canyon to the best fit.

The most common algorithm for least squares data fitting is the Levenberg-

4

Marquardt algorithm, which is in turn based upon the Gauss-Newton algorithm.

The Gauss-Newton method is an iterative quasi-Newton algorithm based on a lo-

cal linearization of the residuals. The Gauss-Newton method suffers terribly from

parameter evaporation, although it converges very quickly if the starting point

is sufficiently near the best fit. In chapter 2 we present a new interpretatoin

of the Gauss-Newton method in terms of geodesic flow on the model manifold.

The Levenberg-Marquardt damps the Gauss-Newton step in such a way to effec-

tively interpolate between the Gauss-Newton step and gradient descent. By an

appropriately chosen damping strategy, the Levenberg-Marquardt is able to more

effectively avoid parameter evaporation while retaining the fast convergence of the

Gauss-Newton method. The Levenberg-Marquardt algorithm also has a geometric

interpretation in terms of geodesic flow on the model graph.

Although the Levenberg-Marquardt method is far superior to the Gauss-

Newton method, it still struggles to find good fits, particularly on large, sloppy

problems. It can also become very sluggish if it must navigate a narrow canyon

to find a best fit. To remedy these problems we discuss several geometrically mo-

tivated improvements to the Levenberg-Marquardt algorithm in chapter 3. Most

notably, we introduce a geodesic acceleration correction to the usual Levenberg-

Marquardt step. The geodesic acceleration proves very useful for improving both

the quality of fits found and the speed of the algorithm for converging. It is also

noteworthy that geodesic acceleration is relatively inexpensive to compute, making

it very competitive as a replacement for the Levenberg-Marquardt algorithm.

5

1.3 Introduction to superconducting cavities

In the construction of particle accelerators, resonance cavities are constructed in

which a resonating electric field is set up to accelerate particles. In order to reduce

resistive losses, the cavities are made of superconducting material. Although the

DC resistivity of a superconductor is zero, the AC resistivity relevant for the reso-

nance cavities is nonzero, although it is still very small. Because of this very small

resistance, the cavities have very high quality factors, Q, typically larger than 1010.

Superconductivity is, therefore, a critical component of the cavities.

One of the limiting factors that determines the maximum accelerating field

is the response of the superconductor to the induced magnetic field. One of the

hallmark features of superconductivity is the Meissner effect, in which a bulk su-

perconducting material expels an externally applied magnetic field. If the applied

magnetic field is sufficiently large, however, superconductor quenches and magnetic

flux penetrates the material. When this occurs in the superconducting cavity, the

cavity becomes ineffective. The work in chapters 4 and 5 seeks to provide a reliable

estimate of the magnetic field strength at which this transition occurs.

The nature of the transition when flux first penetrates the superconductor

is theoretically interesting since it need not occur at the point where the nor-

mal metal or flux-lattice states are energetically favorable. The superconducting

Meissner state, it turns out, is metastable to the penetration of flux up to a critical

magnetic field known as the superheating field Hsh. Solving for the threshold at

which the barrier to flux penetration vanishes requires a calculation of not only the

configuration of the superconducting state, but additionally the second variation

of the free energy to explore the state’s stability to various perturbations. The

calculation is further complicated by the fact that for type-II superconductors, the

6

leading unstable modes break the translational invariance of the superconducting

state.

In chapter 4, we calculate the superheating field within Ginzburg-Landau the-

ory. There we show that the two-dimensional fluctuations to which the supercon-

ducting state is unstable can be decomposed into Fourier modes which decouple

from one another. We then map the stability problem onto an eigenvalue problem

of a linear differential operator. Using this technique we are able to find the super-

heating field by solving only ordinary differential equations (no partial differential

equations are necessary).

The results of 4 are not particularly relevant to the accelerator community

because the predictions made by Ginzburg-Landau theory are quantitatively accu-

rate only near the critical temperature, far from the temperature at which cavities

are actually operated. We generalize the calculation to the semi-classical theory

of Eilenberger in chapter 5. The relative complexity of the of the calculation in

Eilenberger theory requires the use of more sophisticated numerical techniques,

in particular we use a Galerkin method to map the stability analysis to a matrix

eigenvalue problem. However, the basic approach is qualitatively the same as for

the Ginzburg-Landau case. The results presented in chapter 5 are not converged

and require additional computer resources to give accurate results.

7

CHAPTER 2

GEOMETRY OF NONLINEAR LEAST SQUARES WITH

APPLICATIONS TO SLOPPY MODELS AND OPTIMIZATION

2.1 Abstract1

Parameter estimation by nonlinear least squares minimization is a common prob-

lem that has an elegant geometric interpretation: the possible parameter values of

a model induce a manifold within the space of data predictions. The minimization

problem is then to find the point on the manifold closest to the experimental data.

We show that the model manifolds of a large class of models, known as sloppy

models, have many universal features; they are characterized by a geometric se-

ries of widths, extrinsic curvatures, and parameter-effects curvatures, which we

describe as a hyper-ribbon. A number of common difficulties in optimizing least

squares problems are due to this common geometric structure. First, algorithms

tend to run into the boundaries of the model manifold, causing parameters to di-

verge or become unphysical before they have been optimized. We introduce the

model graph as an extension of the model manifold to remedy this problem. We

argue that appropriate priors can remove the boundaries and further improve the

convergence rates. We show that typical fits will have many evaporated parame-

ters unless the data are very accurately known. Second, ‘bare’ model parameters

are usually ill-suited to describing model behavior; cost contours in parameter

space tend to form hierarchies of plateaus and long narrow canyons. Geometri-

cally, we understand this inconvenient parameterization as an extremely skewed

coordinate basis and show that it induces a large parameter-effects curvature on
1This chapter has been published in Physical Review E with couathors Benjamin B. Machta

and James P. Sethna.

8

the manifold. By constructing alternative coordinates based on geodesic motion,

we show that these long narrow canyons are transformed in many cases into a

single quadratic, isotropic basin. We interpret the modified Gauss-Newton and

Levenberg-Marquardt fitting algorithms as an Euler approximation to geodesic

motion in these natural coordinates on the model manifold and the model graph

respectively. By adding a geodesic acceleration adjustment to these algorithms, we

alleviate the difficulties from parameter-effects curvature, improving both efficiency

and success rates at finding good fits.

2.2 Introduction

An ubiquitous problem in mathematical modeling involves estimating parame-

ter values from observational data. One of the most common approaches to the

problem is to minimize a sum of squares of the deviations of predictions from ob-

servations. A typical problem may be stated as follows: given a regressor variable,

t, sampled at a set of points {tm} with observed behavior {ym} and uncertainty

{σm}, what values of the parameters, θ, in some model f(t, θ), best reproduce or

explain the observed behavior? This optimal value of the parameters is known as

the best fit.

To quantify how good a fit is, the standard approach is to assume that the data

can be reproduced from the model plus a stochastic term that accounts for any

discrepancies. That is to say

ym = f(tm, θ) + ζm,

where ζm are random variables assumed to be independently distributed according

9

to N (0, σm). Written another way, the residuals given by

rm(θ) =
ym − f(tm, θ)

σm
, (2.1)

are random variables that are independently, normally distributed with zero mean

and unit variance. The probability distribution function of the residuals is then

P (~r, θ) =
1

(2π)M/2
exp

(
−1

2

M∑
m=1

rm(θ)2

)
, (2.2)

whereM is the number of residuals. The stochastic part of the residuals is assumed

to enter through its dependence on the observed data, while the parameter depen-

dence enters through the model. This distinction implies that while the residuals

are random variables, the matrix of derivatives of the residuals with respect to the

parameters is not. We represent this Jacobian matrix by Jmµ:

Jmµ = ∂µrm.

In this paper, we employ the convention that Greek letters index parameters, while

Latin letters index data points, model points, and residuals.

For a given set of observations {ym}, the distribution in Eq. (2.2) is a likelihood

function, with the most likely, or best fit, parameters being those that minimize

the cost function, C, defined by

C(θ) =
1

2

∑
m

rm(θ)2, (2.3)

which is a sum of squares. Therefore, if the noise is Gaussian (normally) dis-

tributed, minimizing a sum of squares is equivalent to a maximum likelihood esti-

mation.

If the model happens to be linear in the parameters it is a linear least squares

problem and the best fit values of the parameters can be expressed analytically in

10

terms of the observed data and the Jacobian. If, however, the model is nonlinear,

the best fit cannot be found so easily. In fact, finding the best fit of a nonlinear

problem can be a very difficult task, notwithstanding the many algorithms that

are designed for this specific purpose.

For example, a nonlinear least squares problem may have many local minima.

Any search algorithm that is purely local will at best converge to a local minima

and fail to find the global best fit. The natural solution is to employ a search

method designed to find a global minima, such as a genetic algorithm or simulated

annealing. We will not address such topics in this paper, although the geometric

framework that we develop could be applied to such methods. We find, surprisingly,

that most fitting problems do not have many local minima. Instead, we find a

universality of cost landscapes, as we discuss later in section 2.4, consisting of only

one, or perhaps very few, minima.

Instead of difficulties from local minima, the best fit of a nonlinear least squares

problem is difficult to find because of sloppiness, particularly if the model has many

parameters. Sloppiness is the property that the behavior of the model responds

very strongly to only a few combinations of parameters, known as stiff parameter

combinations, and very weakly to all other combinations of parameters, which are

known as sloppy parameter combinations. Although the sloppy model framework

has been developed in the context of systems biology [19, 18, 22, 30, 47, 48, 46],

models from many diverse fields have been shown to lie within the sloppy model

universality class [99].

In this paper we present the geometric framework for studying nonlinear least

squares models. This approach has a long, interesting history, originating with

Jeffreys in 1939 [56], and later continued by Rao [84, 85] and many others [3, 75].

11

An equivalent, alternative formulation began with Beale in 1960 [13], and continued

with the work of Bates and Watts [9, 10, 8, 12] and others [29, 28, 27]. The authors

have used this geometric approach previously to explain the extreme difficulty of

the data fitting process [94]; of which this work is a continuation.

In section 2.3 we present a review of the phenomenon of sloppiness and describes

the model manifold, i.e. the geometric interpretation of a least squares model.

The geometric picture naturally illustrates two major difficulties that arise when

optimizing sloppy models. First, parameters tend to diverge or drift to unphysical

values, geometrically corresponding to running off the edge of the manifold, as

we describe in section 2.4. This is a consequence of the model manifold having

boundaries that give it the shape of a curving hyper-ribbon in residual space with

a geometric hierarchy of widths and curvatures. We show, in section 2.5 that

the model graph, the surface formed by plotting the residual output versus the

parameters, can help to remove the boundaries and improve the fitting process.

Generalizing the model graph suggests the use of priors as additional residuals, as

we do in section 2.6. We see there that the natural scales of the experiment can

be a guide to adding priors to the cost function that can significantly improve the

convergence rate.

The second difficulty is that the model’s ‘bare’ parameters are often a poor

coordinate choice for the manifold. In section 2.7 we construct new coordinates,

which we call extended geodesic coordinates. The coordinates remove the effects of

the bad coordinates all the way to the edge of the manifold. The degree to which

extended geodesic coordinates are effective at facilitating optimization is related to

the curvature of the manifold. Section 2.8 discusses several measures of curvature

and explores curvature of sloppy models. We show that the parameter-effects

12

curvature is typically the dominant curvature of a sloppy model, explaining why

extended geodesic coordinates can be a huge simplification to the optimization

process. We also show that typical best fits will usually have many evaporated

parameters and then define a new measure of curvature, the optimization curvature,

that is useful for understanding the limitation of iterative algorithms.

We apply geodesic motion to numerical algorithms in section 2.9, where we

show that the modified Gauss-Newton method and Levenberg-Marquardt method

are an Euler approximation to geodesic motion. We then add a geodesic acceler-

ation correction to the Levenberg-Marquardt algorithm and achieve much faster

convergence rates over standard algorithms and more reliability at finding good

fits.

2.3 The Model Manifold

In this section we review the properties of sloppy models and the geometric picture

naturally associated with least squares models. To provide a concrete example of

sloppiness to which we can apply the geometric framework, consider the problem

of fitting three monotonically decreasing data points to the model

y(t, θ) = e−tθ1 + e−tθ2 ,

where θi > 0. Although simple, this model illustrates many of the properties of

more complicated models. Figure 2.1a is an illustration of the data and several

progressively better fits. Because of the noise, the best fit does not pass exactly

through all the data points, although the fit is within the errors.

A common tool to visualize the parameter dependence of the cost is to plot

13

Figure 2.1: Fitting a nonlinear function to data
(Color online) (a) Fitting a nonlinear function to data, in this case the sum
of two exponentials to three data points. Fit A has rate constants which decay too
quickly, resulting in a poor fit; B is an improvement over Fit A, although the rates
are too slow; the best fit minimizes the cost (the sum of the squares of the residuals,
which are deviations of model from data points) (b) Contours of constant Cost
in parameter space. Note the “plateau” in the region of large rates where the
model is essentially independent of parameter changes. Note also the long, narrow
canyon at lower rates, characteristic of a sloppy model. The sloppy direction is
parallel to the canyon and the stiff direction is against the canyon wall. (c) Model
predictions in data space. The experimental data is represented by a single
point. The set of all possible fitting parameters induce a manifold of predictions
in data space. The best fit is the point on the manifold nearest to the data. The
plateau in (b) here is the small region around the short cusp near the corner.
To help visualize the three dimensional structure, an animation of this manifold
rotating in three dimensions in available in the online supplemental material [93]

14

contours of constant cost in parameters space, as is done for our toy model in Fig-

ure 2.1b. This view illustrates many properties of sloppy models. This particular

model is invariant to a permutation of the parameters, so the plot is symmetric

for reflections about the θ1 = θ2 line. We refer to the θ1 = θ2 linear as the “fold

line” for geometric reasons that will be apparent in section 2.5. Around the best

fit, cost contours form a long narrow canyon. The direction along the length of

the canyon is a sloppy direction, since this parameter combination hardly changes

the behavior of the model, and the direction up a canyon wall is the stiff direction.

Because this model has few parameters, the sloppiness is not as dramatic as it is

for most sloppy models. It is not uncommon for real-life models to have canyons

with an aspect ratios much more extreme than in Fig. 2.1b, typically 1000 : 1 or

more for models with 10 or more parameters [48].

Sloppiness can be quantified by considering the quadratic approximation of the

cost around the best fit. The Hessian (second derivative) matrix, Hµν , of the cost

at the best fit has eigenvalues that span many orders of magnitude and whose

logarithms tend to be evenly spaced, as illustrated in Fig. 2.2. Eigenvectors of the

Hessian with small eigenvalues are the sloppy directions, while those with large

eigenvalues are the stiff directions. In terms of the residuals, the Hessian is given

by

Hµν = ∂µ∂νC

=
∑
m

∂µrm∂νrm +
∑
m

rm∂µ∂νrm (2.4)

≈
∑
m

∂µrm∂νrm. (2.5)

=
(
JTJ

)
µν

(2.6)

15

In the third and fourth line we have made the approximation that at the best fit

the residuals are negligible. Although the best fit does not ordinarily corresponds

to the residuals being exactly zero, the Hessian is usually dominated by the term

in Eq. (2.5) when evaluated at the best fit. Furthermore, the dominant term,

JTJ , is a quantity important geometrically which describes the model-parameter

response for all values of the parameters independently of the data. The approx-

imate Hessian is useful to study the sloppiness of a model independently of the

data at points other than the best fit. It also shares the sloppy spectrum of the

exact Hessian. We call the eigenvectors of JTJ the local eigenparameters as they

embody the varying stiff and sloppy combinations of the ‘bare’ parameters.

In addition to the stiff and sloppy parameter combinations near the best fit,

Fig. 2.1b also illustrates another property common to sloppy models. Away from

the best fit the cost function often depends less and less strongly on the parame-

ters. The contour plot shows a large plateau where the model is insensitive to all

parameter combinations. Because the plateau occupies a large region of parameter

space, most initial guesses will lie on the plateau. When an initial parameter guess

does begin on a plateau such as this, even finding the canyon can be a daunting

task.

The process of finding the best fit of a sloppy model, usually consists of two

steps. First, one explores the plateau to find the canyon. Second, one follows

the canyon to the best fit. One will search to find a canyon and follow it, only

to find a smaller plateau within the canyon that must then be searched to find

another canyon. Qualitatively, the initial parameter guess does not fit the data,

and the cost gradient does not help much to improve the fit. After adjusting the

parameters, one finds a particular parameter combination that can be adjusted to

16

Figure 2.2: Sloppy Eigenvalues
Hessian eigenvalues for three sloppy models. Note the extraordinarily large range
of eigenvalues (15-17 orders of magnitude, corresponding to to valley aspect ratios
of 107-109) in Fig. 2.1b. Notice also the roughly equal fractional spacing between
eigenvalues–there is no clean separation between important (stiff) and irrelevant
(sloppy) direction in parameter space. a) The model formed by summing six expo-
nential terms with rates and amplitudes. We use this model to investigate curva-
ture in section 2.8 and as a test problem to compare algorithms in section 2.9.5. b)
The linear problem of fitting polynomials is sloppy with the Hessian given by the
Hilbert matrix. c) A more practical model from systems biology of signaling the
epidermal growth factor in rat pheochromocytoma (PC12) cells [18], which also
has a sloppy eigenvalue spectrum. Many more examples can be found in [48, 99].

fit some clump of the data. After optimizing this parameter combination (following

the canyon), the fit has improved but is still not optimal. One must then search for

another parameter combination that will fit another aspect of the data, i.e. find

another canyon within the first. Neither of these steps, searching the plateau or

following the canyon, is trivial.

17

Although plotting contours of constant cost in parameter space can be an use-

ful and informative tool, it is not the only way to visualize the data. We now turn

to describing an alternative geometric picture that helps to explain why the the

processes of searching plateaus and following canyons can be so difficult. The geo-

metric picture provides a natural motivation for tools to improve the optimization

process.

Since the cost function has the special form of a sum of squares, it has the prop-

erties of a Euclidean distance. We can interpret the residuals as components of

an M -dimensional residual vector. The M -dimensional space in which this vector

lives is a Euclidean space which we refer to as data space. By considering Eq. (2.1),

we see that the residual vector is the difference between a vector representing the

data and vector representing the model (in units of the standard deviation). If the

model depends on N parameters, with N < M, then by varying those N parame-

ters, the model vector will sweep out an N -dimensional surface embedded within

the M -dimensional Euclidean space. We call this surface the model manifold, it is

sometimes also known as the expectation or regression surface [7, 12]. The model

manifold of our toy model is shown in Fig. 2.1c. The problem of minimizing the

cost is thus translated into the geometric problem of finding the point on the model

manifold that is closest to the the data.

In transitioning from the parameter space picture to the model manifold pic-

ture, we are now faced with the problem of minimizing a function on a curved

surface. Optimization on manifolds is a problem that has been given much atten-

tion in recent decades [41, 66, 67, 68, 82, 86, 87, 97, 101, 1]. The general problem of

minimizing a function on a manifold is much more complicated than our problem;

however, because the cost function is linked here to the structure of the manifold

18

the problem at hand is much simpler.

The metric tensor measures distance on the manifold corresponding to infinites-

imal changes in the parameters. It is induced from the Euclidean metric of the data

space and is found by considering how small changes in parameters correspond to

changes in the residuals. The two are related through the Jacobian matrix,

drm = ∂µrmdθ
µ = Jmµdθ

µ,

where repeated indices imply summation. The square of the distance moved in

data space is then

dr2 = (JTJ)µνdθ
µdθν . (2.7)

Eq. (2.7) is known as the first fundamental form, and the coefficient of the param-

eter infinitesimals is the metric tensor,

gµν = (JTJ)µν =
∑
m

∂µrm∂νrm.

The metric tensor corresponds to the approximate Hessian matrix in Eq. (2.5);

therefore, the metric is the Hessian of the cost at a point assuming that the point

exactly reproduced the data.

Qualitatively, the difference between the metric tensor and the Jacobian matrix

is that the former describes the local intrinsic properties of the manifold while

the latter describes the local embedding. For nonlinear least squares fits, the

embedding is crucial, since it is the embedding that defines the cost function.

To understand how the manifold is locally embedded, consider a singular value

decomposition of the Jacobian

J = UΣV T ,

where V is anN×N unitary matrix satisfying V TV = 1 and Σ is anN×N diagonal

matrix of singular values. The matrix U is almost unitary, in the sense that it is an

19

M×N matrix satisfying UTU = 1; however, UUT is not the identity [83]. In other

words, the columns of U contain N residual space vectors that are orthonormal

spanning the range of J and not the whole embedding space. In terms of the

singular value decomposition, the metric tensor is then given by

g = V Σ2V T ,

showing us that V is the matrix whose columns are the local eigenparameters of

the metric with eigenvalues λi = Σ2
ii.

The singular value decomposition tells us that the Jacobian maps metric eigen-

vectors onto the data space vector Ui and stretched by an amount
√
λi. We hence

denote the columns of U the eigenpredictions. The product of singular values de-

scribes the mapping of local volume elements of parameter space to data space.

A unit hyper-cube of parameter space is stretched along the eigenpredictions by

the appropriate singular values to form a skewed, hyper-parallelepiped of volume√
|g|.

The Jacobian and metric contain the first derivative information relating

changes in parameters to changes in residuals or model behavior. The second

derivative information is contained in the connection coefficient. The connection

itself is a technical quantity describing how basis vectors on the tangent space move

from point to point. The connection is also closely related to geodesic motion, in-

troduced properly in section 2.7. Qualitatively it describes how the metric changes

from point to point on the manifold. The relevant connection is the Riemann, or

metric, connection; it is calculated from the metric by

Γαµν =
1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν),

20

or in terms of the residuals

Γαµν = gαβ
∑
m

∂βrm∂µ∂νrm, (2.8)

where gµν = (g−1)µν . One could now also calculate the Riemann curvature by

application of the standard formulae; however, we postpone a discussion of curva-

ture until section 2.8. For a more thorough discussion of concepts from differential

geometry, we refer the reader to any text on the subject [71, 88, 36, 55].

We have calculated the metric tensor and the connection coefficients from the

premise that the cost function, by its special functional form, has a natural interpre-

tation as a Euclidean distance which induces a metric on the model manifold. Our

approach is in the spirit of Bates and Watts’ treatment of the subject [9, 10, 8, 12].

However, the intrinsic properties of the model manifold can be calculated in an

alternative way without reference to the embedding through the methods of Jef-

freys, Rao and others [56, 84, 85, 75, 3]. This approach is known as information

geometry. We derive these quantities using information geometry in Appendix A.

Given a vector in data space we are often interested in decomposing it into two

components; one lying within the tangent space of the model manifold at a point

and one perpendicular to the tangent space. For this purpose, we introduce the

projection operators P T and PN which act on data-space vectors and project into

the tangent space and its compliment respectively. From the Jacobian at a point

on the manifold, these operators are

P T = δ − PN = J(g−1)JT , (2.9)

where δ is the identity operator. It is numerically more accurate to compute these

operators using the singular value decomposition of the Jacobian:

P T = UUT .

21

Turning to the problem of optimization, the parameter space picture leads one

initially to follow the naive, gradient descent direction, −∇µC. An algorithm that

moves in the gradient descent direction will decrease the cost most quickly for a

given change in the parameters. If the cost contours form long narrow canyons,

however, this direction is very inefficient; algorithms tend to zig-zag along the

bottom of the canyon and only slowly approach the best fit [83].

In contrast, the model manifold defines an alternative direction which we call

the Gauss-Newton direction, which decreases the cost most efficiently for a change

in the behavior. If one imagines sitting on the surface of the manifold, looking at

the point representing the data, then the Gauss-Newton direction in data space is

the point directed toward the data but projected onto the manifold. Thus, if ~v is

the Gauss-Newton direction in data space, it is given by

~v = −P T~r

= −J(g−1)JT~r

= −J(g−1)∇C

= − ~Jµgµν∇νC, (2.10)

where we have used the fact that ∇C = JT r. The components of the vector in

parameter space, vµ are related to the vector in data space through the Jacobian

~v = ~Jµv
µ; (2.11)

therefore, the direction in parameter space vµ that decreases the cost most effi-

ciently per unit change in behavior is

vµ = −gµν∇νC. (2.12)

The term ’Gauss-Newton’ direction comes from the fact that it is the direc-

tion given by the Gauss-Newton algorithm described in section 2.9.1. Because the

22

Gauss-Newton direction multiplies the gradient by the inverse metric, it magni-

fies motion along the sloppy directions. This is the direction that will move the

parameters along the canyon toward the best fit. The Gauss-Newton direction is

purely geometric and will be the same in data space regardless of how the model is

parametrized. The existence of the canyons are a consequence of bad parameter-

ization on the manifold, which this parameter independent approach can help to

remedy. Most sophisticated algorithms, such as conjugate gradient and Levenberg-

Marquardt attempt to follow the Gauss-Newton direction as much as possible in

order to not get stuck in the canyons.

The obvious connection between sloppiness and the model manifold is through

the metric tensor. For sloppy models, the metric tensor of the model manifold

(the approximate Hessian of Eq. (2.5)) has eigenvalues spread over many decades.

This property is not intrinsic to the manifold however. In fact, one can always

reparametrize the manifold to make the metric at a point any symmetric, posi-

tive definite matrix. This might naively suggest that sloppiness has no intrinsic

geometric meaning, and that it is simply a result of a poor choice of parameters.

The coordinate grid on the model manifold in data space is extremely skewed as

in Figure 2.3. By reparametrizing, one can remove the skewedness and construct

a more natural coordinate mesh. We will revisit this idea in section 2.7. We will

argue in this manuscript that on the contrary, there is a geometrical component to

sloppy nonlinear models that is independent of parameterization and in most cases

that the human-picked ‘bare’ parameters naturally illuminate the sloppy intrinsic

structure of the model manifold.

In the original parameterization, sections of parameter space are mapped onto

very tiny volumes of data space. We remind the reader that a unit volume of

23

parameter space is mapped into a volume of data space given by
√
|g|. Because

many eigenvalues are nearly zero for sloppy models, the model manifold necessarily

occupies a tiny sliver of data space. In fact, if a region of parameter space has

larger eigenvalues by even a small factor, the cumulative effect on the product is

that this region of parameter space will occupy most of the model manifold. We

typically find that most of the model manifold is covered by a very small region of

parameter space which corresponds to the volumes of (slightly) less skewed meshes.

We will see when we discuss curvature, that the large range of eigenvalues in the

metric tensor usually correspond to a large anisotropy in the extrinsic curvature.

Another geometric property of sloppy systems relates to the boundaries that the

model imposes on the manifold. The existence of the boundaries for the toy model

can be seen clearly in Fig. 2.1c. The surface drawn in the figure corresponds the

patch of parameters within 0 ≤ θ1, θ2 ≤ ∞. The three boundaries of the surface

occur when the parameters reach their respective bounds. The one exception to

this is the fold line, which corresponds to when the parameters are equal to one

another. This anomalous boundary (θ1 = θ2) is called the fold line and is discussed

further in section 2.5. Most nonlinear sloppy models have boundaries.

In the next section we will discuss how boundaries arise on the model manifold

and why they pose problems for optimization algorithms. Then, in section 2.5

we describe another surface, the model graph, that removes the boundaries. The

surface described by the model graph is equivalent to a model manifold with a

linear Bayesian prior added as additional residuals. In section 2.6 we show that

introducing other priors can be even more helpful for keeping algorithms away from

the boundaries.

24

Figure 2.3: Skewed Coordinates
Skewed Coordinates. A sloppy model is characterized by a skewed coordinate
mesh on the manifold. The volume of the parallel-piped is given by the determinant
of the metric, which is equal to the product of the eigenvalues. Because sloppy
models have many tiny eigenvalues, these volumes can be very small with extremely
skewed coordinates. Our toy model has extremely skewed coordinates where the
parameters are nearly equal (near the fold line). Most of the manifold is covered
by regions where the coordinates are less skewed which corresponds to a very small
region in parameter space.

25

2.4 Bounded Manifolds

Sloppiness is closely related to the existence of boundaries on the model manifold.

This may seem to be a puzzling claim because sloppiness has previously been

understood to be a statement relating to the local linearization of model space.

Here we will extend this idea and see that it relates to the global structure of the

manifold and how it produces difficulties for the optimization process.

To understand the origin of the boundaries on model manifolds, consider first

the model of summing several exponentials

y(t, θ) =
∑
µ

e−θµt.

We restrict ourselves to considering only positive arguments in the exponentials,

which limits the range of behavior for each term to be between 0 and 1. This re-

striction already imposes boundaries on the model manifold, but those boundaries

become much more narrow as we consider the range the model can produce by

holding just a few time points fixed.

Fixing the output of the model at a few time points greatly reduces the values

that the model can take on for all the remaining points. Fixing the values that the

model takes on at a few data points is equivalent to considering a lower-dimensional

cross section of the model manifold, as we have done in Fig. 2.4. The boundaries

on this cross section are very narrow; the corresponding manifold is long and thin.

Clearly, an algorithm that navigates the model manifold will quickly run into the

boundaries of this model unless it is actively avoiding them.

In general, if a function is analytic, the results presented in Fig. 2.4 are fairly

generic, they come from general theorems governing the interpolation of functions.

26

Figure 2.4: Hyper-ribbon
(Color online) Fixing a few data points greatly restricts the possible range of
the model behavior between those data points (lower). This is a consequence of
interpolation of analytic functions. In this case, f(t) is a sum of three exponentials
with six parameters (amplitudes and rates). Shown above is a three dimensional
slice of possible models plotted in data space, with the value of f(0) fixed to
1 and the value of f(1) fixed to 1/e. With these constraints we are left with
a four dimensional surface, meaning that the manifold of possible data shown
here is indeed a volume. However, from a carefully chosen perspective (upper
right) this volume can be seen to be extremely thin–in fact most of its apparent
width is curvature of the nearly two dimensional sheet, evidenced by being able
to see both the top (green) and bottom (black) simultaneously. (An animation of
points in this volume rotating in three dimensional space is available in the online
supplemental material [93].) Generic aspects of this picture illustrate the difficulty
of fitting nonlinear problems. Geodesics in this volume are just straight lines in
three dimensions. Although the manifold seems to be only slightly curved, its
extreme thinness means that geodesics travel very short distances before running
into model boundaries, necessitating the diagonal cutoff in Levenberg-Marquardt
algorithms as well as the priors discussed in section 2.6.

27

If a function is sampled at a sufficient number of time points to capture its major

features, then the behavior of the function at times between the sampling can be

predicted with good accuracy by an interpolating function. For polynomial fits, as

considered here, a function, f(t), sampled at n time points, (t1, t2, ..., tn), can be fit

exactly by a unique polynomial of degree n−1, Pn−1(t). Then at some interpolating

point, t, the discrepancy in the interpolation and the function is given by

f(t)− Pn−1(t) =
ω(t)f (n)(ξ)

n!
, (2.13)

where f (n)(t) is the n-th derivative of the function and ξ lies somewhere in the

range t1 < ξ < tn [89]. The polynomial ω(t) has roots at each of the interpolating

points

ω(t) = (t− t1)(t− t2)...(t− tn).

By inspecting Eq. (2.13), it is clear that the discrepancy between the interpolation

and the actual function will become vanishingly small if higher derivatives of the

function do not grow too fast (which is the case for analytic functions) and if the

sampling points are not too widely spaced (see Fig. 2.5).

The possible error of the interpolation function bounds the allowed range of

behavior, δfn, of the model at t0 after constraining the nearby n data points,

which corresponds to measuring cross sections of the manifold. Consider the ratio

of successive cross sections,

δfn+1

δfn
= (t− tn+1)(n+ 1)

fn+1(ξ)

fn(ξ′)
,

if n is sufficiently large, then

(n+ 1)
fn+1(ξ)

fn(ξ′)
≈ 1

R
;

therefore, we find that
δfn+1

δfn
≈ t− tn+1

R
< 1

28

Figure 2.5: Interpolating function
(Color online) The possible values of a model at intermediate time points are
restricted by interpolating theorems. Taking cross sections of the model manifold
corresponds to fixing the model values at a few time points, restricting the possible
values at the remaining times. Therefore, the model manifold will have a hierarchy
of progressively thinner widths, much like a hyper-ribbon.

by the ratio test. Each cross section is thinner than the last by a roughly constant

factor ∆ = δt/R, predicting a hierarchy of widths on the model manifold. We

describe the shape of a model manifold with such a hierarchy as a hyper-ribbon. We

will now measure these widths for a few sloppy models and see that the predicted

hierarchy is in fact present.

As a first example, consider the sloppy model of fitting polynomials

f(t, θ) =
∑
m

θmt
m. (2.14)

If the parameters of the model are allowed to vary over all real values, then one can

29

always fit M data points exactly with an (M − 1)th degree polynomial. However,

we wish to artificially restrict the range of the parameters to imitate the limited

range of behavior characteristic of nonlinear models. A simple restriction is given

by
∑

m θ
2
m ≤ 1. This constraint enforces the condition that higher derivatives

of the function become small (roughly that the radius of convergence is one) and

corresponds to the unit hyper-sphere in parameter space. If this function is sampled

at time points (t1, t2, ..., tn) then the model vector in data space can be written as

~f =

1 t1 t21 · · ·

1 t2 t22 · · ·
...

...
...

...

1 tn t2n · · ·

θ0

θ1

θ2

...

. (2.15)

The matrix multiplying the vector of parameters is an example of a Vandermonde

matrix. The Vandermonde matrix is known to be sloppy and, in fact, plays an

important role in the sloppy model universality class. The singular values of the

Vandermonde matrix are what produce the sloppy eigenvalue spectrum of sloppy

models. Reference [99] shows that these singular values are indeed broadly spaced

in log. For this model, the Vandermonde matrix is exactly the Jacobian.

By limiting our parameter space to a hypersphere for the model in Eq. (2.14),

the corresponding model manifold is limited to a hyper-ellipse in data space. The

principal axes of this hyper-ellipse are the eigenpredictions directions we discussed

in section 2.3. The lengths of the principal axes are the singular values. Conse-

quently, there will be a hierarchy of progressively thinner boundaries on the model

manifold due to the wide ranging singular values of the Vandermonde matrix. For

this model, the purely local property of the metric tensor eigenvalue spectrum is

intimately connected to the global property of the boundaries and shape of the

model manifold.

30

As a second example, consider the model consisting of the sum of eight exponen-

tial terms, y =
∑

µAµe
−θµt. We use log-parameters, rθµ = log θµ and rAµ = logAµ,

to make parameters dimensionless and enforce positivity. We numerically calculate

the several widths of the corresponding model manifold in Fig. 2.6a, where we see

that they are accurately predicted by the singular values of the Jacobian. The

widths in Fig. 2.6 were calculated by considering geodesic motion in each of the

eigendirections of the metric from some point located near the center of the model

manifold. We follow the geodesic motion until it reaches a boundary; the length

in data space of the geodesic is the width. Alternatively, we can choose M − N

orthogonal unit vectors that span the space perpendicular to the tangent plane at

a point and a single unit vector given by a eigenprediction of the Jacobian which

lies within the tangent plane. The M − N + 1 dimensional hyper-plane spanned

by these unit vectors intersects the model manifold along a one-dimensional curve.

The width can be taken to be the length of that intersection. The widths given by

these two methods are comparable.

We can show analytically that our exponential fitting problem has model man-

ifold widths proportional to the corresponding singular values of the Jacobian in

the limit of a continuous distribution of exponents, θµ, using an argument provided

to us by Yoav Kallus. In this limit, the sum can be replaced by an integral,

y(t) =

ˆ
dθA(θ)e−tθ = L{A(θ)} ,

where the model is now the Laplace transform of the amplitudes A(θ). In this limit

the data can be fit without varying the exponential rates, leaving only the linear

amplitudes as parameters. If we assume the data has been normalized according

to y(t = 0) ≤ 1, then it is natural to consider the hyper-tetrahedron of parameter

space given by by An > 0 and
∑
An ≤ 1. In parameter space, this tetrahedron

has a maximum aspect ratio of
√

2/M , but the mapping to data space distorts the

31

tetrahedron by a constant Jacobian whose singular values we have seen to span

many orders of magnitude. The resulting manifold thus must have a hierarchy of

widths along the eigenpredictions equal to the corresponding eigenvalues within

the relatively small factor
√

2/M .

As our third example, we consider a feed-forward artificial neural network [52].

For computational ease, we choose a small network consisting of a layer of four

input neurons, a layer of four hidden neurons, and an output layer of two neurons.

We use the hyperbolic tangent function as our sigmoid function and vary the

connection weights as parameters. As this model is not known to reduce to a linear

model in any limit, it serves as a test that the agreement for fitting exponentials is

not special. Fig. 2.6b shows indeed that the singular values of the Jacobian agree

with geodesic widths again for this model.

The results in Fig. 2.6 is one of our main results and requires some discussion.

Strictly speaking, the singular values of the Jacobian have units of data space

distance per unit parameter space distance, while the units of the widths are data

space distance independent of parameters. In the case of the exponential model,

we have used log-parameters, making the parameters dimensionless. In the neural

network, the parameters are the connection weights whose natural scale is one. In

general, the exact agreement between the singular values and the widths may not

agree if the parameters utilize different units or have another natural scale. One

must note, however, that the enormous range of singular values implies that the

units would have to be radically different from natural values to lead to significant

distortions.

Additionally, the two models presented in Fig. 2.6 are particularly easy to

fit to data. The fact that from a centrally located point, geodesics can explore

32

Figure 2.6: Cross-sectional widths
(Color online) a) Geodesic cross-sectional widths of an eight dimensional model
manifold along the eigendirections of the metric from some central point, together
with the square root of the eigenvalues (singular values of the Jacobian) [94].
Notice the hierarchy of these data-space distances – the widths and singular values
each spanning around four orders of magnitude. To a good approximation, the
cross-sectional widths are given by singular values. In the limit of infinitely many
exponential terms, this model becomes linear. b) Geodesic cross-sectional widths
of a feed-forward artificial neural network. Once again, the widths nicely track the
singular values.

33

nearly the entire range of model behavior suggests that the boundaries are not a

serious impediment to the optimization. For more difficult models, such as the

PC12 model in systems biology [18], we find that the the widths estimated from

the singular values and from geodesic motion disagree. The geodesic widths are

much smaller than the singular value estimates. In this case, although the spacing

between geodesic widths is the same as the spacing between the singular values,

they are smaller by several orders of magnitude. We believe that most typical

starting points of this model lie near a hyper-corner of the model manifold. If

this is the case, then geodesics will be unable to explore the full range of model

behavior without reaching a model boundary. We argue later in this section that

this phenomenon is one of the main difficulties in optimization, and in fact, we

find that the PC12 model is a much more difficult fitting problem than either the

exponential or neural network problem.

We have seen that sloppiness is the result of skewed coordinates on the model

manifold, and we will argue later in section 2.7 that algorithms are sluggish as

a result of this poor parameterization. Fig. 2.6 tells us that the ‘bare’ model

parameters are not as perverse as one might naively have thought. Although the

bare-parameter directions are inconvenient for describing the model behavior, the

local singular values and eigenpredictions of the Jacobian are useful estimates of

the model’s global shape. The fact that the local stiff and sloppy directions coincide

with the global long and narrow directions is a nontrivial result that seems to hold

for most models.

To complete our description of a typical sloppy model manifold requires a dis-

cussion of curvature, which we postpone until section 2.8.4. We will see that in

addition to a hierarchy of boundaries, the manifold typically has a hierarchy of

34

extrinsic and parameter-effects curvatures whose scales are set by the smallest and

widest widths respectively.

We argue elsewhere [94], that the ubiquity of sloppy models, appearing every-

where from models in systems biology [48], insect flight [99], variational quantum

wave functions, inter-atomic potentials [40], and a model of the next-generation

international linear collider [46], implies that a large class of models have very nar-

row boundaries on their model manifolds. The interpretation that multiparameter

fits are a type of high-dimensional analytic interpolation scheme, however, also

explains why so many models are sloppy. Whenever there are more parameters

than effective degrees of freedom among the data points, then there are necessarily

directions in parameter space that have a limited effect on the model behavior,

implying the metric must have small eigenvalues. Because successive parameter

directions have a hierarchy of vanishing effect on model behavior, the metric must

have a hierarchy of eigenvalues.

We view most multiparameter fits as a type of multi-dimensional interpolation.

Only a few stiff parameter combinations need to be tuned in order to find a rea-

sonable fit. The remaining sloppy degrees of freedom do not alter the fit much,

because they fine tune the interpolated model behavior, which, as we have seen,

is very restricted. This has important consequences for interpreting the best fit

parameters. One should not expect the best fit parameters to necessarily represent

the physical values of the parameters, as each parameter can be varied by many

orders of magnitude along the sloppy directions. Although the parameter values

at a best fit cannot typically be trusted, one can still make falsifiable predictions

about model behavior without knowing the parameter values by considering an

ensemble of parameters with reasonable fits [19, 18, 22, 47].

35

For our fitting exponential example, part of the model boundary was the ‘fold

lines‘ where pairs of the exponents are equal (see Fig. 2.1). No parameters were

at extreme values, but the model behavior was nonetheless singular. Will such in-

ternal boundaries arise generically for large nonlinear models? Model boundaries

correspond to points on the manifold where the metric is singular. Typical bound-

aries occur when parameters are near their extreme values (such as ±∞ or zero),

where the model becomes unresponsive to changes in the parameters. Formally, a

singularity will occur if the basis vectors on the model manifold given by ~eµ = ∂µ~r

are linearly dependent, which is to say there exist a set of nonzero αµ’s for which

αµ~eµ = 0. (2.16)

In order to satisfy Eq. (2.16) we may vary 2N parameters (the N values of αµ plus

the N parameters of the model) to satisfy M equations. Therefore if M < 2N

there will exist nontrivial singular points of the metric at non-extreme values of

the parameters.

For models with M > 2N , we do not expect Eq. (2.16) to be exactly satisfied

generically except at extreme values of the parameters when one or more of the

basis vectors vanish, ~eµ = 0. However, many of the data points are interpolat-

ing points as we have argued above, and we expect qualitatively to be able to

ignore several data points without much information loss. In general, we expect

that Eq. (2.16) could be satisfied to machine precision at nontrivial values of the

parameters even for relatively small N .

Now that we understand the origin of boundaries on the model manifold, we

can discuss why they are problematic for the process of optimization. It has been

observed in the context of training neural networks, that metric singularities (i.e.

model boundaries) can have a strong influence on the fitting [2]. More generally,

36

the process of fitting a sloppy model to data involves the frustrating experience of

applying a black box algorithm to the problem which appears to be converging,

but then returns a set of parameters that does not fit the data well and includes

parameter values that are far from any reasonable value. We refer to this drift of

the parameters to extreme values as parameter evaporation 2. This phenomenon

is troublesome not just because it causes the algorithm to fail. Often, models are

more computationally expensive to evaluate when they are near the extreme values

of their parameters. Algorithms will often not just fail to converge, but they will

take a long time in the process.

After an algorithm has failed and parameters have evaporated, one may resort

to adjusting the parameter values by hand and then reapplying the algorithm.

Hopefully, iterating this process will lead to a good fit. Even if one eventually

succeeds in finding a good fit, because of the necessity of adjusting parameters by

hand, it can be a long and boring process.

Parameter evaporation is a direct consequence of the boundaries of the model

manifold. To understand this, recall from section 2.3 that the model manifold

defines a natural direction, the Gauss-Newton direction, that most algorithms try

to follow. The problem with blindly following the Gauss-Newton direction is that it

is purely local and ignores the fact that sloppy models have boundaries. Consider

our example model; the model manifold has boundaries when the rates become

infinite. If an initial guess has over-estimated or under-estimated the parameters,

the Gauss-Newton direction can point toward the boundary of the manifold, as

does fit A in Fig. 2.7. If one considers the parameter space picture, the Gauss-
2The term parameter evaporation was originally used to describe the drift of parameters

to infinite values in the process of Monte Carlo sampling [17]. In this case the tendency of
parameters to run to unphysical values is a literal evaporation caused by the finite temperature
of the stochastic process. We now use the term to also describe deterministic drifts in parameters
to extreme values in the optimization process.

37

Newton direction is clearly nonsensical, pointing away from the best fit. Generally,

while on a plateau region, the gradient direction is better at avoiding the manifold

boundaries. However, nearer the best fit, the boundary is less important and the

Gauss-Newton direction is much more efficient than the downhill direction, as is

the case for fit B in Fig. 2.7.

Since the model manifold typically has several narrow widths, it is reasonable

to expect that a fit to noisy data will evaporate many parameters to their limiting

values (such as ∞ or zero), as we explore in section 2.8.7. We therefore do not

want to prevent the algorithm from evaporating parameters altogether. Instead,

we want to prevent the algorithm from prematurely evaporating parameters and

becoming stuck on the boundary (or lost on the plateau). Using the two natural

directions to avoid the manifold boundaries while navigating canyons to the best

fit is at the heart of the difficulty in optimizing sloppy models. Fortunately, there

exists a natural interpolation between the two pictures which we call the model

graph and is the subject of the next section. This natural interpolation is exploited

by the Levenberg-Marquardt algorithm, which we discuss in section 2.9.

2.5 The Model Graph

We saw in Section 2.4 that the geometry of sloppiness explains the phenomenon of

parameter evaporation as algorithms push parameters toward the boundary of the

manifold. However, as we mentioned in Section 2.3, the model manifold picture is

a view complementary to the parameter space picture, as illustrated in Fig. 2.1.

The parameter space picture has the advantage that boundaries typically do

not exist (i.e. they lie at parameter values equal to ∞). If model boundaries

38

Figure 2.7: Gradient and Newtonian directions in data and parameter space
a) (Color online) Falling off the edge of the model manifold. The manifold in
data space defines a “natural” direction, known as the Gauss-Newton direction, in
which an algorithm will try to follow to the best fit. Often this direction will push
parameters toward the edge of the manifold. b) Gradient and Gauss-Newton
directions in Parameter space. The manifold edge corresponds to infinite
values of the parameters. Following the Gauss-Newton direction to the edge of
the manifold will cause parameters to evaporate while on the plateau. While in a
canyon, however, the Gauss-Newton direction gives the most efficient direction to
the best fit.

39

occur for parameter values that are not infinite, but are otherwise unphysical, for

example, θ = 0 for our toy model, it is helpful to change parameters in such a way

as to map these boundaries to infinity. For the case of summing exponentials, it

is typical to work in log θ, which puts all boundaries at infinite parameter values

and has the added bonus of being dimensionless (avoiding problems of choice of

units). In addition to removing boundaries, the parameter space does not have the

complications from curvature; it is a flat, Euclidean space.

The disadvantage of the parameter space picture is that motion in parameter

space is extremely disconnected from the behavior of the model. This problem

arises as an algorithm searches the plateau looking for the canyon and again when

it follows the winding canyon toward the best fit.

The model manifold picture and the parameter space picture can be combined

to utilize the strengths of both approaches. This combination is called the model

graph because it is the surface created by the graph of the model, i.e. the behavior

plotted against the parameters. The model graph is an N dimensional surface

embedded in an M + N dimensional Euclidean space. The embedding space is

formed by combining the M dimensions of data space with the N dimensions of

parameter space. The metric for the model graph can be seen to be

gµν = g0
µν + λDµν, (2.17)

where g0
µν =

(
JTT

)
µν

is the metric of the model manifold and Dµν is the metric of

parameters space. We discuss common parameter space metrics below. We have

introduced the free parameter λ in Eq. (2.17) which gives the relative weight of the

parameter space metric to the data space metric. Most of the work in optimizing

an algorithm comes from a suitable choice of λ, known as the damping parameter

or the Levenberg-Marquardt parameter.

40

If Dµν is the identity, then we call the metric in Eq. (2.17) the Levenberg metric

because of its role in the Levenberg algorithm [64]. Another possible choice for

Dµν is to populate its diagonal with the diagonal elements of g0
µν while leaving

the off-diagonal elements zero. This choice appears in the Levenberg-Marquardt

algorithm [69] and has the advantage that the resulting method is invariant to

rescaling the parameters, e.g. it is independent of units. It has the problem,

however, that if a parameter evaporates then its corresponding diagonal element

may vanish and the model graph metric becomes singular. To avoid this dilemma,

one often choosesD to have diagonal elements given by the largest diagonal element

of g0 yet encountered by the algorithm [72]. This method is scale invariant but

guarantees that D is always positive definite. We discuss these algorithms further

in section 2.9.

It is our experience that the Marquardt metric is much less useful than the Lev-

enberg metric for preventing parameter evaporation. While it may seem counter-

intuitive to have a metric (and by extension an algorithm) that is sensitive to

whether the parameters are measured in inches or miles, we stress that the pur-

pose of the model graph is to introduce parameter dependence to the manifold.

Presumably, the modeler is measuring parameters in inches because inches are a

more natural unit for the model. By disregarding that information, the Marquardt

metric is losing a valuable sense of scale for the parameters and is more sensitive

to parameter evaporation. The concept of the natural units will be important in

the discussion of priors in section 2.6. On the other hand, the Marquardt method

is faster at following a narrow canyon and the best choice likely depends on the

particular problem.

If the choice of metric for the parameter space is constant, ∂αDµν = 0, then the

41

connection coefficients of the model graph (with all lowered indices) are the same

as for the model manifold given in Eq. (2.8). The connection with a raised index

will include dependence on the parameter space metric:

Γµαβ = (g−1)µν
∑
m

∂νrm∂α∂βrm,

where g is given by Eq. (2.17).

By considering the model graph instead of the model manifold, we can remove

the problems associated with the model boundaries. We return to our example

problem to illustrate this point. The embedding space for the model graph is

3 + 2 = 5 dimensional, so we are restricted to viewing 3 dimensional projections of

the embedding space. In Fig. 2.8 we illustrate the model graph (Levenberg metric)

for λ = 0, which is simply the model manifold, and for λ 6= 0, which shows that

boundaries of the model manifold are removed in the graph. Since the boundaries

occur at θ =∞, they are infinity far from the origin on the model graph. Even the

boundary corresponding to the fold line has been removed, as the fold has opened

up like a folded sheet of paper. Since generic boundaries correspond to singular

points of the metric, the model graph has no such boundaries as its metric is

positive definite for any λ > 0.

After removing the boundaries associated with the model manifold, the next

advantage of the model graph is to provide a means of seamlessly interpolating be-

tween the natural directions of both data space and parameter space. The damping

term, λ, appearing in Eq. (2.17) is well suited for this interpolation in sloppy mod-

els. If we consider the Levenberg metric, the eigenvectors of the model manifold

metric, g0, are unchanged by adding a multiple of the identity. However, the cor-

responding eigenvalues are shifted by the λ parameter. It is the sloppy eigenvalues

that are dangerous to the Gauss-Newton direction. Since the eigenvalues of a

42

Figure 2.8: The Model Graph
(Color online) The effect of the damping parameter is to produce a new metric
for the surface induced by the graph of the model versus the input parameters.
(a) Model Graph, λ = 0. If the parameter is zero, then the resulting graph is
simply the original model manifold, with no extent in the parameter directions.
Here we see a flat two dimensional cross section; the z-axis is a parameter value
multiplied by

√
λ = 0. (b) Model Graph λ 6= 0. If the parameter is increased,

the surface is "stretched" into a higher dimensional embedding space. This is an
effective technique for removing the boundaries, as no such boundary exists in the
model graph. However, this comes at a cost of removing the geometric connection
between the cost function and the structure of the surface. For very large damping
parameters, the model graph metric becomes a multiple of the parameter space
metric, which rotates the Gauss-Newton direction into the gradient direction. The
damping term therefore interpolates between the parameter space metric and the
data space metric. A three-dimensional animation of this figure is available in the
online supplemental material [93].

43

sloppy model span many orders of magnitude, this means that all the eigenvalues

that were originally less than λ are cutoff at λ in the model graph metric, and

the larger eigenvalues are virtually unaffected. By adjusting the damping term,

we can essentially wash out the effects of the sloppy directions and preserve the

Gauss-Newton direction from the model manifold in the stiff directions. Since the

eigenvalues span many orders of magnitude, the parameter does not need to be

finely tuned; it can be adjusted very roughly and an algorithm will still converge,

as we will see in section 2.9. We demonstrate how λ can interpolate between the

two natural directions for our example model in Fig. 2.9.

2.6 Priors

In Bayesian statistics, a prior is an a-priori probability distribution in parameter

space, giving information about the relative probability densities for the model

as parameters are varied. For example, if one has pre-existing measurements of

the parameters θm = θ0
m ± σm with normally distributed uncertainties, then the

probability density would be
∏

m 1/
√

2πσ2
m exp [−(θm − θ0

m)2/(2σ2
m] before fitting

to the current data. This corresponds to a negative-log-likelihood cost that (apart

from an overall constant) is the sum of squares, which can be nicely interpreted as

the effects of an additional set of “prior residuals”

rm = (θm − θ0
m)/σm (2.18)

(interpreting the pre-existing measurements as extra data points). In this section,

we will explore the more general use of such extra terms, not to incorporate infor-

mation about parameter values, but rather to incorporate information about the

ranges of parameters expected to be useful in generating good fits.

44

Figure 2.9: Gradient and Newtonian directions in parameter space
(Color online) (A)Gauss-Newton Directions. The Gauss-Newton direction is
prone to pointing parameters toward infinity, especially in regions where the met-
ric has very small eigenvalues. (B) Rotated Gauss-Newton Directions. By
adding a small damping parameter to the metric, the Gauss-Newton direction is
rotated into the gradient direction. The amount of rotation is determined by the
eigenvalues of the metric at any given point. Here, only a few points are rotated
significantly. (C) Gradient Directions. For large values of the damping param-
eter, the natural direction is rotated everywhere into the gradient direction.

45

That is, we want to use priors to prevent parameter combinations which are

not constrained by the data from taking excessively large values – we want to

avoid parameter evaporation. To illustrate again why this is problematic in sloppy

models, consider a linear sloppy model with true parameters θ0, but fit to data

with added noise ξi. The observed best fit is then shifted to θ = θ0+(JTJ)−1(JT)ξ.

The measurement error in data space ξi is thus multiplied by the inverse of the

poorly conditioned matrix g = JTJ , so even a small measurement error produces a

large parameter-space error. In section 2.8.7, we will see in nonlinear models that

such noise will generally shift the best fits to the boundary (infinite parameter

values) along directions where the noise is large compared to the width of the

model manifold. Thus for example in fitting exponentials, positive noise in the

data point at t0 = 0 and negative noise at the data point at the first time t1 > 0

can lead to one decay rate that evaporates to infinity, tuned to fit the first data

point without affecting the others.

In practice, it is not often useful to know that the optimum value of a parameter

is actually infinite – especially if that divergence is clearly due to noise. Also, we

have seen in Fig. 2.7a that, even if the best fit has sensible parameters, algorithms

searching for the best fits can be led toward the model manifold boundary. If

the parameters are diverging at finite cost, the model must necessarily become

insensitive to the diverging parameters, often leading the algorithm to get stuck.

Even a very weak prior whose residuals diverge at the model manifold boundaries

can prevent these problems, holding the parameters in ranges useful for fitting the

data.

In this section, we advocate the use of priors for helping algorithms navigate

the model manifold in finding good fits. These priors are pragmatic; they are

46

not introduced to buffer a model with ‘prior knowledge’ about the system, but to

use the data to guess the parameter ranges outside of which the fits will become

insensitive to further parameter changes. Our priors do not have meaning in the

Bayesian sense, and indeed should probably be relaxed to zero at late stages in the

fitting process.

The first issue is how to guess what ranges of parameter are useful in fits –

outside of which the model behavior becomes insensitive to the parameter values.

Consider, for example, the Michaelis-Mentin reaction, a saturable reaction rate

often arising in systems biology (for example Reference [18]):

d[x∗]

dt
=

kx[y
∗][x]

1 + kmx[x]
. (2.19)

Here there are two parameters kx and kmx, governing the rate of production of [x∗]

from [x] in terms of the concentration [y∗], where [x] + [x∗] = xmax and [y] + [y∗] =

ymax.

Several model boundaries can be identified here. If kx and kmxxmax are both

very large, then only their ratio affects the dynamics. In addition if kmx is very

small then it has no effect on the model. Our prior should enforce our belief that

kmx[x] is typically of order 1. If it were much larger than one, than we could

have modeled the system with one less parameter k = kx/kmx and if it were

much less than one, the second term in the denominator could have been dropped

entirely. Furthermore, if the data is best fit by one of these boundary cases, say

kmxxmax → ∞ , it will be fit quite well by taking kmxxmax >> 1, but otherwise

finite. In a typical model we might expect that kmxxmax = 10 will behave as if it

were infinite.

We can also place a prior on kx. Dimensional analysis here involves the time

scale at which the model is predictive. The prior should match the approximate

47

time scale of the model’s predictions to the rate of the modeled reaction. For

example, if an experiment takes time series data with precision on the order of

seconds with intervals on the order minutes, then a ’fast’ reaction is any that takes

place faster than a few seconds and a slow reaction is any that happens over a

few minutes. Even if the real reaction happens in microseconds, it makes no sense

to extract such information from the model and data. Similarly, a slow reaction

that takes place in years could be well fit by any rate that is longer than a few

minutes. As such we want a prior which prevents kxymaxxmax/τ from being far

from 1, where τ is the typical timescale of the data, perhaps a minute here. In

summary, we want priors to constrain both kmxxmax and kxxmaxymax/τ to be of

order one.

We have found that a fairly wide range of priors can be very effective at min-

imizing the problems associated with parameter evaporation during fitting. To

choose them, we propose starting by changing to the natural units of the problem

by dividing by constants, such as time scales or maximum protein concentrations,

until all of the parameters are dimensionless. (Alternatively, priors could be put

into the model in the original units, at the expense of more complicated book-

keeping.) In these natural units we expect all parameters to be order 1.

The second issue is to choose a form for the prior. For parameters like these,

where both large and near-zero values are to be avoided, we add two priors for

every parameter, one which punishes high values, and one which punishes small

values:

Pr(θ) =

 √
whθ√
wl/θ

 . (2.20)

This prior has minimum contribution to the cost when θ2 = wl
wh

so in the proper

48

units we choose wh = wl. With these new priors, the metric becomes

gµν = ∂µr
0i∂νr

0i + ∂µPr(θ)∂νPr(θ) (2.21)

= g0
µν + δµν(

wl
θµ

+ whθ
µ), (2.22)

which is positive definite for all (positive) values of θ. As boundaries occur when the

metric has an eigenvalue of zero, no boundaries exist for this new model manifold.

This is reminiscent of the metric of the model graph with the difference being that

we have permanently added this term to the model. The best fit has been shifted

in this new metric.

It remains to choose wh and wl. Though the choice is likely to be somewhat

model specific, we have found that a choice between .001 and 1 tends to be effective.

That weights of order 1 can be effective is somewhat surprising. It implies that

good fits can be found while punishing parameters for differing only an order of

magnitude from their values given by dimensional analysis. That this works is a

demonstration of the extremely ill-posed nature of these sloppy models, and the

large ensemble of potential good fits in parameter space.

A complimentary picture of the benefit of priors takes place in parameter space,

where they contribute to the cost:

C = C0 +
∑
i

whθi/2 + wl/(2θi). (2.23)

The second derivative of the extra cost contribution with respect to the log of the

parameters is given by ∂2

∂ log(θ)2

(
Pr(θ)2

2

)
= whθ

2
+ wl

2θ
. This is positive definite and

concave, making the entire cost surface large when parameters are large. This in

turn makes the cost surface easier to navigate by removing the problems associated

with parameter evaporation on plateaus.

To demonstrate the effectiveness of this method, we use the PC12 model with 48

49

parameters described in [18]. We change to dimensionless units as described above.

To create an ensemble, we start from 20 initial conditions, with each parameter

taken from a Gaussian distribution in its log centered on 0 (the expected value from

dimensional analysis), with a σ = log 10 (so that the bare parameters range over

roughly two orders of magnitude from .1 to 10). We put a prior as described above

centered on the initial condition, with varying weights. These correspond to the

priors that we would have calculated if we had found those values by dimensional

analysis instead. After minimizing with the priors, we remove them and allow the

algorithm to re-minimize. The results are plotted in Fig. 2.10.

Strikingly, even when a strong prior is centered at parameter values a factor of

∼ 100 away from their ‘true’ values, the addition of the prior in the initial stages of

convergence dramatically increases the speed and success rate of finding the best

fit.

In section 2.5, we introduced the model graph and the Levenberg-Marquardt

algorithm, whose rationale (to avoid parameter evaporation) was similar to that

motivating us here to introduce priors. To conclude this section, we point out that

the model graph metric, Eq. (2.17), and the metric for our particular choice of

prior, Eq. (2.22), both serve to cut off large steps along sloppy directions. Indeed,

the Levenberg-Marquardt algorithm takes a step identical to that for a model with

quadratic priors (Eq. (2.18)) with σm ≡ 1/
√
λ, except that the center of the prior

is not a fixed set of parameters θ0, but the current parameter set θ∗. (That is, the

second derivative of the sum of the squares of these residuals,
∑

m[
√
λ(θ − θ∗)]2

gives λδµν , the Levenberg term in the metric.) This Levenberg term thus acts as

a ‘moving prior’ – acting to limit individual algorithmic steps from moving too far

toward the model boundary, but not biasing the algorithm permanently toward

50

Figure 2.10: Algorithm performance with priors
(Color online) The final cost is plotted against number of Jacobian evaluations for
five strengths of priors. After minimizing with priors, the priors are removed and
a maximum of 20 further Jacobian evaluations are performed. The prior strength
is measured by p, with p = 0 meaning no prior. The success rate is R. The
strongest priors converge the fastest, with medium strength priors showing the
highest success rate.

sensible values. Despite the use of a variable λ that can be used to tune the al-

gorithm toward sensible behavior (Fig. 2.9), we shall see in section 2.9 that the

Levenberg-Marquardt algorithm often fails, usually because of parameter evapora-

tion. When the useful ranges of parameters can be estimated beforehand, adding

priors can be a remarkably effective tool.

51

2.7 Extended Geodesic Coordinates

We have seen that the two difficulties of optimizing sloppy models are that al-

gorithms tend to run into the model boundaries and that model parametrization

tends to form long, curved canyons around the best fit. We have discussed how

the first problem can be improved by the introduction of priors. We now turn

our attention to the second problem. In this section we consider the question of

whether we can change the parameters of a model in such a way as to remove this

difficulty. We construct coordinates geometrically by considering the motion of

geodesics on the manifold.

Given two nearby points on a manifold, one can consider the many paths that

connect them. If the points are very far away, there may be complications due

to the boundaries of the manifold. For the moment, we assume that the points

are sufficiently close that boundaries can be ignored. The unique path joining the

two points whose distance is shortest is known as the geodesic. The parameters

corresponding to a geodesic path can be found as the solution of the differential

equation

ẍµ + Γµαβẋ
αẋβ = 0, (2.24)

where Γµαβ are the connection coefficients given by Eq. (2.8) and the dot means

differentiation with respect to the curve’s affine parametrization. Using two points

as boundary values, the solution to the differential equation is then the shortest

distance between the two points. Alternatively, one can specify a geodesic with

an initial point and direction. In this case, the geodesic is interpreted as the

path drawn by parallel transporting the tangent vector (also known as the curve’s

52

velocity). This second interpretation of geodesics will be the most useful for un-

derstanding the coordinates we are about to construct. The coordinates that we

consider are polar-like coordinates, with N − 1 angular coordinates and one radial

coordinate.

If we consider all geodesics that pass through the best fit with a normalized

velocity, vµvµ = 1, then each geodesic is identified by N − 1 free parameters,

corresponding to direction of the velocity at the best fit. (The normalization of

the velocity does not change the path of the geodesic – only the time it takes to

traverse the path.) These N − 1 free parameters will be the angular coordinates

of the new coordinate system. There is no unique way of defining the angular

coordinates. One can choose N orthonormal unit vectors at the best fit, and let

the angular coordinates define a linear combination of them. We typically choose

eigendirections of the metric (the eigenpredictions of section 2.3). Having specified

a geodesic with the N−1 angular coordinates, the radial coordinate represents the

distance moved along the geodesic. Since we have chosen the velocity vector to be

normalized to one, the radial component is the parametrization of the geodesic.

We refer to these coordinates as extended geodesic coordinates and denote their

Cartesian analog by γµ. These coordinates have the special property that those

geodesics that pass through the best fit appears as straight lines in parameter

space. (It is impossible for all geodesics to be straight lines if the space is curved.)

In general, one cannot express this coordinate change in an analytic form. The

quadratic approximation to this transformation is given by

γν ≈ θνbf + vνµδθ
µ +

1

2
Γναβδθ

αδθβ. (2.25)

The coordinates given in Eq. (2.25) are known as Riemann normal coordinates or

geodesic coordinates. Within the general relativity community, these coordinates

53

are known as locally inertial reference frames because they have the property that

Γαµν(x = 0) = 0, that is, the Christoffel symbols vanish at the special point around

which the coordinates are constructed [71].

Let us now consider the shape of cost contours for our example model using

extended geodesic coordinates. We can consider both the shape of the coordinate

mesh on the manifold in data space, as well as the shape of the cost contours in

parameter space. To illustrate the dramatic effect that these coordinates can have,

we have adjusted the data so that the best fit does not lie so near the boundary.

The results are in Fig. 2.7.

The extended geodesic coordinates were constructed to make the elongated

ellipse that is characteristic of sloppy models become circular. It was hoped that

by making the transformation nonlinear, it would straighten out the an-harmonic

“banana” shape, rather than magnify it. It appears that this wish has been granted

spectacularly. Not only has the banana been straightened out within the region

of the long narrow canyon, but the entire region of parameter space, including the

plateau, has been transformed into one manageable, isotropic basin. Indeed, the

cost contours of Fig. 2.7b are near-perfect circles, all the way to the boundary

where the rates go to zero, infinity, or are equal.

To better understand how this elegant result comes about, let’s consider how

the cost changes as we move along a geodesic that passes through the best fit. The

cost then becomes parametrized by the same parameter describing the geodesic,

which we call τ . The chain rule gives us,

d

dτ
=
dθµ

dτ

∂

∂θµ
= vµ∂µ,

54

Figure 2.11: Geodesic Coordinates

(Color online) a) Extended Geodesic Coordinates. The parameters of a model
are not usually well suited to describing the behavior of a model. By considering
the manifold induced in data space, one can construct more natural coordinates
based on geodesic motion that are more well-suited to describing the behavior of
a model (black grid). These coordinates remove all parameter-effects curvature
and are known as extended geodesic coordinates. Note that we have moved the
data point so that the best fit is not so near a boundary in this picture. b) Cost
Contours in Extended Geodesic Coordinates. Although the summing expo-
nential model is nonlinear, that non-linearity does not translate into large extrin-
sic curvature. This type of non-linearity is known as parameter-effects curvature,
which the geodesic coordinates remove. This is most dramatically illustrated by
considering the contours of constant cost in geodesic coordinates. The contours
are nearly circular all the way out to the fold line and the boundary where the
rates are infinite.

55

where vµ = θ̇µ. Applying this twice to the cost gives:

d2C

dτ 2
= vµvνgµν + rmP

N
mn∂µ∂νrn

dθµ

dτ

dθν

dτ
. (2.26)

The term vµvνgµν in Eq. (2.26) is the arbitrarily chosen normalization of the ve-

locity vector and is the same at all points along the geodesic. The interesting piece

in Eq. (2.26) is the expression

PN = δ − J
(
JTJ

)−1
JT ,

which we recognize as the projection operator that projects out of the tangent

space (or into the normal bundle).

Recognizing PN in Eq. (2.26), we see that any deviation of the quadratic be-

havior of the cost will be when the non-linearity forces the geodesic out of the

tangent plane, which is to say that there is an extrinsic curvature. When there is

no such curvature, then the cost will be isotropic and quadratic in the extended

geodesic coordinates.

If the model happens to have as many parameters as residuals, then the tangent

space is exactly the embedding space and the model will be flat. This can be seen

explicitly in the expression for PN , since J will be a square matrix ifM = N , with

a well-defined inverse:

PN = δ − J
(
JTJ

)−1
JT

= δ − JJ−1
(
JT
)−1

JT

= 0.

Furthermore, when there are as many parameters as residuals, the extended

geodesic coordinates can be chosen to be the residuals themselves, and hence the

cost contours will be concentric circles.

56

In general, there will be more residuals than parameters; however, we have

seen in section 2.4 that many of those residuals are interpolating points that do

not supply much new information. Assuming that we can simply discard a few

residuals, then we can “force” the model to be flat by restricting the embedding

space. It is, therefore, likely that for most sloppy models, the manifold will nat-

urally be much more flat than one would have expected. We will see when we

discuss curvature in section 2.8 that most of the non-linearities of a sloppy model

do not produce extrinsic curvature, meaning the manifold is typically much more

flat that one would have guessed.

Non-linearities that do not produce extrinsic curvature are described as

parameter-effects curvature [9]. As the name suggests these are “curvatures” that

can be removed through a different choice of parameters. By using geodesics, we

have found a coordinate system on the manifold that removes all parameter-effects

curvature at a point. It has been noted previously that geodesics are linked to zero

parameter-effects curvature [58].

We believe it to be generally true for sloppy models that non-linearities are

manifested primarily as parameter-effects curvature as we argue in [94] and in

section 2.8. We find similar results when we consider geodesic coordinates in the

PC12 model, neural networks, and many other models. Just as for the summing

exponential problem that produced Fig. 2.7b, cost contours for this real-life model

are nearly circular all the way to the model’s boundary.

Although the model manifold is much more flat than one would have guessed,

how does that result compare for the model graph? We observed in section 2.5,

that the model graph interpolates between the model manifold and the parameter

space picture. If we find the cost contours for the model graph at various values of

57

λ, we can watch the cost contours interpolate between the circles in Fig. 2.7b and

the long canyon that is characteristic of parameter space. This can be seen clearly

in Fig. 2.12.

With any set of coordinates, it is important to know what portion of the mani-

fold they cover. Extended geodesic coordinates will only be defined in some region

around the best fit. It is clear from Fig. 2.7 that for our example problem the region

for which the coordinates are valid extends to the manifold boundaries. Certainly

there are regions of the manifold that are inaccessible to the geodesic coordinates.

Usually, extended geodesic coordinates will be limited by geodesics reaching the

boundaries, just as algorithms are similarly hindered in finding the best fit.

2.8 Curvature

In this section, we discuss the various types of curvature that one might expect to

encounter in a least-squares problem and the measures that could be used to quan-

tify those curvatures. Curvature of the model manifold has had many interesting

applications. It has been illustrated by Bates and Watts that the curvature is a

convenient measure of the non-linearity of a model [9, 10, 12]. When we discuss

the implications of geometry on numerical algorithms this will be critical, since it

is the non-linearity that makes these problems difficult.

Curvature has also been used to study confidence regions [10, 50, 28, 34, 100],

kurtosis (deviations from normality) in parameter estimation [49], and criteria for

determining if a minimum is the global minimizer [32]. We will see below that the

large anisotropy in the metric produces a similar anisotropy in the curvature of

sloppy models. Furthermore, we use curvature as a measure of how far an algorithm

58

Figure 2.12: Cost contours in geodesic coordiantes
(Color online) By changing the value of the Levenberg-Marquardt parameter, the
course of the geodesics on the corresponding model graph are deformed, in turn
distorting the shape of the cost contours in the geodesic coordinates. a) λ =
0 is equivalent to the model manifold. The cost contours for a relatively flat
manifold, such as that produced by the sum of two exponentials, are nearly perfect,
concentric circles. The geodesics can be evaluated up to the boundary of the
manifold, at which point the coordinates are no longer defined. Here we can
clearly see the stiff, long manifold direction (vertical) and the sloppy, thin manifold
direction (horizontal) b) Small λ, (λ much smaller than any of the eigenvalues of
the metric) will produce cost contours that are still circular, but the manifold
boundaries have been removed. In this case the fold line has disappeared, and
cost contours that ended where parameters evaporated now stretch to infinity.
c) Moderate λ creates cost contours that begin to stretch in regions where the
damping parameter significantly affects the eigenvalue structure of the metric.
The deformed cost contours begin to take the plateau and canyon structures of the
contours in parameter space. d) Large λ effectively washes out the information
from the model manifold metric, leaving just a multiple of the parameter space
metric. In this case, the contours are those of parameter space – a long narrow
curved canyon around the best fit. This figure analogous to Fig. 2.1b, although
the model here is a more sloppy (and more realistic) example. An animation of
the transition from small to large damping parameter is available in the online
supplemental material [93].

59

can accurately step (section 2.8.6) and to estimate how many parameters a best

fit will typically evaporate (section 2.8.7).

In our discussion of geodesic coordinates in section 2.7, we saw how some of

the non-linearity of a model could be removed by a clever choice of coordinates.

We also argued that the non-linearity that could not be removed by a coordinate

change would be expressed as an extrinsic curvature on the expectation surface.

Non-linearity that does not produce an extrinsic curvature is not irrelevant; it can

still have strong influence on the model and can still limit the effectiveness of op-

timization algorithms. Specifically, this type of non-linearity changes the way that

distances are measured on the tangent space. They may cause the basis vectors

on the tangent space to expand, shrink, or rotate. We follow the nomenclature of

Bates and Watts and refer to this type of non-linearity as parameter-effects curva-

ture [9, 12]. We emphasize that this is not a “real” curvature in the sense that it

does not cause the shape of the expectation surface to vary from a flat surface, but

its effects on the behavior of the model is similar to the effect of real curvature.

This “curvature” could be removed through a more convenient choice of coordi-

nates, which is precisely what we have done by constructing geodesic coordinates

in section 2.7. A functional definition of parameter-effects curvature would be the

non-linearities that are annihilated by operating with PN . Alternatively, one can

think of the parameter-effects curvature as the curvatures of the coordinate mesh.

We discuss parameter-effects curvature in section 2.8.3.

Bates and Watts refer to all non-linearity that cannot be removed by changes of

coordinates as intrinsic curvature [12]. We will not follow this convention; instead,

we follow the differential geometry community and further distinguish between

intrinsic or Riemann curvature (section 2.8.1) and extrinsic or embedding curva-

60

ture [88] (section 2.8.2). The former refers to the curvature that could be measured

on a surface without reference to the embedding. The latter refers to the curvature

that arises due to the manner in which the model has been embedded. From a

complete knowledge of the extrinsic curvature, one could also calculate the intrin-

sic curvature. Based on our discussion to this point, one would expect that both

the intrinsic and the extrinsic curvature should be expressible in terms of some

combination of PN and ∂µ∂νrm. This turns out to be the case, as we will shortly

see.

All types of curvature appear in least squares models, and we will now discuss

each of them.

2.8.1 Intrinsic (Riemann) Curvature

The embedding plays a crucial role in nonlinear least squares fits – the residuals

embed the model manifold explicitly in data space – we will be primarily interested

in the extrinsic curvature. However, because most studies of differential geometry

focus on the intrinsic curvature, we discuss it.

The Riemann curvature tensor, Rα
βγδ is one measure of intrinsic curvature.

Since intrinsic curvature makes no reference to the embedding space, curvature is

measured by moving a vector, V µ, around infinitesimal closed loops and observing

the change the curvature induces on the vector, which is expressed mathematically

by

Rα
βγδV

β = ∇γ∇δV
α −∇δ∇γV

α.

This expression in turn can be written independently of V µ in terms of the Christof-

61

fel symbols and their derivatives by the standard formula

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓεβδΓ

α
εγ − ΓεβγΓ

α
εδ.

From this we can express Rα
βγδ in terms of derivatives of the residuals. Even though

Rα
βγδ depends on derivatives of Γ, suggesting that it would require a third derivative

of the residuals, one can in fact represent it in terms of second derivatives and PN ,

Rαβγδ = ∂α∂γrmP
N
mn∂β∂δrn − ∂α∂δrmPN

mn∂β∂γrn,

which the Gauss-Codazzi equation extended to the case of more than one indepen-

dent normal direction [36].

The toy model that we have used throughout this work to illustrate concepts

has intrinsic curvature. The curvature becomes most apparent when viewed from

another angle, as in Fig. 2.13.

Intrinsic or Riemann curvature is an important mathematical quantity that is

described by a single, four-index tensor; however, we do not use intrinsic curva-

ture to study optimization algorithms. Extrinsic and parameter-effects curvature

in contrast not be simple tensors but will depend on a chosen direction. These

curvatures are the key to understanding nonlinear least squares fitting.

2.8.2 Extrinsic Curvature

Extrinsic curvature is easier to visualize than intrinsic curvature since it makes

reference to the embedding space, which is where one naturally imagines curved

surfaces. It is important to understand that extrinsic and intrinsic curvature are

fundamentally different and are not merely different ways of describing the same

concept. In differentiating between intrinsic and extrinsic curvature, the simplest

62

Figure 2.13: Intrinsic curvature
(Color online) Intrinsic and Extrinsic Curvature. Intrinsic Curvature is in-
herent to the manifold and cannot be removed by an alternative embedding. A
model that is the sum of two exponential terms has all types of curvature. This
is the same model manifold as in Fig. 2.1c, viewed from an alternative angle to
highlight the curvature. From this viewing angle, the extrinsic curvature becomes
apparent. This is also an example of intrinsic curvature. An animation of this sur-
face rotating in three dimensions is available in the online supplemental material
[93].

illustrative example is a cylinder, which has no intrinsic curvature but does have

extrinsic curvature. One could imagine taking a piece of paper, clearly a flat,

two dimensional surface embedded in three dimensional space, and roll it into a

cylinder. Rolling the paper does not affect distances on the surface, preserving its

intrinsic properties, but changes the way that it is embedded in three dimensional

space. The rolled paper remains intrinsically flat, but it now has an extrinsic

curvature. A surface whose extrinsic curvature can be removed by an alternative,

isometric embedding is known as a ruled surface [53]. While an extrinsic curvature

does not always imply the existence of an intrinsic curvature, an intrinsic curvature

63

Figure 2.14: Ruled surface
(Color online) A ruled surface has no intrinsic curvature; however, it may have
extrinsic curvature. The model manifold formed from a single exponential rate
and amplitude is an example of a ruled surface. This model could be isometrically
embedded in another space to remove the curvature. An animation of this surface
rotating in three dimensional space is available in the online supplemental material
[93].

requires that there also be extrinsic curvature. Our toy model, therefore, also

exhibits extrinsic curvature as in Fig. 2.13. One model whose manifold is a ruled

surface is given by a two parameter model which varies an exponential rate and

an amplitude:

y = Ae−θt.

The manifold for this model with three data points is drawn in Fig. 2.14 3.
3This example is also a separable nonlinear least squares problem. Separable problems con-

taining a mixture of linear and nonlinear parameters are amenable to the method known as
variable projection [45, 59, 44]. Variable projection consists of first performing a linear least
squares optimization on the linear parameters, making them implicit functions of the nonlin-
ear parameters. The geometric effect of this procedure is to reduce the dimensionality of the
model manifold, effectively selecting a sub-manifold which now depends upon the location of the
data. We will not discuss this method further in this paper, but we note that it is likely to have
interesting geometric properties.

64

There are two measures of extrinsic curvature that we discuss. The first is

known as geodesic curvature as it measures the deviation of a geodesic from a

straight line in the embedding space. The second measure is known as the shape

operator. These two measures are complimentary, and should be used together

to understand the way a space is curved. Both geodesic curvature and the shape

operator have analogous measures of parameter-effects curvature that will allow

us to compare the relative importance of the two types of curvature.

Measures of extrinsic and parameter effects curvature to quantify non-linearities

have been proposed previously by Bates andWatts [9, 8, 12]. Although the measure

they use is equivalent to the presentation of the next few sections, their approach is

different. The goal of this section is to express curvature measures of non-linearity

in a more standard way using the language of differential geometry. By so doing,

we hope to make the results accessible to a larger audience.

Geodesic Curvature

Consider a geodesic parametrized by τ , tracing a path through parameter space,

θµ(τ), which in turn defines a path through residual space, ~r(θ(τ)). The

parametrization allows us to discuss the velocity, ~v = d~r
dτ
, and the acceleration,

~a = d~v
dτ
. A little calculus puts these expressions in a more practical form:

~v = θ̇µ∂µ~r,

~a = θ̇µθ̇νPN∂µ∂ν~r.

Notice that the normal projection operator emerges naturally in the expression for

~a.

For any curve that has instantaneous velocity and acceleration vectors, one can

65

Figure 2.15: Geodesic Curvature
(Color online) Geodesic Curvature. A direction on a curved surface define a
geodesic. The deviation of the geodesic from a straight line in the embedding space
is measured by the geodesic curvature. It is the inverse radius of the circle fit to
the geodesic path at the point. A three-dimensional animation of this surface is
available in the online supplemental material [93].

find a circle that local approximates the path. The circle has radius

R =
v2

|~a|
,

and a corresponding curvature

K = R−1 =
|~a|
v2
.

Because the path that we are considering is a geodesic, it will be as near a straight

line in data space as possible without leaving the expectation surface. That is to

say, the curvature of the geodesic path will be a measure of how the surface is

curving within the embedding space, i.e. an extrinsic curvature. The curvature

associated with a geodesic path is illustrated in Fig. 2.15.

In our previous discussion of geodesics, we saw that a geodesic is fully specified

66

by a point and a direction. Therefore we can define the geodesic curvature of any

point on the surface, corresponding to a direction, vµ, by

K(v) =
|vµvνPN∂µ∂ν~r|

vαvα
. (2.27)

At each point an the surface, there is a different value of the geodesic curvature

for each direction on the surface.

Shape Operator

Another measure of extrinsic curvature, complimentary to the geodesic curvature,

is the shape operator, Sµν . While the geodesic curvature requires us to choose

an arbitrary direction on the surface, the shape operator requires us to choose an

arbitrary direction normal to the surface.

To understand the shape operator, let us first consider the special case of an

N -dimensional surface embedded in an N + 1-dimensional space. If this is the

case, then at any point on the surface there is a unique (up to a sign) unit vector

normal to the surface, n̂. If this is the case, Sµν is given by

Sµν = n̂ · (∂µ∂ν~r) . (2.28)

Sµν is known as the shape operator because it describes how the surface is

shaped around the unit normal, n̂. It is a symmetric, covariant rank-2 tensor. We

are usually interested in finding the eigenvalues of the shape operator with a single

raised index:

Sµν = gµαSαν .

The eigenvectors of Sµν are known as the principal curvature directions, and the

eigenvalues are the extrinsic curvatures in those directions. In the case that there

67

Figure 2.16: Shape operator
(Color online) Shape Operator. Specifying a direction normal to a curved sur-
face, n̂, defines a shape operator. The eigenvalues of the shape operator are the
principle curvatures and the corresponding eigenvectors are the directions of prin-
ciple curvature. A three-dimensional animation of this surface is available in the
online supplemental material [93].

is only one direction normal to the surface, then the (absolute value of the) eigen-

values of Sµν , are equal to the geodesic curvatures in the respective eigendirections.

The eigenvalues, {kµ}, may be either positive or negative. Positive values indicate

that the curvature is toward the direction of the normal, while negative values

indicate that it is curving away, as illustrated in Fig. 2.16.

In general, there will not be an unique normal vector. If an N -dimensional

surface is embedded in anM -dimensional space, then there willM−N independent

shape operators, and one is left to perform an eigenvalue analysis for each as

described above [88]. Fortunately, for the case of a least squares problem, there

is a natural direction to choose: the normal component of the unfit data, −PN~r,

68

making the shape operator

Sµν = −~rP
N∂µ∂ν~r

|PN~r|
, (2.29)

where we introduce the minus as convention. In general, around an arbitrary vector

~V , the shape operator becomes

S(~V)µν =
~V PN∂µ∂ν~r

|PN ~V |
. (2.30)

It should now be clear why these two measures of extrinsic curvature (geodesic

curvature and the shape operator) are complimentary. The geodesic curvature is

limited by having to choose a direction tangent to the surface, but gives complete

information about how that direction is curving into the space normal to the

surface. In contrast, the shape operator gives information about all the directions

on the surface, but only tells how those directions curve relative to a single normal

direction.

2.8.3 Parameter-effects Curvature

We are now prepared to discuss parameter-effects curvature. We repeat that

parameter-effects curvature is not a curvature of the manifold. Instead, it is a

measure of the curvatures of the coordinate mesh on the surface. In our expe-

rience, parameter-effects curvature is typically the largest of the three types we

have discussed. By its very nature, this curvature depends on the choice of the

parametrization. By constructing extended geodesic coordinates in section 2.7, we

were able to remove the parameter-effects curvature from the model (at a point).

In this section we will discuss how to measure the parameter-effects curvature and

compare it to the other curvatures that we discussed above.

69

To understand the meaning of parameter-effects curvature, let us begin by

considering a linear model with no curvature of any type. For simplicity, we

consider the parametrization of the xy-plane given by

x = εθ1 + θ2

y = θ1 + εθ2.

This parametrization will produce a skewed grid as ε→ 1, characteristic of linear

sloppy models, such as fitting polynomials. This grid is illustrated in Fig. 2.17a for

ε = 1/2. By reparametrizing the linear model, we can introduce parameter-effects

curvature. For example, if we replace the parameters with their squares (which

may be useful if we wish to enforce the positivity of the parameters’ effects)

x = εθ2
1 + θ2

2

y = θ2
1 + εθ2

2,

then the corresponding coordinate mesh will become compressed and stretched, as

seen in Fig. 2.17b. Alternatively, if we reparametrize the model as

x = (εθ1 + θ2)2

y =
(
θ2

1 + εθ2
2

)2
,

in order to limit the region of consideration to the upper-right quarter plane, then

the coordinate mesh will stretch and rotate into itself, depicted in Fig. 2.17c. With

more than two parameters, there is additionally a torsion parameter-effects curva-

ture in which the lines twist around one another. None of these reparametrization

change the intrinsic or extrinsic properties of the model manifold; they merely

change how the coordinates describe the manifold. The extent to which coordi-

nate mesh is nonlinear is measured by the parameter-effects curvature.

70

Figure 2.17: Parameter effects curvature
a) Linear Grid. A sloppy linear model may have a skewed coordinate grid, but
the shape of the grid is constant, having no parameter effects curvature. b) Com-
pressed Grid. By reparametrizing the model, the grid may become stretched
or compressed in regions of the manifold. c) Rotating, Compressed Grid.
Another parametrization may not only stretch the grid, but also cause the coor-
dinates to rotate. Parameter-effects curvature describes the degree to which the
coordinates are stretching and rotating on the manifold. With more than two
parameters, there is also a torsion parameter-effects curvature (twisting).

71

We now consider how to quantify parameter-effects curvature. We have dis-

cussed the normal and tangential projection operators, PN and P T , and argued

that the normal projection operator would extract the extrinsic and intrinsic cur-

vature from the matrix of second derivatives. Looking back on our expressions

for curvature up to this point, we see that each involves PN . The complimen-

tary parameter-effects curvature can be found by replacing PN with P T in each

expression. Thus, in analogy with Eq. (2.27), we can define the parameter-effects

geodesic curvature by

Kp(v) =
|vµvνP T∂µ∂ν~r|

vαvα
. (2.31)

Likewise, we can define a parameter-effects shape operator by comparison with

Eq. (2.29),

Spµν = −~rP
T∂µ∂ν~r

|P T~r|
.

Recall that for an N -dimensional space embedded in an M -dimensional space,

there are M −N independent shape operators. This is because the space normal

to the tangent space (into which we are projecting the non-linearity) is of dimen-

sion M − N . The parameter-effects analog must therefore have N independent

shape operators, since the projection space (the tangent space) is N -dimensional.

Therefore, we are naturally led to define a parameter-effects shape-operator with

an additional index to distinguish among the N possible tangent directions,

SPmµν = P T
mn∂µ∂νrn.

If we resolve these shape operators into the natural basis on the tangent space,

SPmµν = Spαµν∂αrm, we find

SPαµν = gαβ∂β~r · ∂µ∂ν~r = Γαµν .

Therefore, the parameter-effects curvature is correctly interpreted as the connec-

tion coefficients. With this understanding, it is clear that geodesic coordinates

72

remove parameter-effects curvature, since they are the coordinates constructed to

give Γ = 0.

Finally, we note that from a complete knowledge of all the curvatures (for all

directions) one can determine the matrix of second derivatives completely. Al-

though we do not demonstrate this here, we note it is a consequence of having a

flat embedding space.

2.8.4 Curvature in Sloppy Models

Based on our analysis thus far, we should have two expectations regarding the

curvature of sloppy models. First, because of the large spread of eigenvalues of

the metric tensor, unit distances measured in parameter space correspond to large

ranges of distances in data space. Conversely, one has to move the parameters by

large amounts in a sloppy direction in order to change the residuals by a significant

amount. Because of this, we expect that the anharmonicities in the sloppy direc-

tions will become magnified when we consider the curvature in those directions.

We expect strong anisotropies in the curvatures of sloppy models, with the largest

curvatures corresponding to the sloppiest directions.

Secondly, as we saw in section 2.7, by changing coordinates to extended geodesic

coordinates, we discovered that the manifold generated by our sloppy model was

surprisingly flat, i.e. had low intrinsic curvature. We have seen that if the model

happens to have equal number of data points as parameters, then the model will

always be flat. Since many of the data points in a typical sloppy model are just

interpolation points, we believe that in general sloppy models have lower extrinsic

curvature than one would have naively guessed just by considering the magnitude

73

of the non-linearities. This explains perhaps why we will find that the dominant

curvature of sloppy models is the parameter-effects one.

We can better understand the size of the various curvatures by considering the

interpretation presented in section 2.4 that sloppy models are a generalized inter-

polation scheme. If we choose N independent data points as our parametrization,

then the interpolating polynomial, PN−1(t) in Eq. (2.13) is a linear function of the

parameters. As discussed below that equation, the manifold in each additional

direction will be constrained to within ε = δfN+1 of PN−1(t). Presuming that this

deviation from flatness smoothly varies along the jth largest width Wj ∼ δfj of

the manifold (i.e., there is no complex or sensitive dependence on parameters), the

geodesic extrinsic curvature is

K = ε/W 2
j , (2.32)

predicting a range of extrinsic curvatures comparable to the range of inverse eigen-

values of the metric. Furthermore, the ratio of the curvature to the inverse width

should then be ε/Wj ∼ δfN+1/δfj ∼ (δt/R)N+1−j, where δt is the spacing of time

points at which the model is sampled and R is the time scale over which the model

changes appreciably (see the argument in section 2.4 following Eq. (2.13)).

Since we estimate ε = δfN+1 to be the most narrow width if the model had an

additional parameter, we can find the overall scale of the extrinsic curvature to be

given by the narrowest width

KN ≈
1

WN

.

Additionally, we can find the scale set by the parameter effects curvature by recall-

ing that parameter effects curvature is the curvature of the coordinate mesh. If we

ignore all parameter combinations except the stiffest, then motion in this direction

traces out a one-dimensional model manifold. The parameter-effects curvature of

74

the full model manifold in the stiffest direction now corresponds to the extrinsic

curvature of this one-dimensional manifold 4, and as such is set by the smallest

width (which in this case in the only width), i.e. the longest width of the full

model manifold. The similar structure of parameter-effects curvature and extrin-

sic curvature, Eqs. (2.27) and (2.31), suggest that the parameter-effects curvature

also be proportional to the inverse eigenvalues (squares of the widths) along the

several cross sections. Combining these result, we see that in general the ratio of

extrinsic to parameter-effects curvature to be given by ratio of the widest to the

most narrow width,
K

KP
≈ WN

W1

≈
√
λN
λ1

. (2.33)

In our experience the ratio of extrinsic to parameter-effects curvature in

Eq. (2.33) is always very small. When Bates and Watts introduced parameter-

effects curvature, they considered its magnitude on twenty four models and found

it universally larger than the extrinsic curvature, often much larger [9]. We have

here offered an explanation of this effect based on the assumption that the devia-

tion from flatness is given by Eq. (2.32).

We explicitly check the assumption of Eq. (2.32) by calculating cross sections

for a model of several exponentials and for an artificial neural network. We have

already seen in section 2.4 in figure 2.6 that these widths span several orders

of magnitude as predicted by the singular values of the Jacobian. In Fig. 2.18

we view the data space image of these widths (projected into the plane spanned

by the local velocity and acceleration vectors), where we see explicitly that the
4This is strictly only true if the parameter-effects curvature has no compression component.

Bates and Watts observe that typically, the compression is a large part of the parameter-effects
curvature [9]. As long as the compression is not significantly larger than the rotation (i.e. is within
an order of magnitude), the parameter-effects curvature will be the same order of magnitude as
the extrinsic curvature of the one-dimensional model.

75

deviation from flatness is similar for all the cross sections. In Fig. 2.19 we see that

that the extrinsic curvature is comparable to the narrowest cross section and the

parameter-effects curvature is comparable to the widest cross section as we argued

above, both for fitting exponentials and for the neural network model.

We further illustrate the above analysis by explicitly calculating the curvatures

for the sloppy model formed by summing several exponential terms with ampli-

tudes. Fig. 2.20 is a log-plot illustrating the eigenvalues of the inverse metric, the

geodesic curvatures in each of those eigendirections, as well as the parameter-effects

geodesic curvature in each of those directions. We see the same picture whether

we consider the eigenvalues of the shape operator or the geodesic curvature. Both

measures of curvature are strongly anisotropic with both extrinsic curvature and

parameter-effects curvature covering as many orders of magnitude as the eigenval-

ues of the (inverse) metric. However, the extrinsic curvature is smaller by a factor

roughly given by Eq. (2.33). We will use this large discrepancy between extrin-

sic and parameter-effects curvature when we improve the standard algorithms in

section 2.9.

We have seen that manifolds of sloppy models possess a number of universal

characteristics. We saw in section 2.4 that they are bounded with a hierarchy of

widths which we describe as a hyper-ribbon. In this section we have seen that

the extrinsic and parameter-effects curvature also possess a universal structure

summarized in Figs. 2.18-2.21. A remarkable thing about the parameter-invariant,

global structure of a sloppy model manifold is that is typically well-described by

the singular values of the parameter-dependent, local Jacobian matrix. We saw in

section 2.4 that the singular values correspond to the widths. We have now argued

that the largest and smallest singular values set the scale of the parameter-effects

76

Figure 2.18: Model manifold cross sections
a) Cross sections of a summing exponential model projected into the plane
spanned by the two principle components in data space. Notice the widths of
successive cross sections are progressively more narrow, while the deviations from
flatness are uniformly spread across the width. The magnitude of the deviation
from flatness is approximately the same for each width, giving rise to the hierarchy
of curvatures. b) Cross sections of a feed forward neural network has many
of the same properties as the exponential model. In both cases, the curvature is
much smaller than it appears due to the relative scale of the two axes. In fact, the
sloppiest directions (narrowest widths) have an aspect ratio of about one.

77

Figure 2.19: Curvatures and widths on the model manifold
(Color online) The extrinsic and parameter-effects curvature on the model mani-
fold are strongly anisotropic, with the largest curvatures along the shortest widths
(see Figs. 2.6, 2.18). The slopes of the (inverse) curvature vs. eigenvalue lines are
roughly twice that of the singular values (which are equivalent to the widths). The
magnitude of the extrinsic curvature is set by the most narrow cross sections, while
the magnitude of the parameter-effects curvature is set by the widest cross-section.
Consequently the parameter-effect curvature is much larger than the extrinsic cur-
vature. Here we plot the widths and curvatures for a model of four exponentials
(above) from reference [94] and a feed forward artificial neural network (below)

78

Figure 2.20: Curvature anisotropy on the model manifold
Curvature Anisotropy. a) Inverse Metric eigenvalues. The (inverse) met-
ric has eigenvalues spread over several orders of magnitude, producing a strong
anisotropy in the way distances are measured on the model manifold. b)Geodesic
Curvature in eigendirections of the metric. The geodesic curvatures also
cover many decades. The shortened distance measurements from the metric eigen-
values magnify the anharmonicities in the sloppy directions. c) Parameter-
Effects Geodesic Curvature. The parameter-effects curvature is much larger
than the extrinsic curvature, but shares the anisotropy. d) The eigenvalues
of the Shape Operator. The strong curvature anisotropy described by the
geodesic curvature is also illustrated in the eigenvalue spectrum of the shape op-
erator. e) Parameter-Effects Shape Operator eigenvalues. Two measures
(geodesic and shape operator curvatures) span similar ranges, but in both cases
the parameter-effects curvature is a factor of about 105 larger than the extrinsic
curvature equivalent.

79

and extrinsic curvatures respectively. This entire structure is a consequence of the

observation that most models are a multi-dimensional interpolation scheme.

Let us summarize our conclusions about the geometry of sloppy models. We

argued in section 2.4 using interpolation theorems that multiparameter nonlin-

ear least-squares models should have model manifolds with a hierarchy of widths,

forming a hyper-ribbon with the nth width of order Wn ∼ W0∆n with ∆ given

by the spacing between data points divided by a radius of convergence (in some

multidimensional sense) and W0 the widest cross section. We discovered in some

cases that the eigenvalues of the Hessian about the best fit agreed well with the

squares of these widths (so λn ∼ ∆2n, see Fig. 2.6). This depends on the choice of

parameters and the placement of the best fit; we conjecture that this will usually

occur if the ‘bare’ parameters are physically or biologically natural descriptions of

the model and have natural units (i.e., dimensionless), and if the best fit is not near

the boundary of the model manifold. The parameter ∆ will depend on the model

and the data being fit; it varies (for example) from 0.1 to 0.9 among seventeen sys-

tems biology models [48]. We argued using interpolation theory that the extrinsic

curvatures should scale as Kn ∼ ε/W 2
n , where the total variation ε ∼ WN , imply-

ing Kn ∼ ∆N/(W0∆2n) (Fig. 18c). We find this hierarchy both measured along

the eigenvectors of the (parameter-independent) shape operator (Fig. 2.20) or the

geodesic curvatures measured along the (parameter-dependent) eigenpredictions

at the best fit. Finally, we note that the parameter effects curvature also scales as

1/∆2n by inspecting the similarity in the two formulae, Eqs. (2.27) and (2.31). We

argue that the parameter-effects curvature should be roughly given by the extrinsic

curvature of a one-dimensional model moving in a stiff direction, which sets the

scale of the parameter effects as KP
n ∼ W0/W

2
n ∼ 1/(W0∆2n), again either mea-

sured along the eigendirections of the parameter-effects shape operator or along

80

eigenpredictions. Thus the entire structure of the manifold can be summarized by

three numbers, W0 the stiffest width, ∆ the typical spacing between widths, and

N the number of parameters. We summarize our conclusions in Fig. 2.21.

2.8.5 Curvature on the Model Graph

Most of the non-linearities of sloppy models appear as parameter-effects curva-

ture on the model manifold. On the model graph, however, these non-linearities

become extrinsic curvature because the model graph emphasizes the parameter

dependence. An extreme version of this effect can be seen explicitly in Fig. 2.8,

where the model manifold, which had been folded in half, is unfolded in the model

graph, producing a region of high curvature around the fold line.

If the Levenberg-Marquardt parameter is sufficiently large, the graph can be

made arbitrarily flat (assuming the metric chosen for parameter space is flat, such

as for the Levenberg metric). This effect is also visible in Fig. 2.8 in the regions

that stretch toward the boundaries. In these regions, the Levenberg-Marquardt

parameter is much larger than the eigenvalues of the metric, making the parameter

space metric the dominant contribution, and creating an extrinsically flat region

on the model graph.

To illustrate how the curvature on the model graph is affected by the Levenberg-

Marquardt parameter, we consider how the geodesic curvatures in the eigendirec-

tions of the metric change as the parameter is increased for a model involving sev-

eral exponentials with amplitudes and rates. The results are plotted in Fig. 2.22.

As the Levenberg-Marquardt parameter is raised, the widely ranging values of the

geodesic curvatures may either increase or decrease. The largest curvature direc-

81

Figure 2.21: Caricature of the model manifold
(Color online) A caricature of the widths and curvatures of a typical sloppy model.
a) The manifold deviates by an amount ∆N from a linear model for each width.
As each width is smaller than the last by a factor of ∆ the curvature is largest
along the narrow widths. This summary agrees well with the two real models in
Fig. 2.18. b) The scales of the extrinsic and parameter-effects curvature are set by
the narrowest and widest widths respectively. The parameter-effects curvature is
therefore smaller than the extrinsic curvature by a factor of ∆N . Both are strongly
anisotropic. Compare this figure to with the corresponding result for the two real
models in Fig. 2.19.

82

Figure 2.22: Curvature on the model graph
Model Graph Curvature. As the Levenberg-Marquardt parameter, λ, is in-
creased, directions with highest curvature become less curved. For stiff directions
with less extrinsic curvature, the parameter effects curvature may be transformed
into extrinsic curvature. The damping term reduces the large anisotropy in the
curvature. For sufficiently large values of the Levenberg-Marquardt parameters,
all curvatures vanish.

tions (the sloppy directions) tend to flatten, but the directions with the lowest

curvature (the stiff directions) direction become more curved. The main effect

of the the Levenberg-Marquardt parameter is to decrease the anisotropy in the

curvature.

The behavior of the extrinsic curvature as the Levenberg-Marquardt parameter

is varied can best be understood in terms of the interplay between parameter-effects

curvature and extrinsic curvature. Curvatures decrease as more weight is given to

83

the Euclidean, parameter-space metric. However, as long as the parameter-space

metric is not completely dominant, the graph will inherit curvatures from the model

manifold. Since the graph considers model output versus the parameters, curvature

that had previously been parameter-effects become extrinsic curvature. Therefore,

directions that had previously been extrinsically flat will be more curved, while

the directions with the most curvature will become less curved.

The largest curvatures typically correspond to the sloppy directions. Most

algorithms will try to step in sloppy directions in order to follow the canyon. The

benefit of the model graph is that it reduces the curvature in the sloppy directions,

which allows algorithms to take larger steps. The fact that previously flat directions

become extrinsically curved on the model graph does not hinder an algorithm that

does not step in these extrinsically flat directions anyway. The role that curvatures

play in determining an algorithm’s maximal step size is looked at more closely in

the next section.

2.8.6 Optimization Curvature

The distinction between extrinsic and parameter-effects curvature is not particu-

larly useful in understanding the limitations of an algorithm. An iterative algo-

rithm taking steps based on a local linearization will ultimately be limited by all

non-linearities, both extrinsic and parameter-effects. We would like a measure of

non-linearity, analogous to curvature, that explains the limitations of stepping in

a given direction.

Suppose an algorithm proposes a step in some direction, vµ, then the nat-

ural measure of non-linearity should include the directional second derivative,

84

vµvν∂µ∂ν~r/v
αvα, where we included the normalization in order to remove the scale

dependence of v. This expression is very similar to the geodesic curvature without

the projection operator.

Simply using the magnitude of this expression is not particularly useful because

it doesn’t indicate whether curvature of the path is improving or hindering the

convergence of the algorithm. This crucial bit of information is given by the

(negative) dot product with the unit residual vector,

κ(v) = −v
µvν∂µ∂ν~r

vαvα
· ~r
|~r|
, (2.34)

which we refer to as the Optimization Curvature. Since the goal is to reduce the

size of the current residual, the negative sign is to produce the convention that for

κ > 0, the curvature is helping the algorithm while when κ < 0 the curvature is

slowing the algorithm’s convergence.

This expression for κ has many of the properties of the curvatures discussed

in this section. It has the same units as the curvatures we have discussed. It

requires the specification of both a direction on the manifold (the proposed step

direction, v) and a direction in data space (the desired destination, ~r), making

it a combination of both the geodesic and shape operator measures of curvature.

Furthermore, without the projection operators, it combines both extrinsic and

parameter effects curvature into a single measure of non-linearity, although in

practice, it is dominated by the parameter-effects curvature. We now consider how

κ is related to the allowed step size of an iterative algorithm.

Consider the scaled Levenberg step given by

δθµ = −
(
g0 + λD

)µν
∂νC δτ.

Each λ specifies a direction for a proposed step. For a given λ, we vary δτ to

85

find how far an algorithm could step in the proposed direction. We determine δτ

by performing a line search to minimize the cost in the given direction. While

minimizing the cost at each step may seem like a natural stepping criterion, it is

actually a poor choice, as we discuss in section 2.9.3; however, this simple criteria

is useful for illustrating the limitations on step size.

We measure the step size by the motion it causes in the residuals, ‖δ~r‖. This is

a convenient choice because each direction also determines a value for the geodesic

curvature (K), parameter-effects curvature (Kp), and an optimization curvature

(κ), each of which are measured in units of inverse distance in data space. We

compare the step size with the inverse curvature in each direction in Fig. 2.23.

One might assume that the size of the non-linearities always limits the step

size, since the direction was determined based on a linearization of the residuals.

This is clearly the case for the summing exponentials model in Fig. 2.23a, where

κ < 0; the step size closely follows the largest of the curvatures, the parameter

effects curvature KP ≈ |κ|.

However, the non-linearities on occasion may inadvertently be helpful to an

algorithm, as in Fig. 2.23b where κ > 0. If the value of κ changes sign as we vary

λ, then the distinction becomes clear: steps can be several orders of magnitude

larger than expected if κ > 0, otherwise they are limited by the magnitude of κ.

The sign of the parameter κ is illustrating something that can be easily understood

by considering the cost contours in parameter space, as in Fig. 2.23d. If the canyon

is curving “into” the proposed step direction, then the step runs up the canyon wall

and must be shortened. However, if the canyon is curving “away” from the proposed

step direction, then step runs down the canyon and eventually up the opposite wall,

resulting in a much larger step size.

86

Figure 2.23: Curvature and algorithm step size
(Color online) a) Curvature and Step Size for κ < 0. If κ < 0, then the
non-linearities in the proposed direction are diverting the algorithm away from the
desired path. Distances are limited by the size of the curvature. b) Curvature
and Step Size for κ > 0. The non-linearities may be helpful to an algorithm,
allowing for larger than expected step sizes when κ > 0. c) Curvature and Step
Size for κ with alternating sign. For small λ, κ < 0 and the non-linearities are
restricting the step size. However, if κ becomes positive (the cusp indicates the
change of sign), the possible step size suddenly increases. d) Cost contours for
positive and negative values of κ. One can understand the two different signs
of κ in terms of which side of the canyon the given point resides. The upper point
has positive κ and can step much larger distances in the Gauss-Newton direction
than can the lower point with negative κ, which quickly runs up the canyon wall.

87

2.8.7 Curvature and parameter evaporation

We have stressed the the boundaries of the model manifold are the major obstacle

to optimization algorithms. Because a typical sloppy model has many very narrow

widths, it is reasonable to expect the best fit parameters to have several evaporated

parameter values when fit to noisy data. In order estimate the expected number

of evaporated parameters, however, it is necessary to account for the extrinsic

curvature of a model.

In Fig. 2.24 we illustrate how the curvature effects which regions of data space

correspond to a best fit with either evaporated or finite parameters. A first ap-

proximation is a cross-sectional width with no extrinsic curvature, as in Fig. 2.24a.

If the component of the data parallel to the cross-section does not lie outside the

range of the width, the parameter will not evaporate. If the cross-section has cur-

vature, however, the situation is more complicated, with the best fit depending on

the component of the data perpendicular to the cross-section as well. Figs. 2.24(b)

and (c) highlight the regions of data space for which the best fit will not evaporate

parameters (gray).

Knowing both the regions of data space corresponding to non-evaporated pa-

rameters and the relative probabilities of the possible data (Eq. (2.2)), we can

estimate the expected number of evaporated parameters for a given a model at the

best fit. Using Gaussian data of width σ centered on the middle of a cross-section

for a problem of fitting exponentials, we find the best fit and count the number

zero-eigenvalues of the metric, corresponding to the number of non-evaporated

parameters at the fit.

We can derive analytic estimates for the number of evaporated parameters using

88

Figure 2.24: Probability of best fit lying on the boundary
The curvature along the width of a manifold effects if the best fit lies on the
boundary or on the interior. For a cross-sectional width (thick black line), consider
three possibilities: a) extrinsically flat, b) constant curvature along width, and c)
curvature proportional to distance from the boundary. Grey regions correspond
to data points with best fits on the interior of the manifold, while white regions
correspond to data with evaporated parameters. If the curvature is larger near the
boundaries, there is less data space available for evaporated best fit parameters.

89

the approximation that the cross section is either flat or has constant curvature as

in Fig. 2.24a and b. If the cross-section is extrinsically flat then the probability of

the corresponding parameter combination not evaporating is given in terms of the

error function

P flat
n = 2 erf

(
Wn

2σ

)
, (2.35)

where Wn is the nth width given by Wn = W0∆n.

A similar formula for the constant curvature approximation is a little more

complicated. It involves integrating the Gaussian centered on the cross section in

Fig. 2.24 over the gray region. Since the apex of the gray cone is offset from the

center of the Gaussian, we evaluate the integral treating the offset as a perturba-

tion. We recognize that there are several cases to be considered. If the noise is

smaller than any of the widths, then the probability is approximately one. How-

ever, if the noise is larger than the width but smaller than inverse curvature, the

probability is given by Wn/σ. Finally, if the noise is larger than any of the widths

the probability is WnKn. Recall that we characterize a sloppy model manifold

by three numbers, W0, ∆, and N , the largest width, the average spacing between

widths and the number of parameters respectively. The final result in each of the

three cases in terms of these three numbers is given by

P curved
n =

1 if σ < Wn,

W0∆n

σ
if Wn < σ < 1/Kn,

∆N−n if 1/Kn < σ.

(2.36)

From our caricature of a typical sloppy model summarized in Fig. 2.21, we estimate

how many widths should belong in each category for a given σ. Summing the

probabilities for the several widths in Eq. (2.36) we find the expected number of

90

non-evaporated parameters to be given by

〈Napprox〉 =
2

1−∆
+

log σ/W0

log ∆
− 1. (2.37)

In Table 2.1 we compare the fraction of non-evaporated parameters with the

estimates from Eqs. (2.35) and (2.36). We find a large discrepancy when the

noise in the data is very large. In this case there is often a large fraction of non-

evaporated parameters even if the noise is much larger than any cross-sectional

width. We attribute this discrepancy to larger curvatures near the corners of the

manifold that increase the fraction of data space that can be fit without evaporating

parameters. Since the metric is nearly singular close to a boundary, we expect the

extrinsic curvature to become singular also by inspecting Eq. (2.27). We explicitly

calculate the curvature near the boundary and we find that this is in fact the case.

The calculation in Table 2.1 can be interpreted in several ways. If one is

developing a model to describe some data with known error bars, the calculation

can be used to estimate the number of parameters the model could reasonably

have without evaporating any at the best fit. Alternatively for a fixed model, the

calculation indicates what level of accuracy is necessary in the data to confidently

predict which parameters are not infinite. Qualitatively, for a given model, the

errors must be smaller than the narrowest width for there to be no evaporated

parameters.

Similarly, for experimental data with noise less than any of the (inverse)

parameter-effects curvatures the parameter uncertainties estimated by the inverse

Fisher information matrix will be accurate since the parameterization is constant

over the range of uncertainty. It is important to note, that for models with large

numbers of parameters either of these conditions require extremely small, often

unrealistically small, error bars. In general, it is more practical to focus on pre-

91

σ 〈N〉/N 〈Nflat〉/N 〈Nintegral〉/N 〈Napprox〉/N
10W0 0.61 .0006 0.028 0.025
W0 0.73 0.05 0.076 0.16√
W0WN 0.87 0.50 0.52 0.60
WN 0.95 0.92 0.93 1.00

WN/10 0.98 1.00 1.00 1.00

Table 2.1: Fraction of nonevaporated parameters
The number of non-evaporated parameters 〈N〉 per total number of parameters N
at the best fit, for an 8 parameter model of exponentials and amplitudes. As the
noise of the data ensemble grows, the number of non-evaporated parameters at the
best fit decreases (i.e. more parameters are evaporated by a good fit). Even if the
noise is much larger than any of the widths, there are still several non-evaporated
parameters, due to the curvature (see Fig. 2.24). We estimate the expected number
of non-evaporated parameters from both a flat manifold approximation (Eq. (2.35))
and a constant curvature approximation. For the constant curvature approxima-
tion we show the result of the exact integral of the gaussian over the grey region
of Fig. 2.24b as well as our perturbative approximation, Eq. (2.37), using the pa-
rameters W0 = 6.1, ∆ = .11 and N = 8. These approximations agree with the
numerical results when the noise is small, but for very noisy data there are still
several non-evaporated parameters even if the noise is much larger than any of
the widths. Therefore, although our general caricature of the model manifold as a
hyper-cylinder of constant curvatures and widths seems to describe the geometry
of the sloppy directions, it does not capture the features of the stiff directions.
This discrepancy could be due, for example, by an increase in the curvature near
the boundary as in Fig. 2.24c.

dictions made by ensembles of parameters with good fits rather than parameter

values at the best fit as the latter will depend strongly the noise in the data.

2.9 Applications to Algorithmics

We now consider how the results derived in previous sections can be applied to

algorithms. We have stressed that fitting sloppy models to data consist of two

difficult steps. The first step is to explore the large, flat plateau to find the canyon.

The second step is to follow the canyon to the best fit.

92

We begin by deriving two common algorithms, the modified Gauss-Newton

method and the Levenberg-Marquardt algorithm from the geometric picture in

sections 2.9.1 and 2.9.2. We then suggest how it may be improved by applying what

we call delayed gratification and an acceleration term in sections 2.9.3 and 2.9.4.

We demonstrate that the suggested modifications can offer improvements to the

algorithm by applying them to a few test problems in section 2.9.5. In comparing

the effectiveness of algorithms we make an important observation, that the major-

ity of the computer time for most problems with many parameters is occupied by

Jacobian evaluations. As the number of parameters grows, this becomes increas-

ingly the case. Models with many parameters are more likely to be sloppy, so this

assumption does not greatly reduce the applicability of the algorithms discussed.

If an algorithm estimates the Jacobian from finite differences of the residu-

als, then most of the function (residual) evaluations will be spent estimating the

Jacobian. (Our function evaluation counts in Table 2.2 do not include function

evaluations used to estimate Jacobians.) If this is the case, then for any given prob-

lem, comparing function evaluations automatically integrates the relative expense

of calculating residuals and Jacobians. However, many of the problems we use for

comparison are designed to have only a few parameters for quick evaluation, while

capturing the essence of larger problems. We then extrapolate results from small

problems to similar, but larger problems. Our primary objective is to reduce the

number of Jacobian evaluations necessary for an algorithm to converge. We do

not ignore the number of function evaluations, but we but consider reducing the

number of function calls to be a lower priority. As we consider possible improve-

ments to algorithms, we will usually be willing to accept a few more function calls

if it can significantly reduce the number of Jacobian evaluations that an algorithm

93

requires.

In the next few sections, we discuss the geometric meaning of the Gauss-Newton

method (section 2.9.1) and other similar algorithms, such as the Levenberg-

Marquardt algorithm (section 2.9.2). We then discuss how ideas from differential

geometry can lead to ways of improving convergence rates. First, we suggest a

method of updating the Levenberg-Marquardt parameter, which we call delayed

gratification, in section 2.9.3. Second, we suggest the inclusion of a geodesic accel-

eration term in section 2.9.4. We end the discussion by comparing the efficiency

of standard versions of algorithms to those with the suggested improvements in

section 2.9.5.

2.9.1 Modified Gauss-Newton Method

The result presented in this paper that appears to be the most likely to lead to a

useful algorithm is that cost contours are nearly perfect circles in extended geodesic

coordinates as described in section 2.7. The coordinates illustrated in Fig. 2.7

transformed a long, narrow, curved valley into concentric circles. Searching for the

best fit in these coordinates would be a straightforward task! This suggests that

an algorithm that begins at an unoptimized point need only follow a geodesic to

the best fit. We have thus transformed an optimization problem into a differential

equation integration problem.

The initial direction of the geodesic tangent vector (velocity vector) should be

the Gauss-Newton direction

dθµ

dτ
(τ = 0) = −gµν∂νC. (2.38)

If we assume that the manifold is extrinsically flat (the necessary and sufficient

94

condition to produce concentric circles in extended geodesic coordinates), then

Eq. (2.26) tells us that the cost will be purely quadratic,

d2C

dτ 2
= gµν

dθµ

dτ

dθν

dτ
= constant, (2.39)

which implies that the first derivative of the cost will be linear in τ :

dC

dτ
=

(
gµν

dθµ

dτ

dθν

dτ

)
τ + Ċ(τ = 0). (2.40)

A knowledge of Ċ(τ = 0) will then tell us how far the geodesic needs to be inte-

grated:

τmax = − Ċ(τ = 0)

gµν dθ
µ

dτ
dθν

dτ

. (2.41)

We can calculate the missing piece of Eq. (2.41) from the chain rule and Eq. (2.38),

Ċ =
dθµ

dτ
∂µC

= −gµν∂νC ∂µC,

which gives us

τmax = 1.

The simplest method one could apply to solve the geodesic equation would be

to apply a single Euler step, which moves the initial parameter guess by

δθµ = θ̇µδτ

= −gµν∂νC, (2.42)

since δτ = 1. Iteratively updating the parameters according to Eq. (2.42) is known

as the Gauss-Newton method. It can be derived without geometric considerations

by simply assuming a linear approximation to the residuals. Unless the initial guess

is very good, however, the appearance of the inverse Hessian in Eq. (2.42) (with its

95

enormous eigenvalues along sloppy directions) will result in large, unreliable steps

and prevent the algorithm from converging.

The Gauss-Newton method needs some way to shorten its steps. Motivated

by the idea of integrating a differential equation, one could imagine taking several

Euler steps instead of one. If one chooses a time step to minimize the cost along

the line given by the local Gauss-Newton direction, then the algorithm is known as

the modified Gauss-Newton method, which is a much more stable algorithm than

the simple Gauss-Newton method [51].

One could also imagine performing some more sophisticated method, such as

a Runge-Kutta method. The problem with these approaches is that the sloppy

eigenvalues of the inverse metric require the Euler or Runge-Kutta steps to be

far too small be competitive with other algorithms. In practice, these techniques

are not as effective as the Levenberg-Marquardt algorithm, discussed in the next

section.

2.9.2 Levenberg-Marquardt Algorithm

The algorithm that steps according to Eq. (2.42) using the metric of the model

graph, Eq. (2.17), is known as the Levenberg-Marquardt step:

δθµ = −
(
g0 + λD

)µν
∂νC.

IfD is chosen to be the identity, then the algorithm is the Levenberg algorithm [64].

The Levenberg algorithm is simply the Gauss-Newton method on the model graph

instead of the model manifold.

If D is chosen to be a diagonal matrix with entries equal to the diagonal el-

96

ements of g0, then the algorithm is the Levenberg-Marquardt algorithm [69]. As

we mentioned in section 2.5, the Levenberg-Marquardt algorithm, using the Mar-

quardt metric, is invariant to rescaling the parameters. We find this property

to often be counterproductive to the optimization process since it prevents the

modeler from imposing the proper scale for the parameter values. In addition we

observe that the resulting algorithm is more prone to parameter evaporation. The

purpose for adding D to the metric is to introduce parameter dependence to the

step direction.

The Levenberg-Marquardt algorithm adjusts λ at each step. Typically, when

the algorithm has just begun, the Levenberg-Marquardt term will be very large,

which will force the algorithm to take small steps in the gradient direction. Later,

once the algorithm has descended into a canyon, λ will be lowered, allowing the

algorithm to step in the Gauss-Newton direction and follow the length of the

canyon. The Levenberg-Marquardt parameter, therefore, serves the dual function

of rotating the step direction from the Gauss-Newton direction to the gradient

direction, as well as shortening the step.

As we mentioned in section 2.5, when using the Levenberg metric, λ will es-

sentially wash out all the sloppy eigenvalues of the original metric and leave the

large ones unaffected. The relatively large multiplicative factor separating eigen-

values means that λ does not need to be finely tuned in order to achieve conver-

gence. Nevertheless, an efficient method for choosing λ is the primary way that

the Levenberg-Marquardt algorithm can be optimized. We discuss two common

updating schemes here.

A typical method of choosing λ at each step is described in Numerical

Recipes [83]. One picks an initial value, say λ = .001, and tries the proposed

97

step. If the step moves to a point of larger cost, by default, the step is rejected

and λ is increased by some factor, 10. If the step has decreased the cost, the step

is accepted and λ is decreased by a factor of 10. This method is guaranteed to

eventually produce an acceptable step, since for extremely large values of λ, the

method will take an arbitrarily small step in the gradient direction. We refer to

this as the traditional scheme for updating λ.

A more complicated method of choosing λ is based on a trust region approach

and is described in [72]. As in the previous updating scheme, at each step λ is

increased until the step goes downhill (all uphill steps are rejected). However, after

an accepted step, the algorithm compares the decrease in cost at the new position

with the decrease predicted by the linear approximation of the residuals

‖~r (θold)‖ − ‖~r (θnew)‖

‖~r (θold)‖ −
∥∥∥~r(θold) + ~Jµδθµ

∥∥∥ .
If this value is very far from unity, then the algorithm has stepped beyond the

region for which it trusts the linear approximation and will increase λ by some

factor even though the cost has decreased; otherwise, λ is decreased. This method

tunes λ so that most steps are accepted, reducing the number of extra function

evaluations. As a result, it often needs a few more steps, and therefore, a few

more Jacobian evaluations. This algorithm works well for small problems where

the computational complexity of the function and the Jacobian are comparable.

It is not as competitive using the number of Jacobian evaluations as a measure of

success.

These are certainly not the only update schemes available. Both of these criteria

reject any move that increases the cost, which is a natural method to ensure that

the algorithm does not drift to large costs and never converges. One could imagine

devising an update scheme that allows some uphill steps in a controlled way such

98

that the algorithm remains well-behaved. We consider such a scheme elsewhere [96]

and note that it was a key inspiration for the Delayed Gratification update scheme

that we describe below in section 2.9.3.

As we observed in section 2.6, the metric formed by the model graph acts

similarly to the effect of adding linear Bayesian priors as residuals. The Levenberg-

Marquardt algorithm therefore chooses a Gauss-Newton step as though there were

such a prior, but then ignores the prior in calculating the cost at the new point.

A similar algorithm, known as the iteratively updated Gauss-Newton algorithm,

includes the contribution from the prior when calculating the new cost, although

the strength of the prior may be updated at each step [6].

2.9.3 Delayed Gratification

We have seen that parameter-effects curvatures are typically several orders of mag-

nitude larger than extrinsic curvatures for sloppy models, which means that the

model manifold is much more flat than the non-linearities alone suggest and pro-

duce the concentric circles in Fig. 2.7. When considering only a single step on

even a highly curved manifold, if the parameter-effects curvature dominates, the

step size will be less than the (inverse) extrinsic curvature and approximating the

manifold by a flat surface is a good approximation. Furthermore, we have seen

that when the manifold is flat, geodesics are the paths that we hope to follow.

The Rosenbrock function is a well known test function for which the extended

geodesic coordinates can be expressed analytically. It has a long, parabolic shaped

99

canyon and is given by

r1 = 1− θ1

r2 = A
(
θ2 − θ2

1

)
,

where A is a parameter that controls the narrowness of the canyon. The Rosen-

brock function has a single minimum at (θ1, θ2) = (1, 1). Since there are two resid-

uals and two parameters, the model manifold is flat and the extended geodesic

coordinates are the residuals. It is straightforward to solve

θ1 = 1− r1

θ2 =
r2

A
+ (1− r1)2 .

If we change to polar coordinates,

r1 = ρ sinφ

r2 = ρ cosφ,

then lines of constant φ are the geodesic paths that we would like an algorithm to

follow toward the best fit, and lines of constant ρ are cost contours. We plot both

sets of curves in Fig. 2.25.

Inspecting the geodesic paths that lead to the best fit in Fig. 2.25 reveals that

most of the path is spent following the canyon while decreasing the cost only

slightly. This behavior is common to all geodesics in canyons such as this. We

would like to devise an update scheme for λ in the Levenberg-Marquardt algorithm

that will imitate this behavior. The results of section 2.8.6 suggest that we will

often be able to step further than a trust region would allow, so we start from the

traditional update scheme.

The primary feature of the geodesic path that we wish to imitate is that radial

geodesics are nearly parallel to cost contours. In the usual update scheme, if a

100

Figure 2.25: Geodesics of the Rosenbrock function
Extended Geodesic Coordinates for Rosenbrock Function. The residuals
are one choice of extended geodesic coordinates if the number of parameters equal
the number of data points, as is the case for the Rosenbrock function. Because
the Rosenbrock function is a simple quadratic, the coordinate transformation can
be expressed analytically. Lines of constant ρ are equi-cost lines, while lines of
constant φ are the paths a geodesic algorithm should follow to the best fit. Because
the geodesics follow the path of the narrow canyon, the radial geodesics are nearly
parallel to the equi-cost lines in parameter space. This effect is actually much
more extreme than it appears in this figure because of the relative scales of the
two axes.

101

proposed step moves uphill, then λ is increased. In the spirit of following a cost

contour, one could slowly increase the Levenberg-Marquardt parameter just until

the cost no longer increases. If λ is fine-tuned until the cost is the same, we call

this the equi-cost update scheme. Such a scheme would naturally require many

function evaluations for each step, but as we said before, we are primarily interested

in problems for which function calls are cheap compared to Jacobian evaluations.

Even so, determining λ to this precision is usually overkill, and the desired effect

can be had by a much simpler method.

Instead of precisely tuning λ, we modify the traditional scheme to raise and

lower the parameter by different amounts. Increasing λ by very small amounts

when a proposed step is uphill and then decreasing it by a large amount when a

downhill step is finally found will mimic the desired behavior. We have found that

increasing by a factor of 2 and decreasing by a factor of 10 works well, consistent

with Lampton’s results [63]. We call this method, the delayed gratification update

scheme.

The reason that this update scheme is effective is due to the restriction that

we do not allow uphill steps. If we move downhill as much as possible in the first

few steps, we greatly restrict the steps that will be allowed as successive iterations,

slowing down the convergence rate, as illustrated in Fig. 2.26.

By using the delayed gratification update scheme, we are using the smallest

value of λ that does not produce an uphill step. If we choose a trust-region method,

instead, each step will choose a much larger value of λ. The problem with using

larger values of λ at each step, is that they drive the algorithm downhill prema-

turely. Even if the trust region only cuts each possible step in half compared to the

delayed gratification scheme, the cumulative effect will be much more damaging

102

Figure 2.26: Delayed gratification and greedy steps
(Color online) Greedy Step and Delayed Gratification Step Criterion. In
optimization problems for which there is a long narrow canyon, such as for the
Rosenbrock function, choosing a delayed gratification step is important to optimize
convergence. By varying the damping term, the algorithm may choose from several
possible steps. A greedy step will lower the cost as much as possible, but by so doing
will limit the size of future steps. An algorithm that takes the largest allowable
step size (without moving uphill) will not decrease the cost much initially, but will
arrive at the best fit in fewer steps and more closely approximate the true geodesic
path. What constitutes the largest tolerable step size should be optimized for
specific problems so as to guarantee convergence.

103

because of how this strategy reduces the possibility of future steps.

2.9.4 Geodesic Acceleration

We have seen that a geodesic is a natural path that an algorithm should follow in

its search for the best fit. The application of geodesics to optimization algorithms is

not new. It has been applied, for example to the problem of nonlinear programming

with constraints [65, 81], to neural network training [54], and to the general problem

of optimization on manifolds [78, 1]. Here we apply it as a second order correction

to the Levenberg-Marquardt step.

The geodesic equation is a second order differential equation, whose solution

we have attempted to mimic by only calculating first derivatives of the residuals

(Jacobians) and following a delayed gratification stepping scheme. From a single

residual and Jacobian evaluation, an algorithm can calculate the gradient of the

cost as well as the metric, which determines a direction. We would like to add a

second order correction to the step, but one would expect its evaluation to require

a knowledge of the second derivative matrix, which would be even more expensive

to calculate than the Jacobian. We have already noted that most of the computer

time is spent on Jacobian evaluations, so second order steps would have even more

overhead. Fortunately, the second order correction to the geodesic path can be

calculated relatively cheaply in comparison to a Jacobian evaluation.

The second order correction, or acceleration, to the geodesic path is given by

aµ = −Γµαβv
αvβ, (2.43)

as one can see by inspecting Eq. (2.24). In the expression for the acceleration, the

velocity contracts with the two lower indices of the connection. Recall from the

104

definition,

Γµαβ = gµν∂νrm∂α∂βrm,

that the lowered indices correspond to the second derivatives of the residuals.

This means that the acceleration only requires a directional second derivative in

the direction of the velocity. This directional derivative can be estimated with two

residual evaluations in addition to the Jacobian evaluation. Since each step will

always call at least one residual evaluation, we can estimate the acceleration with

only one additional residuals call, which is very cheap computationally compared

to a Jacobian evaluation.

With an easily evaluated approximation for the acceleration, we can then con-

sider the trajectory given by

δθµ = θ̇µδτ +
1

2
θ̈µδτ 2. (2.44)

By following the winding canyon with a parabolic path instead of a linear path,

we expect to require fewer steps to arrive at the best fit. The parabola can more

naturally curve around the corners of the canyon than the straight line path. This

is illustrated for the Rosenbrock function in Fig. 2.27. Because the canyon of the

Rosenbrock function is parabolic, it can be traversed exactly to the best fit by the

acceleration in a single step.

The relationship between the velocity and the acceleration depicted in Fig. 2.27

for the Rosenbrock function is overly idealized. In general the velocity and the ac-

celeration will not be perpendicular; in fact, it is much more common for them to

be nearly parallel or anti-parallel. Notice that the expression for the connection

coefficient involves a factor of the inverse metric, which will tend to bias the ac-

celeration to align parallel to the sloppy directions, just as it does for the velocity.

It is much more common for the acceleration to point in the direction opposite to

105

Figure 2.27: Geodesic acceleration in the Rosenbrock Valley
(Color online) Geodesic Acceleration in the Rosenbrock Valley. The Gauss-
Newton direction, or velocity vector, gives the correct direction that one should
move to approach the best fit while navigating a canyon. However, that direction
quickly rotates, requiring an algorithm to take very small steps in order to avoid
uphill moves. The geodesic acceleration indicates the direction in which the veloc-
ity rotates. The geodesic acceleration determines a parabolic trajectory that can
efficiently navigate the valley without running up the wall. The linear trajectory
quickly runs up the side of the canyon wall.

106

Figure 2.28: Effect of damping on geodesic acceleration
(Color online) a) De-acceleration when overstepping. Typically the velocity
vector greatly overestimates the proper step size. (We have rescaled both velocity
and acceleration to fit in the figure.) Algebraically, this is due to the factor of
the inverse metric in the velocity, which has very large eigenvalues. The acceler-
ation compensates for this by pointing anti-parallel to the velocity. However, the
acceleration vector is also very large, as it is multiplied twice by the velocity vec-
tor and once by the inverse metric.To make effective use of the acceleration, it is
necessary to regularize the metric by including a damping term. b) Acceleration
indicating the direction of the canyon. As the Levenberg-Marquardt param-
eter is raised, the velocity vector shortens and rotates from the natural gradient
into the downhill direction. The acceleration vector also shortens, although much
more rapidly, and also rotates. In this two dimensional cross section, although the
two velocity vectors rotate in opposite directions, the accelerations both rotate to
indicate the direction that the canyon is turning. By considering the path that one
would optimally like to take (along the canyon), it is clear that the acceleration
vector is properly indicating the correction to the desired trajectory.

the velocity, as for a summing exponentials model in Fig. 2.28a.

Although an acceleration that is anti-parallel to the velocity may seem worth-

less, it is actually telling us something useful: our proposed step was too large.

As we regulate the velocity by increasing the Levenberg-Marquardt parameter, we

also regulate the acceleration. Once our velocity term is comparable to the dis-

tance over which the canyon begins to curve, the acceleration indicates into which

direction the canyon is curving, as in Fig. 2.28b.

107

If the damping term is too small, the acceleration points in the opposite direc-

tion to and is much larger than the velocity. This scenario is dangerous because

it may cause the algorithm to move in precisely the opposite direction to the

Gauss-Newton direction, causing parameter evaporation. To fix this problem, we

add another criterion for an acceptable step. We want the contribution from the

acceleration to be smaller than the contribution from the velocity; therefore, we

typically reject proposed steps, increasing the Leveberg-Marquardt parameter until√∑
(aµ)2√∑
(vµ)2

< α, (2.45)

where α is a chosen parameter, typically unity, although for some problems a

smaller value is required.

The acceleration is likely to be most useful when the canyon is very narrow. As

the canyon narrows, the allowed steps become smaller. In essence, the narrowness

of the canyon is determining to what accuracy we are solving the geodesic equation.

If the canyon requires a very high accuracy, then a second order algorithm is likely

to converge much more quickly than a first order algorithm. We will see this

explicitly in the next section when we compare algorithms.

We have argued repeatedly that for sloppy models whose parameter-effects

curvature are dominant, a geodesic is the path that an algorithm should follow.

One could object to this assertion on the grounds that, apart from choosing the

initial direction of the geodesic to be the Gauss-Newton direction, there is no

reference to the cost gradient in the geodesic equation. If a manifold is curved,

then the geodesic will not lead directly to the best fit. In particular, the acceleration

is independent of the data.

Instead of a geodesic, one could argue that the path that one should follow is

108

given by the first order differential equation

vµ =
−gµν∇νC√
gαβ∇αC ∇βC

, (2.46)

where we have introduced the denominator to preserve the norm of the tangent

vector. Each Levenberg-Marquardt step chooses a direction in the Gauss-Newton

direction on the model graph, which seems to be better described by Eq. (2.46)

than by the geodesic equation, Eq. (2.24). In fact Eq. (2.46) has been proposed as

a Neural Network training algorithm by Amari et al. [2].

The second order differential equation corresponding to Eq. (2.46) which can

be found by taking the second derivative of the parameters, is a very complicated

expression. However, if one then applies the approximation that all non-linearities

are parameter-effects curvature, the resulting differential equation is exactly the

geodesic equation. By comparing step sizes with inverse curvatures in Fig. 2.23,

we can see that over a distance of several steps, the approximation that all non-

linearities are parameter-effects curvature should be very good. In such a case, the

deviation of Eq. (2.46) from Eq. (2.24) will not be significant over a few steps.

While the tensor analysis behind this result is long and tedious, the geomet-

ric meaning is simple and intuitive: if steps are much smaller than the extrinsic

curvature on the surface, then the vector (in data space) corresponding to the

Gauss-Newton direction can parallel transport itself to find the Gauss-Newton di-

rection at the next point. That is to say the direction of the tangent vector of a

geodesic does not change if the manifold is extrinsically flat.

Including second derivative information in an algorithm is not new. New-

ton’s method, for example replaces the approximate Hessian of the Gauss-Newton

method in Eq. (2.5), with the full Hessian in Eq. (2.4). Many standard algorithms

seek to efficiently find the actual Hessian, either by calculating it directly or by

109

estimation [43, 83]. One such algorithm, which we use for comparison in the next

section, is a quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shannon

(BFGS) [79], which estimates the second derivative from an accumulation of Jaco-

bian evaluations at each step.

In contrast to these Newton-like algorithms, the geodesic acceleration is not an

attempt to better approximate the Hessian. The results of section 2.7 suggest that

the approximate Hessian is very good. Instead of correcting the error in the size

and direction of the ellipses around the best fit, it is more productive to account for

how they are bent by non-linearities, which is the role of the geodesic acceleration.

The geodesic acceleration is a cubic correction to the Levenberg-Marquardt step.

There are certainly problems for which a quasi-Newton algorithm will make

important corrections to the approximate Hessian. However, we have argued that

sloppy models represent a large class of problems for which the Newton correction

is negligible compared to that of the geodesic acceleration. We demonstrate this

numerically with several examples in the next section.

2.9.5 Algorithm Comparisons

To demonstrate the effectiveness of an algorithm that uses delayed gratification

and the geodesic acceleration, we apply it to a few test problems that highlight

the typical difficulties associated with fitting by least squares.

First, consider a generalized Rosenbrock function,

C =
1

2

(
θ2

1 + A2

(
θ2 −

θn1
n

)2
)
,

where A and n are not optimizable parameters but set to control the difficulty of

110

Algorithm Success Rate Mean NJEV Mean NFEV
Trust Region LM 12% 1517 1649
Traditional LM 33% 2002 4003

Traditional LM + accel 65% 258 1494
Delayed Gratification 26% 1998 8625

Delayed Gratification + accel 65% 163 1913
BFGS 8% 5363 5365

Table 2.2: Algorithm performance on an exponential model
The results of several algorithms applied to a test problem of fitting a sum of
four exponential terms (varying both rates and amplitudes – 8 parameters) in log-
parameters (to enforce positivity). Initial conditions are chosen near a manifold
boundary with a best fit of zero cost near the center of the manifold. Among suc-
cessful attempts, we further compare the average number of Jacobian and function
evaluations needed to arrive at the fit. Success rate indicates an algorithm’s abil-
ity to avoid the manifold boundaries (find the canyon from the plateau), while the
number of Jacobian and function evaluations indicate how efficiently it can follow
the canyon to the best fit. BFGS is a quasi newton scalar minimizer of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) [79, 57]. The traditional [69, 83] and trust
region [72] implementations of Levenberg-Marquardt consistently outperform this
and other general optimization routines on least squares problems, such as Powell,
simplex, and conjugate gradient. Including the geodesic acceleration on a stan-
dard variant of Levenberg-Marquardt dramatically increases the success rate while
decreasing the computation time.

the problem. This problem has a global minimum of zero cost at the origin, with

a canyon following the polynomial path θn1/n whose width is determined by A. To

compare algorithms we draw initial points from a Gaussian distribution centered

at (1, 1/n) with standard deviation of unity, and compare the average number of

Jacobian evaluations an algorithm requires in order to decrease the cost to 10−4.

The results for the cubic and quartic versions of the problem are given in Fig. 2.29

for several version of the the Levenberg-Marquardt algorithm.

We next consider a summing exponential problem; a summary of these re-

sults can be found in [94]. Here we expand it to include the delayed gratification

algorithm outlined above in section 2.9.3.

111

Figure 2.29: Algorithm performance on the Rosenbrock function
Generalized Rosenbrock results for Levenberg-Marquardt variants. If
the canyon that an algorithm must follow is very narrow (measured by the con-
dition number of the metric at the best fit) or turns sharply, the algorithm will
require more steps to arrive at the best fit. Those that use the geodesic accelera-
tion term converge more quickly as the canyon narrows. As the parameter-effects
curvature increases, the canyon becomes more curved and the problem is more
difficult. Notice that changing the canyon’s path from a cubic function in a) to
a quartic function in b) slowed the convergence rate by a factor of 5. We have
omitted the quadratic path since including the acceleration allows the algorithm
to find the best fit in one step, regardless of how narrow the canyon becomes.

112

A surprising result from Table 2.2 is that including the geodesic acceleration

not only improves the speed of convergence, but improves the likelihood of con-

vergence, that is, the algorithm is less likely to evaporate parameters. This is a

consequence of the modified acceptance criterion in Eq. (2.45). As an algorithm

evaporates parameters, it approaches a singular point of the metric on the model

manifold, causing the velocity vector in parameter space to diverge. The accelera-

tion, however, also diverges, but much more rapidly than the velocity. By requiring

the acceleration term to be smaller than the velocity, the algorithm is much more

adept at avoiding boundaries. Geodesic acceleration, therefore, helps to improve

both the initial search for the canyon from the plateau, as well as the subsequent

race along the canyon to the best fit.

Finally, we emphasize that the purpose of this section was to demonstrate that

delayed gratification and geodesic acceleration are potentially helpful modifications

to existing algorithms. The results presented in this section do not constitute a

rigorous comparison, as such a study would require a much broader sampling of

test problems. Instead, we have argued that ideas from differential geometry can

be helpful to speed up the fitting process if existing algorithms are sluggish. We

are in the process of performing a more extensive comparison whose results will

appear shortly [96].

2.10 Conclusions

A goal of this paper has been to use a geometric perspective to study nonlinear

least squares models, deriving the relevant metric, connection, and measures of

curvature, and to show that geometry provides useful insights into the difficulties

113

associated with optimization.

We have presented the model manifold and noted that it typically has bound-

aries, which explain the phenomenon of parameter evaporation in the optimization

process. As algorithms run into the manifold’s boundaries, parameters are pushed

to infinite or otherwise unphysical values. For sloppy models, the manifold is

bounded by a hierarchy of progressively narrow boundaries, corresponding to the

less responsive direction of parameter space. The model behavior spans a hyper-

ribbon in data space. This phenomenon of geometric sloppiness is one of the key

reasons that sloppy models are difficult to optimize. We provide a theoretical

caricature of the model manifold characterizing their geometric series of widths,

extrinsic curvatures, and parameter-effects curvatures. Using this caricature, we

estimate the number of evaporated parameters one might expect to find at the

best fit for a given uncertainty in the data.

The model graph removes the boundaries and helps to keep the parameters

at reasonable levels. This is not always sufficient, however, and we suggest that

in many cases, the addition of thoughtful priors to the cost function can be a

significant help to algorithms.

The second difficulty in optimizing sloppy models is that the model parameters

are far removed from the model behavior. Because most sloppy models are dom-

inated by parameter-effects curvature, if one could reparametrize the model with

extended geodesic coordinates, the long narrow canyons would be transformed to

one isotropic quadratic basin. Optimizing a problem in extended geodesic coordi-

nates would be a trivial task!

Inspired by the motion of geodesics in the curved valleys, we developed the

114

delayed gratification update scheme for the traditional Levenberg-Marquardt al-

gorithm and further suggest the addition of a geodesic acceleration term. We have

seen that when algorithms must follow long narrow canyons, these can give sig-

nificant improvement to the optimization algorithm. We believe that the relative

cheap computational cost of adding the geodesic acceleration to the Levenberg-

Marquardt step gives it the potential to be a robust, general-purpose optimization

algorithm, particularly for high dimensional problems. It is necessary to explore

the behavior of geodesic acceleration on a larger problem set to justify this conjec-

ture [96].

Acknowledgments

We would like to thank Saul Teukolsky, Eric Siggia, John Guckenheimer, Cyrus

Umrigar, Peter Nightingale, Stefanos Papanikolou, Bryan Daniels, and Yoav Kallus

for helpful discussions. We thank Dave Schneider for suggesting information ge-

ometry to us and acknowledge support from NSF grants number DMR-0705167

and DMR-1005479.

115

CHAPTER 3

IMPROVEMENTS TO THE LEVENBERG-MARQUARDT

ALGORITHM

3.1 Abstract

We introduce several improvements to the Levenberg-Marquardt algorithm for non-

linear least-squares minimization in order to improve both its convergence speed

and robustness to initial parameter guesses. We update the usual step to include

a geodesic acceleration correction term, introduce a systematic way of accepting

steps that increase the residual sum of squares, and employ the Broyden method

to update the Jacobian matrix. We test these changes by comparing their per-

formance on a number of test problems with standard implementations of the

algorithm.

3.2 Introduction

A common computational problem is that of minimizing a sum of squares

C(θ) =
1

2

M∑
m=1

rm(θ)2, (3.1)

where r : RN → RM is an M -dimensional nonlinear vector function of N pa-

rameters, θ, where M ≥ N . The Levenberg-Marquardt algorithm is perhaps the

most common method for nonlinear least-squares minimization. This paper dis-

cusses a number of modifications to the Levenberg-Marquardt algorithm designed

to improve both its success rate and convergence speed. These modifications are

116

likely to be most useful on large problems with many parameters, where the usual

Levenberg-Marquardt routine often has difficulty.

Least-Squares minimization is most often used in data fitting, in which case

the function rm(θ) takes the form

rm(θ) =
y(tm, θ)− ym

σm
, (3.2)

where y(t, θ) is a model of the observed data, ym, that depends on a set of unknown

parameter, θ and one or more independent variables t. The deviation of model from

observation is weighted by the relative uncertainty in observed data, σ. The terms

in Eq. (3.2) are known as the residuals and may be augmented by additional terms

representing Bayesian prior information about the expected values of θ. We refer to

the function in Eq. (3.1) as the cost function. The cost corresponds to the negative

log-likelihood of parameter values given the data assuming gaussian errors. The

parameter values that minimize C(θ) are known as the best fit parameters.

Often, models with many parameters exhibit universal characteristics known

as sloppiness. The behavior of sloppy models is determined by only a few stiff

(relevant) parameter combinations, while most other parameter combinations are

sloppy (irrelevant)[19, 18, 74, 99, 48]. Fitting difficulties arise when algorithms

are lost in regions of parameter space where the model behavior is insensitive to

changes in the parameters, i.e. a plateau on the cost surface in parameter space

as in Fig. 3.1. A common occurance is that while lost on the plateau, algorithms

push parameters to infinite values without finding a good fit, a phenomenon known

as parameter evaporation[94, 95]. The algorithm must then be guided by hand in

order to converge.

In addition to parameter evaporation, algorithms become sluggish when they

must follow a narrow canyon to find the best fit, as in Fig. 3.1. It is not uncommon

117

Figure 3.1: The cost surface in parameter space for least-squares problems often
forms a hierarchy of narrow, winding canyons surrounded by plateaus. Algorithms
are easily lost on the plateaus, often evaporating parameters (pushing them to
infinity) while searching for a canyon. Having found the canyon, algorithms can
become sluggish while following it to the best fit. This simple model, y = e−θ1t +
e−θ2t, fit to three data points has a plateau when the parameters become very
large. It also exhibits a symmetry when parameter are permuted.

for the aspect ratio of the canyon be 1000 : 1 or more for problems with ten or

more parameters[99, 48], which requires the algorithm to take very small steps as

it inches along the bottom of the trough.

118

The difficulty in data fitting is exacerbated by the fact that solutions to the

two principal problems (parameter evaporation and slow convergence) are often at

odds with one another. Methods which speed convergence in the canyon usually

increase the probability of parameter evaporation and vice versa.

The Levenberg-Marquardt algorithm[64, 69, 72, 83] is particularly well-suited

to deal with the challenges of least-squares minimization. The algorithm is a

modification of the Gauss-Newton method. The Gauss-Newton method is based

on a local linearization of the residuals

rm(θ + δθ) ≈ rm(θ) + Jmµδθ
µ, (3.3)

where J is the Jacobian matrix Jmµ = ∂rm/∂θµ. The Gauss-Newton method then

iterates according to

δθ = −(JTJ)−1∇C = −(JTJ)−1JT r. (3.4)

The Gauss-Newton method will usually converge quickly if it begins sufficiently

near a minimum of C. However, the matrix JTJ is often ill-conditioned, with

eigenvalues often spanning a range of six orders of magnitude or more. There-

fore, unless the initial guess is very good, the Gauss-Newton method takes large,

uncontrolled steps and will fail to converge.

To remedy the shortcomings of the Gauss-Newton method, Levenberg and Mar-

quardt each suggested damping the JTJ matrix by a diagonal cuttoff[64, 69]. The

Levenberg-Marquardt algorithm therefore steps according to

δθ = −
(
JTJ + λDTD

)−1∇C. (3.5)

where DTD is a positive-definite, diagonal matrix representing the relative scaling

of the parameters and λ is a damping parameter adjusted by the algorithm. When

119

λ is large, the method takes a small step in the gradient direction, well-suited for

avoiding parameter evaporation. As the method nears a solution, λ is chosen to

be small and the method converges quickly via the Gauss-Newton method.

Because it is can tune λ as needed, the Levenberg-Marquardt method is well-

suited for dealing with the difficulties in nonlinear least-squares minimization. By

properly adjusting the damping term, the method can interpolate between gradi-

ent descent, for avoiding parameter evaporation, and the Gauss-Newton algorithm

for quickly converging along a canyon. One of the challenges for the Levenberg-

Marquardt method is in choosing a suitable scheme for updating the damping

parameter λ that successfully interpolates between the two regimes. Many such

schemes exist and although some are more suited for avoiding parameter evapora-

tion and others are more adept at navigating the canyon, the Levenberg-Marquardt

method is generally robust to the specific method used.

Its relative success notwithstanding, the Levenberg-Marquardt algorithm may

still fail to converge if it begins far from a minimum and will converge slowly if

it must inch along the bottom of a canyon. Given the ubiquitous role of non-

linear least squares in mathematical modeling, and considering the trend to use

increasingly large and computationally expensive models in all areas of science and

engineering, any improvements that could be made to the Levenberg-Marquardt

algorithm would be welcome. In this paper we discuss several such improvements.

In section 3.3 we discuss an alternative interpretation of the Levenberg-

Marquardt algorithm in terms of an approximation to gradient flow on a manifold

and summarize existing versions of the algorithm in section 3.4. We then explore

how the existing methods can be improved by including the so-called geodesic ac-

celeration in section 3.5 and a modified acceptance criterion in section 3.6. We

120

then discuss how a rank-deficient update to the Jacobian matrix can reduce the

number of times it must be evaluated in section 3.7. An open source implemen-

tation of the Levenberg-Marquardt algorithm with our proposed improvements is

available in the FORTRAN and C languages.

In each of the following sections we compare the performance of the algorithm

with the suggested improvements on a set of several test problems drawn from

the Minpack-2 project[5] and the NIST statistical reference datasets[70]. Because

most of these problems are of small or moderate size, it is unclear how performance

on these problems extrapolates to performance on larger problems. We therefore

also explore the algorithms’ performance on several large test problems drawn

from recent research in section. These problems and the comparison methods are

summarized in B.1. We find that our proposed improvements consistently improve

the performance of the algorithm on these problems.

3.3 Geometric Motivations

Because the function C is a sum of squares, it can be interpreted as a Euclidean

distance which leads naturally to a geometric interpretation for the model. The

key results of the geometric interpretation can be found in reference [95], which we

summarize in the following paragraphs. As we will see, this geoemtric approach

leads to an interpretation of the Levenberg-Marquardt algorithm as an approxi-

mation to geodesic flow on a manifold.

Consider the image of parameter space under the mapping r : RN → RM .

The mapping describes an N -dimensional manifold embedded in RM , known as

the model manifold,M and has metric JTJ . The parameters θ act as coordinates

121

Figure 3.2: The cost surface in geodesic coordinates does not display the same
hierarchy of canyons and plateaus typical of most parameterizations. Because of
the relatively small extrinsic curvature on the model manifold, geodesics transform
the surface into a single isotrpic, quadratic basin as it has here for the model in
Fig. 3.1. A fitting problem in these coordinates would be relatively straightforward.

onM It has been shown that the problem of parameter evaporation is a result of

algorithms running into the boundaries onM, while sluggish performance is often

the result of an awkward parameterization on the manifold.

Perhaps surprisingly, the model manifold usually has a small extrinsic curva-

ture, which leads to the use of geodesics in the optimization process. In figure 3.1

we show contours of constant cost versus the model parameters. Figure 3.2 shows

contours of constant cost for the same model in a new parameterization based on

geodesic motion on the manifold. By using geodesics, the canyons and plateaus

characteristic of the original parameterization have been transformed into a sin-

gle isotropic, quadratic basin. In geodesic coordinates the Gauss-Newton method

would have a much larger radius of convergence.

122

In general one cannot simply follow geodesics on M to minimize C. Because

the boundaries on the model manifold often form very narrow widths, unless the

initial guess is very close to the minimum, the geodesic will hit the boundary

before converging. It is therefore natural to consider the manifold formed by

plotting the output of r versus the parameters θ. The resulting manifold, known

as the model graph, G is an N -dimensional manifold embedded in an M + N

dimensional space. The metric on the model graph is an interpolation between

data space and parameter space metrics, and is given by JTJ +λDTD, where λ is

a parameter expressing the relative weight of the parameter space portion of the

embedding. The model graph, unlike the model manifold, has no boundaries at

infinite parameter values and has a metric that is nowhere singular. By following

geodesics on the model graph, an algorithm will be able to avoid the boundaries

onM and be more robust to the initial parameter guess.

Motivated by these geometric ideas we posit that an algorithm should try to

follow the path given by

θ̇µ = − gµν∇νC√
gαβ∇αC∇βC

, (3.6)

where gµν = (g−1)µν is the inverse metric of the model graph G. The path given

by Eq. (3.6) corresponds to gradient descent on G. The normalization is chosen

such that the velocity in the embedding space has constant, unit norm; in this way

the parameterization τ corresponds to the arc-length of the path in the embedding

space. As long as the initial parameter guess does not correspond to an infinite

cost, following the path given by Eq. (3.6) will lead to the best fit in a finite τ .

By assuming no extrinsic curvature on the model manifold, i.e. for λ = 0, the

distance to the best fit is given by

δτ =
√
gαβ∇αC∇βC. (3.7)

123

Integrating Eq. (3.6) with a single Euler step will therefore, reproduce the Gauss-

Newton method:

δθµ = −gµν∇νC. (3.8)

Integrating with multiple Euler steps reproduces the modified Gauss-Newton

method.

Euler steps on the model graph are equivalent to the Levenberg-Marquardt

algorithm, which iterates according to

δθ = −
(
JTJ + λDTD

)−1∇C. (3.9)

Notice that the step size |δθ| decreases continuously to zero as λ tends to∞. Thus,

unlike the modified Gauss-Newton method, it is not necessary to to choose both

a time step and a damping parameter in the Levenberg-Marquardt scheme. In

the next section we discuss how to efficiently choose the damping term before we

discuss how the the basic Levenberg-Marquardt algorithm can be improved.

3.4 The Levenberg-Marquardt algorithm

In this section we describe the basic concepts of the Levenberg-Marquardt algo-

rithm. This primarily consists of a method for choosing the damping parameter,

λ, which we discuss in section 3.4.1 and the parameter space metric DTD, which

we consider in section 3.4.2. Finally we discuss convergence and stopping criteria

in section 3.4.3.

124

3.4.1 Choosing the damping parameter

The basic strategy behind choosing the damping term uses the observations that

the step size ∆2 = δθTDTDδθ is a monotonically decreasing function of λ in

Eq. (3.9). Therefore, for a sufficiently large value of λ, the algorithm will take an

arbitrarily small step in a descent direction. If a proposed step is unacceptable,

one need only increase the damping term until a smaller, more acceptable step

has been found. Because choosing λ is equivalent to choosing the step size, the

Levenberg-Marquardt method can be considered a trust-region method. There are

two general schemes for determining the appropriate damping. This can be done

by either adjusting λ directly or by first choosing an acceptable step size ∆ and

then finding a λ such that |δθ| ≤ ∆ (note that reference [72] describes how λ may

be efficiently found for a given ∆). We will refer to these two schemes as direct

and indirect methods respectively.

Many schemes have been developed to efficiently adjust λ or ∆. In our experi-

ence, the simple method originally suggested by Marquardt (with a slight modifi-

cation described shortly) is usually adequate. In this scheme, if a step is accepted,

then λ is decreased by a fixed factor, say 10. If a step is rejected then λ is appropri-

ately raised by a factor of 10. As explained in reference [95], the qualitative effect

of the damping term is to wash out the eigenvalues of the model manifold metric

JTJ , which often are well spaced on a log-scale. It is therefore natural to choose

the factor by which λ is either raised/lowered to be comparable to the eigenvalue

spacing of JTJ . We have much greater success using a factor of 2 or 3 on most

problems.

Additionally, we find that lowering λ by a larger factor than it is raised also

produces more benficial results. For many moderate sized problems decreasing by a

125

factor of 3 and raising by a factor of 2 is adequate. For larger problems, decreasing

by a factor of 5 and raising by a factor of 1.5 is better. This scheme is known as

delayed gratification, and its motivation is described in [95]. This basic scheme can

also be applied to an indirect method by systematically increasing/decreasing ∆

by a multiplicative factor instead of λ. The relative performance of these schemes,

together with more complicated schemes describe by Nielson [77] and Moré [72] are

summarized in Figs. 3.3 - 3.5. In these figures we have labeled direct algorithms

with the prefix λ followed by the relative factors by which λ is lowered and raised.

Similarly we have labeled indirect methods by the prefix ∆ followed by the factor

by which ∆ is tuned.

There are several observations to be made from inspecting Figs. 3.3- 3.5. First,

there is no algorithm that is clearly superior to any other. The relative success of

any algorithm seems to depend very strongly on the problem. The most notable

trend arises when comparing the direct methods (taken together) and the indi-

rect methods (taken together). While the performance may vary among members

within this group, there are clearly problems for which any indirect method is su-

perior to any direct method and vice versa. Consider, for example, problems B

and D. For these problems, indirect methods are both more successful and more

efficient at finding good fits. On the other hand, direct methods seem superior for

Problems J, K, and L.

The relative success of indirect methods on problems B and C can be under-

stood by considering the eigenvalues of the of the Hessian matrix JTJ near the

best fit, as in figure 3.6. Notice that although they eigenvalue span many order

of magnitude, they tend to collect near 103 and 101. Recall that the effect of the

damping is to effectively wash out the eigenvalues smaller than λ. In order to be

126

Figure 3.3: Relative Success Rate of direct (a) and indirect (b) methods of
choosing λ. The relative convergence rate is found by dividing each algorithm’s con-
vergence rate, as described in B.1, by the largest convergence rate of any method.
Notice the direct methods’ relative failure on problems B and C while the indirect
methods struggled on J, K, and P.

127

Figure 3.4: Relative Fit Quality of direct (a) and indirect (b) methods of choos-
nig λ. The relative fit quality is found by dividing each algorithm’s quality factor
Q, as described in B.1, by the largest quality factor of any method. Again note
the low success rate of direct methods on problems B and C.

128

Figure 3.5: Relative Inverse NJEV of direct (a) and indirect (b) methods of
choosing λ. The relative inverse NJEV is found by dividing an algorithm’s average
inverse NJEV by the fewest average inverse NJEV of any algorithm. Since we
plot the inverse relative NJEV, larger numbers imply a more efficient algorithm.
Notice how the indirect methods are sluggish on problems D and L compared to
the direct methods.

129

Figure 3.6: The eigenvalues of of the Hessian matrix for problem C. Although the
eigenvalues span nearly eight order of magnitude, they are not evenly spaced over
this range. There are two large collections are eigenvalues near 1000 and between
1 and 10. This clumping helps explain why indirect update methods are superior
for this problem.

effective, an algorithm would therefore need to carefully tune λ while it was near

103, but then change very quickly while between 101 and 103. The direct meth-

ods described above cannot do this, however, the indirect methods that update ∆

rather than λ seem to accomplish this naturally.

The relative success of direct methods on problems such as problem J, K, and

L can be understood by a similar argument. In these problems there are regions

of parameter space in which the step size must be finely tuned and other regions

in which must change by large amounts. Most of the problems for which indirect

methods struggled had exponential terms and initial guesses far form the best fit.

The method initially had to move the parameters by large amount, however, once

130

the algorithm descended into a canyon, the step size must be quickly reduced. It

seems for these problems the direct methods that tune λ rather than the step size

are more efficient.

In principle the improvements we suggest in subsequent sections could be ap-

plied to any of the eight methods summarized in Figs. 3.3- 3.5, or to any other

variant of Levenberg-Marquardt. However, in practice we will restrict our attention

to just two versions, one from each of the direct and indirect categories. Specifi-

cally, we will apply our improvements to the methods λ 2/3 and ∆ 2/3 methods

which lower/raise λ (raise/lower ∆) by factors of 2 and 3 respectively. Inspecting

the performance of these two methods, we find that one of the two was either the

best performer or nearly the best performer on almost all of the test problems.

The effect of the improvements described in subsequent sections are similar for

other update schemes.

3.4.2 Parameter space metric

We now describe how to choose an effective parameter space metric DTD. The

parameter space metric ideally should represent the relative scaling of the sev-

eral parameters. Levenberg originally suggested an additive damping strategy,

corresponding to DTD = δ, the identity. It has since been suggested that a multi-

plicative damping strategy in which DTD is a diagonal matrix with entries equal

to the diagonal entries of JTJ would more accurately capture the scaling of the

several parameters. This method for choosing parameter scaling has the property

that the algorithm is invariant to rescaling parameters, which is to say if the pa-

rameters of the model were replaced by the parameters θ̃ = Σθ for some matrix Σ,

then the sequence of iterates produced by the algorithm would be left unchanged.

131

The problem with a method that preserves scale invariance is that it greatly

increases the susceptibility to parameter evaporation. In particular, if a parameter

begins to evaporate, the model becomes less sensitive to the parameter, so it’s

corresponding entry in on the diagonal of JTJ becomes small, in turn decreasing

the damping of this parameter. This, however, is exactly the wrong behavior for

dealing with parameter evaporation. Recall that the role of the parameter space

metric is to introduce parameter dependence to the step, so a choice that is scale

invariant is somewhat counter productive. On the other hand, we find that using

the Marquardt scaling can greatly speed up the algorithm when it is in the region

of a canyon, when parameter independence is crucial.

The popular implementation of Levenberg-Marquardt found in MINPACK uses

a similar but superior method described in ref[72]. It chooses DTD to be diagonal

with entries given by the largest diagonal entries of JTJ yet encountered. This

method also preserves invariance under rescaling but is more robust at avoiding

parameter evaporation, however, it is still more prone to parameter evaporation

than Levenberg scaling. This is because initial parameter guesses may lie in regions

that do not produce enough damping.

A good compromise is to specify a minimum value of the damping terms in

DTD. This prevents the damping from being too small, either as the parameters

evaporate or begin far from the canyon, but allows the algorithm to fine tune

the scaling as it follows the canyon. We find that this method is both robust to

parameter evaporation and efficient at finding good fits.

132

3.4.3 Convergence Criteria

Finally, we discuss criteria for the algorithm to stop searching for a best fit. It is

important to distinguish between convergence criteria and stopping criteria. The

former are criteria indicating that the algorithm has indeed found a local minimum

of the cost, while the latter are criteria indicating that the algorithm is, in effect,

giving up. In our comparison of the several algorithms, we list the convergence

rate as a measure of the algorithms performance. This rate is the fraction of times

the algorithm claimed to have successfully found a minima.

An elegant convergence criteria proposed by Bates and Watts also originated

in the geometric interpretation of the least squares problem[11]. This method

monitors the angle between the residual vector and the tangent plane, which we

denote by φ. In particular, the cosine of the angle in data space is given by

cosφ =
|P T r|
|r|

, (3.10)

where P T is a projection operator that projects into the tangent plane of the model

manifold. Given a singular value decomposition of the Jacobian matrix J = UΣV †,

then P T = UUT . The algorithm can then be stopped when cosφ is less than some

quantity, say 10−2 or 10−3.

This method provides a dimensionless convergence criterion that indicates how

near one is to the minimum. It also has a statistical interpretation in terms of the

accuracy of the solution in terms of the statistical uncertainty in the parameters.

This method has a serious deficiency, however, when the model manifold has nar-

row boundaries as described in [95]. If the best fit happens to have evaporated

parameters, a likely scenario for large models fit to noisy data, then cosφ may be

large although the algorithm has in fact converged.

133

As parameters evaporate, the model becomes less sensitive to that particular

parameter combination and the Jacobian matrix has a singular value that becomes

vanishingly small. (Note that the singular values correspond to the square root

of the eignenvalues of the model manifold metric JTJ .) When it is sufficiently

small we should consider these parameter directions to lie in the null space of J .

Although the singular value may be formally nonzero, for computational purposes

we understand that the algorithm will not make any more progress by moving the

parameters in these directions and they should not contribute to the tangential

component of the residuals.

To remedy this situation, we replace the projection operator P T = UUT in

Eq. (3.10) with P T = Ũ ŨT where Ũ is a matrix of left singular vectors of J

for which the corresponding singular value is larger than some threshold. If the

function is evaluated to precision ε, then we find that ignoring the directions with

singular values less than
√
εmax Σ, where max Σ is the largest singular value, works

well. An alternative solution is to use a convergence criteria when the gradient of

the cost falls below a certain threshold.

In addition to the convergence criterion described above, the algorithm should

have a number of stopping criteria. In our implementation we provide stopping

criteria for when a maximum number of residual and Jacobian evaluation have

been reached, in addition to a maximum number of iterations of the algorithm.

We also provide stopping criteria for when the gradient of the cost has fallen to

some threshold, when the change in parameter values becomes sufficiently small,

and when cost itself has reached some acceptable value.

134

3.5 Geodesic Acceleration

In order to improve the efficiency of the Levenberg-Marquardt method, we return to

the interpretation presented in section 3.3 that the Levenberg-Marquardt method

is an Euler approximation to geodesic flow on the model graph. To improve upon

this method, we propose iterating with the parabolic step given by

δθ = θ̇δτ +
1

2
θ̈δτ 2 (3.11)

rather than the first-order, linear Euler step δθ = θ̇δτ .

The acceleration term in Eq. (3.11) can be calculating by differentating Eq. (3.6)

once with respect to τ . The result after some simplification is

θ̈µ = −gµνJmνAmαβ θ̇αθ̇β + (3.12)
1√

gεδθ̇εθ̇δ

(
θ̇µθ̇γ θ̇νrmP

N
mnAnνγ − θ̇γgµνrmPN

mnAnνγ

)
,

where PN = 1 − J(JTJ)−1JT is an operator projecting normal to the tangent

plane of the manifold. At this point a major simplification arises when we make

the assumption that the extrinsic curvature is very small. In this case, all terms

in which a second derivative is contracted with PN are negligible, leaving

θ̈µ = −gµνJmνAmαβ θ̇αθ̇β. (3.13)

It is surprising how good the small-curvature approximation turns out to be. As

shown in reference [95], the extrinsic curvature of the model manifold should under

many circumstances be very small compared the largest step size an algorithm can

take, which is limited by the so-called parameter-effect curvature. When Bates

and Watts first introduced measures of parmeter-effects curvature, they noted

that for every problem they considered the parameter-effects curvature was larger

135

(often much larger) than the extrinsic curvature[9]; explicit examples in [95] show

parameter-effects curvature with up to six order of magnitude larger extrinsic radii

of curvature compared to the allowed step sizes. Although there are assuredly

counter examples, it is reasonable to expect that for most problems of interest,

this approximation will hold.

The second order differential equation given in Eq. (3.13) is the geodesic equa-

tion on the manifold graph. We refer to this as the geodesic acceleration correction

to the path and iterating according to Eq. (3.11) is the geodesic acceleration al-

gorithm. As expected, the geodesic acceleration depends on the second derivative

of the model, but perhaps surprisingly, the only dependence is on the directional

second derivative oriented along the velocity, θ̇. This result is significant, as calcu-

lating the full array of second derivatives would likely be prohibitively expensive

for large models; a directional second derivative has a small computational cost

comparable to a single evaluation of r(θ), and in fact a finite-difference estimate

can be found with only one additional evaluation of r. In contrast, for large models,

most of the computational cost of minimizing least-squares problems comes from

evaluating the Jacobian matrix. In these cases, the additional cost of evaluating

the second order correction is negligible.

The benefit of including the geodesic acceleration comes when the algorithm is

navigating a narrow canyon towards the best fit as illustrated in Figure 3.7. By

approximating our path with a parabola, the geodesic acceleration method can

more accurately follow the path of a winding canyon toward the best fit.

In order to utilize the geodesic acceleration as an addition to the Levenberg-

Marquardt algorithm, it is necessary to make one other small addition. The usual

Levenberg-Marquardt algorithm accepts all steps that decrease the cost function;

136

Figure 3.7: When navigating a canyon towards the best fit, the geodesic acceler-
ation indicates in which direction the canyon is curving. By approximating the
path with a parabola, the best fit can be found in fewer iterations.

however, in order to ensure that the geodesic acceleration algorithm converges, it

is also necessary to monitor the relative magnitude of contribution from the second

order term. We require acceptable steps to satisfy the condition

|θ̈|δτ
|θ̇|

< α, (3.14)

where α is some number of order 1 that is set by the user and whose optimal value

may vary from problem to problem. The motivation for this requirement is that

the proposed step represents a truncated Taylor series and so the terms ought to

be decreasing in magnitude to gurantee convergence. For most problem we find

137

that α = 0.75 is a good guess. Problems for which convergence is difficult, α = 0.1

is an effective choice.

Without the requirement in Eq. (3.14), the resulting algorithm is very unpre-

dictable and will often take large, uncontrolled steps and become lost. This phe-

nomenon is closely related to parameter evaporation that gives so much trouble

to other algorithms. The additional requirement in Eq. (3.14) helps the geodesic

algorithm avoid parameter evaporation, increasing its likelihood of convergence.

We note that for a given value of α one can always find a suitable value of λ

such that Eq. (3.14) is satisfied as long as the second derivative is reasonably well

behaved. In particular, if λ is very large, then g−1,≈ 1
λ
(DTD)−1, and

θ̇ ≈
(

1√
λ

)(
(DTD)−1∇C√

(∇C)T (DTD)−1∇C

)
(3.15)

so that u =
√
λθ̇ is independent of λ. Then it follows that

θ̈ ≈ 1

λ2

(
DTD

)−1
JTAuu, (3.16)

where Auu = uµuν∂µ∂νr is the directional second derivative along u, and

|a|δτ
|v|
≈
(

1

λ2

)(
(∇C)T (DTD)−1∇C

)(| (DTD
)−1

JTAuu|
| (DTD)−1∇C|

)
. (3.17)

As long as ∇C 6= 0 (in which case the algorithm is converged), the only complica-

tion can come from the directional second derivative, Auu. As long as this is not

singular, which is a reasonable expectation for most problems, a suitable λ can

always be found.

In section 3.4.2 it was noted that for a suitable choice of DTD the iterates

produced by the Levenberg-Marquardt algorithm are invariant to a change of scale

of the parameters. It is interesting to note that this result is unchanged by including

138

the geodesic acceleration. It is also worth noting that by including the geodesic

acceleration, the step size is no longer a monotonically decreasing function of λ.

Whereas the bare Levenberg-Marquardt algorithm is considered a trust region

method since it chooses a step size rather than a search direction, the geodesic

acceleration algorithm is a combination of trust region and linesearch methods. In

particular, the choice of damping, λ can be considered a trust region in velocities,

θ̇. Having selected a velocity, the acceleration explores the model behavior in the

chosen direction and diverts and dampens the step as appropriate.

Before discussing the performance of the geodesic acceleration, we offer a few re-

marks about evaluating the directional second derivative necessary for the geodesic

acceleration. As is always the case, analytic derivatives are preferable to finite dif-

ference estimates. In principle, if an analytic expression can be found for the first

derivatives, in principle one could also find an expression for the directional second

derivative, although the resulting expression may be very complicated, especially

for large models. (With code often being generated by computer algebra systems,

it may not be unreasonable in some cases.) Automatic differentiation also might

make exact evaluations of the second derivative feasible.

In cases where a directional second derivative cannot be evaluated analytically,

one can always use a finite difference approximation. The usual formula for the

directional second derivative is

Amµν θ̇
µθ̇ν ≈ rm(θ + hθ̇)− 2rm(θ) + rm(θ − hθ̇)

h2
, (3.18)

for some finite-difference step size, h. When evaluating Eq. (3.18), note that the

algorithm will already have evaluated r(θ), leaving two additional function eval-

uations necessary for the estimate. The algorithm has also previously evaluated

the Jacobian matrix. Using this information one can provide a finite difference

139

estimate with just a single additional function evaluation:

Amµν θ̇
µθ̇ν ≈ 2

h

(
rm(θ + hθ̇)− rm(θ)

h
− Jmµθ̇µ

)
. (3.19)

In practice, the finite difference estiamte may be sensitive to h, particularly if the

problem is poorly scaled. We find in practice that choosing a large finite-difference

step size, giving something analogous to a secant estimation, is less dangerous than

a step that is too small. In general, choosing h = 0.1, so the step is about 10% of

the velocity seems to work reasonably well.

We now consider how the geodesic acceleration effects performance summarized

in figure 3.8, notice we have appended the letter A after the algorithm to indicate

the it now includes acceleration. We see that with a few exceptions the acceleration

improves the algorithm’s performance in each of the three measures we have used.

The most dramatic improvement is in the number of Jacobian evaluations necessary

for convergence, where we saw speed ups as large as a factor of 70, with most

improvements between a factor of 2 and 10.

Perhaps the most significant benefit gained from geodesic acceleration is in

the improved success rate and fit quality. We attribute this improvement to the

modified acceptance criterion given in Eq. (3.14). For many cases the algorithm

could be improved further by a smaller choice of α (the results in figure 3.8 are

for α = 0.75), although this comes at a cost in convergence speed (more Jacobian

evaluations).

140

Figure 3.8: Performance of geodesic acceleration The relative success rate
(a), quality factor (b) and inverse NJEV (c) of two algorithms using geodesic
acceleration. The rates are each relative to each algorithm’s performance without
acceleration. One each plot, points larger than 1 (dashed black line) represent an
improvement. Notice that by including the acceleration the algorithm typically
finds better fits more often in less time. Perhaps most dramatically, in some cases
the NJEV have been reduced by a factor of 70!.

141

3.6 Uphill steps

It is necessary for the algorithm to have some way to distinguish whether a pro-

posed step should be accepted or rejected. The standard method of the Levenberg-

Marquardt algorithm is to accept any step that decreases the cost while rejecting

all steps that increase the cost. In the geodesic flow interpretation of the algorithm,

this is a natural choice as the cost is a Lyapunov function for the dynamical system

defined by Eq. (3.6). Such a function is locally minimum at the fixed points of the

flow and decreases monotonically as the system approaches the equilibrium. The

algorithm then accepts all steps which decrease the Lyapunov function and reject

those that increase it. It is straightforward to see that the cost is a Lyapunov func-

tion for Eq. (3.6), and all implementations of the Levenberg-Marquardt algorithm

of which the authors are aware accept or reject steps solely on whether or not the

cost decreases or increases respectively. While this choice of Lyapunov function is

natural and leads to a stable algorithm, we argue in this section that often it is

not the most efficient choice.

When an algorithm must follow a narrow canyon to the best fit, if the aspect

ratio of the canyon is very large, then there will be only a small sliver of steps that

decrease the cost. It has been shown previously, that if an algorithm decreases

the cost as little as possible in each step, it will be able to take larger steps and

will traverse the desired path much more quickly[95]. This observation suggests

that while in the canyon a decrease in the cost function is not necessarily the best

measure of progress towards the best fit. Furthermore, if decreasing the cost as

little as possible is beneficial, perhaps allowing increases in the cost could also be

beneficial. In this section we elaborate on this idea to construct a method for

accepting uphill steps as long as progress towards the best fit is still being made.

142

Consider the function

L(θ) =

ˆ τbf

0

|θ̇(τ ′)|2dτ ′, (3.20)

with θ(τ) given by Eq. (3.6). It is straightforward to show that Eq. (3.20) is also

a Lyapunov function for Eq. (3.6), since

d

dτ
L(θ) = −|θ̇(τ)|2 ≤ 0. (3.21)

The physical meaning of L(θ) is the arc-length in parameter space from the point θ

to the best fit along the path given by Eq. (3.6). In practice, calculating L(θ) would

be more computationally intensive than minimizing the sum of squares function;

however, the spirit of Eq. (3.20) is that steps may be safely accepted if they move

us closer to the best fit as measured by the parameter space distance, even if the

cost temporarily increases. We now construct an acceptance scheme motivated by

this parameter arc-length criterion, Eq. (3.20).

In our new acceptance scheme, we accept steps if

βCnew ≤ Cold, (3.22)

where β ≤ 1 is some measure of progress made towards the best fit. We define β

by comparing the cosine of the angle in parameter space between the old and new

vectors tangent to the path:

β = 1− cos
(
θ̇i+1, θ̇i

)
, (3.23)

where θ̇i+1 is the velocity of the proposed step and θ̇i is the velocity of the last

accepted step. Qualitatively, if the two vectors are nearly aligned, then β will be

very small. In this case we accept uphill moves as they are more likely to be in

the direction of the best fit, i.e. decreasing the arc-length function. If the vectors

are nearly orthogonal or point in opposite directions, then we accept only downhill

143

moves since the path is changing direction and we have no other way to know if

progress is being made. If β > 1, then we accept only downhill steps.

There are a few variations of Eq. (3.22) that one may want to consider:

β2Cnew ≤ Cold (3.24)

will accept moves with larger increase in the cost while the conditions

βCnew ≤ Cbest (3.25)

β2Cnew ≤ Cbest (3.26)

will be less accepting of uphill moves (Cbest is the lowest cost yet found). The

ideal choice is likely to depend on the particular problem. We refer to this accep-

tance criterion as the “bold method,”. The results we show below correspond to

Eq. (3.26).

Although in general, calculating L(θ) would be a daunting task, for simple

test problems for which the minimum is already known, such as the Rosenbrock

function, it is not difficult. Consider the Rosenbrock function with residuals

r(θ) =

 1− θ1

100(θ2 − θ2
1)

 (3.27)

and a minimum cost at θ = (1, 1). This function is characterized by a narrow

parabolic valley around the best fit. An algorithm beginning from θ = (−1, 1) must

follow the narrow parabola to reach the global minimum. In table 3.1 we compare

the residual sum of squares and the arc-length function evaluated at each iterate of

the Levenberg-Marquardt algorithm when uphill moves were accepted according

to the “bold method” described above. Although the cost appears to grow in a

seemingly uncontrolled manner, the arc-length function decreases steadily and the

144

Iterate C(θ) L(θ) Iterate C(θ) L(θ)
1 2.00 2.96 6 1789.68 0.39
2 1.95 2.90 7 32.83 0.14
3 1.95 2.75 8 0.26 0.02
4 11.34 2.34 9 5.1e-5 8.7e-4
5 417.71 1.51 10 1.8e-10 1.2e-5

Table 3.1: Table comparing sum of squares, C(θ) and the Lyapunov function
L(θ) defined in Eq. (3.20) for a series of iterates on the Rosenbrock function for
which uphill moves were accepted. Note that although the residual sum of squares
increased temporarily by several orders of magnitude, the arc-length function L
decreased at a steady rate. The same algorithm would have taken nearly five times
as many steps to reach the minimum if uphill moves had been rejected.

algorithm ultimately converges. Although in general the algorithm cannot monitor

the value of L(θ) at each iterate, table 3.1 suggests that the acceptance scheme

described above is a reasonable substitute. We emphasize that the bold acceptance

scheme does not guarantee that L(θ) decreases, and there is no guarantee that

accepting uphill moves will always lead to convergence. In practice, however, we

find this method to be fairly robust.

We now investigate how the bold acceptance criterion affects the algorithms’

performance. The results are summarized in figure 3.9. Notice that we have

appended the letter B to the algorithm name to indicate that the bold method

was used. While the results vary from problem to problem, it appears that for

many cases the bold acceptance may reduce the success rate of the algorithm. We

note that this is due to the relatively difficult starting points of many of the test

problems. If we had used the standard starting points supplied by the Minpack-2

or NIST versions of problems A - N, the success rate and fit quality would have

been much higher. This result is a reflection of that fact that there is no guarantee

for convergence when uphill moves are accepted.

On the other hand, the bold acceptance criterion speeds up the algorithm,

145

in some cases by a factor of 30! In our experience if a problem is chosen such

that there is little chance of the algorithm becoming lost or not converging, then

accepting uphill moves can greatly reduce the time to find good fits. This is most

likely to be useful for fitting problems that either start in a narrow canyon or can

easily find the canyon but become sluggish en route to the best fit. If the problem

is difficult because it is hard to find a canyon, then accepting uphill moves are not

likely to improve the search.

In figure 3.10 we show results for combining geodesic acceleration with the bold

acceptance method, which we denote by the letters AB. It is clear that the geodesic

acceleration helps to control the method in the regions where a bold acceptance

may have otherwise become lost. We remind that the reader that by lowering the

parameter α from Eq. (3.14) the algorithm can be made increasingly stable at the

cost of more iterations. Which variation of the algorithm is the most efficient in

terms of the number of Jacobian evaluations varies from problem to problem.

3.7 Updating the Jacobian Matrix

In comparing algorithm performance, we have assumed that the most computa-

tionally intensive part of the Levenberg-Marquardt algorithm is an evaluation of

the Jacobian matrix of first derivatives. If this is done using finite difference then

for a model of N parameters the Jacobian matrix is N times as expensive as a

residual evaluation. If analytic formulas are available, it may be more efficient

than a finite difference approximation, but for large N Jacobians will still occupy

the bulk of the computer time. Much of the discussion of this paper has revolved

around reducing the number of Jacobian evaluations necessary for convergence.

146

Figure 3.9: Performance of bold acceptance. The relative success rate (a), fit
quality (b) and inverse NJEV (c) of two algorithms using bold acceptance criterion.
The rates are each relative to each algorithm’s performance while accepting only
downhill moves. On each plot, points larger than 1 (dashed black line) represent
an improvement. For many of these problems, accepting uphill moves increases
the probability that the algorithm will become lost. However, when the algorithm
does succeed, it may be much faster!

147

Figure 3.10: Performance of the bold and acceleration The relative success
rate (a), fit quality (b) and inverse NJEV (c) of two algorithms using bold accep-
tance criterion. The rates are each relative to each algorithm’s performance while
accepting only downhill moves. On each plot, points larger than 1 (dashed black
line) represent an improvement. Notice that by including the acceleration we are
able to prevent the algorithm from becoming lost when using the bold acceptance.

148

Typically, the algorithm will evaluate the Jacobian after each accepted step

in order to calculate the gradient ∇C = JT r and the metric g = JTJ + λDTD.

Broyden suggested a quasi-Newton root fidning method that evaluates the Jacobian

only on the first iteration and subsequently updates the Jacobian with a rank-1

update[20]. Thus, given the Jacobian at the previous iterate, Jn−1, the Jacobian

at the current parameter values Jn is estimated to be

Jn = Jn−1 +
∆rn − Jn−1∆θn
|∆θn|2

∆θTn , (3.28)

where ∆rn = rn− rn−1 is the change in the residual vector and ∆θn = θn− θn−1 is

the change in the parameter space vector. In principle this method can be applied

to the Levenberg-Marquardt method to eliminate the need to evaluate J at each

step.

In practice, after many such updates, the matrix J may become a very poor

approximation to the actual Jacobian, resulting in a poor estimate of the gradient

direction. If the algorithm’s performance suffers as a result, it may be necessary

to reevaluate the whole Jacobian matrix and begin the update scheme anew. We

therefore reevaluate the Jacobian after a few proposed steps have been rejected by

the algorithm. Typically, reevaluating after one or two rejections works well.

Is it possible to improve upon Broyden’s update method so as to reduce the

frequency that the Jacobian needs a full udpate? An approach one might take is

to note that Broyden’s method is based upon a secant approximation

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

, (3.29)

where for the moment we consider the simple case of a function a scalar argu-

ment. It appears that this update is less accurate than it could be. In particular

the derivative (or at least an approximation of the derivative) is known at xn−1,

149

f ′(xn−1) which information has been ignored. We can incorporate this additional

information by considering the Taylor series centered at xn−1:

f(x) ≈ f(xn−1) + f ′(xn−1)(x− xn−1) +
1

2
f”(xn−1)(x− xn−1)2, (3.30)

where f”(xn−1) is then estimated from the new function evaluation f(xn):

f”(xn) ≈ 2

(
f(xn)− f(xn−1)

∆x2
− f ′(xn−1)

∆x

)
. (3.31)

The derivative at f ′(xn) is then estimated by

f ′(xn) ≈ f ′(xn−1) + f”(xn−1)(xn − xn−1). (3.32)

Repeating this calculation in multiple dimensions and using the second derivative

matrix with least Frobenius norm consistent with the new function evaluation

produces the Jacobian upadte formula

Jn = Jn−1 + 2
∆rn − Jn−1∆θn
|∆θn|2

∆θTn , (3.33)

multiplying the Broyden correction by a factor of two. Unfortunately, using

Eq. (3.33) does not give significantly better results than Eq. (3.28).

When the geodesic acceleration is included, then each iteration has the infor-

mation of two function evaluations and one can construct a rank-2 update to the

Jacobian. We accomplish this as follows: if a step is proposed with velocity v and

acceleration a, then we first assume a step was taken corresponding to δθ = v/2

and residuals rn + 1
2
Jv + 1

8
vµvν∂µ∂νr. Notice this expression for the residuals in-

volves the directional second derivative which has been evaluated to calcualte the

geodesic acceleration. A rank-1 Broyden update is then performed for this step.

It is then assumed that a second step is taken corresponding to δθ = 1
2

(v + a) and

another rank-1 update is performed corresponding to this step.

150

In practice there is little performance gain from using the rank-2 update instead

of the rank-1 update suggested by Broyden. This is most likely because the velocity

and the acceleration are often nearly colinear, as described in [95]. However, as

there are cases in which a rank-2 update can be beneficial, we include it in our

method.

In figure 3.11 we present the performance results for methods with rank-1

updates after accepted steps. (Note that we distinguish a method using Broyden’s

update by the letter C in the algorithm’s name.) The qualitative effect of this

addition is similar to that of the bold acceptance criterion. The algorithm appears

to be more likely to get lost, although it can be much faster in terms of the number

of Jacobian evaluations. We understand the lower success rates and fit quality as

a direct consequence of using an approximate Jacobian matrix, resulting in an

inaccurate gradient direction.

In figure 3.12 we present the results of the algorithm that uses a rank-2 update

using both geodesic acceleration and the bold acceptance method. These additions

do not appear to have much effect on the algorithm’s performance. It is unfortunate

that the low convergence and success rates could not be salvaged in these cases by

including the geodesic acceleration. It is likely that a more sophisticated scheme for

deciding when the Jacobian should be reevaluated could improve it’s robustness

against becoming lost. We recommend using this Jacobian update scheme only

when there is very little chance that the algorithm will become lost or when the

Jacobian is so expensive that evaluating it multiple times is not possible.

Particularly for large problems, the relative cost of a Jacobian evaluation to a

function evaluation reflects the relative information content of the two. For small

problems the rank-1 update contains a significant fraction of the infomartion avail-

151

Figure 3.11: Performance of Broyden’s Update The relative success rate (a),
fit quality (b) and inverse NJEV (c) of two algorithms using a rank-1 Broyden’s
update. The rates are each relative to each algorithm’s performance without such
an update. On each plot, points larger than 1 (dashed black line) represent an
improvement. Including the Broyden update typically causes the algorithm to be
less robust to initial conditions, manifest by a lower success rate and average fit
quality. Without the need to reevaluate the Jacobian after each accepted step, the
best fit can often be found much more quickly. Note that missing points in (c)
correspond to points for which the convergence rate and average quality factor was
very near zero so that comparisons do not have any merit.

152

Figure 3.12: Performance of Broyden’s Update with acceleration and bold
The relative success rate (a), fit quality (b) and inverse NJEV (c) of two algorithms
using geodesic acceleration. The rates are each relative to each algorithm’s perfor-
mance without acceleration. On each plot, points larger than 1 (dashed black line)
represent an improvement. Notice that by including the acceleration and bold does
not have a strong effect on the results of the algorithm.

153

able in the Jacobian. However, for larger problems the Broyden update becomes an

increasingly bad approximation. In these cases, the authors speculate significant

performance gains could be obtained by updating the Jacobian with a few strate-

gically chosen function evaluations or directional derivatives rather than updating

the entire Jacobian.

3.8 Conclusion

The computational problem of minimizing a sum of squares is a common problem,

particularly in data fitting, that can be notoriously difficult. The difficulties often

fall into one of two categories: algorithms easily become lost on broad flat plateaus

or become sluggish as they must follow narrow canyons to the best fit. In this paper

we have discussed several modifications to the standard least squares minimizer,

the Levenberg-Marquardt algorithm.

By considering a geometric interpretation of the least-squares on a manifold

in data space, we have shown that the Levenberg-Marquardt algorithm is an Eu-

ler approximation to geodesic flow on this manifold and have further refined the

method by including the geodesic acceleration correction. We have shown that this

correction helps the algorithm be both more robust to initial conditions, resulting

in higher convergence and success rates, as well has decreasing the computational

cost of finding the best fit as measured by the number of Jacobian evaluations.

Amazingly the computational cost of the geodesic acceleration is small, compara-

ble to a single function evaluation, and becomes negligible for large problems.

We have also suggested that accepting uphill steps in a controlled manner can

also speed up the algorithm. When an algorithm is susceptible to becoming lost in

154

parameter space, accepting uphill moves may exacerbate this problem, but when

the algorithm must follow a narrow canyon to the best fit, the potential speed up

of the bold method can be enormous.

Finally, we have suggested that providing a rank-deficient update to the Jaco-

bian matrix can further reduce the computational cost of the Levenberg-Marquardt

algorithm. Although the resulting algorithm has a tendency to become lost, like

the bold acceptance method, it can be much more efficient when following a canyon

to the best fit.

The performance of our several suggested improvements is summarized in figure

3.13. Notice that including geodesic acceleration has the tendency to improve

success, fit quality, and speed. Including the bold acceptance and using Broydens

update can be even more effective for speeding up the algorithm, although on some

problems, particularly those with difficult start points, these algorithms are more

likely to become lost. Which variation of the algorithm is most effective is likely

to vary from problem to problem and whether the user is more concerned with fit

quality or convergence speed. A good implementation of the Levenberg-Marquardt

method should be flexible enough to allow the user to adapt the method to their

specific needs.

We have provided an open source (FORTRAN and C versions) of the

Levenberg-Marquardt algorithm together with our suggested improvements. Our

implementation provides a simple way for each addition to be turned on or off, in

addition to choosing among several schemes for updating the damping term λ. In

this way, users have the tools to optimize the fitting process to more quickly and

robustly find best fits based upon the needs of their individual models.

155

Figure 3.13: Performance of several algorithms The relative success rate (a),
fit quality (b), and inverse NJEV (c) of several algorithms. The rates are each
relative to the same algorithm without geodesic acceleration, bold, or a Broyden
update. Columns represent different algorithms, with red dots denoting the λ2/3
method while green triangles represent the ∆2/3 method on each of the 17 test
problems. The label A indicates that geodesic acceleration was including, B de-
notes uphill steps were accepte with the bold acceptance criterion, and C indicates
that the Jacobian was updated with Broyden’s method.

156

Acknowledgements

The authors would like to thank S. Teukolsky for helpful conversation. This work

was supported by NSF grant number DMR-1005479.

157

CHAPTER 4

SUPERHEATING FIELD OF SUPERCONDUCTORS WITHIN

GINZBURG-LANDAU THEORY

4.1 Abstract1

We study the superheating field of a bulk superconductor within Ginzburg-Landau

theory, which is valid near the critical temperature. We calculate, as functions

of the Ginzburg-Landau parameter κ, the superheating field Hsh and the critical

momentum kc characterizing the wavelength of the instability of the Meissner state

to flux penetration. By mapping the two-dimensional linear stability theory into

a one-dimensional eigenfunction problem for an ordinary differential equation, we

solve the problem numerically. We demonstrate agreement between the numerics

and analytics, and show convergence to the known results at both small and large

κ. We discuss the implications of the results for superconducting RF cavities used

in particle accelerators.

4.2 Introduction

One of the primary features of superconductivity is the Meissner effect — the ex-

pulsion of a weak magnetic field from a bulk superconducting material [90]. For

sufficiently large magnetic fields, the Meissner state becomes unstable, and the

system undergoes a phase transition. The exact nature of the transition depends

on the so-called Ginzburg-Landau parameter, κ = λ/ξ, where λ is the London
1This chapter has been published in Physical Review B with couathors Gianluigi Catelani and

James P. Sethna.

158

penetration depth and ξ the superconducting coherence length. Type I supercon-

ductors, characterized by small κ, transition from the Meissner state into a normal

metal state for magnetic fields above the thermodynamic critical field, Hc. Type

II superconductors, with larger κ, instead transition into a superconducting state

with vortices above the first critical field Hc1. This state is stable up to a second

critical field Hc2, above which the metal becomes normal. For any superconduc-

tor, however, the Meissner superconducting state is metastable, persisting up to

the superheating field Hsh, well above Hc or Hc1 (for type I and II superconduc-

tors, respectively). The main goal of the present work is the calculation of Hsh as

function of κ for superconductors near the critical temperature Tc where Ginzburg-

Landau theory is applicable (we remind that within Ginzburg-Landau theory, the

transition from type I to type II superconductors is at κ = 1/
√

2).

The metastability of the Meissner state is of interest in the design of resonance

RF cavities in particle accelerators, where Hsh places a fundamental limit on the

maximum accelerating field [80]. As type II superconducting materials are being

considered in cavity designs, a precise calculation of Hsh in this regime is of value.

One must note, however, that operating temperatures of superconducting RF cav-

ities are well below the critical temperature Tc and that at these low temperatures

Ginzburg-Landau theory is not quantitatively valid. The numerical techniques de-

veloped here are also being used within the Eilenberger formalism to address these

lower temperatures [91]. Using this formalism, the limit κ → ∞ was studied in

Ref. [23] for arbitrary temperature.

Much work has already been done in calculating the superheating field within

Ginzburg-Landau theory [31, 42, 60, 61, 37, 26, 24, 33]. The problem is formulated

as follows: the superconductor occupies a half space with a magnetic field applied

159

parallel to the surface. The order parameter and vector potential are functions

of the distance from the surface and can be found by solving a boundary value

problem of ordinary differential equations. The superheating field is then the

largest magnetic field for which the corresponding solution is a local minimum

of the free energy. For small values of κ, the superheating field corresponds to

the largest magnetic field for which a nontrivial solution to the Ginzburg-Landau

equations exist [33], as the instability does not break translational invariance.

However, as κ increases the one-dimensional solution is unstable to two-dimensional

perturbations, resulting in a lower estimate of Hsh as first shown in Ref. [42]. The

task at hand is to find which perturbations destroy the Meissner state and at which

value of the applied magnetic field they first become unstable.

The present stability analysis is more challenging than many such calculations,

as the instability destabilizes an interface with a pre-existing depth-dependence

of field and superconducting order parameter. In section 4.3, we map the partial

differential equation for the unstable mode into an eigenvalue analysis for a family

of one-dimensional ordinary differential equations. The equations for the zero

eigenvalues describe the critical fluctuations to which the system is first unstable

(as first derived in Ref. [60] and solved in Ref. [37]) This technique could be useful

in a variety of other linear stability calculations [16, 15, 14], replacing thin interface

approximations with a microscopic depth-dependent treatment of the destabilizing

interface.

In this work we present a detailed numerical study of the problem of metasta-

bility of superconductors within Ginzburg-Landau theory, both for its intrinsic im-

portance and as a prototypical illustration of the more general method – stripped,

for example of the additional complexities of Eilenberger theory. Analytic treat-

160

ments have been developed for limiting cases, such as very large [26] or small [33]

values of the Ginzburg-Landau parameter κ which are far from real experimental

cases. In section 4.4, we numerically explore the behavior of Hsh over a wide range

of values of κ, demonstrating convergence to the known limiting cases. By com-

paring numerical values of Hsh to the analytic approximations, we show that these

approximations give reasonably good estimates for Hsh even at values of κ which

are far from their expected validity regimes. Additionally, we calculate accurately

the critical value κc ≈ 1.1495 which separates the regimes in which the instability

is due to one- and two-dimensional perturbations and describe the behavior of the

critical momentum near this transition. For 0.91 < κ < κc, superconductors go

unstable via uniform penetration of magnetic flux which then must dynamically

reform into a vortex lattice. For 1/
√

2 < κ < 0.91 we find that Hsh > Hc2, so

at constant temperature the instability leads directly into the normal state (as

for type-I superconductors with κ < 1/
√

2). Finally, we find that the instability

wavelength has no immediate connection with the vortex lattice spacing.

The paper is organized as follows: in the next section we present the Ginzburg-

Landau free energy and the differential equations to be studied for the stability

analysis. In Sec. 4.4 we give some details about the numerical calculations and our

main results. In Sec. 4.5 we discuss the implications of the results for accelerator

cavity design and outline future research directions. In Appendices we derive

analytic formulas, valid at large κ, which we compare against the numerics.

161

4.3 Ginzburg-Landau theory and stability analysis

The calculation of Hsh is a linear stability analysis of the coupled system of super-

conducting order parameter and vector potential. For a given configuration, we

study the stability to arbitrary two-dimensional perturbations by considering the

second variation of the free energy: if the second variation is positive definite for all

possible perturbations then the solution is (meta)stable. The second variation can

be expressed as a Hermitian operator acting on the perturbations, so it is sufficient

to show that the eigenvalues of this operator are all positive. By expanding the

perturbations in Fourier modes parallel to the surface, the eigenvalue problem can

once again be translated into a boundary value problem of an ordinary differen-

tial equation. The eigenvalues now depend upon the wave-number of the Fourier

mode, but can otherwise be solved in the same way as the Ginzburg-Landau equa-

tions. The superheating field is then the largest applied magnetic field for which

the smallest eigenvalue is positive for all Fourier modes. In this section we outline

the derivation of the relevant equations for the Ginzburg-Landau free energy using

the method described above.

The Ginzburg-Landau free energy for a superconductor occupying the half

space x > 0 in terms of the magnitude of the superconducting order parameter f

and the gauge-invariant vector potential q is given by

F [f,q] =

ˆ
x>0

d3r
{
ξ2(∇f)2 +

1

2
(1− f 2)2

+f 2q2 + (Ha − λ∇× q)2
}
, (4.1)

where Ha is the applied magnetic field (in units of
√

2Hc), ξ is the Ginzburg-

Landau coherence length, and λ is the penetration depth. Note that after choosing

the unit of length, the only remaining free parameter in the theory is the ratio of

162

these two characteristic length scales, the Ginzburg-Landau parameter κ = λ/ξ.

The magnetic field inside of the superconductor is given by H = λ∇× q.

We take the applied field to be oriented along the z-axis Ha = (0, 0, Ha), and

the order parameter f = f(x) to depend only on the distance from the supercon-

ductor’s surface. We have assumed that the order parameter is real and further

parametrize the vector potential as q = (0, q(x), 0), which fixes the gauge. The

Ginzburg-Landau equations that extremize F with respect to f and q are

ξ2f ′′ − q2f + f − f 3 = 0,

λ2q′′ − f 2q = 0,

(4.2)

and with our choices H = λq′. Hereafter we use primes to denote derivatives with

respect to x.

The boundary conditions at the surface derive from the requirement that the

magnetic field be continuous, q′(0) = Ha/λ, and that no current passes through

the boundary, f ′(0) = 0. We also require that infinitely far from the surface the

sample is completely superconducting with no magnetic field, giving us f(x)→ 1

and q(x) → 0 as x → ∞. In the limits κ → 0 and κ → ∞, Eqs. (4.2) can be

explicitly solved perturbatively, see Ref. [33] and Appendix C.1, respectively. For

arbitrary κ they can be solved numerically via a relaxation method, as we discuss

in Sec. 4.4.

For a given solution (f,q) we consider the second variation of F associated

with small perturbations f → f + δf and q→ q + δq given by

δ2F =

ˆ
x>0

d3r
{
ξ2(∇δf)2 + 4fδfq · δq + f 2δq2

(3f 2 + q2 − 1)δf 2 + λ2(∇× δq)2
}
. (4.3)

If the expression in Eq. (4.3) is positive for all possible perturbations, then the

163

solution is stable. Since our solution (f, δq) depends only on the distance from the

boundary (and is therefore translationally invariant along the y and z directions),

we can expand the perturbation in Fourier modes parallel to the surface. As shown

in Ref. [60], we can restrict our attention to perturbations independent of z and

write

δf(x, y) = δf̃(x) cos ky,

δq(x, y) = (δq̃x sin ky, δq̃y cos ky, 0),

(4.4)

where k is the wave-number of the Fourier mode. The remaining Fourier compo-

nents (corresponding to replacing cos → sin and vice-versa in Eq. 4.4) are redun-

dant as they decouple from those given in Eq. 4.4 and satisfy the same differential

equations derived below.

After substituting into the expression (4.3) for the second variation and inte-

grating by parts, we arrive at

δ2F =

ˆ ∞
0

dx

(
δf̃ δq̃y δq̃x

)
(4.5)

−ξ2 d2

dx2
+ q2 + 3f 2 + ξ2k2 − 1 2fq 0

2fq −λ2 d2

dx2
+ f 2 −λ2k d

dx

0 λ2k d
dx

f 2 + λ2k2

δf̃

δq̃y

δq̃x

 .

The matrix operator in Eq. (4.5) is self-adjoint, and the second variation will

be positive definite if its eigenvalues are all positive. In the eigenvalue equations

for this operator, the function δq̃x can be solved for algebraically. The resulting

164

differential equations for δf̃ and δq̃y are

− ξ2δf̃ ′′ + (3f 2 + q2 − 1 + ξ2k2)δf̃ + 2fqδq̃y = Eδf̃ ,

(4.6)

and

− λ2 d

dx

[
f 2 − E

f 2 + λ2k2 − E
δq̃′y

]
+ f 2δq̃y + 2fqδf̃ = Eδq̃y, (4.7)

where E is the stability eigenvalue. Note that by decomposing in Fourier modes,

we have transformed the two-dimensional problem into a one-dimensional eigen-

value problem. Numerically, it can be solved by the same relaxation method as

the Ginzburg-Landau equations – see Sec. 4.4. The boundary conditions associ-

ated with the eigenvalue equations derive from the same physical requirements

previously discussed: we require δf̃ ′(0) = 0, since no current may flow through

the boundary, and δq̃′y(0) = 0, since the magnetic field must remain continuous.

Additionally, we require δf̃(x) → 0 and δq̃y(x) → 0 as x → ∞. There is also an

arbitrary overall normalization, which we fix by requiring δf̃(0) = 1.

The stability eigenvalue will depend on the solution of the Ginzburg-Landau

equations, i.e., the applied magnetic field Ha, and the Fourier mode k under con-

sideration. The problem at hand is to find the applied magnetic field and Fourier

mode for which the smallest eigenvalue first becomes negative, which is the case if

the following two conditions hold:

E = 0 ,
dE

dk
= 0. (4.8)

The value of the magnetic field at which these conditions are met is the super-

heating field Hsh, and the corresponding wave-number is known as the critical

momentum kc. In the next section we discuss in more detail the numerical ap-

proach used to calculate these two quantities.

165

4.4 Numerical Results

As explained in the previous section, the calculation of the superheating field

comprises two main steps: (1) solving the Ginzburg-Landau equations (4.2) and

(2) solving the eigenvalue problem (4.6)-(4.7) with conditions (4.8). To solve these

equations we employ a relaxation method. The basic scheme is to replace the

ordinary differential equations with a set of finite difference equations on a grid.

From an initial guess to the solution, the method iterates using Newton’s method to

relax to the true solution [83]. The grid is chosen with a high density of points near

the boundary, with the density diminishing approximately as the inverse distance

from the boundary. This is similar to the scheme used by Dolgert et al. [33] to

solve the Ginzburg-Landau equations for type I superconductors.

For κ near the type I/II transition, the relaxation method typically converges

without much difficulty. In the limiting cases that κ becomes either very large or

small, however, the grid spacing must be chosen with care to achieve convergence.

The eigenfunction equations are particularly sensitive to the grid choice. This is

not surprising, since in either limit there are two well-separated length scales. For

example, using units λ = 1 and ξ = 1/κ, we find that a grid with density

ρ(x) =
150κ

1 + 25κx
(4.9)

leads to convergence for κ as high as 250. The grid points are then be generated

recursively xi+1 = xi + 1/ρ(xi) with x0 = 0. We find that if the grid is not suffi-

ciently sparse at large x, the relaxation method fails, presumably due to rounding

errors. On the other hand if it is too sparse, the finite difference equations poorly

approximate the true differential equation. Fortunately, the method converges

quickly, allowing us to explore the density by trial and error, as we have done to

get Eq. 4.9.

166

In solving Eq. 4.2, if a sufficiently large value for the applied magnetic field is

used, there may not be a nonzero solution to the Ginzburg-Landau equations and

the relaxation method will often fail to converge, indicating that the proposed Ha

is above the actual superheating field. In practice, therefore, it is more convenient

to replace the boundary condition q′(0) = λHa with a condition on the value of the

order parameter f(0) = A, which then implicitly defines the applied magnetic field

as a function of A, Ha(A). This has the advantage that Ha(A) is a differentiable

function of A, as is the stability eigenvalue, improving the speed and accuracy

of the search for the superheating field. The drawback to this approach is that

Ha(A) is not single-valued, with an unstable branch of solutions as illustrated in

Fig. 4.1. For the problem at hand, this turns out to be straightforward to address

since we determine the stability of each solution in the second step. To achieve

the conditions in Eq. (4.8), we vary both the Fourier mode, k, and the value of the

order parameter at the surface A.

The results of the procedure described above are summarized in Figs. 4.2-4.5,

where we also compare them with analytical estimates which, for large values

of κ, are derived in Appendices. In Fig. 4.2 we plot the numerically calculated

superheating field as a function of κ (solid line). The vertical line at κc ' 1.1495

separates the regimes of one-dimensional (1D, k = 0) and two-dimensional (2D,

k 6= 0) critical perturbations. We have checked the value of κc both by assuming

2D perturbations and finding when their critical momentum goes to zero and by

assuming 1D perturbation and finding when the coefficient of the term quadratic

in momentum in the second variation of the free energy vanishes; these methods

lead to the same value within our numerical accuracy of 10−4. Our value of κc

is higher than previous estimates, which ranged from 0.5 [60] to 1.10 [37] and

1.13(±0.05) [26]. (The estimate in Ref. [37] also comes from a numerical solution of

167

Figure 4.1: Solving for the 1-D Ginzburg-Landau superheating field
Solving for the 1-D Ginzburg-Landau superheating field. By fixing value of
the order parameter at the surface, we implicitly define the applied magnetic field
Ha(A) at the surface. This definition produces a branch of unstable solutions, but
guarantees that our equations will have a solution for all guesses of A. The “nose”
of the curve occurs at the H1D

sh , the superheating field ignoring two-dimensional
fluctuations, and is the largest Ha for which a nontrivial solution to Eq. (4.2) can
be found. This example was calculated for κ = 1, and H1D

sh ≈ 0.9.

the same differential equations, although the accuracy is there limited, presumably,

by using a shooting method to find the solution.) κc is larger than the boundary

κ = 1/
√

2 separating type I from type II superconductors. Type II superconductors

for which κ < κc become unstable via a spatially uniform invasion of magnetic flux.

Additionally, we find that superheated type II superconductors with κ < 0.9192

can transition directly into the normal state since the corresponding Hsh is larger

than the second critical field Hc2.

For κ < κc the instability is due to 1D perturbations. In this regime, the Padé

168

Figure 4.2: Numerical Hsh and analytical approximation
(Color online) Numerically calculated Hsh and corresponding analytical approxi-
mations [Eqs. (4.10) and (4.11)] versus the Ginzburg-Landau parameter κ.

approximate

Hsh(κ)√
2Hc

≈ 2−3/4κ−1/2 1 + 4.6825120κ+ 3.3478315κ2

1 + 4.0195994κ+ 1.0005712κ2
(4.10)

derived in Ref. [33] (dot-dashed line) gives a good approximation to the actual

Hsh, with deviation of less than about 1.5 %. In the opposite case κ > κc, 2D per-

turbations are the cause of instability and the superheating field is approximately

given by [26] (dashed line)

Hsh(κ)√
2Hc

≈
√

10

6
+

0.3852√
κ

. (4.11)

Equation (4.11), derived in Appendix C.2, is also a good approximation, deviating

at most about 1 % from the numerics. Therefore, our numerics show that the sim-

ple analytical formulas for Hsh in Eqs. (4.10) and (4.11) can be used to accurately

estimate the superheating field for arbitrary value of the Ginzburg-Landau param-

169

Figure 4.3: Critical momentum vs. κ
(Color online) Comparison between the numerical and asymptotic critical momen-
tum kc, Eq. (4.13). The approximate behavior of kc near κc (dot-dashed) is given
in Eq. (4.12).

eter, when used in their respective validity regions. We note that the numerical

estimate ofHsh in Ref. [37] differs from our own by a few percent, again presumably

due to the limitations of their method. We believe the numerical results presented

here to be reliable by comparing with asymptotic solutions of the order parameter,

vector potential, and critical fluctuations for very large κ.

In Fig. 4.3 we show the numerical result for the critical momentum kc versus

κ. We see that kc → 0 as κ → κc from above. Near κc, the behavior of kc is

reminiscent of that of an order parameter near a second-order phase transition:

kc ' 1.2
√
κ− κc, (4.12)

where the prefactor has been estimated by fitting the numerics. The dashed line

170

Figure 4.4: Profile of the order parameter at Hsh

(Color Online) Profile of the order parameter at Hsh for κ = 50 together with
analytic approximations given in Eqs. (C.2) and (C.15).

is the asymptotic formula [26] (see also Appendix C.2)

λkc ≈ 0.9558κ3/4 (4.13)

which captures correctly the large-κ behavior.

In Fig. 4.4 we present a typical solution for the order parameter near the surface

at H = Hsh for a large value of κ, along with the analytic approximations presented

in Appendix C.1. The zeroth order approximation f0, Eq. (C.2), fails near the

surface, as it does not satisfy the boundary condition f ′(0) = 0. On the other

hand, including the first order correction in 1/κ, Eq. (C.15), leads to excellent

agreement with the numerics. Finally, in Fig. 4.5 we show a typical example of the

depth dependence of the perturbation δq̃y at the critical point where the solution

first becomes unstable. We find again good agreement between numerical and

171

Figure 4.5: Profile of the critical perturbation
(Color online) Numerical profile (solid line) of the critical perturbation δq̃y de-
termining Hsh for κ = 50 compared to the large-κ perturbative result (dashed),
Eq. (C.37).

perturbative calculations.

It is interesting to compare the wavelength of the critical perturbation, 2π/kc,

with the Abrikosov spacing a for the arrangement of vortices at the superheating

field: the naive expectation is that the initial flux penetrations represent nuclei

for the final vortices. Kramer argues that this picture is incorrect since the initial

flux penetrations do not have supercurrent singularities and do not carry a fluxoid

quantum [60].

We find the numerical discrepancies between the two lengths further support

Kramer’s argument. In the weakly type-II regime (κ ∼ 1), the initial flux penetra-

tion is from infinitely long wavelengths (kc = 0); in contrast, the final vortex state

172

Figure 4.6: Critical momentum and Abrikosov vortex spacing
(Color online) The wavelength of the critical perturbation (2π/kc) and the
Abrikosov vortex spacing (a) calculated at the superheating field both vanish at
large κ, although the former diminishes much more quickly.

has a very high density, since Hsh ∼ Hc2
2. In the strongly type-II limit (κ→∞)

both the inverse momentum and the Abrikosov spacing (evaluated at the super-

heating field) vanish, but at different rates, with 1/kc ∼ κ−3/4 while the Abrikosov

spacing a ∼ κ−1/2 at Hsh
3, see Fig. 4.6. These results suggest that there is no

immediate connection between the initial penetration and the final vortex array. A

dynamical simulation could explore the transition between the initial penetration

and the final vortex state, similar to that done by Frahm et. al for the transition

from the normal state to the vortex state [38].
2We remind that in our units Hc2 = κ
3The vortex spacing a is related to the induction B as a/λ ∼ 1/(κB)1/2, and at intermediate

fields H such that Hc1 � H � Hc2, B ≈ H – see the reference in the previous footnote. Since
at large κ the superheating field tends to a constant, we find a/λ ∼ κ−1/2.

173

4.5 Summary and outlook

In this paper, we have numerically calculated within Ginzburg-Landau theory

the superheating field Hsh of superconductors. We have considered values of the

Ginzburg-Landau parameter κ spanning over three orders of magnitude; this has

enabled us to show that the analytic approximations in Eqs. (4.10) and (4.11) are

in good agreement with the numerical results, see Fig. 4.2. For κ larger than the

critical value κc ' 1.1495, the critical perturbations have two-dimensional charac-

ter; their critical momentum kc is plotted in Fig. 4.3, where we also show agreement

between numerics and the asymptotic formula for kc at large κ, Eq. (4.13). The

above results have been obtained by mapping the linear stability threshold onto

an eigenfunction problem. The technique of mapping the linear stability problem

onto a one-dimensional eigenfunction problem is potentially a useful technique,

and we hope others find useful applications of the methods described here.

One of the primary motivations for this work is the application to RF cavities

in particle accelerators, where the maximum accelerating field is limited by Hsh.

While the results presented here provide good estimates of Hsh for many materi-

als of interest near the critical temperature Tc, we emphasize that the operating

temperature of these cavities are typically well below Tc, where Ginzburg-Landau

theory is not quantitatively accurate. The techniques presented here can be applied

to Eilenberger theory to more accurately determine Hsh at low temperatures. The

Eilenberger approach has already been used [23] to evaluate Hsh(T) at any tem-

perature in the infinite κ limit for clean superconductors, and work is in progress

to address low temperatures for finite κ [91].

174

Acknowledgements

The authors would like to thank Hasan Padamsee, Georg Hoffstaetter, and

Matthias Liepe for helpful discussion. This work was supported by NSF grant

number DMR-0705167 (MKT & JPS), by the Department of Energy under con-

tract de-sc0002329 (MKT), and by Yale University (GC).

175

CHAPTER 5

SUPERHEATING FIELD OF SUPERCONDUCTORS WITHIN

EILENBERGER THEORY

5.1 Abstract1

We study the superheating field of a bulk superconductor within Eilenberger the-

ory, which is valid at all temperatures. We calculate as functions of the Ginzburg-

Landau parameter κ and the reduced temperature t = T/Tc the superheating field

Hsh and the critical momentum kc describing the wavelength of the unstable per-

turbations to flux penetration. We demonstrate agreement with known results

near Tc calculated from Ginzburg-Landau theory, but find discrepancies with the

temperature-dependent results calculated for Eilenberger theory at infinite-κ. We

attribute this discrepancy to lack of convergence of the integrals over the Fermi-

surface.

5.2 Introduction

A bulk superconductor, when exposed to a sufficiently large magnetic field, expe-

riences a “quench”, that is a sudden penetration of the bulk material by magnetic

flux. The resulting state of the material then depends upon the Ginzburg-Landau

parameter κ = λ/ξ, the ratio of the London penetration depth to the superconduct-

ing coherence length. Type-I superconductors (κ < 1/
√

2) transition to a normal

metal state while type-II materials (κ > 1/
√

2) form a mixed state in which the
1The current chapter will be submited for publication once the convergence problems at low

T and high κ are addressed.

176

superconductivity is preserved interspersed with an array of magnetic flux tubes.

This transition, apart from being theoretically interesting, is immediately relevant

to the design of particle accelerators, where superconductors are used in the con-

struction of accelerating resonance cavities and in which the maximum accelerating

field is limited by the quench of the superconductor.

The magnetic field at which the normal or mixed state becomes energetically

favorable is the thermodynamic critical Hc field for type-I superconductors or the

so-called lower critical field Hc1 for type-II superconductors. The superconduct-

ing Meissner state may persist, however, as a metastable state up to a larger

magnetic field known as the superheating field Hsh > Hc, Hc1. In contemporary

superconducting RF cavities superheating is observed with fields well above Hc1,

approaching the theoretical limits calcualted from Ginzburg-Landau theory extrap-

olated to lower temperatures[98]. It is unknown, however, whether these results

represent the theoretical upper limit of achievable gradients, primarily because op-

erating conditions are far from the regime with known theoretical results. This

paper seeks to help resolve this problem by providing a numerical calculation of

the temperature dependence of Hsh.

The metastability of the Meissner state has been studied extensively within

Ginzburg-Landau theory[31, 42, 60, 61, 37, 26, 24, 33]. The authors have recently

presented a thorough numerical calculation of Hsh within Ginzburg-Landau theory

for the complete range of κ together with an analytic, asymptotic analysis[92]. The

predictions of Ginzburg-Landau theory are only quantitatively accurate near the

critical temperature; superconducting Radio Frequency (RF) cavities are operated,

however, far below Tc. The temperature dependence of Hsh for the infinite κ limit

has also been addressed previously using Eilenberger theory[23]. In this paper we

177

extend our previous work within Ginzburg-Landau theory and the large-κ limit of

Eilenberger to a range of temperatures and κ values applicable to materials used

or considered for use in RF cavities. Of particular interest is niobium (Nb) with

κ = 1, the primary material used in RF resonance cavities. Niobium has a critical

temperature of 9 K but is typically operated near 2 K in particle accelerators,

giving T/Tc = 0.22. With other materials being considered as replacements for

niobium, such as Nb3Sn (κ ≈ 20 and Tc ≈ 18 K) and MgB2 (with κ ≈ 3.6 and

Tc ≈ 39 K), an operating temperature of 2 K would yield T/Tc = 0.11 and 0.05

respectively, far from the range where Ginzburg-Landau theory can be trusted.

In this chapter we present numerical results for Hsh as a function of temepra-

ture. In addition to the superheating field, we also calculate the wavenumber of

the critical fluctuations kc to which the superconducting state first becomes un-

stable. We also find the critical value of the Ginzburg-Landau parameter at which

two-dimensional fluctuations first become important. For each of these results,

we recover the results of Ginzburg-Landau theory for temperatures near Tc and

discuss how the results depend on temperature. For lower temperatures, how-

ever, the results presented in this chapter have not converged and more numerical

investigations are necessary to give accurate predictions.

In the subsequent sections we introduce the Eilenberger equations (section 5.3)

and describe our numerical methods for their solution (section 5.4). In section 5.5

we summarize our results for weakly type-II materials (section 5.5.1) and strongly

type-II materials (section 5.5.2) and discuss issues regarding convergence at low

temperatures in section 5.5.3. In section 5.6 we compare our results to recent

experiments measuring the temperature dependence of Hsh for superconducting

niobium. We give concluding remarks in section 5.7.

178

5.3 Eilenberger equations

The Eilenberger theory of superconductivity is derived from the microscopic BCS

theory under the assumption that the Fermi wavelength λF is the smallest length

scale characterizing the system[35]. This approximation is usually valid for low-Tc,

weakly-coupled superconductors for which the zero-temperature coherence length

ξ0 � λF . See, for example, the discussion in reference [23].

In this approximation, Eilenberger theory summarizes the BCS equations into

normal and anomalous Greens funtions. The semi-classical equations for the

anomalous Greens functions f(ωn,n, r) and f̄(ωn,n, r) which depend on the Mat-

subara frequences ωn = 2πT (n+ 1/2), the position r, and the unit vector n on the

Fermi surface are given by

{ωn + n · [∇− iA(r)]} f(ωn,n, r) = ∆(r)g(ωn,n, r)

{ωn − n · [∇+ iA(r)]} f̄(ωn,n, r) = ∆†(r)g(ωn,n, r).

(5.1)

Here A is the vector potential and ∆ is the superconducting order parameter. The

normal Greens function g is given by the relation g2 + ff̄ = 1. Differentiating this

normalization condition gives an equation for g(ωn,n, r)

2n · ∇g(ωn,n, r) = ∆†(r)f(ωn,n, r)−∆(r)f̄(ωn,n, r), (5.2)

consistent with that originally derived by Eilenberger. The Greens functions equa-

tions are accompanied by self-consistent equations for ∆ and A, given by

∆(r) log
T

Tc
+ 2πT

∑
n

[
∆(r)

ωn
−
ˆ
dn ρ(n)f(ωn,n, r)

]
= 0

∇×H +
i2πT

κ2
0

∑
n

ˆ
dn 3n ρ(n)g(ωn,n, r) = 0.

(5.3)

In Eq. (5.3) ρ(n) is the normal density of states for one spin at n normalized to
´
dnρ = 1. In these equations we have used the same units as in reference [23].

179

One may derive a ’free energy’ functional whose Euler-Lagrange equations are

given by Eqs. (5.1, 5.3):

Ω = ν

ˆ
d3r

{
[H(r)−Ha]

2 + |∆(r)|2 log

(
T

Tc

)
ˆ

(dn)

[
|∆(r)|2

ωn
−∆†(r)f − f̄∆(r)− 2ωn(g − 1)

−gn ·
(
∇ log

f

f̄
− 2iA(r)

)]}
,

(5.4)

where we have used the shorthand
´

(dn) = 2πT
∑

n

´
dn. Note that the functional

in Eq. (5.4) is not the thermodynamic potential, but for any given ∆ and A gives

the difference between the free energy of the superconducting and normal states.

In evaluating Eq. (5.4), therefore, one should evaluate the Greens functions f , f̄

and g using Eqs. (5.1)- (5.2) for a given ∆ and A.

The boundary conditions for Eqs. (5.1)-(5.3) are determined by the problem’s

geometry. We consider the same geometry as described in references [23, 95]. The

bulk superconductor occupies an infinite halfspace z > 0 with a surface in the

x − y plane. An external magnetic field is applied parallel to the surface in the

x̂ direction. We note that the order parameter can be assumed to be real, which

essentially fixes the gauge choice. Under this assumption the vector potential has

only components in the y-direction, A = Ayŷ. The boundary condition on Ay at

the surface is determined by the applied magnetic field, Ha = ∇ × A(z = 0) =

−A′y(z = 0)x̂. We also require that infinitely far from the surface, the sample be

superconducting, Ay(z =∞) = A′y(z =∞) = 0. The boundary condition at z = 0

on the Greens function is specular reflection, f(ω,n, 0) = f(ω,m, 0), where the

reflected vector m = n− 2(n · ẑ)ẑ. The same surface condition holds for f̄ and g.

180

5.4 Numerical Methods

In order to calculate the superheating field using the Eilenberger theory, we pro-

ceed much in the same way as in reference [92] replacing the Ginzburg-Landau

free energy with the Eilenberger potential in (5.4). In brief, for a given solution to

Eqs. (5.1 - 5.3), one explores the local stability of the functional in (5.4) to two di-

mensional perturbations. By using a linear-stability technique, one can decompose

the two dimensional fluctuations into Fourier modes perpendicular to the surface,

removing the need to solve any partial differential equations. The increased com-

plexity of the Eilenberger theory introduces many numerical challenges. In this

section, we summarize our numerical methods for solving for Hsh using Eilenberger

theory.

The nonlocal electrodynamics captured in the Eilenberger Greens functions

lead us to use a different numerical approach than that used for the analogous

calculation in Ginzburg-Landau. We employ a Galerkin method to solve Eqs. (5.1-

5.3). In this approach we express the desired solutions as a linear combination of

basis functions

∆(z) =
∑
i

∆̂iφi(z), (5.5)

with similar expressions for each Ay, f , f̄ , and g, (where we have dropped the

arguments of the functions for brevity). We choose basis function, φi(z), to be

piecewise cubic hermite interpolating polynomials. This choice allows us to specify

the solutions’ value and first derivative at a series of nodal points, as illustrated

in figure 5.1. Nodal points are chosen in a manner similar to that described in

reference[92].

Eqs. (5.1) and (5.2) are solved for the values of f̂i, ˆ̄fi and ĝi for a particular

181

Figure 5.1: Piecewise Cubic Hermite Interpolating Polynomials. We choose
basis functions that allow us to specify the function’s value and first derivative at
a series of nodal points. In this case, nodal points are chosen at integer values
from zero to ten. The basis function in a) controls the function’s value at the node
z = 5 while the basis function in b) controls the function’s derivative at this point.

182

configuration of the order parameter and vector potential ∆̂i and Âyi, by multiply-

ing the each equation by φj(r) and integrating over space. This results in a matrix

equation
Eff Eff̄ Efg

Ef̄f Ef̄ f̄ Ef̄g

Egf Egf̄ Egg

f̂

ˆ̄f

ĝ

 = 0. (5.6)

The nonzero matrix elements are given by

(Eff)ij = ωnMij + n · ẑDij − in · ŷÂykNijk (5.7)

(Efg)ij = −∆̂kNijk (5.8)(
Ef̄ f̄

)
ij

= ωnMijn · ẑDij − in · ŷÂykNijk (5.9)(
Ef̄g
)
ij

= −∆̂†kNijk (5.10)

(Egf)ij = −∆̂†kNijk (5.11)(
Egf̄
)
ij

= ∆̂kNijk (5.12)

(Egg)ij = 2n · ẑDij, (5.13)

(5.14)

where we have introduced the matrices

Mij =

ˆ
drφiφj (5.15)

Nijk =

ˆ
drφiφjφk (5.16)

Dij =

ˆ
drφiφ

′
j (5.17)

(5.18)

and used the convention that repeated indices should be summed. In practice it is

necessary to considering only a linear combination of φi’s that satisfy the boundary

conditions.

183

The solution to Eqs. (5.1) and (5.2) corresponds to the nullspace of the matrix

in Eq. (5.6) which can be found from a singular value decomposition. The scale

is chosen to satisfy the normalization g2 + ff̄ = 1. Notice that the matrices Mij,

Nijk, and Dij need only be calculated once for a set of φ’s, greatly reducing the

computational cost in solving Eqs. (5.1)- (5.3).

Having solutions to the Eilenberger equations, we solve the self consistent equa-

tions by a similar technique. Multiplying Eqs. (5.3) by φj and integrating over

space give the nonlinear equations[
∆̂i log

T

Tc
+ 2πT

∑
n

(
∆̂i

ωn
−
ˆ
dnρ(n)f̂i(ωn,n)

)]
Mij = 0 (5.19)

−ÂyiD(2)
ij +

i2πT

κ2
0

∑
n

ˆ
dn 3n ρ(n)ĝi(ωn,n)Mij = 0. (5.20)

where we have introduced the matrix D(2)
ij =

´
dzφjφ

′′
i . These equations can be

solved iteratively using a root-finding method (note that f̂ and ĝ are now nonlienar

functions of ∆̂ and Â).

For most values of the applied magnetic field convergence of the self-consistent

equations occurs within a few iterations of Newton’s method. However, for mag-

netic fields larger than H1D
sh , the superheating field ignoring two-dimensional fluc-

tuations, the self-consistent equations have no solution and the method fails al-

together. For applied magnetic fields less than, but very near H1D
sh the method

converges slowly as the Jacobian matrix (Hessian matrix of the free energy) is very

nearly singular. For smaller values of κ, Hsh = H1D
sh , so this slowing down becomes

a serious bottleneck. To remedy the problem, we use a technique due to Christo-

pher Myers[76] in which we add a degree of freedom to the self-consistent equations

associated with the applied magnetic field and an additional root associated with

the smallest eigenvalue of the Hessian. In this way, the root-finding algorithm is

184

able to quickly converge to the appropriate solution for H1D
sh .

To evaluate the Fermi-surface integrals in Eqs. (5.19) and (5.20), we follow

the method described in reference [4]. Essentially, we convert the integral into

a weighted sum similar to Gaussian quadrature in one dimension. Specifically,

if θ and φ are the spherical-polar angles associated with the unit vector n, then

cos θi = n · ẑ are chosen to be the Gauss-Legendre nodes on [−1, 1]. If there are m

such points, we discretize φ with 2m points evenly spaced on [−π, π]. We therefore

solve the Eilenberger equations for 2m2 values of n. Since these solutions are

found in pairs to satisfy boundary conditions we only require m2 singular value

decompositions. Furthermore, the symmetries of the Eilenberg equations and the

geometry under considerations allows us to further reduce this number by a factor

of four. We find that for a uniform density of states ρ, we achieve good convergence

for m = 2 near Tc; however, at low temperatures many points are necessary as we

discuss in section 5.5.3.

We do not solve the Eilenberger equations for each Matsubara frequency. In-

stead we find the Greens functions for a few, logarithmically spaced values of ω and

interpolate to find intermediate values. At low temperatures, the spacing between

Matsubaru frequencies, ∆ω = 2πT becomes very small and so this approximation

is very good. On the other hand, at high temperatures, the solution converges very

quickly in Matsubaru frequencies, so that it is not necessary to solve for many fre-

quencies. In practice, we never need to explicitly solve the Eilenberger equations

at more than eight values of ω.

With self-consistent solutions for the vector potential and order parameter, we

are prepared to explore its stability to fluctuations using the procedure described

in reference[92]. The Eilenberger formalism presents one major complication to the

185

the problem absent from the Ginzburg-Landau case, however, from the nonlocal

effects captured in the response of the Greens functions. A fluctuation in the

order parameter or vector potential at one position will produce a response in

the Greens functions at all other locations. In the case of the Ginzburg-Landau

free energy, the stability analysis can be mapped onto an eigenvalue problem of a

linear, differential operator. Because of the nonlocal effects in Eilenberger theory,

the stability analysis is mapped onto an eigenvalue problem of a linear, nonlocal

integral-differential operator. By employing a Galerkin method, we are able to

approximate this eigenvalue problem as a matrix eigenvalue problem.

In order to explore the metastability, it is necessary to show that the second

variation of the thermodynamic potential is positive definite for all infinitesimal

fluctuations. In general this takes the form:

δ2Ω =

ˆ
dr

ˆ
dr′
(
δ∆(r) δA(r)

) δ2Ω
δ∆(r)δ∆(r′)

δ2Ω
δ∆(r)δA(r′)

δ2Ω
δA(r)δ∆(r′)

δ2Ω
δA(r)δA(r′)

 δ∆(r′)

δA(r′)

 .

(5.21)

It therefore necessary and sufficient to show that the operator

L(r, r′) =

 δ2Ω
δ∆(r)δ∆(r′)

δ2Ω
δ∆(r)δA(r′)

δ2Ω
δA(r)δ∆(r′)

δ2Ω
δA(r)δA(r′)

 , (5.22)

has all positive eigenvalues in order to guarantee that δ2Ω is positive definite.

To find the eigenvalues of L(r, r′), we express δ∆ and δA as a linear combination

of basis functions.

δ∆(r) =
∑
i

δ∆̂iψi(r) (5.23)

δA(r) =
∑
i

δÂiψi(r). (5.24)

In particular, if we denote the fluctuation parameters as θ = (δ∆̂, δÂ), then to

186

quadratic order, we have

Ω = Ω0 +
∑
ij

Hijθiθj, (5.25)

where we have introduced the Hessian matrix Hij = ∂2Ω
∂θi∂θj

. If Hij has all positive

eigenvalues then the state is stable to the space spanned by {ψi(r)}.

To understand the relationship betweenHij and L(r, r′), consider the eigenvalue

equationn
ˆ
dr′L(r, r′)

 δ∆(r′)

δA(r′)

 = E

 δ∆(r)

δA(r)

 , (5.26)

with eigenvalue, E. Multiplying both sides by ψi(r) and integrating over r, we find∑
j

Hijvj = E
∑
j

gijvj, (5.27)

where

gij =

ˆ
dr
∂δ∆

∂θi

∂δ∆

∂θj
+
∂δA

∂θi
· ∂δA
∂θj

(5.28)

so that the vector vT =
(
δ∆̂, δÂ

)
is a generalized eigenvector of the Hessian and

g matrices. In deriving Eq. (5.27) we have made use of the fact that

∂2Ω

∂δ∆̂i∂δ∆̂j

=

ˆ
drdr′ψi(r)

δ2Ω

δ∆(r)δ∆(r′)
ψj(r

′), (5.29)

and the analgogous relations for ∂2Ω/∂δ∆̂i∂δÂj and ∂2Ω/∂δÂi∂δÂj.

For small values of the κ, the Meissner state first becomes unstable to pertur-

bations that preserve the translational invariance parallel to the superconducting

interface. In this regime we need only consider perturbations that depend on the

depth from the surface:

ψi(r) = φi(z). (5.30)

For type-II superconductors the superconducting Meissner state is unstable to

two-dimensional perturbations, we choose as basis functions for the perturbations

187

of the form

ψ2i(r) = φi(z) cos(ky) (5.31)

and

ψ2i+1(r) = φi(z) sin(ky) (5.32)

As in the Ginzburg-Landau case, the Fourier modes decouple, so one only

need solve the family of generalized eigenvalue problems as the wave-number

k is varied. Unlike the Ginzburg-Landau case where it was only necessary

to consider perturbations of the form δ∆(r) = δ∆̃(z) cos(ky) and δA(r) =

(0, δÃy(z) cos(ky), δÃz(z) sin(ky)), here it is necessary to include the additional

perturbations δ∆(r) = δ∆̃c(z) cos(ky) + δ∆̃s(z) sin(ky) and similarly for δA.

The Hessian matrix Hij can be found by a straightforward, term-by-term dif-

ferentiation of Eq. (5.4). It is necessary to calculate the sensitivities of the Green’s

functions, δf , δf̄ , and δg to fluctuations in the order parameter and vector poten-

tials. These are found as solutions of the differential equations

[ωn + n · (∇− iA)]δf −∆δg = ifn · δA + gδ∆

[ωn − n · (∇+ iA)]δf̄ −∆†δg = if̄n · δA + gδ∆†

2n · ∇δg −∆†δf + ∆δf̄ = fδ∆† − f̄ δ∆,

(5.33)

which can be solved in an manner analogous to the Eilenberger equations by ex-

panding the perturbed Greens functions δf in terms of the perturbed basis ψ(r).

The resulting matrix equations are not given here, as they are rather long, but

they can be derived in a straightforward way using a computer algebra system.

With the self-consistent solution for the order parameter and vector potential,

together with the sensitivities of the Greens functions to perturbations of ∆ and

A, we have all the elements necessary to calculate Hij and solve the generalized

eigenvalue problem. In order to find the super-heating field we proceed in the same

188

was as in[92], in which we vary both the applied magnetic field and the Fourier

mode until the smallest eigenvalue first becomes negative. The magnetic field for

which this occurs is the superheating field Hsh and wavenumber of the Fourier

mode is known as the critical momentum kc.

5.5 Results

In this section we present our numerical estimates of Hsh and kc as functions of κ0

and temperature, T . As we will see, these results are not converged and require

further work to give accurate results.

Within Ginzburg-Landau theory it is customary to present results for Hsh and

kc in units of the thermodynamic critical field and the penetration depth λ. This

is potentially confusing since Hc and λ are themselves temperature dependent. We

present our results in these units, in spite of the possible confusions in order to

compare our results to the Ginzburg-Landau predictions. We first describe how

Hc and λ depend upon T and κ0 in order to alleviate this confusion. We will also

present how the parameter κ0 relates to the Ginzburg-Landau parmaeter κGL.

To make the connection with Ginzburg-Landau theory, we use a phenomeno-

logical definition of λ given by Tinkham[90] in terms of the linear response of the

of the system to a small applied field:

λ =

´ 0

−∞ dzH(z)

H(0)
= − A(0)

A′y(0)
, (5.34)

where H(z) = −A′y(z) is the magnitude of the magnetic field penetrating inside of

the superconductor and the second equality is true for our choice of gauge. Near

Tc, Ginzburg-Landau theory predicts that λ ∝ κ0√
2(1−t)

. At low temperatures we

189

Figure 5.2: λ vs. T . The phenomenological penetration depth given by Eq. (5.34)
diverges near Tc and approaches κ0 at low temperature. In our units, λ scales
approximately as κ0.

expect λ ≈ κ0 since we have chosen the BCS coherence length as the unit of length.

This behavior is summarized in the numerical calculation in Fig. 5.2. The curve

in Fig. 5.2 is nearly independent of κ0, so that λ ∝ κ0.

The thermodynamic critical field is defined by equating the energy density of

the magnetic field with that of the difference between the superconducting and

normal states at zero field[90]. Inspecting our expression for the thermodynamic

potential, Eq. (5.4), we see that the Hc is given by:

H2
cκ

2
0 = 6πT

∑
n

(
∆2

0 + 2ω2
n√

ω2
n + ∆2

0

− 2ωn

)
, (5.35)

where ∆0(T) is the zero-field value of the order parameter described in Figure 5.6.

This expression is usually approximated by the parabola Hc(t) ≈ Hc(0)(1 − t2),

where we find numerically that Hc(0)κ0 = 1.225, as can be seen in Figure 5.3.

190

Figure 5.3: Hc vs. T . The thermodynamic critical field Hc as a function of t =
T/Tc.

Note that Hc is proprtional to 1/κ0.

The other relevant length scale of the problem is the order parameter coherence

length, ξ. Near Tc, Ginzburg-Landau theory relates ξ to λ and Hc by

ξ = Φ0/(2
√

2πλHc), (5.36)

where Φ0 = hc/2e is the fluxoid quantum. Away from Tc, there is no unambiguous

definition of ξ. If we use Eq. (5.36) as a definition of ξ at lower temperatures as

well, then the temperature dependence of ξ is summarized in Figure 5.4. Since

λ ∝ κ0 and Hc ∝ 1/κ0, ξ has a very weak dependence on κ0 and can be considered

a function of temperature only. Notice that at low temperature ξ is not equivalent

to the BCS coherence length ξ0 (ξ0 = 1 in our units).

Defining the phenomenological Ginzburg-Landau parameter κ(T) = λ/ξ, we

191

Figure 5.4: ξ vs. T/Tc. The phenomenological coherence length xi as a function
of t = T/Tc. Notice that at T = 0, ξ is not equivalent to the BCS coherence length
ξ0 = 1.

find in Figure 5.5 that at Tc, κGL ≈ 1.5κ0 and increases significantly at lower

temperatures. It is common to give the Ginzburg-Landau parameter as a material

specific property measured at Tc. Using the relation κGL = κ(Tc) ≈ 1.5κ0, we are

thus able to connect the predictions of the Eilenberger theory to specific materials.

In particular, niobium, the most common metal used in constructing supercon-

ducting RF cavities has a Ginzburg-Landau parameter of about 1, corresponding

to κ0 ≈ 2/3. In the subsequent sections, we express our results in terms of the

more common κGL instead of κ0.

Finally, for completeness we give the temperature dependence of the zero-field

order parameter ∆0(T) in Figure 5.6 which satisfies

log (T/Tc) + 2πT
∑
n

(
1

ωn
− √

ω2
n + ∆2

0

)
. (5.37)

192

Figure 5.5: κ(T) vs. T . The phenomenological Ginzburg-Landau parameter
κ(T) = λ/ξ as a function of t = T/Tc. At T = Tc we have κGL ≈ 1.5κ0 and
has a relatively weak temperature dependence, increasing slightly at lower tmper-
atures

We have chosen the energy unit to be the zero-field order parameter value at T = 0.

Near Tc the order parameter falls quickly to zero.

5.5.1 Small κ

Numerical calculation of Hsh is perhaps most straightforward in the regime of

κ ∼ 1, where there is not a strong separation of length scales. This is also the

most experimentally relevant regime to consider, as it contains niobium (Nb),

κGL = 1.0, the most commonly used material in superconducting RF cavities.

Our results in this regime are summarized in figure 5.7 - 5.8. At temperatures

near Tc we observe that our results appear to converge nicely to the Ginzburg-

193

Figure 5.6: ∆0(T) vs. T/Tc. The zero-field order parameter ∆0(T) versus T . The
order parameter vanishes at Tc, while rising quickly to 1.

Landau predictions. At lower temperatures, we observe a dramatic increase in the

superheating field. In particular, consider the case of κGL = 1.0 (niobium) in Figure

5.9. Niobium has a Tc ≈ 9 K, while RF cavities are operated at approximately

2 K. For this temperature, our solution of the Eilenberger equations predicts a

nearly 80% increase in the superheating field compared to the Ginzburg-Landau

prediction. If such an increase could realized in an actual RF cavity, the potential

performance gains would be dramatic. In section 5.5.3 we discuss convergence

issues at low temperature that suggest these results have not converged.

For weakly type-II materials, the metastability first becomes unstable to a uni-

form penetration of magnetic flux. Within Ginzburg-Landau theory, this is true up

to a critical value of κc ≈ 1.15. In Figure 5.10 we calculate the temperature depen-

dence of this critical κc(T). We find that it grows nearly linearly with temperature

194

Figure 5.7: Unconverged Hsh/Hc for moderate κ. The superheating field
at several temperatures versus κGL in units of the thermodynamic critical field.
At low temperatures, we predict a dramatic increase in Hsh as compared to the
corresponding results from Ginzburg-Landau theory. (near Tc).

up to approximately κc(T = 0) ≈ 1.40 at very low temperatures.

5.5.2 Large κ

In this section we present our results for the extreme type-II case (large κ). This

regime includes materials that are being considered as possible replacements for

Niobium in RF cavities, such as Niobium-Tin (Nb3Sn) with κGL ≈ 20.

Our results are summarized in figure 5.11. As in the weakly type-II case,

we observe a dramatic increase in Hsh at low temperatures as compared to the

Ginzburg-Landau predictions. In Figure 5.12 we plot the critical wavenumber to

which the superconducting state first becomes unstable, which does not vary as

195

Figure 5.8: Unconverged Hsh for moderate κ. The superheating field at several
temperatures versus κGL.

dramatically with temperature as Hsh. In each case, we note that our results

appear to converge to the Ginzburg-Landau prediction near Tc.

5.5.3 Convergence

One of the challenges of numerically calculating Hsh within Eilenberger theory is

the lack of known results with which to compare. The superheating field has been

studied extensively in Ginzburg-Landau theory, corresponding to the T → Tc limit

of Eilenberger theory. Indeed, we have seen in section 5.5.1 and 5.5.2 that our

results appear to converge nicely to the Ginzburg-Landau results near Tc.

The other limit that has been studied recently is that of infinite-κ in reference

[23], where it was found thatHsh/Hc experienced a 13% increase over the Ginzburg-

196

Figure 5.9: Unconverged Hsh of niobium vs. T . The temperature dependence
of the superheating field of niobium, corresponding to κGL = 1.0, the most com-
monly used material in superconducting RF cavities. With a critical temperature
of about 9 K, these cavities are operated at T ≈ 2 K. At this temperature the
numerical results from Eilenberger theory predict Hsh/Hc = 2.3 (red dot), over an
80% increase over the Ginzburg-Landau prediction Hsh/Hc = 1.28.

Landau prediction (from Hsh/Hc = 0.745 at Tc up to Hsh/Hc = 0.845 at T/Tc =

0.06). By extrapolating the results at large, but finite κ in Figure 5.11 to κ =∞,

our results clearly overestimate the results in reference[23]. While it is tempting

to blame this discrepancy on a lack of convergence due to the two-well separated

length scale λ and ξ, it is curious that our results appear to converge to the known

Ginzburg-Landau results, even at large κ. This suggests that our convergence

problem must be specific to low temperatures.

Although the most likely cause of poor convergence at low temperatures is

the number of Matsubara frequencies included, we can check that including more

frequencies in the summations does not significantly alter the results. Since we

197

Figure 5.10: Unconverged κc vs. T . The critical κc at which two dimen-
sional fluctuations first become relevant for the penetration of magnetic flux. The
Ginzburg-Landau theory predicts κc ≈ 1.15, and our numerics recover this result
within a few percent. At lower temperatures κc grow linearly with temperature up
to approximately 1.40.

only explicitely solve the Eilenberger equations for a few Matsubara frequencies

and interpolate the remaining results, it is not difficult to effectively use thousands

of Matsubara frequencies. Numerical exploration suggests that our results have

converged in Matsubara frequencies.

For type-II superconductors at very low temperatures, it is known that the

Eilenberger equations predict the characteristic length scale of a vortex core to be

ξ1 ∼ ξ0 T/Tc, where ξ0 is the BCS coherence length[62]. It is possible, therefore,

that our low temperature calculations are limited by our basis functions not prop-

erly probing this length scale. Indeed, our basis functions were originally chosen to

probe length scales comparable to the coherence length given by Eq. (5.36), which

198

Figure 5.11: Unconverged Hsh/Hc for large κ. The superheating field at several
temperatures versus κGL in units of the thermodynamic critical field. Near Tc our
results appear to converge to the Ginzburg-Landau prediction. However, extrapo-
lating our results to infinite κ clearly predicts a larger Hsh that that calculated in
reference [23].

is comparable to the BCS coherence length at low T . However, by numerical ex-

periments that vary both the number and spacing of basis functions, we find our

results have only a weak dependence on these details.

Finally, we explore the convergence properties of our integrals over the Fermi

surface. At temperatures near Tc, we find that the results have already converged

with only very few points (m = 2 as described in section 5.4). However, at lower

temperatures the results seem to depend very strongly on the number of Fermi

surface points used. The results presented in sections 5.5.1 and 5.5.2 correspond

to m = 2, where it was predicted that fields could be increased by up to 80%

larger than previously thought for niobium at operating temperature. However,

199

Figure 5.12: Unconverged λkc for large κ. Unlike the superheating field, the
critical momentum kc at to which the Meissner state is first unstable does not
vary much with temperature. We see here, that at all temperatures, kc scales
roughly the same as for the Ginzburg-Landau case, although it is smaller at low
temperatures, consistent with the observation in Fig. 5.10 that two-dimensional
fluctuations first become important for larger κ at low temperature.

increasing the number of Fermi surface points from m = 2 up to m = 4, 8, and 16

(corresponding to 8, 32, 128, and 512 points respectively), changes the prediction

for Hsh/Hc from 2.45 to 1.10, 1.50, and 1.43 respectively. Although the final

prediction is much more in line with the 13% increase observed at infinite κ, these

results have clearly not yet converged. Furthermore, the non-monotonic behavior

of Hsh also makes it difficult to extrapolate the results to larger m.

It may be surprising that the convergence properties of the Fermi-surface inte-

grals depend so strongly on temperature. By inspecting the Eilenberger equations

(Eqs. (5.1)) we can see that for larger temperatures the dependence of the Greens

functions f and f̄ will be washed out by the larger ωn, even for n = 0. However, at

200

low temperatures, as ω0 becomes smaller, f and f̄ will depend much more strongly

on their orientation on the Fermi surface. Indeed, we observe that the values of

f and f̄ at the superconducting interface (z = 0) seem to develop a cusp at the

equator n · ẑ = 0. We speculate that by choosing an alternative spacing than that

described in section 5.4 and reference [4] which places a higher density near the

equator, we will be able to achieve better convergence at low temperatures without

requiring so many evaluations of the Eilenberger equations. Indeed the method

described in section 5.4 chooses points such that their density is lowest near the

equator.

5.6 Comparison with experiments

A quantitatively accurate description of Hsh is of immediate practical concern in

the construction of superconducting RF cavities used in particle accelerators, where

the maximum accelerating field is limited by the penetration of flux into the bulk

superconducting material. Experiments within the accelerator community have

recently been conducted to measure the temperature dependence Hsh [98].

In order to make a connection between the theoretical predictions of this work

and the materials used in cavity construction it is necessary to experimentally

measure the sample’s critical temperature, Tc, thermodynamic critical field Hc and

Ginzburg-Landau parameter κGL ≈ 1.5κ0. The experimentally measured super-

heating field for a cavity constructed of niobium is presented in figure 5.13. This

particular sample had a critical temperature of 8.83 K and a Ginzburg-Landau

parameter of κGL = 3.5. (Note the large Ginzburg-Landau parameter is due to

operating in the dirty limit.) We inferred the thermodynamic critical field by

201

Figure 5.13: Experimentally measured superheating field. The experimen-
tally measured superheating field for a niobium resonance cavity, together with
the Eilenberger prediction at all temperatures evaluated for 8 Fermi surface points
(m = 2). Since the theoretical prediction is in units of Hc, we infer Hc for this
sample by fitting to the first data point. By including additional Fermi surface
points (m = 4, m = 8, and m = 16) the predictions approach the bounds of the
experimental error bars although the results have not yet converged. The predic-
tion of Ginzburg-Landau theory would be very nearly a straight line, consistent
with the experimental observations.

matching Hsh near Tc to the Ginzburg-Landau prediction. Observe that the pre-

liminary results described in section 5.5 predict theoretical limit much larger than

that experimentally observed. By increasing the the number of points on the

Fermi-surface the predictions approach the bounds of the experimental error bars.

202

5.7 Conclusions

In this paper we have numerically explored the metastability of the supercon-

ducting Meissner state within Eilenberger theory. These results extend previous

investigations of this phenomenon within Ginzburg-Landau theory[31, 42, 60, 61,

37, 26, 24, 33], which is quantitatively valid only near the critical temperature, and

the infinite-κ London limit[23]. Although preliminary numerical results predicted

that Hsh/Hc can be much larger at low temperatures than near Tc, it is clear that

these low temperature results are not fully converged. Further investigation is

necessary to resolve these convergence difficulties.

In addition to the calculation presented here, further refinements are possi-

ble within the Eilenberger theory. In particular, we assumed a uniform density

of states on the Fermi surface; however, in principle more realistic information

could be used for either niobium or another material of interest. Additionally, the

methods used to produce of RF cavities introduce impurities which place the su-

perconductor in the dirty limit. Eilenberger theory can also account for impurity

scattering by including additional terms in Eqs. (5.1), although including this in-

formation directly would be difficult as it would require solving for all of the Greens

functions simultaneously. In practice, the impurities have the effect of increasing

the Ginzburg-Landau parameter and washing out the details of the Fermi-surface.

It is hopeful, therefore, that by calculating Hsh for the larger, experimentally mea-

sured κGL while assuming a spherical Fermi-surface we can reasonably approximate

the actual superheating field attainable in an RF cavitiy.

Finally, we remind the reader that the results presented in section 5.5 should

not be taken too seriously due to the convergence problems discussed in section

5.5.3. Additional computer time is necessary resolve these difficulties.

203

Acknowledgements

The authors would like to thank Hasan Padamsee, Georg Hoffstaetter, Matthias

Liepe, Nick Valles, and Vinay Ambegaokar for helpful discussion. We would also

like to thank Matthias Liepe and Nick Valles for sharing their experimental data

with us. This work was supported by NSF grant number DMR-1005479 (MKT &

JPS), by the Department of Energy under contract de-sc0002329 (MKT), and by

Yale University (GC).

204

APPENDIX A

APPENDICES TO CHAPTER 2

A.1 Information Geometry

The Fisher information matrix, or simply Fisher information, I, is a measure of

the information contained in a probability distribution, p. Let ξ be the random

variable whose distribution is described by p, and further assume that p depends

on other parameters θ that are not random. This leads us to write

p = p(ξ; θ),

with the log likelihood function denoted by l:

l = log p.

The information matrix is defined to be the expectation value of the second deriva-

tives of l,

Iµν = 〈− ∂2l

∂θµ∂θν
〉 = −

ˆ
dξ p(ξ, θ)

∂2l

∂θµ∂θν
. (A.1)

It can be shown that the Fisher information can be written entirely in terms of

first derivatives:

Iµν = 〈 ∂l
∂θµ

∂l

∂θν
〉 =

ˆ
dξ p(ξ, θ)

∂l

∂θµ
∂l

∂θν
. (A.2)

Eq. (A.2) makes it clear that the Fisher information is a symmetric, positive

definite matrix which transforms like a covariant rank-2 tensor. This means that

it has all the properties of a metric in differential geometry. Information geometry

considers the manifolds whose metric is the Fisher information matrix correspond-

ing to various probability distributions. Under such an interpretation, the Fisher

information matrix is known as the Fisher information metric.

205

As we saw in Section 2.2, least squares problems arise by assuming a Gaussian

distribution for the deviations from the model. Under this assumption, the cost

function is the negative of the log likelihood (ignoring an irrelevant constant).

Using these facts, it is straightforward to apply Eq. (A.1) or Eq. (A.2) to calculate

the information metric for least squares problems. From Eq. (A.1), we get

gµν = 〈 ∂2C

∂θµ∂θν
〉 =

∑
m

〈∂µrm∂νrm + rm∂µ∂νrm〉, (A.3)

where we have replaced I by g to indicate that we are now interpreting it as a

metric.

Eq. (A.3), being an expectation value, is really an integral over the random

variable (i.e. the residuals) weighted by the probability. However, since the integral

is Gaussian, it can be evaluated easily using Wick’s theorem (remembering that the

residuals have unit variance). The only subtlety is how to handle the derivatives

of the residuals. Inspecting Eq. (2.1), reveals that the derivatives of the residuals

have no random element, and can therefore be treated as constant. The net result

is

gµν =
∑
m

∂µrm∂νrm = (JTJ)µν , (A.4)

since 〈rm〉 = 0. Note that we have used the Jacobian matrix, Jmµ = ∂µrm in the

final expression.

We arrive at the same result using Eq. (A.2) albeit using different properties

of the distribution:

gµν =
∑
m,n

〈rm∂µrmrn∂µrn〉.

Now we note that the residuals are independently distributed, 〈rmrn〉 = δmn, which

immediately gives Eq. (A.4), the same metric found in Section 2.2.

There is a class of connections consistent with the Fisher metric, known as the

206

α-connections because they are parametrized by a real number, α [3]. They are

given by the formula

Γ(α)
µν,ε = 〈∂εl∂µ∂νl +

(
1− α

2

)
∂εl∂µl∂νl〉.

This expression is straightforward to evaluate. The result is independent of α,

Γεµν = gεκ
∑
m

∂κrm∂µ∂νrm.

It has been shown elsewhere that the connection corresponding to α = 0 is in fact

the Riemann connection. It is interesting to note that all the α-connections, for

the case of the nonlinear least squares problem, are the Riemann connection.

These results are of course valid only for a cost function that is a sum of squares.

For example, one might wish to minimize

C =
∑
m

|rm|p , (A.5)

which is naturally interpreted as the pth power of the Lp norm in data space. The

case of p = 1 is used in “robust estimation”, while “minimax” fits correspond to the

case of p =∞ [83]. Note that under a general Lp norm, data space does not have

a metric tensor as it has no natural inner product consistent with the norm.

Consider a cost function that is a differentiable function of the residuals, but

is otherwise arbitrary. In this case, the metric becomes

gµν = 〈∂µC∂νC〉,

where

∂µC = Jmµ
∂C

∂rm
.

As we argue above, the Jacobian matrix has no stochastic element and may be

factored from the expectation value, giving

gµν = JmµGmnJnν ,

207

where we have introduced

Gmn ∝
ˆ
d~r e−C

∂C

∂rm

∂C

∂rn

as the metric of the space in which the model manifold is now embedded. The

proportionality constant is determined by normalizing the distribution of the resid-

uals. Although the metric of the embedding space is not necessarily the identity

matrix, it is constant, which implies that the embedding space is generally flat. In

a practical sense, the transition from least squares to an arbitrary cost functions

merely requires replacing the metric JTJ → JTGJ ; however, the distinction that

the embedding space does not have the same norm as data space is important.

For the case of the cost function in Eq. A.5, corresponding to the Lp norm,

Gmn ∝ δmn, so the metric of model manifold is the same as for least squares,

g = JTJ . However, unless p = 2, the distance between nearby points on the

model manifold is proportional to the Euclidean distance not the Lp norm distance

natural to data space. For the cases p = 1 and p =∞ the cost contours in geodesic

coordinates (circular for p = 2) become squares. A Newton-like method, such as

Levenberg-Marquardt, would no longer take the most direct path to the best fit

in geodesic coordinates and would additionally have no sense for how far away the

best fit would lie. As a consequence, many of the results of this work are specific

to quadratic costs and it is unclear how well the methods would generalize to more

arbitrary functions.

The field of information geometry is summarized nicely in several books [3, 75].

208

1. Initialize values for the parameters, x, the Levenberg-Marquardt parameter λ,
as well as λup and λdown to be used to adjust the damping term. Evaluate the
residuals r and the Jacobian J at the initial parameter guess.
2. Calculate the metric, g = JTJ + λI and the cost gradient ∇C = JT r, C = 1

2
r2.

3. Evaluate the new residuals, rnew at the point given by xnew = x− g−1∇C ,
and calculate the cost at the new point, Cnew = 1

2
r2
new.

4. If Cnew < C, accept the step, x = xnew and set r = rnew and λ = λ/λdown.
Otherwise, reject the step, keep the old parameter guess x and the old residuals
r, and adjust λ = λ× λup.
5. Check for convergence. If the method has converged, return x as the best fit
parameters. If the method has not yet converged but the step was accepted,
evaluate the Jacobian J at the new parameter values. Go to step 2.
Traditional Levenberg-Marquardt as described in [64, 69, 83]

Algorithm 1: Traditional Levenberg-Marquardt algorithm

A.2 Algorithms

Since we are optimizing functions with the form of sums of squares, we are primar-

ily interested in algorithms that specialize in this form, specifically variants of the

Levenberg-Marquardt algorithm. The standard implementation of the Levenberg-

Marquardt algorithm involves a trust region formulation. A FORTRAN imple-

mentation, which we use, is provided by MINPACK [73].

The traditional formulation of Levenberg-Marquardt, however, does not employ

a trust region, but adjusts the Levenberg-Marquardt term based on whether the

cost has increased or decreased after a given step. An implementation of this

algorithm is described in Numerical Recipes [83] and summarized in Algorithm 1.

Typical values of λup and λdown are 10. We use this formulation as the basis for

our modifications.

The delayed gratification version of Levenberg-Marquardt that we describe in

section 2.9.3 modifies the traditional Levenberg-Marquardt algorithm to raise and

lower the Levenberg-Marquardt term by differing amounts. The goal is to accept

209

1. Initialize values for the parameters, x, the Levenberg-Marquardt parameter λ,
as well as λup and λdown to be used to adjust the damping term, and α to control
the acceleration/velocity ratio. Evaluate the residuals r and the Jacobian J at
the initial parameter guess.
2. Calculate the metric, g = JTJ + λI and the Cost gradient ∇C = JT r,
C = 1

2
r2.

3. Calculate the velocity v = −g−1∇C, the geodesic acceleration of the residuals
in the direction of the velocity a = −g−1JT (vµvν∂µ∂νr)
4. Evaluate the new residuals, rnew at the point given by xnew = x+ v + 1

2
a , and

calculate the cost at the new point, Cnew = 1
2
r2
new.

5. If Cnew < C and |a|/|v| < α, accept the step, x = xnew and set r = rnew and
λ = λ/λdown. Otherwise, reject the step, keep the old parameter guess x and the
old residuals r, and adjust λ = λ× λup.
6. Check for convergence. If the method has converged, return x as the best fit
parameters. If the method has not yet converged but the step was accepted
evaluate the Jacobian J at the new parameter values. Go to step 2. Geodesic
Acceleration in the traditional Levenberg-Marquardt algorithm

Algorithm 2: Geodesic acceleration Levenberg-Marquardt algorithm

a step with the smallest value of the damping term that will produce a downhill

step. This can typically be accomplished by choosing λup = 2 and λdown = 10.

The geodesic acceleration algorithm can be added to any variant of Levenberg-

Marquardt. We explicitly add it to the traditional version and the delayed gratifi-

cation version, as described in Algorithm 2. We do this by calculating the geodesic

acceleration on the model graph at each iteration. If the step raises the cost or if the

acceleration is larger than the velocity, then we reduce the Levenberg-Marquardt

term and reject the step by default. If the step moves downhill and the velocity is

larger than the acceleration, then we accept the step. For accepted steps we raise

the Levenberg-Marquardt term; otherwise, we decrease the Levenberg-Marquardt

term. In our experience the algorithm described in Algorithm 2 is robust enough

for most applications; however, we do not consider it to be a polished algorithm.

We will present elsewhere an algorithm utilizing geodesic acceleration that is fur-

ther optimized and that we will make available as a FORTRAN routine [96].

210

In addition to the variations of the Levenberg-Marquardt algorithm, we also

compare algorithms for minimization of arbitrary functions not necessarily of the

least squares form. We take several such algorithms from the Scipy optimization

package [57]. These fall into two categories, those that make use of gradient infor-

mation and those that do not. Algorithms utilizing gradient information include

a quasi-Newton of Broyden, Fletcher, Goldfarb, and Shannon (BFGS), described

in [79]. We also employ a limited memory variation (L-BFGS-B) described in [21]

and a conjugate gradient (CG) method of Polak and Ribiere, also described in [79].

We also explored the downhill simplex algorithm of Nelder and Mead and a modi-

fication of Powells’ method [57], neither of which make use of gradient information

directly, and were not competitive with other algorithms.

211

APPENDIX B

APPENDIX TO CHAPTER 3

B.1 Test Problems

In order to gauge the relative effectiveness of the improvements descrived in this

paper, we use 17 test problems (denoted by the letters A-Q throughout this work)

which we take from the Minpack-2 project [5] and the NIST Statistical Reference

datasets [70] and some of our own research. We summarize these problems in this

appendix.

Problem A: Isomerization of α-pinene (Direct formulation) taken from the

Minpack-2 project, consisting of five parametes and 40 residuals. This model

is evaluated as a linear ordinary differential equation with unknown coefficients.

Problem B: Isomerization of α-pinene (Collocation formulation) taken from

the Minpack-2 project, consisting of 130 parameters and 165 residuals. This is

an example of a constrained optimization problem in which the constraint is im-

plemented as an l2 penalty. In our impelementation, we have used the relatively

weak penalty strength of σ = 1000 (as opposed to σ = 106 as suggested in [5]). As

the strength of σ is increased, the algorithm must more closely maintain the con-

straints at each iteration, making the algorithm become much slower. Anecdotally,

we observe that geodesic acceleration and bold acceptance can be very helpful in

these cases, although the relatively large computational cost of this problem makes

exploring this for all possible algorithms prohibitive.

Problem C: Coating thickness standardization from taken from the Minpack-2

project, consisting of 134 parameters and 252 residuals. This problem is a multiple-

212

response data-fitting problem. Because of its larger size it is one of the more

computationally intensive problems in the set.

Problem D: Exponential data fitting taken from the Minpack-2 Project, con-

sisting of 5 parameters and 33 residuals. The functional form of this problem

is

y(t, θ) = θ1 + θ2e
−tθ4 + θ3 + e−tθ5 . (B.1)

This problem similar to those used in references [94, 95] for which geodesic accel-

eration was shown to be very effective.

Problem E: Gaussian data fitting taken from the Minpack-2 Project, consisting

of 11 parameters and 65 residuals. The functional form is

y(t, θ) = θ1e
−θ5 + θ2e

−(t−θ9)2θ6 + θ3e
−(t−θ10)2θ7 + θ4e

−(t−θ11)2θ8 . (B.2)

This problem is difficult for starting points far from the minimum.

Problem F: Analysis of thermistor resistance taken from the Minpack-2 Project,

also known as the MGH10 problem from the NIST dataset. This problem consists

of 3 parameters and 16 data points. The functional form of this problem is

y(t) = θ1e
θ2
t−θ3 . (B.3)

For starting points with large values of θ3, this problem becomes very difficult as

the t dependence is lost. Including a small value of α in the geodesic acceleration

acceptance criterion is very helpful to force the algorithm move towards smaller θ3

in this case.

Problem G: Analysis of enzyme reaction taken from the Minpack-2 Project,

also known as the MGH09 problem from the NIST dataset. This problem consists

213

of 4 parameters and 11 data points. This problem takes the form

y(t, θ) =
θ1 (t2 + tθ2)

t2 + tθ3 + θ4

. (B.4)

Many algorithms have a low success rate because of a local minimizer at infinity.

As discussed in [95], this scenario is likely to be a generic feature of large data,

ill-conditioned data fitting problems.

Problem H: Chebyshev quadrature taken from the Minpack-2 Project, consist-

ing of 8 parameters and 11 residuals. This problem exhibits a disparity between

the success rate and the convergence rate due to algorithms converging to local

minima.

Problem I: Thurber problem from the NIST dataset, consisting of 7 parameters

and 37 residuals. This problem is a rational function of the form

y(t, θ) =
θ1 + θ2t+ θ3t

2 + θ4t
3

1 + θ5t+ θ6t2 + θ7t3
(B.5)

Problem J: BoxBOD problem from the NIST dataset, consisting of 2 parameters

and 6 residuals. The functional form of the problem is

y(t, θ) = θ1

(
1− e−θ2t

)
(B.6)

Problem K: Rat42 problem from the NIST dataset, consisting of 3 parameters

and 9 residuals. The functional form of this problem is

y(t, θ) =
θ1

1 + eθ2−θ3t
(B.7)

Problem L: Eckerle4 problem from the NIST dataset, consisting of 3 parameters

35 residuals. The functional form of this problem is

y(t, θ) =
θ1

θ2

e
−(t−θ3)

2

2θ22p (B.8)

214

Problem M: Rat43 problem from the NIST dataset, consisting of 4 parameters

and 15 residuals. The functional form of this problem is

y(t, θ) =
θ1

(1 + eθ2−θ3t)1/θ4
(B.9)

Problem N: Bennett5 problem from the NIST dataset, consisting of 3 parame-

ters and 154 residuals. The functional form of this problem is

y(t, θ) = θ1 (θ2 + t)−1/θ3 (B.10)

Problem O: A problem from systems biology described in [18]. This model

consists of a differential equation model of 48 parameters, mostly reaction rates

and Michaelis-Menten constants fit to 68 data points. In order to help keep the

parameters bounded, we have also introduced weak priors as described in [95].

Problem P: A problem for fitting a scaling function describing the distribution

of avalanche sizes [25]. This model has 32 parameters fit to 398 data points.

Problem Q: A training problem for a feed forward artificial neural network.

The network is trained to data describing the compressive strength of concrete, as

described in[102] and available here [39]. In our formulation, there are 81 param-

eters, consisting of the connection weights of the neural networks, and 1030 data

points. We also include a weak quadratic prior on the parameters centered at 0 in

order to help avoid parameter evaporation. These priors serve the same function

as those in Problem O, described in [95].

Although there are other methods available for training artificial neural net-

works, they provide a good test problem for the general least squares. In particular,

neural networks have many of the same properties as other fitting problems and

provide an easy framework for varying the amount data, the number of inputs and

215

outputs of the function as well as the number of parameters. They can also be

evaluated relatively quickly and easily.

For each of these problem, we choose starting points from a Gaussian distribu-

tion centered at one of the suggested starting points for each problem. The width

of the Gaussian is manually adjusted until one of the standard algorithms begins

to show a noticeable variation in performance among the points. This method of

choosing the starting points makes many of the test problems much harder than

they otherwise would have been. It is fortunate that by choosing starting points

in this way the easy problems can be made of comparable difficulty to the more

realistic problems O, P, and Q. In particular, the ease and quick evaluation of the

smaller problems make them ideal test cases provided they can be made sufficiently

difficult to imitate more realistic problems. In addition to making the problems

more difficult, by considering the performance from several starting points, we can

avoid the complication that an algorithm may perform well by accident.

We give three measures of an algorithm’s performance on a given problem.

First, we consider the fraction of the attempts for which the algorithm claimed to

have found a minimum; we refer to this as the success rate. Since all the algorithms

that we compare use the same convergence criterion described in section 3.4.3, this

measure indicates to what extent the algorithm is able to avoid becoming lost in

parameter space. An algorithm with a high success rate was usually able to find a

minimum within the alloted number of iterations. In figure B.1 we plot the average

success rate for several standard algorithms.

Although an algorithm may claim success, it may have converged by quickly

evaporating parameters and failed to have actually found a good fit. To measure

216

Figure B.1: The average success rates for several direct (a) and indirect(b) meth-
ods on each of the 17 test problems.

217

the relative quality of the fits, we define the factor

Q = exp (1− Cfinal/Cbest) , (B.11)

where Cfinal is the final cost found by the algorithm and Cbest is the best known

cost. (Although not applicable to any of these problem, a analogous formula for

a problem whose solution has zero cost is Q = exp−Cfinal/T , where T is some

tolerance.) This term will be very near one if the algorithm has found the best

fit, and exponentially suppressed otherwise. For many of the problems from the

Minpack-2 and NIST collections, the problems have either one minimum or a few

minima with one much less than the others. In these cases, Eq. (B.11) will evaluate

to either 0 or 1 depending on whether the best minima was found. On the other

hand, for many problems, particularly problems O and Q, algorithms will converge

to a variety of local minima with a wide range of final costs. In these cases, the

quality factor, Q, will give partial weight to algorithms who find reasonable but

not optimal fits. Figure B.2 displays the average value of this quality factor for

each problem and several variations of the Levenberg-Marquardt algorithm. Note

that in calculating the average quality factor, we only include results for which an

algorithm claimed success.

Finally, in order to gauge the efficiency with which an algorithm converges to

the best fit, we choose as a measure the number of Jacobian evaluations. The

advantage of this measure is that it is easy to extrapolate results for these sim-

ple test problems to larger, more computationally intensive problems where most

of the computer time is spent calculating the Jacobian matrix. Often, an algo-

rithm will converge quickly to a poor fit. In order to not bias results in favor

of algorithms which find poor fits quickly, we calculate a weighted average of the

number of Jacobian evaluations, weighted by the quality factor Q in Eq. (B.11).

As a convention, we plot the inverse of the average number of Jacobian evaluations

218

Figure B.2: The average quality factor, defined in Eq. (B.11) for several direct
(a) and indirect (b) methods on each of the seventeen test problems.

219

so that larger numbers are preferable. The inverse average Number of Jacobian

Evaluations (NJEV) each algorithm required for each problem is shown in figure

B.3.

220

Figure B.3: The inverse average Number of Jacobian Evaluations (NJEV) neces-
sary for convergence for several direct (a) and indirect (b) methods on each of the
seventeen test problems.

221

APPENDIX C

APPENDICES TO CHAPTER 4

C.1 Order parameter and vector potential in the large κ

limit

In this Appendix, we derive solutions to the Ginzburg-Landau equations Eq. (4.2)

valid in the large-κ limit. For convenience, we work in units λ = 1, ξ = 1/κ. As a

first step, we consider the limit κ→∞. Then Eqs. 4.2 reduce to

q′′0 = f 2
0 q0,

0 = f0

(
f 2

0 − 1 + q2
0

)
,

(C.1)

with solution [31]

q0(x) = −
√

2

cosh(x+ `)
,

f0(x) =
√

1− q2
0(x),

(C.2)

where the parameter ` is determined by the field at the surface via

Ha = q′0(0) =

√
2 sinh `

cosh2 `
. (C.3)

The above solution satisfies the boundary conditions at infinity, but it cannot

satisfy the boundary condition for f at the surface. An approximate solution, valid

at finite but large κ, which satisfies all boundary conditions can be obtained by

boundary layer theory. We follow the approach of Ref. [24], so we only sketch the

steps of the calculation. Note that away from the thermodynamic critical field, the

scaling is different than that used in Ref. [24]: there the expansion is in powers of

222

κ−α and the inner variable is X = καx with α = 2/3, here we use α = 1:

q = q0 +
1

κ
q1 + . . .

f = f0 +
1

κ
f1 + . . .

(C.4)

Substituting into Eqs. (4.2), we find the following “outer layer” equations for q1

and f1:

q′′1 = 2f0f1q0 + f 2
0 q1,

0 = f1(3f 2
0 − 1 + q2

0) + 2f0q0q1

(C.5)

which have the simple solutions f1 = q1 = 0. For the inner layer, we introduce the

variable X = κx and find the equations

f̃ ′′0 = f̃0

(
f̃ 2

0 − 1 + q̃2
0

)
,

q̃′′0 = 0,

(C.6)

and

f̃ ′′1 = f̃1

(
3f̃ 2

0 − 1 + q̃2
0

)
+ 2f̃0q̃0q̃1,

q̃′′1 = 0,

(C.7)

where we use tildes to denote functions of the inner variable X. Equations (C.6)

have constant solutions

q̃0 = −b , f̃0 =
√

1− b2, (C.8)

while from the second of Eqs. (C.7) and the boundary conditions we get

q̃1 = HaX . (C.9)

Then the first of Eqs. (C.7) becomes

f̃ ′′1 = 2(1− b2)f̃1 − 2b
√

1− b2HaX, (C.10)

with solution

f̃1 =
bHa√
1− b2

X + Ae−
√

2
√

1−b2X +Be
√

2
√

1−b2X (C.11)

223

with A,B integration constants. Since f tends to a constant far from the surface,

we set B = 0. Vanishing of the derivative at the surface then fixes

A =
bHa√

2(1− b2)
(C.12)

Next, we match the inner and outer solutions. Comparing Eqs. (C.2) and (C.8)

we get

b =

√
2

cosh `
. (C.13)

We can express b in terms of the applied field using Eq. (C.3) to find

b =

√
1−

√
1− 2H2

a . (C.14)

Then, since f1 = q1 = 0, we need to compare the linear order expansion of

Eqs. (C.2) at small x with q̃1/κ and f̃1/κ at large X = κx. Using Eqs. (C.3)

and (C.13), we find that the inner and outer solutions match. Finally, the uniform

approximate solution is

q(x) = q0(x),

f(x) =
√

1− q2
0(x) +

1

κ

bHa√
2(1− b2)

e−
√

2
√

1−b2κx
(C.15)

with corrections of order 1/κ2. In Fig. 4.4 we compare the second of Eq. (C.15) to

numerics.

C.2 Superheating field in the large-κ limit

The calculation of the superheating field Hsh as a function of κ for stability with

respect to one-dimensional perturbations (i.e., k = 0) can be found in Ref. [33]

for κ → 0 and Ref. [24] for κ → ∞. The latter calculation, however, is of little

224

physical relevance, as the actual instability at sufficiently large κ is due to two-

dimensional perturbations. Here we present for completeness (albeit in a different

form) Christiansen’s perturbative calculation [26] of the true superheating field

Hsh(κ) for κ� 1.

Our starting point is the following expression for the “critical” second varia-

tion of the thermodynamic potential as functional of perturbations δf̃ , δq̃y, and

momentum k [see also Eq. (10) in Ref. [60]]:

δ2F =

ˆ ∞
0

dx
{ [

3f 2 + q2 − 1 + (k/κ)2
]
δf̃ 2 + κ−2δf̃ ′2

+ 4fqδf̃δq̃y + f 2δq̃2
y + (f 2 + k2)−1f 2δq̃′

2

y

} (C.16)

It is straightforward to check that variation of this functional with respect to f

and qy leads to Eqs. (4.6)-(4.7) with E = 0 and rescaled units λ = 1. Kramer

estimated that the critical momentum k ∝
√
κ. While we will show that this is

not the correct scaling, this form suggests to rescale lengths by 1/
√
κ by defining

x = w/
√
κ:

δ2F =

ˆ ∞
0

dw√
κ

{ [
3f 2 + q2 − 1 + (k/κ)2

]
δf̃ 2 + κ−1δf̃ ′2

+ 4fqδf̃δq̃y + f 2δq̃2
y + (f 2 + k2)−1f 2κδq̃′y

2
} (C.17)

where now prime is derivative with respect to w. (Note that although k has units

of inverse length, it is momentum parallel to the surface, and therefore does not

scale with x.)

Minimization with respect to k leads to the equation

k

ˆ
dw

[
δf̃ 2

κ2
− κf 2

(f 2 + k2)2
δq̃′2y

]
= 0 (C.18)

Assuming k � 1, we can neglect f 2 ≤ 1 in the denominator and find

k4

ˆ
dw δf̃ 2 = κ3

ˆ
dw f 2δq̃′2y (C.19)

225

which shows that (if our length rescaling is correct) the proper scaling for the crit-

ical momentum is k ∝ κ3/4. If this is true, then (k/κ)2 ∝ 1/
√
κ and κ/k2 ∝ 1/

√
κ,

which shows that the next to leading order terms in curly brackets in Eq. (C.17)

are proportional to 1/
√
κ. Therefore, terms of order 1/κ can be neglected and, in

particular, we can neglect κ−1δf̃ ′2 and use everywhere the lowest order solution

for f and q, Eq. (C.2). Hence the approximate functional in the large-κ limit is

δ2F ' 1√
κ

ˆ ∞
0

dw
{ [

2f 2
0 + (k/κ)2

]
δf̃ 2

+ 4f0q0δf̃δq̃y + f 2
0 δq̃

2
y + k−2f 2

0κδq̃
′2
y

}
.

(C.20)

By minimizing Eq. (C.20) with respect to δf̃ , we find

[
2f 2

0 + (k/κ)2
]
δf̃ = −2f0q0δq̃y, (C.21)

and solving for δf̃

δf̃ = − 2f0q0δq̃y
2f 2

0 + (k/κ)2
' −q0δq̃y

f0

+

(
k

κ

)2
q0δq̃y
2f 3

0

(C.22)

where in the last step we kept only the leading and the next to leading order terms.

Substituting back into Eq. (C.20) gives

δ2F =

ˆ ∞
0

dw√
κ

[(
1− 3q2

0

)
δq̃2
y

+

(
k

κ

)2
q2

0

f 2
0

δq̃2
y +

κ

k2
f 2

0 δq̃
′2
y

] (C.23)

The first term in square brackets is the leading term. Neglecting the other terms,

since q2
0 is monotonically decreasing function of w the variation qy that minimizes

the functional is a δ-function at the surface. Then the condition for the metasta-

bility is

1− 3q2
0(0) = 0. (C.24)

Using Eq. (C.2) we obtain

cosh ` =
√

6 , sinh ` =
√

5 (C.25)

226

and substituting into Eq. (C.3)

H∞sh =

√
10

6
(C.26)

To calculate the large-κ correction, we expand the function q0(w) in the first

term in square brackets in Eq. (C.23) to linear order, while q0 and f0 in the sub-

leading terms can be simply evaluated at the surface. Setting

` ' arccosh
√

6− c√
κ
, (C.27)

k =

(
5

6

)1/4

k̃κ3/4, (C.28)

and using Eq. (C.3) we find

δ2F = 2

√
5

6

ˆ ∞
0

dw

κ

[(
−c+ w +

1

4
k̃2

)
δq̃2
y +

2

5k̃2
δq̃′2y

]
(C.29)

The variational equation for δq̃y derived from this functional has as solution the

Airy function

δq̃y(w) = Ai

(5k̃2

2

)1/3(
w − c+

1

4
k̃2

) (C.30)

Imposing the boundary condition δq̃′y(0) = 0, we find that for a given k̃ the lowest

possible c is

c = z0

(
5k̃2

2

)−1/3

+
1

4
k̃2, (C.31)

where

z0 ≈ 1.018793 (C.32)

is the smallest number satisfying Ai′(−z0) = 0. Finally minimizing c with respect

to k̃ we find

k̃ =

(
4

3
z0

)3/8(
2

5

)1/8

(C.33)

and

c =

(
2

5

)1/4(
4

3
z0

)3/4

. (C.34)

227

Substituting Eq. (C.27) into Eq. (C.3) we obtain

Hsh =

√
10

6
+

2c

3
√

3κ
≈
√

10

6
+

0.3852√
κ

(C.35)

and from Eqs. (C.28), (C.32), and (C.33)

k =

(
160

243

)1/8

z
3/8
0 κ3/4

≈ 0.9558κ3/4. (C.36)

These results agree with those of Ref. [26]. We compare these two formulas with

numerics in Figs. 4.2 and 4.3, respectively.

Finally, fixing the arbitrary normalization of the perturbation by requiring

δq̃y(0) = 1, using Eqs. (C.30)-(C.34), and restoring dimensions we find

δq̃y(x) = Ai

[(
10

3
z0

)1/4 √
κx

λ
− z0

]/
Ai[−z0], (C.37)

which shows that the “penetration depth” of the perturbation is of the order of

the geometric average of coherence length and magnetic field penetration depth.

This functional form is plotted in Fig. 4.5 for κ = 50 along with the numerically

calculated δq̃y.

228

BIBLIOGRAPHY

[1] P.A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, 2008.

[2] S. Amari, H. Park, and T. Ozeki. Singularities affect dynamics of learning
in neuromanifolds. Neural Computation, 18(5):1007–1065, 2006.

[3] S.I. Amari and H. Nagaoka. Methods of Information Geometry. Amer Math-
ematical Society, 2007.

[4] C. Atkinson and A.F.S. Mitchell. Rao’s distance measure. Sankhyā: The
Indian Journal of Statistics, Series A, pages 345–365, 1981.

[5] B.M. Averick, R.G. Carter, J.J. More, and G.L. Xue. The minpack-2 test
problem collection. Preprint MCS-P153-0694, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Illinois, 1992.

[6] AB Bakushinskii. The problem of the convergence of the iteratively regular-
ized gauss-newton method. Computational Mathematics and Mathematical
Physics, 32(9):1353–1359, 1992.

[7] OE Barndorff-Nielsen, DR Cox, and N. Reid. The role of differential geom-
etry in statistical theory. International statistical review, 54(1):83–96, 1986.

[8] D.M. Bates, D.C. Hamilton, and D.G. Watts. Calculation of intrinsic and
parameter-effects curvatures for nonlinear regression models. Communica-
tions in Statistics-Simulation and Computation, 12(4):469–477, 1983.

[9] D.M. Bates and D.G. Watts. Relative curvature measures of nonlinearity. J.
Roy. Stat. Soc, 42:1–25, 1980.

[10] D.M. Bates and D.G. Watts. Parameter transformations for improved
approximate confidence regions in nonlinear least squares. Ann. Statist,
9(6):1152–1167, 1981.

[11] D.M. Bates and D.G. Watts. A relative offset orthogonality convergence
criterion for nonlinear least squares. Technometrics, 23(2):179–183, 1981.

[12] D.M. Bates and D.G. Watts. Nonlinear Regression Analysis and Its Appli-
cations. John Wiley, 1988.

229

[13] EML Beale. Confidence regions in non-linear estimation. Journal of the
Royal Statistical Society, 22(1):41–88, 1960.

[14] E. Ben-Jacob, N. Goldenfeld, JS Langer, and G. Schön. Dynamics of inter-
facial pattern formation. Physical Review Letters, 51(21):1930–1932, 1983.

[15] E. Bodenschatz, W. Pesch, and G. Ahlers. Recent developments in rayleigh-
bénard convection. Annual review of fluid mechanics, 32(1):709–778, 2000.

[16] R.C. Brower, D.A. Kessler, J. Koplik, and H. Levine. Geometrical approach
to moving-interface dynamics. Physical review letters, 51(13):1111–1114,
1983.

[17] K. S. Brown. Signal Transduction, Sloppy Models, and Statistical Mechanics.
PhD thesis, Cornell University, 2003.

[18] K.S. Brown, C.C. Hill, G.A. Calero, C.R. Myers, K.H. Lee, J.P. Sethna,
and R.A. Cerione. The statistical mechanics of complex signaling networks:
nerve growth factor signaling. Physical biology, 1(3):184–195, 2004.

[19] K.S. Brown and J.P. Sethna. Statistical mechanical approaches to models
with many poorly known parameters. Physical Review E, 68(2):21904, 2003.

[20] C.G. Broyden et al. A class of methods for solving nonlinear simultaneous
equations. Math. Comp, 19(92):577–593, 1965.

[21] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[22] FP Casey, D. Baird, Q. Feng, RN Gutenkunst, JJ Waterfall, CR Myers,
KS Brown, RA Cerione, and JP Sethna. Optimal experimental design in
an epidermal growth factor receptor signalling and down-regulation model.
Systems Biology, IET, 1(3):190–202, 2007.

[23] G. Catelani and J.P. Sethna. Temperature dependence of the superheating
field for superconductors in the high-κ london limit. Physical Review B,
78(22):224509, 2008.

[24] S.J. Chapman. Superheating field of type II superconductors. SIAM Journal
on Applied Mathematics, pages 1233–1258, 1995.

230

[25] Yan-Jiun Chen, Gianfranco Durin, and James P
Sethna. Sloppyscaling: Python software for automatic
fits to multivariable scaling functions at critical points.
http://www.lassp.cornell.edu/sethna/Sloppy/SloppyScaling/SloppyScaling.htm.

[26] P. Voetmann Christiansen. Magnetic superheating of high-[kappa] supercon-
ductors. Solid State Communications, 7(10):727 – 729, 1969.

[27] GPY Clarke. Marginal curvatures and their usefulness in the analysis of
nonlinear regression models. Journal of the American Statistical Association,
pages 844–850, 1987.

[28] R.D. Cook and M.L. Goldberg. Curvatures for parameter subsets in nonlinear
regression. The Annals of Statistics, pages 1399–1418, 1986.

[29] R.D. Cook and J.A. Witmer. A note on parameter-effects curvature. Amer-
ican Statistical Association, 80(392):872–878, Dec 1985.

[30] B.C. Daniels, Y.J. Chen, J.P. Sethna, R.N. Gutenkunst, and C.R. Myers.
Sloppiness, robustness, and evolvability in systems biology. Current Opinion
in Biotechnology, 19(4):389–395, 2008.

[31] P. G. de Gennes. Vortex nucleation in type II superconductors. Solid State
Communications, 3(6):127 – 130, 1965.

[32] E. Demidenko. Criteria for global minimum of sum of squares in nonlinear
regression. Computational Statistics and Data Analysis, 51(3):1739–1753,
2006.

[33] A.J. Dolgert, S.J. Di Bartolo, and A.T. Dorsey. Superheating fields of su-
perconductors: Asymptotic analysis and numerical results. Physical Review
B, 53(9):5650–5660, 1996.

[34] J.R. Donaldson and R.B. Schnabel. Computational experience with confi-
dence regions and confidence intervals for nonlinear least squares. Techno-
metrics, 29(1):67–82, Feb 1987.

[35] G. Eilenberger. Transformation of gorkov’s equation for type II supercon-
ductors into transport-like equations. Zeitschrift für Physik A Hadrons and
Nuclei, 214(2):195–213, 1968.

[36] L.P. Eisenhart. Riemannian geometry. Princeton Univ Pr, 1997.

231

[37] HJ Fink and AG Presson. Stability limit of the superheated meissner state
due to three-dimensional fluctuations of the order parameter and vector po-
tential. Physical Review, 182(2):498, 1969.

[38] H. Frahm, S. Ullah, and A.T. Dorsey. Flux dynamics and the growth of the
superconducting phase. Physical review letters, 66(23):3067–3070, 1991.

[39] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[40] S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, and J.P. Sethna. Bayesian
ensemble approach to error estimation of interatomic potentials. Physical
Review Letters, 93(16):165501, 2004.

[41] D. Gabay. Minimizing a differentiable function over a differential manifold.
Journal of Optimization Theory and Applications, 37(2):177–219, 1982.

[42] VP Galaiko. Stability limits of the superconducting state in a magnetic field
for superconductors of the second kind. Soviet Journal of Experimental and
Theoretical Physics, 23:475, 1966.

[43] P.E. Gill and W. Murray. Algorithms for the solution of the nonlinear least-
squares problem. SIAM Journal on Numerical Analysis, pages 977–992, 1978.

[44] G. Golub and V. Pereyra. Separable nonlinear least squares: the variable
projection method and its applications. Inverse Problems, 19:R1, 2003.

[45] G.H. Golub and V. Pereyra. The differentiation of pseudo-inverses and non-
linear least squares problems whose variables separate. SIAM Journal on
Numerical Analysis, 10(2):413–432, 1973.

[46] R.N. Gutenkunst. Sloppiness, modeling, and evolution in biochemical net-
works. PhD thesis, Cornell University, 2008.

[47] R.N. Gutenkunst, F.P. Casey, J.J. Waterfall, C.R. Myers, and J.P. Sethna.
Extracting falsifiable predictions from sloppy models. Annals of the New
York Academy of Sciences, 1115(1 Reverse Engineering Biological Net-
works: Opportunities and Challenges in Computational Methods for Path-
way Inference):203–211, 2007.

[48] R.N. Gutenkunst, J.J. Waterfall, F.P. Casey, K.S. Brown, C.R. Myers, and
J.P. Sethna. Universally sloppy parameter sensitivities in systems biology
models. PLoS Comput Biol, 3(10):e189, 2007.

232

[49] LM Haines, TE O Brien, and GPY Clarke. Kurtosis and curvature measures
for nonlinear regression models. Statistica Sinica, 14(2):547–570, 2004.

[50] D.C. Hamilton, D.G. Watts, and D.M. Bates. Accounting for intrinsic non-
linearity in nonlinear regression parameter inference regions. Ann. Statist,
10(38):393, 1982.

[51] HO Hartley. The modified gauss-newton method for the fitting of non-linear
regression functions by least squares. Technometrics, pages 269–280, 1961.

[52] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the theory of neural
computation. Westview Press, 1991.

[53] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. American
Mathematical Society, 1999.

[54] C. Igel, M. Toussaint, and W. Weishui. Rprop using the natural gradient.
Trends and Applications in Constructive Approximation, International Se-
ries of Numerical Mathematics, 151, 2005.

[55] T.T. Ivancevic. Applied differential geometry: a modern introduction. World
Scientific Pub Co Inc, 2007.

[56] H. Jeffreys. Theory of probability. Oxford University Press, USA, 1998.

[57] E. Jones, T. Oliphant, P. Peterson, et al. Scipy: Open source scientific tools
for python. URL http://www. scipy. org, 2001.

[58] R.E. Kass. Canonical parameterizations and zero parameter-effects curva-
ture. Journal of the Royal Statistical Society. Series B (Methodological),
pages 86–92, 1984.

[59] L. Kaufman. A variable projection method for solving separable nonlinear
least squares problems. BIT Numerical Mathematics, 15(1):49–57, 1975.

[60] L. Kramer. Stability limits of the meissner state and the mechanism of
spontaneous vortex nucleation in superconductors. Phys. Rev., 170(2):475–
480, Jun 1968.

[61] L. Kramer. Breakdown of the superheated meissner state and sponta-
neous vortex nucleation in type ii superconductors. Zeitschrift für Physik
A Hadrons and Nuclei, 259(4):333–346, 1973.

233

[62] L. Kramer and W. Pesch. Core structure and low-energy spectrum of isolated
vortex lines in clean superconductors att � t c. Zeitschrift für Physik A
Hadrons and Nuclei, 269(1):59–64, 1974.

[63] M. Lampton. Lamping-undamping strategies for the levenberg-marquardt
nonlinear least-squares method. Computers in Physics, 11(1):110–115, 1997.

[64] K. Levenberg. A method for the solution of certain nonlinear problems in
least squares. Quart. Appl. Math, 2(2):164–168, 1944.

[65] D.G. Luenberger. The gradient projection method along geodesics. Manage-
ment Science, pages 620–631, 1972.

[66] R. Mahony. Optimization algorithms on homogeneous spaces. PhD thesis,
Australian National University, 1994.

[67] R. Mahony and J.H. Manton. The geometry of the newton method on non-
compact lie groups. Journal of Global Optimization, 23(3):309–327, 2002.

[68] J.H. Manton. On the various generalisations of optimisation algorithms to
manifolds. In Proceedings of the 16th International Symposium on Mathe-
matical Theory of Networks and Systems, Leuven, Belgium, 2004.

[69] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[70] B.D. McCullough. Assessing the reliability of statistical software: Part I.
The American Statistician, 52(4):358–366, 1998.

[71] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. WH Freeman
and Company, 1973.

[72] J.J. Moré. The levenberg-marquardt algorithm: implementation and theory.
Lecture notes in mathematics, 630:105–116, 1977.

[73] J.J. Moré, B.S. Garbow, and K.E. Hillstrom. User guide for MINPACK-1,
1980.

[74] JJ Mortensen, K. Kaasbjerg, SL Frederiksen, JK Nørskov, JP Sethna, and
KW Jacobsen. Bayesian error estimation in density-functional theory. Phys-
ical Review Letters, 95(21):216401, 2005.

234

[75] M.K. Murray and J.W. Rice. Differential geometry and statistics. Chapman
& Hall New York, 1993.

[76] Christopher R. Myers. Sliding Charge Density Waves: Dynamics and Criti-
cality in Many Degrees-of-Freedom. PhD thesis, Cornell University, 1991.

[77] H.B. Nielsen. Damping parameter in marquardt’s method. Department of
mathematical modelling, Technical University of Denmark, Tech. Rep. IMM-
REP-1999-05, 1999.

[78] Y. Nishimori and S. Akaho. Learning algorithms utilizing quasi-geodesic
flows on the stiefel manifold. Neurocomputing, 67:106–135, 2005.

[79] J. Nocedal and S.J. Wright. Numerical optimization. Springer, 1999.

[80] H. Padamsee, KW Shepard, and R. Sundelin. Physics and accelerator ap-
plications of rf superconductivity. Annual Review of Nuclear and Particle
Science, 43(1):635–686, 1993.

[81] A. Pázman. Results on nonlinear least squares estimators under nonlinear
equality constraints. Journal of Statistical Planning and Inference, 103(1-
2):401–420, 2002.

[82] RLM Peeters. On a riemannian version of the levenberg-marquardt algo-
rithm. Serie Research Memoranda 0011, VU University Amsterdam, Faculty
of Economics, Business Administration and Econometrics, 1993.

[83] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes: the art of scientific computing,. Cambridge University Press, 2007.

[84] C.R. Rao. Information and the accuracy attainable in the estimation of
statistical parameters. Vull. Calcutta Math. Soc., 37:81–91, 1945.

[85] CR Rao. On the distance between two populations. Sankhya, 9:246–248,
1949.

[86] S.T. Smith. Geometric optimization methods for adaptive filtering. PhD
thesis, Harvard University, 1993.

[87] S.T. Smith. Optimization techniques on riemannian manifolds. Hamiltonian
and gradient flows, algorithms and control, 3:113–136, 1994.

235

[88] M. Spivak. A comprehensive introduction to differential geometry. Publish
or Perish, 1979.

[89] J. Stoer, R. Bulirsch, W. Gautschi, and C. Witzgall. Introduction to numer-
ical analysis. Springer Verlag, 2002.

[90] M. Tinkham. Introduction to superconductivity. Dover Pubns, 2004.

[91] Mark K. Transtrum, Gianluigi Catelani, and James P. Sethna. Supercon-
ducting superheating field in Eilenberger theory. in preparation.

[92] Mark K. Transtrum, Gianluigi Catelani, and James P. Sethna. Superheating
field of superconductors within Ginzburg-Landau theory. Physical Review B,
83(9):094505, 2011.

[93] Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. See
supplemental material at [http://link.aps.org/supplemental/ 10.1103/Phys-
RevE.83.036701] for an animation of this figure.

[94] Mark K Transtrum, Benjamin B Machta, and James P Sethna. Why
are nonlinear fits to data so challenging? Physical Review Letters,
104(060210):1060201, 2010.

[95] Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. Geometry of
nonlinear least squares with applications to sloppy models and optimization.
Physical Review E, 83(3):036701, 2011.

[96] Mark K. Transtrum, Benjamin B. Machta, Cyrus Umrigar, Peter Nightin-
gale, and James P. Sethna. Development and comparison of algorithms for
nonlinear least squares fitting. In preparation.

[97] C. Udriste. Convex functions and optimization methods on Riemannian man-
ifolds. Kluwer Academic Pub, 1994.

[98] NRA Valles and MU Liepe. Temperature dependence of the superheating
field in niobium. Arxiv preprint arXiv:1002.3182, 2010.

[99] J.J. Waterfall, F.P. Casey, R.N. Gutenkunst, K.S. Brown, C.R. Myers, P.W.
Brouwer, V. Elser, and J.P. Sethna. Sloppy-model universality class and the
vandermonde matrix. Physical Review Letters, 97(15):150601, 2006.

236

[100] B.C. Wei. On confidence regions of embedded models in regular paramet-
ric families (a geometric approach). Australian & New Zealand Journal of
Statistics, 36(3):327–338, 1994.

[101] Y. Yang. Globally convergent optimization algorithms on riemannian man-
ifolds: Uniform framework for unconstrained and constrained optimization.
Journal of Optimization Theory and Applications, 132(2):245–265, 2007.

[102] I.C. Yeh. Modeling of strength of high-performance concrete using artificial
neural networks. Cement and Concrete research, 28(12):1797–1808, 1998.

237

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Introduction to Sloppy Models
	Least squares fitting algorithms
	Introduction to superconducting cavities

	Geometry of nonlinear least squares with applications to sloppy models and optimization
	Abstract
	Introduction
	The Model Manifold
	Bounded Manifolds
	The Model Graph
	Priors
	Extended Geodesic Coordinates
	Curvature
	Intrinsic (Riemann) Curvature
	Extrinsic Curvature
	Parameter-effects Curvature
	Curvature in Sloppy Models
	Curvature on the Model Graph
	Optimization Curvature
	Curvature and parameter evaporation

	Applications to Algorithmics
	Modified Gauss-Newton Method
	Levenberg-Marquardt Algorithm
	Delayed Gratification
	Geodesic Acceleration
	Algorithm Comparisons

	Conclusions

	Improvements to the Levenberg-Marquardt algorithm
	Abstract
	Introduction
	Geometric Motivations
	The Levenberg-Marquardt algorithm
	Choosing the damping parameter
	Parameter space metric
	Convergence Criteria

	Geodesic Acceleration
	Uphill steps
	Updating the Jacobian Matrix
	Conclusion

	Superheating field of superconductors within Ginzburg-Landau theory
	Abstract
	Introduction
	Ginzburg-Landau theory and stability analysis
	Numerical Results
	Summary and outlook

	Superheating field of superconductors within Eilenberger theory
	Abstract
	Introduction
	Eilenberger equations
	Numerical Methods
	Results
	Small
	Large
	Convergence

	Comparison with experiments
	Conclusions

	Appendices to chapter 2
	Information Geometry
	Algorithms

	Appendix to Chapter 3
	Test Problems

	Appendices to chapter 4
	Order parameter and vector potential in the large limit
	Superheating field in the large- limit

	Bibliography

