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Abstract 
We’ve been studying the “tweed” precursors above the martensitic tran- 
sition in shape-memory alloys. These characteristic cross-hatched modula- 
tions occur for hundreds of degrees above the first-order shape-changing 
transition. Our two-dimensional model for this transition, in the limit of 
infinite elastic anisotropy, can be mapped onto a spin-glass Hamiltonian in 
a random field. We suggest that the tweed precursors are a direct analogy 
of the spin-glass phase. The tweed is intermediate between the high- 
temperature cubic phase and the low-temperature martensitic phase in the 
same way as the spin-glass phase can be intermediate between ferromagnet 
and antiferromagnet. 

Tne field of disordered systems has been a rich and fasci- 
nating branch of condensed matter physics in the last few 
decades. New ideas, language, and techniques have been 
developed in order to study problems with intrinsic ran- 
domness in their Hamiltonians. Much of the attention has 
been on relatively new and exotic systems: spin glasses in 
dilute magnetic systems, charge density waves in complex 
one-dimensional materials, localization in doped semicon- 
ductors. One of the promises of the field is to treat the real, 
dirty world of materials. So long as our industrial colleagues 
refrain from making their goods with perfect crystals, the 
study of disordered systems ought to have ramifications in 
old-fashioned, practical systems. 

One of the old problems in materials physics is that of the 
“central peak”. First-order transitions traditionally have no 
precursors: water looks like water until 0 “C, at which point 
it suddenly becomes plain ice. Transitions between different 
crystalline phases, in contrast, often have rather large pre- 
cursor effects. In neutron scattering, there is often a large, 
quasielastic central peak, representing either static or rather 
long-lived fluctuations in positions. In the martensitic phase 
transitions (described more fully below) the central peak 
may be understood to be associated with a tweed morpho- 
logy in TEM micrographs. The tweed [l], so called because 
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of its characteristic irregular fabric-like cross-hatched 
pattern, has stripes aligned along (1 10) directions of widths 
a few atomic spacings. Tweed occurs for tens to hundreds of 
degrees above the transition temperature. 

First, we’ll review what a martensitic transformation is. 
Second, since martensitic materials have high elastic aniso- 
tropies, we’ll take a limit of infinite elastic anisotropy to 
explain the tweed morphology. Third, we’ll introduce dis- 
order, and show that the tweed regime can be understood 
(in a two-dimensional model) as a spin-glass phase interme- 
diate between the high and low-temperature phases. Thus, 
the community’s large investment of work on spin glasses is 
seen to have direct application to a substantial problem in 
traditional metallurgy. This is a simpler presentation of 
recently published work [a]. 

Martensitic phase transformations were first studied in 
carbon steels. Typically, they involve a cubic high- 
temperature phase which abruptly changes shape, elon- 
gating in one direction and contracting in the other two, 
with possible intracell, atomic shumings. The resulting low- 
temperature phase is usually left with a complicated mor- 
phology of micron-sized plates, which in turn can be 
composed of many parallel twinned regions. The simplest 
examples of martensitic transitions are the bcc + fcc tran- 
sition or bcc + hcp transitions seen in many metals and 
alloys on cooling. The martensitic transformations of inter- 
est to us have (1) little volume change, and (2) no long-range 
diffusion during the transition. Large changes in volume 
prevent the nice elastic accommodation that the plates rep- 
resent: crystals undergoing such transitions may in fact 
shatter from the resulting strains. The martensitic trans- 
formations in carbon steels have too much volume change 
to be described by our theories. If long-range diffusion is 
needed in a transition, it usually proceeds rather slowly: in 
contrast, the growth of a martensitic plate can occur at the 
speed of sound, and emits a cracking noise. 

We model these materials with a two-dimensional simula- 
tion. We represent each atomic cell by a quadrilateral: the 
two types of atoms in the simulation are represented by 
quadrilaterals with two different energies as a function of 
shape. The high temperature phase in our simulation is 
square (grey in Figs 1 and 2), while the low temperature 
phase has two variants: tall-and-thin (black), and short-and- 



Fig. 1. Martensitic Twins. A typical metastable state of our two- 
dimensional model, with parameters set to be in the low-temperature rec- 
tangular martensitic phase. The free energy is of the same form as given in 
our earlier publication [2], except that we’ve added energy terms for bulk 
compression and diagonal strain (i.e., this is an unconstrained simulation). 
Parameters are taken from the Fe,,,Pd,,, shape memory alloy, with each 
quadrilateral representing one atom. Naturally, significant simplification 
was made in going from three dimensions to two. In addition, we don’t 
know yet the coupling to impurities. Details will be published in a longer 
form. 

Notice the twin boundaries between the two variants: they lie along the 
(11) diagonals. This nearly one-dimensional variation is of the form 
$-(x - y) as described in the text, eq. (3). Notice that twin boundaries have 
arranged to keep the overall shape of the domain the same as that of the 
original sample: a large chunk of one variant would have produced intoler- 
able strain in the surrounding matrix 

fat (white). The martensites we’re interested in don’t change 
shape drastically: a couple of percent stretch along one axis 
is typical. (The shape change in the figures is exaggerated by 
a factor of 15.) 

Because of this, these materials have transitions which are 
largely reversible. In Fig. 1, we see a typical martensitic 
region. One sees domains of both variants, separated by 
twin boundaries along (in this case) the diagonal stretching 
from lower left to upper right. Notice that the region as a 

Fig. 2. Tweed. Another metastable state, at parameters set in the tweed 
regime. Notice the patchy tweed pattern, looking like a superposition of 
stripes along the two diagonals. Grey is the high-temperature square phase, 
black is tall-and-thin, white is short-and-fat. Different quenches typically 
land in different metastable states: the system is glassy 
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whole has preserved it’s square shape : the twin boundaries 
arrange themselves so as to prevent long-range strain from 
building up. This is for precisely the same reasons that mag- 
netic domains form in ferromagnets: the long range elastic 
(magnetic) fields introduced from one growing variant lower 
the energy of formation of the other variant in neighboring 
regions. 

There are three types of materials in which tweed has 
been seen. First (and most recently), it has been seen in 
doped YBaCuO [3-51, where our two-dimensional model is 
particularly appropriate. YBCO goes through a tetrago- 
nal + orthorhombic phase transition somewhat above its 
superconducting transition. If one views it in a funny basis, 
this transition is a square + rectangular transition in the 
copper-oxygen planes. When cobalt or aluminum is doped 
for copper, it apparently substitutes onto the chains, 
producing a substantial drop in the superconducting tran- 
sition temperature and a tweed-like modulation. Second, it 
has been seen in the A15’s [SI, which also go through a 
martensitic transition near the superconducting transition. 
Third (and the way we got interested), it has been seen in 
the shape-memory alloys [7-121. 

In passing, we can use Fig. 1 to provide a simple illustra- 
tion of the shape-memory effect. Imagine the large square 
sample as some object (say a teapot) formed out of the high- 
temperature austenite phase. We’ve passed through the 
phase transition, yet the region is roughly square: twin 
boundaries hwe formed to keep the material macroscopi- 
cally the same shape (square, or teapot). In the martensitic 
phase, though, h e  material is much softer, even though the 
single-crystal elastic constants are stiffer. To plastically 
deform the teapot. one needn’t break any interatomic 
bonds. One need only push the twin boundaries around! If 
one takes the sample in Fig. 1 and stretches it vertically, the 
twin boundaries will shift to shrink the white regions. One 
can crumple the teapot without undue force, introducing no 
changes in the underlying cbbic lattice. Upon reheating, the 
material returns to the cubic phase. The twin boundaries, 
wherever they have moved, will disappear, and the material 
will reform into its original configmition. The teapot mirac- 
ulously uncrumples ! Shape-memory alloys are used indus- 
trially for thermal switches (often in automobiles), and for 
pipe fittings [13]. They’ve been used also in more exotic 
applications, such as sateliite antennae which automatically 
unpack themselves, robotic muscles which flex upon 
resistive heating, and small bars which bust up rocks [14J in 
golf courses. 

Figure 2 shows another local low-energy state of our 
model, here in the tweed temperature range. Notice the 
patchy cross-hatched diagonal checkerboard pattern. There 
are long-ranged correlations I I :he two diagonal directions, 
but only short-ranged correlations horizontally and verti- 
cally. Indeed, the dark and light stripes exteiid in many 
cases through our whole sample. 

Let’s define the order parameter for our martensitic tran- 
sition to be the net stretch in the horizontal direction: 

4 = Ex, - E y y ,  (1) 

where the strain field E~~ = (ai uj + aj ui)/2 and u(x, y) is the 
displacement field (final position minus initial position, 
labeled by the initial position x, y). (We have in the analysis 
ignored the “geometric nonlinearity” ai uI 8, ul , which can be 
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important if there are large rotations in the problem. Our 
unconstrained simulations do implement complete rotation 
invariance.) Thus, 4 > 0 in short-and-fat regions, = 0 in 
the square phase, and 4 e 0 in the tall-and-thin regions. 

Now, writing a free energy in terms of strain fields is 
tricky. Indeed, most configurations of E(X,  y) are illegal! 
Unless 

inc ( E )  = V x (V x E ) ~  (2) 
is zero, the strain field describes a material with embedded 
line dislocations [lS]. Doing any calculations in terms of 
strain fields must either add a term for the energy of dis- 
locations, or must put in some kind of Lagrange multiplier 
to forbid E from developing an inc. Working in terms of &(x, 
y) would seem even worse. Since the components of E are 
not independent (2), most configurations of 4 = E,, - E,, 
will necessarily involve other kinds of strain. If we allow 4 
to vary freely, we must “integrate out” the other elastic 
degrees of freedom, leaving us with a free energy with long- 
range forces. 

There is another option, which is suggested by the large 
elastic anisotropy characteristic of martensites. Because the 
high temperature phase is cubic, it has three independent 
elastic constants (rather than two for an isotropic material). 
The elastic constant C which resists deformations into rec- 
tangular shapes is much smaller* than-the elastic constant 
which resists bulk compression (cXx t E,, # 0) and the one 
which resists diagonal strain (tXy # 0); we let these two 
elastic constants go to infinity, thus constraining the system 
to forbid any deformation except rotations, translations, 
and rectangular stretches (measured by 4). 

These constraints profoundly restrict the configurations. 
A straightforward computation [2] shows that the two 
dimensional configurations that are allowed are precisely 
those which can be written as a sum of two one-dimensional 
strain modulations [17] 

4 ( x ,  Y )  = 4+@ + Y )  + 4 - ( x  - Y) ,  (3) 

4’ describing a modulation along the (x, y) direction (lower 
left to upper right), and 4-  describing a modulation along 
the (x, -y) direction. (Equation (3) is derived by first 
showing that the displacement u(x, y) can be written as a 
sum of two one-dimensional displacement fields, and then 
finding the strains.) 

Now, it’s been known for a long time that large elastic 
anisotropies are associated with strain fields which extend 
long distances along the diagonals. We are encouraged for 
three reasons to think that the infinite anisotropy limit is a 
natural starting point for studying tweed. First, the form (3) 
describes the behavior of our simulation well. The displace- 
ment variation in Fig. 1, for example, is nearly purely of the 
4-  form. The variation of Fig. 2 is well described as a 
superposition (3). Second, it plausibly describes the experi- 
mental tweed morphology. The experimentalists agree with 
us that tweed is composed of {llO}(liO) shears, and 

- 
* Actually, the measured elastic constants in the tweed and martensitic 

regime will have contributions from rearrangements of the domains, as in 
the A15’s [16]. How much the tweed is due to the lowering of C and 
how much the lowering of C might be due to the response of the tweed 
morphology is a subject we plan to explore. 
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that it looks cross-hatched.* Third, it describes the modula- 
tion patterns seen in earlier and later simulations, with dif- 
ferent driving mechanisms for the modulations [18, 51. 
Thus, in the limit of infinite elastic anisotropy, cross-hatched 
patterns becomes the only allowed patterns. 

So far, we have explained how the tweed morphology is a 
natural modulation for materials with large elastic aniso- 
tropy. We now must address why these materials choose to 
modulate at all. Experimentally, in closely related systems, 
neutron scattering experiments in nearly pure materials 
have illuminated the important role of disorder [19]. More- 
over recent simulations have found tweed in a disordered 
alloy but not in an ordered one [20]. We consider here the 
disorder introduced by concentration variations. 

Because the shape memory alloys are alloys, static sta- 
tistical concentration variations provide an intrinsic source 
of randomness. First, the martensitic transition temperature 
varies drastically with concentration q in most of these 
systems: in Fe, -~~ Pd,, , the fcc -+ fct transition is at room 
temperature for qo = 0.29, and drops to OK for qo = 0.32. 
This will produce a free energy difference FA(+, y)) 
- F&(x, y)) (or more concisely, ( F A  - F&)) which varies 

with position. At high temperatures, this will always be 
negative, at  low temperatures always positive, but near the 
transition temperature at the average concentration, this dif- 
ference will vary in sign from place to place. Second, the 
local configurations of Fe and Pd atoms can introduce local 
distortions, favoring one or another of the martensitic 
variants [S, 4, 201. This will produce a free energy difference 
( F -  - F+)(x ,  y) which will depend on gradients of q [2]. 

The local elastic free energy can in general have three 
minima: two at &q50 for the two martensitic variants, and 
one at 4 = 0 for the austenite.? If we define i = x + y and 
j = x - y, then each 4: and each 4,: will represent a contri- 
bution to the local order parameter for all the sites along 
some diagonal. The order parameter at a certain site (x, y) 
will be given by the sum of 4: and 4,: for appropriate i and 
j .  In our constrained system (3), its possible to arrange to 
have the local order parameter modulate solely between the 
three states by letting 4’ and 4- each take on two possible 
values, -&/2 or +4,/2. If we then think of the 4; and 4; 
as spins that either point down or up, then we have a con- 
venient spin representation for conceptualizing the tweed 
problem. Either of the two antiparallel configurations pro- 
duces an undeformed, square, austenite region (tl or It give 
4 = 0), and the parallel configurations produce the two rec- 
tangular martensitic variants (tt gives + c$o,  11 gives - 40). 

The tweed model, in spin language, is precisely equivalent 
to an infinite range spin glass. The spins in the spin glass are 
analogous to the diagonals which connect the sites in the 
martensite. In the spin glass, each spin is coupled to every 
other spin by a particular bond with a random sign and 

* Actually, the experimentalists haven’t for sure decided that the tweed 
really is a superposition. Since TEM measures through a rather thick 
slab, there is no direct evidence that the observed cross-hatched patterns 
aren’t plain old twins pointing in different directions at different depths. 
In two dimensional systems, at least, we unambiguously predict modula- 
tions in both (11)  directions at once. 

t do will generally depend upon temperature, and at high enough tem- 
peratures there will be no martensitic minima. This just contributes to the 
effective temperature dependence of the bonds, described below. 
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strength. In the tweed, each diagonal is “coupled” to every 
other diagonal by a particular site, which prefers austenite 
(4 = 0, tJ. or I t )  or martensite (4  = +q50, Tt or 4.1) at 
random. In each case, the couplings represent the frozen-in 
disorder. 

Figure 3 illustrates the analogy between the two systems. 
Each letter (A, F;  A, M) represents a term in the energy: the 
spins, squares and rectangles show one of the possible meta- 
stable configurations of each of the systems. Both the spin 
glass and the tweed are frustrated: not all the connections 
can be made happy at the same time. In both cases, any 
closed loop with an odd number of A’s is frustrated: one of 
the bonds in the spin glass must be broken, and one of the 
sites in the martensite must locally be in the wrong phase. 

To complete the analogy, one must notice three more cor- 
respondences. First, just as the effective bond strength J i j  
between two diagonals is given by ( F A  - Fy) (q )  at the corre- 
sponding (x, y), there is a contribution to the effective “mag- 
netic field” H i j  on the two diagonals given by ( F -  - F + ) .  
Second, the free energy difference F A  - F y  is strongly tem- 
perature dependent. In the spin glass, the Hamiltonian 
really represents all the degrees of freedom : the parameters 
are the bare ones, and do not depend on temperature 
(although they might depend, for example, on pressure). In 
our problem, the martensitic transition is (probably) driven 
by vibrational entropy : the phase space of small oscillations 
is not represented by the degrees of freedom +(x, y) we’re 

‘/aJ 

........... ........... 

Tweed Spin Glass 

Fig. 3. Frustration. Our model of martensites is frustrated in precisely the 
same way as are spin glasses. 

Spin Glass. On the right, we have three spins which can either point up 
or down. They are connected by bonds which prefer parallel 
(Ferromagnetic) or antiparallel (Antiferromagnetic) alignment. In a spin 
glass, there are many such spins, and the bonds are chosen F or A at 
random. If we start at the lower left corner of the triangle, starting 
(arbitrarily) down, and move around clockwise, we can satisfy each bond in 
turn. However, for any loop with an odd number of antiferomagnetic 
bonds, one bond must be broken (in its high-energy state): here the ferro- 
magnetic bond connecting the bottom two spins is not satisfied. 

Tweed. On the left, we have four regions in the material, forming a 
diamond. Starting at the bottom, we have a region where the local alloy 
concentration makes the square, Austenite phase lower in energy. In the 
limit of infinite elastic anisotropy, the order parameter at the bottom site is 
the sum of two contributions, one for each diagonal. By choosing the con- 
tribution for the lower left diagonal +4,/2 (represented by a plus sign ?), 
and the contribution for the lower right diagonal -4,/2 (I), we satisfy the 
local free energy in the bottom site: 4 = 0, represented by the square box 
surrounding the A. Again, moving clockwise, we can satisfy the free energy 
in the left-hand site (which prefers Martensite) by choosing ++,/2 (f) for 
the upper left diagonal, leading to a net order parameter 4, and a short-fat 
rectangular deformation. We can continue this process through the top site, 
but when we reach the final, right-hand site, the order parameter is already 
determined to be 0 = +4,/2 - 4,/2 (71): the local free energy, which 
prefers M, is not satisfied 

Table I. Correspondence between spin glass and tweed 
parameters 

Spin glass i j Si sj J i ,  Hi, T 
Tweed x + y  x - y  4’ 4- F , - F ,  F - - F ,  < - J ) i j J L  

including in our free energy. Tracing over these small vibra- 
tions makes the bonds J, in our free energy temperature 
dependent: roughly speaking, -Ji,(T) = -J: + L T ,  where 
L is the vibrational latent heat per site. Third, one must 
notice that every lower-left-upper-right diagonal crosses 
every upper-left-lower-right diagonal. The interactions are 
of infinite range!* Table I shows the correspondences, up to 
things like factors of 2 and 4: . 

We can now write a spin-glass like Hamiltonian for the 
martensitic tweed system : 

(4) 

Every site i interacts with every sitej: it corresponds to an 
infinite range spin glass [21], on which we expect replica 
theory to give an exact solution [22]. Unlike the SK model, 
there are two classes of spins, each of which interacts only 
with the other class: it is a bipartite infinite-range spin glass 

Figure 4 shows the phase diagram we expect for the free 
energy equation (4), setting the random field term to zero. 
What do I mean by “expect”? While this particular model 
has never been completely solved, we can guess the answer 
from the partial solutions and from the behavior of the SK 
model. Korenblit and Shender [23] solved this model in the 
replica symmetric approximation. The phase diagram they 
found was exactly that of the SK model with varying frac- 
tions of ferromagnetic bonds, except that the bipartite 
model phase diagram was doubled by reflection through 
(J) = 0. The replica-symmetry breaking solution to the SK 
model [22] has a vertical phase boundary between the spin- 

~ 2 3 1 .  

Fig. 4 .  Phase Diagram. The phase diagram expected [23] for the infinite- 
range bipartite spin-glass model, eq. (4). A given sample will traverse a 
sloped path in this phase diagram as temperature is increased, because of 
the temperature dependence in the effective coupling. It will pass from the 
martensitic phase through the tweed regime into the austenite phase, as 
shown by the arrow. The two magnetized-spin-glass phases (FMSG and 
AMSG) are supposed to have glassy dynamics and metastability, even 
though they have long-range order. We ignore here the random field term 
Hij 

* This happens only for infinite elastic anisotropy, of course. 
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glass phase and a glassy phase with long-range order (called 
the magnetized spin-glass, or MSG phase). We expect, thus, 
to find vertical phase boundaries in the bipartite model too; 
hence Fig. 4. The problem with the random field has been 
studied too [24]. 

What can we see from this phase diagram? Tweed is a 
spin-glass phase intermediate between the two ordered 
phases. The antiferromagnetic phase on the right has the 
two sublattices pointing in opposite directions : apart from 
thermal fluctuations, the entire region has 4 = 4’ + 4- = 
0. This is the high-temperature square austenite phase for 
our model. The ferromagnetic phase on the left has the two 
sublattices pointing in the same direction : the region has 
transformed entirely into the low-temperature martensitic 
phase. The paramagnetic phase on the top also has square 
symmetry on average, but is a thermal mixture of square 
regions together with both rectangular variants. Conceiv- 
ably, this could represent the austenite phase too. (Could 
bcc not be the familiar lattice plus small oscillations, but 
really sometimes be an equal mixture of various other 
variants? Recent experiments on zirconium suggest that this 
actually might be the case! [19]) Finally, the spin-glass 
phase corresponds to tweed. It is a frustrated attempt to 
accommodate the concentration fluctuations : a patchy, 
glassy mixture of square and rectangular regions. Because 
our effective bonds are temperature dependent, heating the 
physical martensite moves us along the dotted line in the 
figure : both the average concentration of antiferro-magnetic 
bonds and the temperature of the “spin” system increases. 

Young people giving their first talks often fear that 
someone will ask the key questions which they know will 
expose the gaping holes in their theories. I would like to 
conclude with my attempt to answer three such questions. 

Q.: I thought the martensitic transition was first order. 
Also, does your theory work in three dimensions? 

A. : Indeed, the king spin-glass transition is second order. 
I guess in two dimensions (i.e., extremely thin high-T, 
samples) we do predict that the first-order martensitic tran- 
sition will be replaced by two second-order transitions in 
the presence of sufficient disorder. (Imry and Wortis [25] 
have discussed the effects of random-field disorder, which 
can destroy the transition entirely.) In three dimensions, the 
system is clearly not an Ising spin glass. First, there are at 
least three martensitic variants: the order parameter 4 
becomes a two component object with three local minima 
stretching in the three orthogonal directions. Second, in the 
limit of infinite elastic anisotropy, there are six scalar one- 
dimensional functions corresponding to 4 *. Even changing 
from an Ising to a Potts glass [26] makes for a first-order 
spin-glass transition (albeit with no latent heat). What kind 
of transitions we will find once we identify the right spin 
model for 3D martensites is completely open at this point. 

Before mindlessly generalizing our work from two to 
three dimensions, we want to get a better physical picture of 
what is important. We’re exploring effective-medium simula- 
tions with Karsten Jacobsen and TEM experiments with 
John Silcox in order to get a handle on the impurity coup- 
lings, and on the important long-range correlations. If I 
have to guess, I’d say that there is a better chance of a real 
spin-glass phase in 3D. In 2D, tweed is a true phase only in 
mean-field (infinite elastic anisotropy) : in 3D, a sufficiently 
frustrated system ought to have a true glassy phase. 
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Q.: W h y  haven’t you taken parameters from the 2 0  high-T, 
materials, instead of the uncontrolled extrapolation from 
FePd? Also, do you have any predictions for strontium-doped 
LaCuO ? (Mac Beasley actually asked the second question, 
and pointed out some experimental data that we should 
pursue.) 

A.: We were, oddly enough, more interested in the shape- 
memory alloys, and it took us a while to realize how hard 
3D was going to be. High T, is next on the agenda. 

Q.:  Do you have any experimental predictions? 
A.: We don’t have definite predictions for the statics in 

3D. We’d really like to predict a diverging nonlinear elastic 
susceptibility. As one crosses the phase diagram in Fig. 4 
from the paramagnetic phase to the tweed spin-glass phase, 
the nonlinear susceptibility diverges. That is, if we put an 
external force F which stretches the sample coupling to 4, 
and measure the response 4 = xlF + x 3  F3, then x 3  will 
diverge at the phase boundary. There are three problems, 
though. First, the susceptibilities which diverge along the 
side phase boundaries of the tweed apparently aren’t elastic 
constants [22]. Unless the high-temperature phase is a melt 
of the various low-temperature variants (as discussed 
above), so the austenite corresponds to a paramagnet, we 
don’t get an effect. Second, in two dimensions the mean-field 
transition will be rounded whenever the elastic anisotropy 
isn’t infinite. Third, the predictions in three dimensions are 
likely to be quite different. If I were an experimentalist, I’d 
certainly try looking for phase boundaries, using elastic 
probes. We can’t say yet, though, exactly what to look for. 

The dynamical predictions are much more straightfor- 
ward. All of the glassy systems have interesting, slow 
dynamics. Even if our spin-glass identification is wrong, and 
random-field effects dominate the problem, there should be 
memory, hysteresis, and logarithmic decays in response 
functions. While this may seem old hat, in metallurgy this 
ought to be more exciting. I’m not saying, of course, that 
slow elastic relaxation in dirty metalurgical systems is news: 
what ought to be exciting is that there may be interesting, 
quantitative science to be done with the dirt. 
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