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In order to understand a variety of physical phenomena (such as signaling net-

works in molecular biology or crystal structures in condensed matter physics),

scientists often develop models with many unknown or tunable parameters. Such

multi-parameter models and systems are often sloppy. For practical purposes their

behavior depends only on a few stiffly constrained combinations of parameters;

other directions in parameter space can change by orders of magnitude without

significantly changing the behavior. We develop the theoretical basis of sloppiness

and argue that there is in fact a new universality class to which these models

belong.

We begin by defining sloppiness (an exponentially large range of sensitivity

to different combinations of parameters, with a roughly uniform distribution of

sensitivities between the extremes). We then document sloppiness in a variety of

models from different scientific fields. Several mathematically well-defined classes

of models, some sloppy and some not sloppy, are then analyzed to understand the

origins of sloppiness. Drawing connections to the field of random matrix theory,

we derive an ensemble of sloppy models. The heart of sloppiness in this ensemble

is shown to be the Vandermonde matrix. By demonstrating the novel statistical

properties of this ensemble we argue that it constitutes a new universality class.

Inspired by the properties of this Vandermonde ensemble we develop new tools for



analyzing complex, real-world models with many parameters.

In the final section we focus on a particular complex, real-world model with

many parameters. We formulate and analyze a mathematical description of the

quorum sensing network in the bacterium Agrobacterium tumefaciens. This net-

work allows Agrobacterium to regulate gene expression in accordance with its pop-

ulation density. The mathematical description includes twenty four unknown pa-

rameters quantifying the biochemical interactions. While not complete, the model

provides insight into the quorum sensing process and we suggest ways of coupling

the model with experiments in the future.
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Chapter 1

Origins of Sloppiness

1.1 Introduction

In a variety of contexts, physicists and other scientists study complex, nonlinear

models with many unknown or tunable parameters to explain experimental data

and predict future experiments. In Figure 1.1 we see (a) a model of a biological

signaling network, (b) its fit to previously collected data (for example the time

course of the active state of the protein Erk in response to different growth factors),

and (c) its prediction of a future experiment (the Erk activity levels while one of the

proteins in the network, PI3K, is inhibited). In Figure 1.2 we see an even simpler

system—fitting the exponents in a sum of exponentials to data from radioactive

decay in order to determine the elements in the sample and to predict the future

decay time course. In both cases we have a model with free parameters and we

have a set of data. We quantify the difference between the data and the model for

a given set of parameters by a suitable cost function (e.g. χ2 or log-likelihood),

and then we study the dependence of the model behavior on the parameter values

by studying how the cost rises away from the best fit.
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Figure 1.1: Fitting and predicting with multiparameter models of biological net-

works. A model (a) of the protein interactions defining growth factor signaling

in PC12 cells. The mathematical description of this model (coupled first-order

nonlinear ordinary differential equations) contains 48 free parameters (rate and

Michaelis-Menten constants) that can be fit to previously collected data, for ex-

ample (b), the time course of Erk activity in response to two different growth

factors. The model can then be used to predict future experiments, such as (c)

Erk activity while the activity of the protein PI3K (topmost grey oval in (a)) is

inhibited. In (b) and (c) the horizontal axes are time in minutes. Figures are from

reference [4].
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(a) (b)

Figure 1.2: Fitting and predicting with multiparameter models of radioactive

decay. The model describing this decay is a sum of three exponentials where both

the three decay rates and the three intial amounts are unknown parameters. In (a)

we see a set of data points with error bars, the ‘true’ exponential describing the

net decay as a dashed black line, and one of a number of good fits from the model

as a solid red line. In (b) we use the model to predict the radiation at late times.

The datapoints visible in the upper left, the dashed black line, and the solid red

line are the same as in (a). The best fit is not tightly constrained and the solid

green line is the prediction from an ensemble of parameter sets, each weighted by

their fit to the data. The dashed green lines are the standard deviation of this

prediction over the ensemble of parameter sets.
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We explain why such systems so often are sloppy; for practical purposes their

behavior depends only on a few stiffly constrained combinations of the parameters;

other directions in parameter space can change by orders of magnitude without

significantly changing the behavior. We contrast examples of sloppy models (from

systems biology, variational quantum Monte Carlo, and common data fitting) with

systems which are not sloppy (multidimensional linear regression, random matrix

ensembles). We observe that the eigenvalue spectra for the sensitivity of sloppy

models have a striking, characteristic form, with a density of logarithms of eigen-

values which is roughly constant over a large range. We suggest that the common

features of sloppy models indicate that they may belong to a common universality

class. In particular, we motivate focusing on a Vandermonde ensemble of multi-

parameter nonlinear models and show in one limit that they exhibit the universal

features of sloppy models.

Given a suitable cost function C(p) measuring the change in system behavior

as the parameters p vary from their original values p(0) (e.g., a sum of squared

residuals), we are interested in the shape of the cost function landscape. Figure 1.3

contrasts a stiff and sloppy direction for the dependence of the radioactivity of a

mixture of radionuclides on their decay lifetimes. One must change parameters

along the sloppy direction over a thousand times more than along the stiff direction

in order to change the behavior by the same amount.

The stiff and sloppy directions can be quantified as eigenvalues and eigenvectors

of the Hessian of the cost:

Hij =
∂2C

∂pi∂pj

∣

∣

∣

∣

p(0)

. (1.1)

The Hessian tells us the curvature of the cost function in the neighborhood of the

point p(0), approximating the fully nonlinear (bumpy, windy) surface by an ellipti-

4



cal bowl. The eigenvectors (linear combinations of the original, bare, parameters)

of the Hessian are the principle axes of this ellipse and the square root of the cor-

responding eigenvalue is the curvature is along that eigendirection. The horizontal

and vertical directions in Figure 1.3 are eigenvectors of that particular model. Fig-

ure 1.4 shows the eigenvalues of the cost Hessian for many different systems; those

in (a), (b), (c), (d) and (h) are all sloppy. Since the sensitivity of model behav-

ior to changes along an eigenvector is given by the square root of the eigenvalue,

the range in eigenvalues of roughly one million for the sloppy models means their

cost-contours have aspect ratios of one thousand, just as in Figure 1.3. Although

anharmonic effects rapidly become important along sloppy directions, as can be

seen in Figure 1.3, a principal component analysis of a Monte-Carlo sampling

of low-cost states has a similar spectrum of eigenvalues [5]; the sloppy eigendirec-

tions become curved sloppy manifolds in parameter space. Similar sloppy behavior

has been demonstrated in fourteen systems biology models taken from the liter-

ature [4, 16], and in three multiparameter interatomic potentials fit to electronic

structure data [30]. In these disparate models we see a common, peculiar behavior:

the nth stiffest eigendirection is more important than the (n+1)th by a roughly

constant factor, giving a total range of eigenvalues of typically over a million for

any model with more than eight parameters. We call systems exhibiting these

characteristic features sloppy models.

This sloppiness has a number of important implications. In estimating pre-

diction errors, sloppiness affects both the estimation of statistical errors due to

uncertainties in the experimental data [4, 16] and allows an estimation of system-

atic errors due to imperfections in the models (for example in interatomic poten-

tials [30] and density functional theory [23]). It makes extracting parameter values

5
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Figure 1.3: Cost contours for fitting exponentials. Here we show contours of con-

stant cost C(γ) for the radioactive activity of a mixture of twelve common radionu-

clides, as a function of relative changes in their decay constants γ = (γ1, . . . , γ12).

(The radionuclides chosen are those available from Perkin-Elmer [27] with half-

lives less than 100 days.) The plot shows a cross-section along the eigendirections

corresponding to the second-stiffest eigenvalue (vertical) and the sloppiest eigen-

value (horizontal). Note that the horizontal axis has been compressed by a factor

of one thousand; the aspect ratio is actually comparable to a one-inch human hair.

The sloppiness is not just an artifact of the harmonic approximation. Although

anharmonic effects rapidly become important along the sloppy eigendirections as

shown here, a principle-component analysis of a Monte-Carlo sampling of low-cost

states has a similar spectrum of eigenvalues [5]; the sloppy eigendirections become

curved sloppy manifolds in parameter space.
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Figure 1.4: Hessian eigenvalues of various multiparameter models. Eigenvalues

giving the stiffness/sloppiness of various models as parameters are varied. Each

spectrum has been shifted so that the largest eigenvalue is one. (a) Growth factor

signaling model (coupled nonlinear ODEs) for PC12 cells [4], as the 48 parameters

(rate and Michaels-Menten constants) are varied. (b) Variational wave-function

used in quantum Monte-Carlo, as the Jastrow parameters (for electron-electron

coincidence cusps) are varied, (c) Radioactivity time evolution for a mixture of

twelve common radionuclides as the half-lives γi are varied. The radionuclides are

those available from Perkin-Elmer [27] with half-lives less than 100 days. (Only the

first nine eigenvalues are shown.) (d) The same exponential decay model as in (c)

with 48 decay constants γi randomly spread over a range of e50. (e) One random

48×48 matrix in the Gaussian Orthogonal Ensemble (GOE) (not sloppy). (f) A

product of five random 48×48 matrices, illustrating the random product ensemble

(not sloppy, but ill conditioned). (g) A plane in 48 dimensions fit to 68 data

points, the same number and data points as for the biology model in column (a)

(Wishart statistics, not sloppy). (h) A polynomial fit to data, as the 48 monomial

coefficients are varied (the Hilbert matrix [17], sloppy).
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from fits to sloppy models ill-posed [4, 13]. Conversely, it is much more efficient

to improve the predictivity of a model by fitting parameters to system behavior

than by designing experiments that precisely determine the individual parameter

values [16]. Sloppy problems are also better approached with optimization algo-

rithms [28, 7] (like the Levenberg–Marquardt and Nelder–Mead methods) which

can adapt to widely diverging step sizes along different parameter combinations.

In this thesis we focus on explaining why sloppy behavior arises and where it

can be expected to manifest itself. We first explain in more detail the ‘real-life’

sloppy models; the biological network of Figure 1.4 (a) is detailed in Section 1.2

and the quantum mechanical wave function of Figure 1.4 (b) is described in Sec-

tion 1.3. In Section 1.4 we examine sloppiness in the problem of fitting sums of

exponentials, as in Figure 1.4 (c) and (d). We then turn to transforming between

sloppy and unsloppy parameterizations in Section 1.5, illustrating the process with

fitting polynomials as in Figure 1.4 (h). Section 1.6 expounds on Figure 1.4 (g)

by analyzing classical multiple linear regression models and their corresponding

Wishart statistics, demonstrating that they are not sloppy. In the following sec-

tion, 1.7, we also contrast our sloppy models with the ensembles of Random Matrix

Theory (Figure 1.4 (e) and (f)), finding that they do not describe sloppiness either.

In Section 1.8 we suggest that there is a universality class of sloppy models, and we

analyze a particular ensemble of models to give an analytic explanation for their

sloppy behavior. Lastly, Section 1.9 details the effects of coupling multiple models

from this ensemble and the connections to ‘real-life’ sloppy models.

8



1.2 Biological Networks

The growth factor signaling model in Figure 1.4 (a) is depicted in Figure 1.5 [4,

5, 16]. It describes the network of interactions by which PC12 cells (a rat adrenal

pheochromocytoma cell line) either differentiate or proliferate in response to growth

factor signals. The network begins with the extracellular concentration of two

growth factors, neuronal growth factor (NGF) and epidermal growth factor (EGF)

and ends with the activation (phosporylation) state of the Erk protein. In real

cells active Erk then translocates into the nucleus and controls gene expression

but this is not included in the model. The model consists of the concentration

of thirty two chemical species (i.e. peptides and proteins in various modified

forms or complexes) coupled by a system of twenty eight first order nonlinear or-

dinary differential equations describing the biochemical reactions that constitute

the network. These equations include forty eight unknown parameters (rate and

Michaelis-Menten constants) that were fit to sixty eight data points from fourteen

cell biology experiments (time series Western blots with either wild-type or single

transfections and various initial concentrations of growth factors).

The sloppiness of this model is not unique in the field of biological network

modeling. Characteristically sloppy sensitivity spectra have been identified in an

array of models ranging from the yeast cell cycle to circadian rhythms in Drosophila

to neurotransmitter signaling in humans [16].

1.3 Quantum Monte Carlo

As a variational description of the various eigenstates of the Hamiltonian, quantum

mechanical many-body wavefunctions are used to calculate the electronic structure

9
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Figure 1.5: Model of growth factor signaling in PC12 cells [4]. The blue box

is epidermal growth factor (EGF) and the red circle is neuronal growth factor

(NGF). The red octagons are GTPase Activating Proteins (GAPs) that inhibit

the signaling activity of the G-proteins Ras and Rap1. The purple boxes are

phosphatases that inhibit the signaling activity of the kinases Raf1 and B-Raf.
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of atoms and molecules. The wavefunctions are parameterized by two classes of

parameters—Configuration Interaction (CI) coefficients for expansions in determi-

nants of single particle orbitals and Jastrow parameters to describe the cusps that

occur at electron-electron coincidences [24]. The spectrum in Figure 1.4 (b) is the

sensitivity for the Jastrow parameters alone, the CI coefficients were held fixed in

the calculation [32].

Given a variational wave function, there are two types of optimization that

may be done. The more obvious type is energy minimization. The energy of the

true ground state of the system is a lower bound on the energy of any possible

wavefunction so we may obtain a good approximation of the ground state by

minimizing the energy of our trial wavefunction. The second type of variational

optimization, variance minimization, is both more subtle and more powerful. This

approach is based on the fact that for any true eigenstate of the Hamiltonian,

the variance of any observable that commutes with the Hamiltonian must be zero.

Since all variances must be strictly positive, any wave function that is not an

eigenstate must have a higher variance. Therefore one can obtain approximations

to eigenstates by adjusting parameters in a trial wavefunction to minimize such

a variance. This method is superior to standard energy minimization for several

reasons: (1) the convergence of the minimization calculations is considerably easier

to validate since variances are bounded below by zero while the (ground state) lower

bound on energy calculations is either unknown a priori or nonexistent (relativistic

Hamiltonians are unbounded below), (2) since the variance is a sum-of-squares

function, sophisticated optimization algorithms (e.g. Levenberg-Marquardt) can

be used to exploit this structure efficiently, (3) the zero-variance principle holds for

any eigenstate, not simply the ground state, so approximations to any excited state

11



can be obtained with this approach. The minimization that lead to Figure 1.4 (b)

was just such a variance minimization [32].

1.4 Exponentials

Fitting decay constants to data that is a sum of exponentials is a famously ill-

posed problem [20, 33]. Consider a mixture of equal amounts of N radioactive

elements, whose decay signal is thus the sum of N exponentials with decay rates

γ
(0) = (γ

(0)
1 , . . . , γ

(0)
N ):

y(t, γ(0)) =
N
∑

i=1

exp(−γ
(0)
i t). (1.2)

Unless the individual lifetimes are well separated, the net radiation cannot be

used to measure the lifetimes reliably. The difficulty is that the signal is the sum of

many functions with similar shapes; one can generate almost identical signals with

wildly different values for the parameters. We define a cost function by integrating

the square of the difference between y(t, γ) and y(t, γ(0)) over d log t = dt/t:

r(t, γ) =
∑

i

exp(−γit) −
∑

i

exp(−γ0
i t) (1.3)

C(t; γ) =

∫ ∞

o

r2(t, γ)
dt

t
. (1.4)

Spacing the ‘data points’ equally in logarithmic time makes analyzing large ranges

of decay constants γ convenient. If the data were spaced evenly in regular time, the

slow decay rates become much more significant in describing the data for the trivial

reason that they are given too much time as t → ∞ to dominate the behavior.

Because the decay constants are positive and can have a large range of sizes,

we use their logarithms as our parameters (pi = log γi), giving model sensitivity
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to relative changes in the decay rates. The resulting Hessian is

Hij =
∂2C(γ)

∂ log γi∂ log γj

(1.5)

= 2

∫ ∞

0

[

∂r(t, γ)

∂ log γi

∂r(t, γ)

∂ log γj
+ r(t, γ)

∂2r(t, γ)

∂ log γi∂ log γj

]

dt

t
. (1.6)

At the correct parameter values, γ = γ
0, each residual is zero and the second term

in the Hessian drops out. We thus have

Hij = 2γiγj

∫ ∞

0

t exp(−(γi + γj)t)dt. (1.7)

Integrating by parts we obtain

Hij = 2
γiγj

(γi + γj)2
. (1.8)

For the twelve radionuclides described in the caption to Figure 1.4 (c) and listed in

Table 1.1, the eigenvalues of the Hessian are each separated by nearly one decade;

the sloppiest mode has an eigenvalue a factor of 1010 smaller (less important) than

the stiffest.

The sloppiness in sums of exponentials is due to the compensation that can

occur between decay rates that are within a decade or so of one another, just as

the sloppiness in more complex models is presumably due to the compensation

of subsets of parameters with similar effects. The range of eigenvalues for the

twelve radioactive decay elements is far larger than that for the ‘real-life’ systems

biology (Figure 1.4 (a)) and variational wavefunction models (Figure 1.4 (b)), and

the eigenvalue spacings are much more rigid (a phenomenon called ‘level repul-

sion’ that we analyze below). We shall understand both of these effects in detail

using the conclusions below; the fitting exponentials problem turns out to be a

subset of a large Vandermonde ensemble for which the conclusions apply. There

we shall see that the large range and rigidly equal spacings are a reflection of the

13



Table 1.1: Perkin-Elmer radionuclide decay rates. Only elements with half-lives

under one hundred days were included in analysis [27].

Element Half-life (days)

Chromium - 51 27.7

Indium - 111 2.83

Iodine - 125 60.14

Iodine - 131 8.04

Iron - 59 44.6

Lutetium - 177 6.71

Phosphorous - 32 14.29

Phosphorous - 33 25.4

Rubidium - 86 18.66

Scandium - 46 83.83

Sulfur - 35 87.4

Yttrium - 90 2.67
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relatively narrow range of lifetimes in the twelve elements, which vary over a range

of roughly largest/smallest = 33 (pi = log γi in a range 2ε ≈ 3.5). If we pick

48 lifetimes whose logarithms are instead uniformly distributed over a range of

2ε = 50 (largest/smallest ≈ 1021), the density of levels and the variations in spac-

ings between neighboring levels in the new spectrum (Figure 1.4 (d)) is similar to

that of the real-life models in (a) and (b). With this larger range of decay rates,

the individual parameters cannot all compensate for one another; the very large

decay rates can only exchange with one another and similarly for the very small

rates.

Another way to explore the effects of coupling distinct subsets of parameters

in this model is to allow the initial concentrations, Ai, to be unknown parameters.

The Hessian then has a block structure corresponding to derivatives with respect

to these two different classes of parameters.

Hij =







∂2C
∂ log Ai∂ log Aj

∂2C
∂ log γi∂ log Aj

∂2C
∂ log Ai∂ log γj

∂2C
∂ log γi∂ log γj






(1.9)

Calculations similar to those above show that the mixed derivative is given by

∂2C

∂ log Ai∂ log γj
=

−2AiAjγj

γi + γj
. (1.10)

The value of the other derivative, ∂2C/∂ log Ai∂ log Aj is slightly trickier because

the integral
∫∞

o
exp(−(γi + γj)t)d log t does not converge. Figure 1.6 illustrates

the problem—any change in parameters which alters the total initial decay rate

(the sum of the initial amounts) has an integral that diverges because there is an

infinite amount of logarithmic time before the first decay occurs. In order to avoid

this problem we simply remove a degree of freedom from our model by declaring

the sum of the initial amounts, Atotal, to be constant. In this formulation the
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Figure 1.6: A schematic of the discrete nature of radioactive decay. Prior to the

first decay (at time t ≈ 1/γmax), the net radiation has a constant level given by

the sum of the initial amounts. Since logarithmic time extends to −∞, any change

in parameters which alters the sum
∑

i Ai has an infinite cost.

first N − 1 initial amounts are free parameters but the final initial amount is not,

AN ≡ Atotal −
∑N−1

i=1 Ai. The model is then

y(t, γ,A) =
N−1
∑

i=1

Ai exp(−γit) + (Atotal −
N−1
∑

i=1

Ai) exp(−γN t). (1.11)

The Hessian with respect to initial amounts is then

∂2C

∂ log Ai∂ log Aj
= AiAj

∫ ∞

0

(exp(−γit) − exp(−γN t))(exp(−γjt) − exp(−γN t))
dt

t

(1.12)

= AiAj log

(

(γi + γN)(γj + γN)

2γN(γi + γj)

)

. (1.13)

In this new model there are clearly two distinct classes of parameters—the

decay rates and the initial amounts. Just as the decay rates can compensate for

one another, so too can the initial amounts. Since the two parameter classes affect

model behavior in substantially different ways (initial amounts changing the overall

level and decay rates changing the characteristic time of the radiation), they can

16



not compensate for each other. This decomposition of the problem into subsystems

which are redundant internally, but not mutually, is significant and we will explore

its effects later, when we analyze the statistics of level spacings in the context of

the Vandermonde ensemble.

1.5 Polynomials

What makes a model sloppy? We can gain insight by considering the common task

of fitting polynomials to data. Whatever the source of the data, if it consists of pairs

of points (e.g. one dependent and one independent variable) we can describe the

relationship between the variables by a polynomial of some degree. The motivation

may be a Taylor series expansion, where the coefficients of the monomials give us

the derivatives of some function in a local vicinity, or simply convenience since

polynomials are a familiar family of functions we can easily picture.

The first step in fitting this data would be to rescale the dependent variables

so that they lie between 0 and 1. Let us call the rescaled dependent variable x.

It is a trivial matter to rescale our fit polynomial back to the original range of

the data and this formality facilitates analytic results. As elsewhere in this thesis,

we define a sum of squared residuals cost function which we wish to minimize,

C(p) =
∑

i(f(xi;p) − yi)
2.

We are now faced with a choice that will become important: how do we param-

eterize our polynomial of degree K, f(x,p)? Perhaps the most obvious choice is as

a sum of monomials. This is certainly a justifiable set of basis functions — they are

familiar, easy to interpret, and may be dictated by the model (e.g. if calculating

a Taylor expansion, it is precisely the coefficients of the monomials that we are
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Figure 1.7: Alternative bases for fitting polynomials. (a) monomials of degree

two, three and four, (b) shifted Legendre polynomials of degree two (L2(x) =

√
5(6x2 − 6x + 1)), three (L3(x) =

√
7(20x3 − 30x2 + 12x− 1)), and four (L4(x) =

√
9(70x4 − 140x3 + 90x2 − 20x + 1)). For display purposes the polynomials have

been rescaled to have similar maxima and minima.

derive). An alternative choice is to use the coefficients of f(x) expanded as a sum

of the shifted Legendre polynomials, Lk(x), k ∈ 0 . . .K. These polynomials are ex-

plicitly defined to be orthonormal on the range [0,1] (
∫ 1

0
Li(x)Lj(x)dx = δij) and

there is precisely one polynomial of each degree. In Figure 1.7 we depict several

polynomials of each type for comparison.

If we choose to use the monomials as our basis, then our function becomes

f(x;p) =
∑K

k=0 pkx
k. As in the rest of this thesis we are predominantly concerned

with the behavior of the true model with the true parameters, so let p(0) be the

true set of monomial coefficients. For this analysis, let us take the limit where the

number of data points goes to infinity and the sum becomes an integral. The cost

function then is

C(p) =

∫ 1

0

(

K
∑

k=0

pkx
k −

K
∑

k=0

p
(0)
k xk)2dx. (1.14)
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The Hessian matrix is

Hij =
∂2C(p)

∂pi∂pj
= 2

∫ 1

0

xi+jdx =
2

i + j + 1
. (1.15)

Aside from the factor of 2, this is the famous Hilbert matrix, AK [17]. The Hilbert

matrix is often cited as a prototypically ill-conditioned matrix and the eigenvalues

for the 48× 48 Hilbert matrix are shown in Figure 1.4 (h). Indeed, the coefficients

of the monomials are known to be poorly determined in such polynomial fits [28].

If we had instead chosen to expand in the shifted Legendre polynomial basis,

the Hessian matrix would be

Hij = 2

∫ 1

0

Li(x)Lj(x)dx = 2δij, (1.16)

twice the Identity matrix. By changing our parameterization from monomial co-

efficients to coefficients in the appropriate orthonormal basis, our sloppiness is

completely cured. The sloppiness is due to the fact that the monomial coefficients

(natural from many perspectives) are a perverse set of coordinates from the point

of view of the behavior of the resulting polynomial. We can quantify this by not-

ing that the transformation SK from the monomial basis to the orthonormal basis

(the coefficients of the shifted Legendre polynomials) has a tiny determinant, and

therefore the volume enclosed by the monomial basis vectors shrivels and becomes

greatly distorted under the transformation. This determinant can be found by

noting that

Hm = T>
m→lH

lTm→l (1.17)

where Hm = 2AK is the Hessian in the monomial basis, H l = 2I is the Hessian in

the basis of shifted Legendre polynomials, and Tm→l = SK is the transformation

which maps from the monomial basis into the shifted Legendre polynomial basis.
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Thus AK = S>
KSK and

det SK =
√

det AK =

∏K−1
i=1 (i!)2

√

∏2K−1
j=1 (j!)

(1.18)

where the last result uses the known determinant of the Hilbert matrix [17]. Since

the kth monomial and shifted Legendre polynomial are each of degree k, SK must

be upper triangular and we see that it is in fact the Cholesky decomposition of

AK. Physically, the monomials all have roughly the same shape (starting flat

near zero, and rising sharply at the end near one), and can be exchanged for one

another, while the orthogonal polynomials each have quite distinct shapes and

their contributions to the total model are thus much more identifiable.

In nonlinear sloppy models the sloppiness is more difficult to remove: (a) the

transformation to unsloppy parameters will be nonlinear away from the optimum,

often not even single-valued, (b) we may not have the insight or the ability to

change parameterizations to those natural for fitting purposes, and (c) often the

natural parameterization is determined by the science (as in biochemical rate con-

stants, arbitrary linear combinations of which are not biologically motivated).

While this model is pedagogically useful, the fact that every instance of fitting

monomials has (twice) the Hilbert matrix as the Hessian and every instance of

fitting shifted Legendre polynomials has (twice) the Identity matrix as the Hessian

is a serious deficiency in helping us understand the universality of sloppiness be-

cause we can get no statistics. We can not generalize from the specific properties

of the Hilbert or Identity matrices but if we had an ensemble of sloppy models

we could investigate properties such as the relationship between mean level spac-

ings and fluctuations, or the typical performance of a particular algorithm. For

these reasons we will now explore ensembles of models where we can study a whole
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distribution of behavior with respect to sensitivities.

1.6 Wishart Statistics

While a large number of models are sloppy, not all multiparameter models share

this behavior. For example, suppose we take the elementary multiple linear regres-

sion model for a single measurement y that depends on N independent variables

ai weighted by parameters pi:

ylin(a,p) =

N
∑

i=1

piai = p · a. (1.19)

If we have K data points y(k) for variables a(k), our cost is thus

Clin(p) =
K
∑

k=1

(p · a(k) − y(k))2. (1.20)

Linear correlation models like this are in essence fitting a plane to a cloud of K

points in an N -dimensional space. The Hessian is

Hij = 2

K
∑

k=1

a
(k)
i a

(k)
j (1.21)

which is, up to normalization by the number of data points and subtracting off

mean values (for this model the means are 0 because the cloud is centered at the

origin), the sample covariance matrix of the data, H = 2A>A where A is the

K × N matrix of data points. A vital component of this model is that the N

parameters are truly uncorrelated. The formalism can be generalized to include

correlations between parameters but the standard analyses assume that the true

covariance matrix is the Identity matrix. This class of matrices is known as the

Wishart ensemble in the statistics community [36] and the Laguerre ensemble in

the random matrix theory community [3]. For fixed c = N/K, the Wishart density
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Figure 1.8: The Marčenko-Pastur distribution. The distribution is plotted for

three values of c, the ratio of dimensions (parameters) to data points. These are

the probability densities for the eigenvalues of Wishart matrices with the Identity

matrix as the true covariance matrix. The value of c = 48/68 is chosen to mimic the

number of parameters and data points for the PC12 model described in Figure 1.4

(a). The ratio b+/b−, the total range of eigenvalues, is 133, 6.9, and 2.5 for c =

48/68, 1/5, and 1/20 respectively.

of eigenvalues in the limit N → ∞ is bounded between b± = (1±√
c)2 and is known

as the Marčenko-Pastur distribution [21]:

ρ(λ) = max(0, 1 − 1

c
) δ(λ) +

√

(λ − b−)(b+ − λ)

2πλc
I[b
−

,b+] (1.22)

where I is the indicator function (zero outside the specified range and one within).

For N > K the linear correlation model has N − K strictly zero singular values

for the trivial reason that the system is underdetermined.

An example of the eigenvalues of a Wishart matrix is shown in Figure 1.4 (h)

for the same numbers of parameters and data points as are in the PC12 model

of column (a). The Marčenko-Pastur distribution for three values of c is shown
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Figure 1.9: Total eigenvalue range for Marčenko-Pastur distribution. The overall

range of eigenvalues, b+/b−, as a function of 1/c = K/N , the amount of data

relative to the number of parameters. When the number of data points is very

close to the number of parameters, the Wishart ensemble is ill-conditioned but it

is not truly sloppy because the range of eigenvalues is very sensitive to the amount

of data.

in Figure 1.8, where it is clear that the distribution of eigenvalues becomes much

tighter as the ratio of data points to parameters increases. Figure 1.9 depicts

explicitly how the overall range of eigenvalues scales with the ratio of data points

to parameters—the Wishart distribution is ill-conditioned only when the number of

data points approaches the number of parameters. The overall range of eigenvalues

in our sloppy models remains large even as data become available for all species

at all times [5]; while the entire spectrum shifts upward with increasing amounts

of data (both eigenparameters and bare parameters are more tightly constrained

than they were before), the spectrum never flattens out (the asymmetry between

stiff and sloppy directions in parameter space never disappears).

The Wishart family of distributions has two parameters - c, the ratio of data
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points to dimensions, and V , the ‘true’ covariance matrix for the system. Tra-

ditional analyses of the Wishart matrices, such as that leading to the Marčenko-

Pastur distribution, assume that V = I, the Identity matrix. This is the reason

that as more data is collected and c decreases, the distribution of eigenvalues be-

comes sharply peaked around 1. Using the Identity matrix as the covariance matrix

is equivalent to assuming that the parameters are truly uncorrelated and equally

significant for the behavior of the model. When there are only a few more data

points than parameters, randomness will cause the cloud of points to be slightly

more extended in some directions than in others, and the covariance of the sampled

points will be somewhat ill-conditioned. This is reflected in the relatively broad

shape of the Marčenko-Pastur distribution for values of c near one. As more data

points are collected however, the fact that there is no inherent broken symmetry

in the system means that the cloud quickly resolves itself into a sphere, each direc-

tion in parameter space is equally well determined, and the eigenvalue distribution

tightens quickly about one. This has little relevance for sloppy systems however

because the parameters are neither uncorrelated nor equally significant for the

behavior of the model.

It should be noted that the Wishart ensemble may still be useful in studying

sloppiness. It would be instructive to carry out an analysis of the Wishart dis-

tribution with a sloppy true covariance matrix as a function of c. Anecdotally

we observe that not very much data is needed to obtain a reliable picture of the

eigenvalue spectrum, that especially the stiffest eigenvectors and eigenvalues be-

come very well determined with modest amounts of data. This is consistent with

the classic Wishart result shown in Figure 1.9 that the spectrum does not change

significantly after a decent amount of data is available.
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1.7 Random Matrix Theory

We were inspired to look for universality among sloppy models by the successes

of random matrix theory (RMT), where similarities in eigenvalue plots like those

in Figure 1.4 motivate the mathematical analysis of a well-defined ensemble of

random matrices describing systems in disparate fields [22, 31].

The only immediately obvious properties of sloppy Hessians are that they are

symmetric and that they have real elements. If this were all that was needed to

define the ensemble of sloppy models, the sloppy spectra would mirror that of the

Gaussian Orthogonal Ensemble (GOE) [22]. Figure 1.4 (e) shows the eigenvalues

of a 48×48 member of the GOE; the eigenvalues are confined to a total range of two

decades and are clearly not sloppy. The other two standard ensembles of RMT,

the Gaussian Unitary Ensemble (GUE) and the Gaussian Symplectic Ensemble

(GSE), also fail to explain the hallmark of sloppiness: exponentially large ranges

of eigenvalues. Products of random matrices [3] (such as those describing electron

transport through disordered wires) do have universality classes with singular val-

ues that are distributed roughly evenly over many decades (with more decades for

longer wires) as shown in Figure 1.4 (f). While this quality is shared with sloppy

models, we shall see later that definitive statistics of level spacings for the products

of random matrices ensemble are not seen in sloppy models.

One of the most exciting results of RMT is the phenomenon of level repulsion:

neighboring eigenvalues ‘repel’ one another such that the probability of a given

spacing between levels vanishes as the spacing goes to zero. For the GOE, GUE,

and GSE, this probability goes to zero as a linear, quadratic and quartic function

of the spacing, respectively [31]. For the products of GOE matrices, a related

result is that the variance of the spacing distribution is proportional to the mean
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spacing [3]. As seen in Figure 1.10, level repulsion in sloppy models is qualitatively

different from each of these predictions.

When the true parameters are widely spaced there exists no level repulsion; as

these parameters become more and more similar the probability of small spacings

between neighboring eigenvalues vanishes completely. The sharply peaked distri-

bution for ε = 0.3 is reminiscent of the rigid spectrum of Figure 1.4 (c) while the

nearly Poisson statistics of the ε = 30 case reflect the random spacings visible in

Figure 1.4 (d). Indeed, this complete lack of level repulsion is comparable to what

one would find with a superposition of several uncoupled sloppy models each with

fewer exponentials drawn from a smaller original distribution, as if well-separated

decay rates belonged to independent experiments. Once we derive a bound for

the eigenvalues we will see that the sloppy model ensemble actually can have in-

definitely strong level repulsion: the distribution of spacings between neighboring

eigenvalues becomes a delta function as the average spacing grows and the system

becomes sloppier.

We now know that clearly sloppiness is not a phenomenon described the classic

ensembles of RMT. The approach of searching for an ensemble of matrices which

have the correct statistical properties of sloppy systems is still valid, we simply

need to discover for ourselves what defines this ensemble.

1.8 Vandermonde Ensemble

To form strong conclusions about sloppy models we must establish criteria sufficient

to exclude the large variety of multiparameter systems that will not be sloppy.

First, we specialize to models where the cost is a sum of squared residuals C(p) =
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Figure 1.10: First eigenvalue spacing for fitting exponentials. The relative spacing

between the stiffest and second-stiffest eigenvalues (log(λ1/λ2)) for three versions

of the fitting exponentials model, normalized to have both an integral and a mean

of one. Each model is a sum of ten exponentials with all initial amounts fixed at

one and ‘data’ distributed evenly in logarithmic time. In each instance the ‘true’

decay rates were generated from a log uniform distribution centered around 0 with

width 2ε (ln(γ) = U(−ε, ε)). Ensembles of size 10,000 were generated with ε =

30., 3., and 0.3 for the widest, middle and narrowest distributions, respectively.

Note that for the narrowest distribution the level repulsion has become so strong

that there is virtually no probability of a level spacing less than 75% of the mean.

Conversely, the distribution for ε = 30 exhibits no significant level repulsion and

in fact is almost Poisson.
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∑

m r2
m(p), where the sum may be continuous (e.g., an integral over time) and

rm(p) = ym(p) − dm is the deviation of theory y(p) from the experimental datum

dm. All of the empirical evidence we have for sloppiness so far comes from cost

functions of this type. Many optimization problems that do not share this structure

still maximize/minimize a scalar which reflects the conjoining of many competing,

necessary factors and we would expect such problems to be sloppy as well. The

sum-of-squares requirement also translates into a very concise structure for the

Hessian which is precisely the object we need to study.

Second, to avoid including systems where each parameter is the subject of a

separate experiment isolating that component, we make the (strong) assumption

that all of the residuals rm(p) depend on the parameters p in a symmetric fashion

(i.e., permuting p leaves rm unchanged). Thus the residuals can be written in

terms of symmetric polynomials of the parameters. The Newton-Girard formulas

then provide a transformation to recast the residuals into the basis of power sum

polynomials of the parameters, rm(µ̃1, µ̃2, . . . ), µ̃k =
∑N

i=1 pk
i , which can also be

viewed as the moments of the parameter distribution. Permutation symmetry is

obeyed by our fitting exponentials problem but is violated by polynomial fits and

the real world systems. We have seen, however, that the different polynomials

have almost equivalent shapes in fitting the data and that this similarity is likely

the source of sloppiness. In the biological and variational wave function examples,

many of the basis functions are also quite similar in functional form.

Third, we found in fitting exponentials that the overall range of the bare pa-

rameters played an important role in sloppiness, smaller ranges lead to sloppier

systems. To have control over this aspect of the model we will assume that the

parameters are all confined to a small range pi ∈ [p̄±ε]. Thus we define εi = pi− p̄.
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If we now consider µ̃k =
∑N

i=1(p̄ + εi)
k we see that we can expand each term of

the sum as (p̄ + εi)
k =

∑k
l=0

(

k
l

)

p̄k−lεl
i and factor out the contribution from p̄ to

the residuals. The kth parameter power sum can then be rewritten in terms of the

k + 1 ε power sums of equal or lesser degree

µ̃k =

k
∑

l=0

(

k

l

)

p̄k−lµl (1.23)

where µl =
∑N

i=1 εl
i and we are left with the residuals as functions of strictly the

moments of the distribution of ε.

Conclusion 1 For a cost function which is a sum of squared residuals C(p) =

∑

m r2
m(p), if each residual rm(p) is a symmetric function of the parameters p1, ..., pN

and if the parameters are confined to a range p
(0)
i ∈ [p̄±ε], then the Hessian matrix

Hij = ∂2C/∂pi∂pj|p(0) can be decomposed into

H = V >A>AV (1.24)

where the elements of A are bounded as ε → 0 and V is the Vandermonde matrix,

Vkj = εk−1
j .

In general the Hessian is

Hij =
∑

m

(

∂rm

∂pi

∂rm

∂pj
+ rm

∂2rm

∂pi∂pj

)

(1.25)

but for the correct model at the true parameters the cost is zero, so rm = 0 ∀m

and H = J>J with the Jacobian

Jmj =
∂rm

∂pj
=

K
∑

k=1

∂rm

∂µk
kεk−1

j = AmkVkj (1.26)

Amk =
∂rm

∂µk
k (1.27)
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Vkj = εk−1
j (1.28)

where K is the maximum degree (possibly ∞) to which we expand in ε. Thus

H = J>J = V >A>AV . 2

Here V , the famous Vandermonde matrix, is the heart of the sloppy model

universality class. Reminiscent of random matrix theory ensembles, we are now

interested in the Vandermonde ensemble of Hessians of the form V >A>AV . The

Vandermonde matrix is well-known primarily because its determinant (for N = K)

can be expressed analytically, det(V ) =
∏

i<j(εi − εj). As ε → 0 this product is

tiny, det(V ) = O(εN(N−1)/2). While the elements of A do, in general, depend on the

parameter values, they either approach a constant or zero in this limit, so det(A)

remains finite as ε → 0. Hence, the determinant of H, det(H) = det(V )2 det(A)2

is also tiny as ε → 0, so the product of the eigenvalues of H is small. As we saw

with the Hilbert matrix and fitting monomials to data (Section 1.5), the Hessian

can be viewed as the square of the transformation between the bare parameters

and the eigenparameters (equation 1.17), and transformation matrices with very

small determinants are a signature of sloppy models.

To show that the eigenvalues in our Vandermonde ensemble are evenly spread

in logarithm, we will make use of an apparent truth about matrices:

Conjecture 1 Let S ∈ � n×n be symmetric and positive definite. Let E ∈ � n×n be

diagonal with Eii = εi−1 and 0 < ε ≤ 1. Then the mth largest eigenvalue of ESE

is bounded by λm = O(ε2(m−1)).

We have two reasons to believe this conjecture is true. (1) This is a self consistent

combination of proof by induction and perturbation theory. Let matrices S and

30



E be n × n and assume the eigenvalues of ESE scale as λm = lmε2(m−1) + O(ε2m)

for some nonzero coefficient lm that does not depend on ε. Now consider adding

a row and a column to E and S. Treating this addition as a perturbation on

the old system, the corrections to λi, one of the previous n eigenvalues, scale

as ε2(n+1)+2i−4/(ε2i−2 − ε2(n+1)−2) ≈ ε2n which is a small perturbation. The new

eigenvalue, λn+1, is also given by perturbation theory and it is of order ε2(n+1)−2.

This is precisely the scaling form we had for the previous n eigenvalues, so starting

induction from the fact that a 1 × 1 system has eigenvalue S11ε
0, we see that

the proof is self-consistent. (2) Extensive numerical tests (Appendix A) show an

even sharper result: the mth largest eigenvalue, λm, is bounded above by the mth

largest row sum of EES, where the row sum for row k is rk =
∑

l ε
2(k−1)|Skl|. Since

‖S‖∞ = maxk(
∑

l |Skl|) this implies that λm ≤ ‖S‖∞ε2(m−1) and switching to big

O notation, λm = O(ε2(m−1)). 2

This conjecture implies a remarkable apparent fact about the eigenvalues of

any symmetric, positive definite matrix. That this has not been discovered before

is quite surprising since the eigenvalues of symmetric, positive definite matrices

are of great importance in many fields and efficient ways of bounding their values

are of significant use.

Corollary 1 Let S ∈ � n×n be symmetric and positive definite. Let the sum of the

absolute value of the elements in the ith row be called the ith row sum, ri =
∑

j |Skl|.

Then the sorted eigenvalues of S are each bounded above by their corresponding row

sum, λi ≤ ri.

This follows from Conjecture 1 with ε = 1. 2

We have numerical evidence that to leading order in ε the eigenvectors of the

Hessian are the right singular vectors of the Vandermonde matrix (Appendix B).
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(A non-square matrix V has a singular value decomposition V = UΣW>, where

the non-square matrix Σ has the singular values of V along the diagonal and is zero

elsewhere; W gives the right singular vectors, which are eigenvectors of V >V , and U

gives the left singular vectors, eigenvectors of V V >.) Motivated by this numerical

evidence, we shall transform our Hessian to this basis. This is an interesting

result because information about the model is encoded in the matrix A, not the

Vandermonde matrix (or its eigenvectors). The fact that the eigenvectors of the

Hessian are not strongly determined by the elements of A means that attempting

to interpret the composition of the eigenvectors (particularly the sloppy ones) may

not provide much insight into the model itself. Our experience with sloppy models

is precisely this, that the exact composition of the eigenvectors is not usually not

very revelatory.

We first bound the singular values of the Vandermonde matrix. Conveniently,

V V > has the form necessary for Conjecture 1.

Conclusion 2 The mth-largest singular value σm(V ) of the N-column Vander-

monde matrix, Vij = εi−1
j is O(εm−1).

The singular values of V are the positive square root of the eigenvalues of V V >.

Factoring the appropriate power of ε from each row of the Vandermonde matrix

gives V = EX and V V > = EXX>E where E is the same as in Conjecture 1

and the elements of X are bounded by one. Equating XX> with the matrix S

in Conjecture 1, we conclude that the eigenvalues of V V > scale as λm(V V >) =

O(ε2(m−1)) and thus σm(V ) = O(εm−1). 2

We now transform the Hessian into this basis, and again use Conjecture 1 to

bound its eigenvalues.
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Conclusion 3 The eigenvalues of the Hessian matrix for the class of models in

Conclusion 1 scale as

λi(H) = O(ε2(i−1)) (1.29)

Starting with the decomposition H = V >A>AV , taking the singular value de-

composition of V = UΣW>, and transforming the Hessian into the basis of the

right singular vectors of the V , we have W>HW = H̃ = Σ>U>A>AUΣ. By

Conclusion 2 we know that Σii = O(εi−1). By construction the elements of A are

well-behaved as ε → 0 and since U is an orthogonal matrix its elements too cannot

diverge in this limit. This means that H̃ij = O(εi+j−2). By Conjecture 1 we know

that λi(H̃) = O(ε2(i−1)) and since H̃ is simply an orthogonal transformation of H,

λi(H) = O(ε2(i−1)). 2

While rigorous universality is only expected as the system size approaches infinity,

we find empirically that models with more than roughly ten parameters are often

recognizably sloppy.

Since all polynomial fits in the basis of monomials have the Hilbert matrix

as the Hessian, even very small systems have a wide range of eigenvalues (the

eigenvalues of the 3 × 3 Hilbert matrix are λ ≈ {1.4, 0.12, 0.0027}. In fitting ex-

ponentials, a small system can be quite sloppy provided the true parameters are

from a sufficiently narrow range. In an analysis of density-functional theory (DFT)

calculations with only three parameters, the eigenvalues spanned orders of magni-

tude: λ ≈ {1876, 44, 0.5} [23, 18]. While there are clearly two orders of magnitude

between consecutive eigenvalues for this model, we would hesitate to claim that

all three parameter models will be sloppy. In a wide selection of biological net-

work models with numbers of parameters ranging from eight to one hundred forty

three, each model had a characteristically sloppy sensitivity spectrum [16]. We can
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further investigate the relationship by taking relatively large models and simply

restricting the number of free parameters(Appendix C) and again, models with as

few as eight parameters are recognizably sloppy.

Do these results tell us anything about the statistics of level spacings? Unless

two parameters are strictly equal or the residuals are independent of a particular

moment of the parameter distribution, Conclusion 3 shows that λi = liε
2(i−1) +

O(ε2i) for some non-zero coefficient li. The relative spacing between neighboring

eigenvalues, to first non zero order, is si = log(λi/λi+1) = log(li/li+1) − 2 log ε.

Figure 1.11 depicts the accuracy of this relationship. For a fixed model but an

ensemble of random parameters, the distribution of coefficients li has a finite width

as ε → 0. Therefore the distribution of si over the ensemble, normalized by

2 log ε such that the average spacing is unity, goes to one with a width which

vanishes as ε → 0, as is illustrated in Figure 1.10. This means that the whole

system is becoming not only more sloppy (larger spacing) but it is becoming almost

deterministically so (strong level repulsion). Figure 1.4 (c) is a manifestation of this

rigid spacing between levels due to remarkably strong level repulsion. It should

be noted that the calculations necessary to confirm these predictions (reliably

calculating remarkably small eigenvalues) were only possible because of the ability

to set arbitrarily high precision and accuracy in Mathematica.

1.9 Vandermonde Decompositions

What is the link between the Vandermonde ensemble at small ε and the behavior

of real world sloppy models (Figure 1.4 columns (a), (b)) and the behavior at large

ε (column (d))? These latter systems share the roughly uniform density of log-
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Figure 1.11: Mean log level spacing. Plotted is log10(λi/λi+1), averaged over the

all spacings, as a function of ε. The model is a sum of ten exponentials with all

initial amounts fixed at one. In each instance the ‘true’ decay rates were generated

from a log uniform distribution centered around 1 with width 2ε. Ensembles of

size 1500 were generated and the mean spacing (averaged over the ensemble and

over all nine spacings) is plotted with standard errors. Note the excellent fit of

y = −2 log10(x) + b where only b is allowed to vary; λn ∝ ε2n.
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eigenvalues over many decades that is the signature of sloppy models but do not

exhibit strong level repulsion. The real world models also do not share the strict

requirement that the residuals be perfectly symmetric functions of the parameters.

We conjecture that while not all of the parameters are interchangeable in real world

sloppy models, there are Vandermonde subsystems lurking below the surface. Thus

the fastest decay rates in Figure 1.4 (d) constitute one Vandermonde subsystem

and the slowest decay rates another. Indeed, the Poisson statistics of level spacings

when fitting exponential decays from a wide range can be reproduced by super-

imposing the spectra of several separate experiments, each fitting decays from a

narrower range (e.g. the level spacing statistics for fitting forty nine exponentials

with decay rates in the wide range 2ε = 50 as in Figure 1.4 (d) are equivalent

to the level spacing statistics when seven separate experiments are superimposed

over one another, each fitting seven exponentials with decay rates in the narrow

range 2ε = 3.5 as in Figure 1.4 (c)). Such a decomposition into Vandermonde

subsystems is also illustrated by modifying the net radiation model to include the

initial amounts of the elements as unknown parameters (Section 1.4). Now the pa-

rameters clearly separate into two classes – decay rates and initial amounts. Each

class alone fits the assumptions of the Vandermonde ensemble, produces rigidly

(strong level repulsion) sloppy spectra, and generates nearly equivalent patterns

of changes in the residuals. When mixed together however, the fact that parame-

ters from one class can not compensate for parameters of the other class destroys

the correlations between levels and they do not repel each other anymore as is

evident in Figure 1.12. Similarly, a full many body wave function in quantum

Monte Carlo [24] is composed of the sloppy space of the Jastrow parameters in fig-

ure 1.4 (b) and a non-sloppy subspace of the Configuration Interaction coefficients
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describing single-particle orbitals.

These results motivate algorithms for the decomposition of real world sloppy

models into rigidly sloppy Vandermonde subspaces whose components are effec-

tively redundant. Such a decomposition would be useful for three separate rea-

sons: a) explaining why a particular model is sloppy overall, b) suggesting routes

for model reduction and coarse graining by subsuming degrees of freedom within

Vandermonde systems, and c) prescribing changes in parameters to alter specific

aspects of model behavior.

It is instructive to consider the structure of a composition of distinct Vander-

monde subsystems. Let HA be the Hessian for one Vandermonde system, HB be

the Hessian for a second subsystem and let the matrix M define the coupling be-

tween them. Without loss of generality we can assume both Hessians are diagonal

but we can not assume anything about the structure of M . The Hessian of the

coupled system, HA+B is then

HA+B =







HA M

M> HB






(1.30)

=


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
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











. (1.31)

Clearly the structure of M is significant for the sloppiness of the composite system.

Surely some types of coupling could destroy the sloppiness altogether. While fu-

ture analysis may be rewarded by tackling the problem of coupling Vandermonde

subsystems from this angle, we will take a different approach and instead attempt

37



0 0.5 1 1.5 2 2.5 3

Normalized spacing
0

0.5

1

Fr
eq

ue
nc

y

Figure 1.12: Fitting exponentials with and without level repulsion. The relative

spacing between the eigenvalues (log(λi/λi+1), normalized to the mean value for

each spacing) for two versions of the fitting exponentials model, normalized to

have an integral of one. Each model has nine parameters (each selected from

ln(pi) = U(−0.3, 0.3)) — in the case of the wide distribution there are four initial

amounts (plus one fixed initial amount) and five decays rates but for the narrow

distribution there are ten fixed decay rates, one fixed initial amount and nine initial

amounts that can vary. The distribution for fixed initial amounts but unknown

decay rates is very similar to the narrow distribution here (see Figure 1.10) and is

therefore not included. Note the much stronger level repulsion when all parameters

are of the same type (just initial amounts) than when there are distinct subclasses

of parameters (initial amounts and decay rates).
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to study how sloppy subspaces arise in specific, known cases.

We have begun the search for such an algorithm but it is clearly a deep enough

problem to warrant much research beyond this thesis. The key suggestion from the

Vandermonde ensemble is that evenly spaced log eigenvalues should be intimately

linked to parameter redundancy for specific aspects of model behavior. Attempting

to pick low hanging fruit, we take the problem of fitting both initial amounts and

decay rates in a multi-exponential model of radioactive decay. We know that each

problem separately affects the residuals in a different way and that each problem

separately has rigidly sloppy spectra. When we attempt to fit both parameters

simultaneously, however, the eigenvalues lose all their repulsive qualities and the

statistics of level spacings is nearly Poisson. We would like a function to optimize

which quantifies either how ‘rigidly sloppy’ a given Hessian is or how redundant a

set of parameters are on the residuals (or a combination of both).

We will first tackle the problem of finding subspaces with rigidly sloppy spec-

tra. Given a particular Hessian, we would like to reorient our basis such that the

subspace Hessians determined by some black diagonal structure are each their own

Vandermonde style system. In general we will not know how many subspaces we

are looking for or what the dimension of each subspace is, but for our expanded

fitting exponentials model we know that there are two Vandermonde subspaces and

that they have equal dimensions (there are the same numbers of decay rates and

initial amounts). For an N ×N Hessian, we are therefore searching for the N ×N

orthogonal transformation which maximizes the sloppiness of the two N/2 × N/2

submatrices along the diagonal. There is no obvious single formula to measure

the sloppiness of a given spectra. We want something that favors both a large

overall range of eigenvalues and also identical spacings between each level. Just
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how to balance these different qualities is not clear, and given the array of pos-

sibilities the best approach is to simply implement each criteria and judge how

well it works. For a matrix H with eigenvalues λ(H) we have found that the

sum of ratios of all neighboring eigenvalues reliably produces the sloppiest spectra,

S(H) =
∑N−1

i=1 λi+1/λi. The difference between this criteria and simply the total

range between the stiffest and sloppiest eigenvalues is a subtle one but remarkably

effective. The desire for equal spacings is lost when simply optimizing the over-

all range, the optimized spectra do indeed have very well separated largest and

smallest eigenvalues but the levels in between are scattered randomly. Optimizing

instead the sum of all relative spacings produces very regular spectra. Since we are

looking for a function to minimize, we choose the ratios with the larger eigenvalue

in the denominator as opposed to the inverse.

The next question is whether this also identifies sets of parameters which de-

termine the same features of model behavior. Again we are confronted with the

problem of how to quantify this quality and again we resort to empirical studies

for the answer. One certainty is that this is a question about the Jacobian matrix

and not the Hessian because we are looking for particular patterns in the residu-

als which have been averaged out by the Hessian. Recall that each element of a

Jacobian corresponds to the derivative of a residual with respect to a parameter—

Jij = ∂ri/∂pj. Summing the dot products of neighboring columns of the Jacobian

is the measure which functions best in our empirical tests. A dot product of zero

between two columns means that changes in those reoriented parameters have com-

pletely distinct patterns of effects on the residuals. A dot product of one (each

row is normalized to have length one to avoid interference from trivial rescaling of

rows) means that the two directions in parameter space produce identical effects
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on the residuals. We thus use R(J) =
∑N−1

j=1

(

1/
∑N

i=1 JijJij+1

)

as our measure of

how redundant successive parameter directions are.

In each case we are optimizing over the space of orthogonal matrices. There are

several ways to continuously parameterize the space of orthogonal matrices. One

could take the matrix exponential of all anti-symmetric matrices or use a procedure

such as SVD or Gram-Schmidt to find orthogonal basis of general matrices but

we find that the Cayley transformation of anti-symmetric matrices performs the

best. It is quicker to compute than the matrix exponential of an anti-symmetric

matrix and it has half the parameters of finding an orthogonal basis (e.g. by

Gram-Schmidt or SVD) for general matrices. The Cayley transformation takes

an anti-symmetric matrix, A = −A>, and produces an orthogonal matrix U by

U = (I + A)(I − A)−1 where I is the Identity matrix.

Figure 1.13 demonstrates that of all the possible decompositions, separating

the decay rates from the initial amounts produces the sloppiest subspaces. In this

example, H is the Hessian matrix organized to have the block structure of Equa-

tion 1.9. The matrix P>HP is a permutation of H where the block structure has

been disrupted by swapping the row and column for one of the decay rates with

a row and column for one of the initial amounts. Starting from this permuted

Hessian we then used the Cayley transformation to minimize S(U>
1 P>HPU1) to

find the optimal orthogonal matrix U1. We also did a second optimization starting

from H to find the orthogonal matrix U2 which minimizes S(U>
2 HU2). This pro-

cedure was performed one thousand times, each time beginning with a random set

of decay rates and initial amounts. The mean and standard deviations over this

ensemble of one thousand instances are depicted in the figure. If the optimization

routines always found a single, best optimum then the values for S(U>
1 P>HPU1)

41



H P
T
HP U

1

T
P

T
HPU

1
U

2

T
HU

2

0

0.2

0.4

0.6

S(
M

)

Figure 1.13: Sloppiness of subspaces in fitting exponentials. The sloppiness of

various subspaces of the fitting exponentials problem with both decay rates and

initial amounts as measured by S(M) for the matrices M listed on the horizon-

tal axes. For an ensemble of one thousand random sets of initial amounts and

decay rates, H is the Hessian matrix of form Equation 1.9, P is a permutation

matrix which swaps the entries corresponding to one of the decay rates with those

corresponding to one of the initial amounts, U1 is an orthogonal matrix found by

optimizing S(U>
1 P>HPU1) and U2 is an orthogonal matrix found by optimizing

S(U>
2 HU2).

and S(U>
2 HU2) would be the same. The similarity of the two measures is reassur-

ing that there are not significant local minima leading to incomplete convergence

of the optimization algorithm. The fact that S(P>HP ) is substantially larger than

S(H) means that interchanging decay rates with initial amounts makes the two

subspaces less like members of the Vandermonde ensemble. The fact that S(H)

is so similar to either of the optimized versions, S(U>
1 P>HPU1) and S(U>

2 HU2),

means that even the best grouping possible is not substantially better than the

näıve grouping.
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In Figure 1.14 we see that optimizing the sloppiness of the subspaces, S(H)

does indeed correlate strongly with optimizing the redundancy of the parameters

on specific aspects of model behavior, R(J). The matrices P , U1 and U2 are

from the optimizations described for Figure 1.13 but here they are applied to the

Jacobian and the corresponding R(M) for matrix M is calculated. We see that the

decomposition into simply decay rates and initial amounts not only optimizes the

sloppiness of the subspaces (Figure 1.13), it also optimizes the redundancy of the

two sets of parameters since R(J) is so small. The fact that the matrices U1 and U2,

which were obtained solely by optimizing S(M), also lead to noticeably reduced

values of R(M). The fact that R(J) is consistently the lowest value underscores

the usefulness of this test problem for testing such Vandermonde decomposition

algorithms, since we reliably know what answer the algorithm should find.

The final difficulty is that blindly optimizing according to these criteria will

in general produce results that are uninterpretable to a human being—the curse

of dimensionality, the effects of noise, and general entropic reasons will lead to

orthogonal transformations which do indeed optimize our objective function but

which add little or nothing to our understanding of the system. We therefore prefer

orthogonal matrices which are well-localized (contain just a few large elements)

over more diffuse (many elements of roughly equal size) transformations. In order

to bias our optimization procedure toward such well-localized matrices we add

to the total cost function a measure called the participation ratio in quantum

mechanics. Mathematically, the participation ratio, P , of a matrix M is given by

P (M) =
∑

i

(

∑

j M4
ij/
∑

j M2
ij

)

. In our case the denominator drops out because

we are dealing with orthogonal matrices so the sum of squares of any row or

column of the matrix is one. Skipping the derivation from quantum mechanics,

43



J P
T
J U

1

T
P

T
J U

2

T
J

0

2

4

6
R

(M
)

Figure 1.14: Measuring the redundancy of parameter subsets. The redundancy of

various subsets of parameters in determining distinct aspects of model behavior as

measured by R(M) for the matrices M listed on the horizontal axes. The matrices

P , U1, and U2 are from the optimization procedure described in Figure 1.13 while J

is the Jacobian corresponding to the same sets of decay rates and initial amounts as

the matrices H from that Figure. The ordering of decay rates and initial amounts

in J is the same as for H.
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simple inspection of this formula shows that it is a measure of the variance of the

elements of M and hence is a minimum when all entries are of the same size and a

maximum when there are a few big entries and many small entries. For this reason

we want to minimize the inverse of the participation ratio.

Optimizing either the sloppiness of the subspaces (S(H) or R(J)) or the par-

ticipation ratio of the transformation matrix (P (M)) alone has proven to be quite

simple and can be tackled with standard optimization algorithms. The problem of

optimizing both criteria simultaneously (or optimizing one and then turning up the

weight of the other measure) has proven very difficult however. The problem is that

the participation ratio changes at a much slower rate as the parameters (entries of

the anti-symmetric matrix in the Cayley transform) vary than does the sloppiness

measure. This is demonstrated in Figure 1.15 which shows S(H) and P (U) as one

parameter is changed. Note the wide discrepancy in scales, the variations in S(H)

are roughly three orders of magnitude larger than the scale of P (U). A deeper

understanding of these landscapes is necessary before any successful optimization

can be accomplished. These hurdles are by no means unsurmountable, a clever

algorithm should be able to optimize both the sloppiness and the localization.

1.10 Conclusion

Complex multiparameter models from a wide array of scientific fields are often

sloppy: they each have an exponentially large range of sensitivities to changes

in underlying parameter values. This occurs because the parameters natural for

experimental manipulation or human description are often a severe distortion of

the basis natural for describing system behavior.
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Figure 1.15: Correlating sloppy spectra with redundant parameters. The slop-

piness of the resulting subspaces, S(H), and the inverse participation ratio of the

transformation matrix, P (U), as one parameter (an element in the anti-symmetric

matrix in the Cayley transform) is adjusted. The parameters were first optimized

to minimize S(H). The vastly different scales at which the two functions vary

explains the difficulty of then turning on the participation ratio as a component of

the objective function.
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Sloppiness may at first seem to condemn complex multiparameter models as

useless because it is so difficult to constrain the parameters. On the contrary,

sloppiness is in fact a saving grace—only the small number of stiff combinations of

parameters need to be constrained in order to restrict model behavior. The uncer-

tainty in parameters along sloppy directions can be quite large and the model will

still generate precise predictions. The large range of sensitivities necessitates that

predictions with such complex models be accompanied by rigorous error bars due

to any underlying parameter uncertainty. Experimental results lying outside such

error bars are then strong evidence that something is structurally wrong with the

model instead of simply inaccurate parameterization. For perfectly linear models

in which the cost function is purely quadratic, parameter uncertainty can be prop-

agated to prediction uncertainty through straightforward analytical calculations.

The vast majority of complex models are not that simple however, and nonlin-

earities in the cost function quickly turn the sloppy directions into curved sloppy

manifolds as shown in Figure 1.3. To account for such nonlinearities, a Markov

Chain Monte Carlo (MCMC) approach is necessary to propagate errors [7]. In

this approach an ensemble of parameter sets is generated which are each consis-

tent with the current data. Predictions are then made simply by using each set

of parameters in the ensemble and weighing their predictions by how well they fit

the current data. The ability to gauge the stiff and sloppy directions in parameter

space and to scale steps appropriately is vital for the success of the MCMC algo-

rithm, as steps too large along stiff directions will never be accepted and steps too

short along sloppy directions will never converge [7].

While sloppiness is not a statement about the quality of a model, it is a state-

ment about how best to constrain model predictions. Since the eigenparameters
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which naturally describe model behavior tend not to be aligned with the bare pa-

rameters, individually measuring the bare parameters is a very inefficient route to

constraining model behavior. Collectively fitting all the parameters to previously

measured system-wide data on the other hand naturally constrains parameters

along stiff directions and allows large uncertainties only along sloppy directions [16].

While collectively fitting model behavior for a sloppy system will never allow one

to reliably determine parameter values, the parameters of such models are often

of little interest and are instead simply a means to the end of making precise

predictions for future experiments.

The prevalence of sloppiness in complex models is of particular importance to

the emerging field of (computational) systems biology. As the technology for mak-

ing measurements such as sequencing genomes, measuring entire proteomic reper-

toires of cells, and imaging localization and transport, becomes more advanced

and more high-throughput, researchers are becoming increasingly interested in the

functioning of interconnected networks of biomolecules. The origins and universal-

ity of sloppiness are not tied to a particular mathematical framework (e.g. coupled

ODEs) and are therefore relevant to any model that constitutes a convoluted map-

ping from parameters to system behavior. A worry in the field of computational

biology is that highly parameterized models can never be constrained enough to

offer useful insights [2]. The fact that such models are dominated by only a few

stiff modes however means they can be quite valuable even early in the research

program because nontrivial, falsifiable predictions can be made with a surprisingly

modest amount of previous data and despite enormous parameter uncertainties.

The universality of sloppiness holds another exciting possibility for the field of

biology. As opposed to models where the parameters are largely human constructs
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to describe the system (e.g. fitting polynomials simply to find trends), models

of the molecular interactions in complex biological networks are closely tied to

the process of evolution. The random mutations in the DNA sequence through

which much of evolution operates have direct consequences for the biochemical

reactions in which the protein product participates. Similar consequences hold

for regulatory DNA sequences or for sequences which code for functional RNA

instead of protein. We have not explored this issue in any detail but sloppiness

would seem to provide a novel structure for the fitness landscape through which

evolution moves. The exponentially large range of sensitivities is one unique issue

for evolution to tackle but the fact that eigenparameters tend not to be aligned with

bare parameters is a more substantial, and interesting, problem. It is presumably

much easier for evolution to take steps along the bare directions, but any given

bare parameter usually includes at least some component along a stiff direction so

any single step would be very costly. Of course we have no idea what ‘cost function’

any real organism is truly experiencing or has experienced. Instead, studying in

vitro evolution, where the scientist determines what trait(s) to select for, could

provide interesting insight to the role of stiff and sloppy directions in nature.

It should be noted that there is a large class of multiparameter optimization

problems that have not been dealt with in this work. All the models considered

have been sum-of-squares cost functions where many separate aspects of model

behavior are being balanced. Many optimization tasks however have simply one

figure-of-merit. We have not analyzed such systems empirically so we have no

evidence whether or not they are sloppy. A sum-of-squares cost function is also

one of the assumptions made to derive the Vandermonde ensemble, so those results

simply do not apply to this second class of models. It does seem quite unlikely that
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each parameter in such a system has an entirely unique effect on model behavior.

Since parameter redundancy appears to be the heart of sloppiness, this argues that

even single figure-of-merit models should be sloppy but much more work needs to

be done before a definitive statement can be made.

Sloppiness is a general phenomenon whereby multidimensional nonlinear mod-

els exhibit exponentially large ranges of sensitivities. This affects the estimation

of both statistical [4, 16] and systematic [30, 23] errors, favors collective parameter

fitting over individual measurements [16], and motivates scale invariant algorithms

for optimization. Understanding the origins and implications of sloppiness in its

various incarnations offers new, fundamental insights into complex systems.
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Chapter 2

Computational Model of Quorum

Sensing in Agrobacterium

tumefaciens

2.1 Introduction

Quorum sensing is the process by which bacterial cells regulate an important ac-

tivity or property of the cell in response to changes in the population density.

In general this process rests on the production of a signaling molecule (termed

an ‘autoinducer’) whose extracellular concentration increases with the bacterial

population density.

The range of behaviors regulated by quorum sensing in various bacteria is

extraordinarily broad: bioluminescence in Vibrio fischeri, pathogenesis in Staphy-

lococcus aureus, biofilm formation in Pseudomonas aeruginosa, and sporulation in

Bacillus subtilis to name a few [25, 34]. In most bacteria gene expression is upreg-
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ulated and not downregulated in response to a quorum but in some cases this is

done by activation while in others it is through derepression.

Gram-positive bacteria that possess quorum sensing networks tend to use short

peptides as the signaling molecules. These oligopeptides bind either histidine ki-

nases in the cell membrane or are transported into the interior of the cell and

bind a phosphatase, thereby activating a phosphorelay network. One interesting

exception to this phosphorylation-based signaling occurs in Enterococcus faecalis.

The peptide autoinducer in this bacterium is transported into the cell but then it

activates transcription by directly binding a transcriptional repressor, relieving its

activity [10].

In Gram-negative bacteria the autoinducers are predominantly N-acyl-homoserine

lactones (AHLs) whose synthesis is catalyzed by a bacterial protein. This family

of molecules is characterized by having a lactone ring joined to a carbon chain.

The main variations between autoinducers are the length and saturation of the

carbon chain and the oxidation state at the C-3 position. The majority of these

molecules can freely diffuse through the membranes of cells although those with

particularly long carbon chains rely on active transport by proteins in the mem-

brane. At roughly micromolar concentrations, diffusion out of and into the cell is

balanced and the autoinducers are detected by binding to transcription factors. In

the majority of bacteria the autoinducer increases the activity of the transcription

factor but in a few cases the autoinducer antagonizes the transcription factor.

In addition to these general rules for the molecular basis of quorum sensing

(oligopeptide communication by Gram-positive bacteria and AHL based signaling

in Gram-negative bacteria) there are of course several exceptions [25]. Due to the

mechanism of a diffusible extracellular signaling molecule it is also possible for
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‘quorum sensing’ networks to detect diffusion barriers as well as high population

levels [29]. It is still possible to consider an abstract, simplified quorum sensing

network that describes the majority of the known systems. Amongst the gene

targets of the various quorum sensing networks, expression of the gene responsible

for the autoinducer is often elevated, creating a positive feedback loop which drives

the system to an ‘activated’ state. In the Gram-positive bacteria this would be

the gene for the oligopeptide itself while in Gram-negative bacteria it would be

the gene for the protein which catalyzes synthesis of the AHL. A simple picture of

this idea for Gram-negative bacteria is depicted in Figure 2.1. The explanation of

these simplified dynamics is depicted in Figure 2.2.

2.2 Quorum Sensing in Agrobacterium tumefa-

ciens

One of the best characterized quorum sensing networks is that of the α- pro-

teobacterium Agrobacterium tumefaciens. This bacterium typically lives in the

area around the roots of trees and plants called the rhizosphere and is the causative

agent of plant tumors called crown galls. Agrobacterium is primarily well-known

because the basis of its virulence, the ability to transfer DNA into host cells, can

be used as a valuable tool in the laboratory.

In Agrobacterium tumefaciens, quorum sensing begins with pathogenesis and

pathogenesis begins when the bacteria (a) sense chemical signals from plant cells,

especially from wounds in plants. These signals cause the bacteria to (b) initiate

an infection. If the bacteria (c) sense that the infection is successful, they start the

process of (d) counting a quorum. After the population becomes dense enough and
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Figure 2.1: A simplified, generic quorum sensing network. The large oval repre-

sents a Gram-negative bacterial cell, smaller ovals represent proteins, pentagons

represent small molecules, the outlined arrow represents bacterial DNA, and the

solid arrows represent reactions and translocations. The ‘Regulator’ is a transcrip-

tion factor which is only active after binding the ‘Autoinducer’ small molecule.

Synthesis of the autoinducer is catalyzed by the ‘Synthase’ protein. Amongst the

target genes upregulated by the active transcription factor is that of the synthe-

sizer protein. This positive feedback loop is thought to drive the system strongly

from the uninduced to the induced state.
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Figure 2.2: Schematic of quorum sensing dynamics. The simple, coarse grained

picture of quorum sensing as a balance between linear degradation and sigmoidal

production rates for the autoinducer as a function of the local concentration. The

steady state solutions of this model occur at the intersections of the two curves,

where production is matched by degradation. In this model there are two stable

steady state solutions, labeled ‘Off’ and ‘On’, and one unstable solution at an

intermediate level. Stochastic fluctuations of the local autoinducer concentration

across the unstable steady state level drives the system to the other state.
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(e) a quorum is reached, the bacteria (f) duplicate an extrachromosomal ring of

DNA called the Tumor inducing (Ti) plasmid that contains all the genes necessary

for pathogenesis and (g) inject the new copies into neighboring recipient bacteria.

Finally, (h) a number of signals cause the bacteria to mitigate the active quorum

response. The computational model we have developed, and detail in Section 2.3,

encompasses primarily steps (c) through (f).

Plant cells, especially at sites of wounding, release a class of chemicals called

phenolic compounds (e.g. acetosyringone). These phenolic compounds serve as

the chemical signal to initiate an infection. They are (a) sensed by the VirA-

VirG two component regulatory system which then induces the virulence (Vir)

network. Induction of virulence leads to (b) the transfer of oncogenic DNA from a

portion of the Ti plasmid into the plant cell. Once this transfered DNA (T-DNA)

is incorporated in the plant genome, the plant cells express the genes encoded for

in this DNA sequence. Some of the genes encoded for on the T-DNA cause the

plant cells to synthesize growth hormones, leading the local plant cell population

to proliferate and form tumors. Other genes on the T-DNA cause the plant to

synthesize and release a class of chemicals called opines (e.g. octopine) which the

bacteria use as a carbon, nitrogen, and energy source.

From this point the process is also depicted in Figure 2.3. Octopine is the signal

that the infection is successful and the bacteria can begin to look for a quorum.

Octopine taken up by the bacterial cells (c) activates transcription (by relieving

repression) of the traR gene (which codes for the Regulator in Figure 2.1). This

derepression is accomplished by binding to the OccR protein complex (a tetramer

of OccR already bound to DNA upstream of the traR gene) and relieving a high-

angle DNA bend [1]. In Figure 2.3 this is depicted in the upper left corner. Low
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basal expression of TraI (the Synthase in Figure 2.1) meanwhile leads to cor-

respondingly low basal synthesis of N-3-oxooctanoyl homoserine lactone (OOHL)

(the Autoinducer in Figure 2.1). While (d) OOHL levels are low, TraR protein

is non-functional because it can not fold into a stable tertiary structure and is

degraded [39] (upper middle of Figure 2.3).

Once OOHL levels accumulate (presumably due to a quorum being reached),

(e) TraR binds OOHL quickly enough to fold correctly and stabilize [39, 40]. Stable

TraR then dimerizes (upper right of Figure 2.3), binds DNA sequences known as tra

boxes and recruits RNA polymerase, thereby upregulating transcription of target

genes [12] (lower portions of Figure 2.3). One of these tra boxes is upstream of

the traI gene and is responsible for a large upregulation of TraI expression (the

positive feedback loop described in Section 2.1). The other target genes are mostly

comprised of the genes necessary for conjugal transfer (hence the tra prefix) of the

Ti plasmid and are not depicted in Figure 2.3. Conjugal transfer consists of (f)

duplicating the plasmid, expressing and assembling a type IV secretion/mating-

pore formation system (a needle-like structure with a larger base in the membrane

composed of a variety of proteins) and (g) injecting the duplicated DNA into

neighboring bacteria. There is therefore an indirect activation of the traR gene

due to the increase in gene copy number [26].

At this point (h) a number of modes of negative regulation engage. One of the

TraR target genes, traM, codes for a negative regulator of TraR: TraM proteins

bind TraR and sequester them from the DNA (right center of Figure 2.3). Another

negative regulator is TrlR which has high sequence similarity to the N-terminal

ligand binding and dimerization portion of TraR without the DNA binding domain.

Expression of the trlR gene is under control of another opine, mannopine, and
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Figure 2.3: Quorum sensing in Agrobacterium tumefaciens. A more detailed

depiction of the quorum sensing network is depicted here. Colored shapes are pro-

teins, thick horizontal arrows are genes, black circles, triangles and pentagons are

small molecules, and X’s represent degradation. The bacterial cell is not depicted

and neither is plasmid duplication. All genes depicted in this figure are on the Ti

plasmid and hence are duplicated and shared in response to sensing a quorum.

the TrlR protein inhibits TraR activity by binding OOHL and also stable TraR

forming heterodimers [8] (center of Figure 2.3). The final known type of negative

regulation is by AttM, a protein with OOHL degrading activity [37] (not depicted

in Figure 2.3). The primary substrate of AttM appears to be a separate class

of molecules not connected to quorum sensing however and the rate at which it

degrades OOHL is quite low.

2.3 Computational Model

We developed a computational model of the quorum sensing network in Agrobac-

terium tumefaciens. Our model of this network consists of the following simpli-
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fications of the description in Section 2.2: OccR is not specifically in the model

so initial activation of traR is directly by octopine. Everything related to TrlR

is absent (that is, the TrlR protein, mRNA and gene as well as mannopine). A

version of the model is under development which includes TraM but this implemen-

tation is incomplete; the version of the model described here therefore is without

TraM. The activation of gene expression by stable TraR dimers is implemented as

a Michaelis-Menten type reaction since the transcription factor:DNA complex is

thought to be in equilibrium. The equations defined by this network are available

in Appendix E.

The model encompasses twenty-seven biochemical interactions involving twenty

different molecular species (e.g. genes, mRNA, and proteins in different oligomeric

states). This reaction network is described as a coupled system of first order ordi-

nary differential equations giving the time rate of change of each species’ concen-

tration. This model contains twenty four unknown parameters—rate and Michaelis

Menten constants—which we do not know but which are necessary to make any

quantitative predictions. In order to estimate these parameter values, data has

been collected from the literature and the parameters have been optimized to find

a best fit. This is accomplished by defining a cost function that quantifies how

different the model output is for a given set of parameters from the experimental

data. The precise function is a sum of squared differences between the model and

the data, scaled by the experimental error:

C(p) =

N
∑

i=1

(yi(p) − di)
2

σ2
i

(2.1)

where di is the ith data point, σi its associated error and yi(p) is the output of the

model for the same measurement (e.g. the concentration of a particular protein at

a particular time for a given set of initial conditions). Up to overall normalization
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factors, this is a χ2 measure of the parameter fit.

If we assume that the experimental errors are uncorrelated, random, and Gaus-

sian, the relative probability that the model with a given set of parameters would

produce the observed data is

P (D|p) ∝
N
∏

i=1

exp

(−(yi(p) − di)
2

σ2
i

)

(2.2)

where D is the set of all datapoints {di, σi}. Transforming the product over expo-

nentials into a sum over their exponents, we see that P (D|p) ∝ exp(−C(p)) and

that the set of parameters that minimizes the cost function also maximizes the

probability. We can then use Bayes theorem to find the relative probability of a

particular set of parameters given the data:

P (p|D) ∝ P (D|p)P (p). (2.3)

Here, P (p) is the prior probability for the parameters. In the optimization process

that was conducted for this model, a uniform probability was used for all parameter

values so the term P (p) is simply incorporated into the proportionality. This

uninformative prior avoids possibly incorrect biasing of the parameter estimates

but it could be replaced by a sufficiently weak distribution to avoid unphysical

parameter values.

This optimization procedure is not trivial: when the parameters are substan-

tially far from producing the correct dynamics then no small change in parameter

values affects the fit and hence no gradient information is available to guide the

search. Different directions in parameter space also tend to have widely different

natural scales (i.e. the amount of change in a given direction required to achieve

a given change in the cost function) so the optimization algorithm must be able

to gauge these differences and alter step sizes accordingly. For this reason the
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Nelder-Mead simplex algorithm [28] was used to begin the optimization and once

it converged, Levenberg-Marquardt [28] was used to find a more precise minimum.

The best fit parameters are available in Appendix F as well as the fits to the data.

While the best fit set of parameters do have a low cost (and do fit the training

data well) they should not be quoted as ‘true’ values unless the estimates are very

tightly constrained about this best fit. To determine how well constrained the

parameters are in the vicinity of the best fit we calculate the second derivative of

the cost with respect to the parameter values. This matrix is called the Hessian:

Hij =
∂2C

∂ log(pi)∂ log(pj)
. (2.4)

The derivatives are taken with respect to the logarithms of the parameters because

different parameters may have different units and this form calculates the change

in the cost function for a given fold change in the parameter values. For cost

functions such as Equation 2.1 that are a sum of squares we can approximate the

Hessian by noting that for a good fit to the data, each residual must be small.

Expanding the second derivative:

∂2C

∂ log(pi)∂ log(pj)
=

N
∑

k=1

(

∂rk

∂ log(pi)

∂rk

∂ log(pj)
+ rk

∂2rk

∂ log(pi)∂ log(pj)

)

(2.5)

we see that the second term can be dropped in the case of a near-perfect fit when

each rk is small. Denoting the matrix of first derivatives as the Jacobian,

Jkj =
∂rk

∂ log(pj)
(2.6)

we can then make the approximation H ≈ J>J . In the Bayesian statistics field

this matrix is known as the Fisher Information Matrix and the Jacobian is referred

to as the Design Matrix for the linearized approximation of the full model.
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The Hessian defines the quadratic approximation to the cost function surface

about the best fit parameters. If we take the eigenvalue decomposition of the Hes-

sian we can characterize the ellipses defined by this approximation; the principal

axes of the ellipse are the eigenvectors and the curvature along each eigenvector is

given by the corresponding eigenvalue. If a given direction in parameter space has

high (low) curvature then the cost function is a quickly (slowly) rising function of

that combination of parameters. If the cost function is rising quickly then there is

very low uncertainty in that combination of parameters but if the curvature is very

low then large changes in that combination of parameters lead to minimal changes

in the cost function and that combination of parameters is very unconstrained.

More precisely, the uncertainty in the combination of parameters defined by the

ith eigenvector is given by 1/
√

λi where λi is the ith eigenvalue. Figure 2.4 shows

the eigenvalues of J>J about the best fit. Notice the fantastically large range of

eigenvalues— contours of constant cost about the best fit are ellipses with aspect

ratios of
√

λ1/λN ≈ 1028.

Since nearly half of the total range of eigenvalues is covered by just the small-

est three eigenvalues, it is worth examining the composition of these eigenvectors

(available in Appendix F). Seven of the nine eigenvectors with smallest eigenvalue

are each dominated by a single bare parameter, suggesting that the model could be

redefined to remove these parameters since, at least in the quadratic approxima-

tion about this point in parameter space and with this set of training data, changes

in their values have little to no influence on the model behavior. This does not

mean that those parameters can blindly be set to zero. Depending on their role in

the model, it may be appropriate to set some to zero, some to infinity and others

simply to fixed values that are not free to change. The other two eigenvectors at
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Figure 2.4: Eigenvalues of quorum sensing model Hessian. The eigenvalues of the

approximate Hessian (J>J) about the best fit parameters are plotted on semilog

axes.

this low end of the spectrum are the product and ratio of a pair of bare parameters,

suggesting that they too could be removed from the network. Even if these nine

parameters can be successfully removed from the model, the remaining fifteen pa-

rameters still have eigenvalues spanning sixteen orders of magnitude (cost contour

ellipses with aspect ratios of 108). The composition of these eigenvectors is not

well-localized so further model reduction would need to be very sophisticated.

Models with sensitivity spectra such as that in Figure 2.4 (roughly equal spac-

ings between the logarithms of eigenvalues, causing an exponentially large total

range) are by definition sloppy [4, 5]. Such models have many free parameters

but the model behavior is dominated by only a small number of stiff, particular

combinations of parameters. These dominant parameter combinations correspond

to the eigenvectors of the Hessian with large eigenvalues. Because sloppy models

are so insensitive to moves in the majority of parameter space (i.e. any move that

is not along a stiff direction), the true parameter values can never be constrained
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by the collective behavior of the model [16]. The general condition of sloppiness,

its origins, and universality are developed in Chapter 1.

2.4 Future Work

While the current model does fit the current set of data there is much that could be

done to improve it. The first step would be to build an ensemble of parameter sets

proportional to how well they fit the data. This is necessary for making any predic-

tions about future experiments (or past experiments that were not in the training

set). An ensemble is necessary because a) the best fit parameters are not well

constrained so any prediction needs to be accompanied by error bars representing

the parameter uncertainty and b) the nonlinear mapping from parameter values to

model behavior is fully captured by an ensemble but not by simple propagation of

the quadratic estimates about the best fit. Such an ensemble is built using Markov

Chain Monte Carlo (MCMC) techniques. A chain of points in parameter space

is assembled such that the distribution of these points matches the probability

distribution defined by the cost function. Sampling from points in this chain is

then a reliable substitute for sampling from the original distribution. The wide

range of natural scales for different directions in parameter space (reflected in the

wide range of eigenvalues of the Hessian) makes constructing this chain a nontriv-

ial problem. Step sizes too large along stiff directions will never be accepted but

steps too short along sloppy directions will never converge. A Metropolis-Hastings

algorithm, which uses the Hessian to guide step sizes in different direcetion, is

therefore necessary for achieving convergence [7].

Another improvement is that more data could be added to the training set.
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Quorum sensing in Agrobacterium has been under investigation by a number of

labs for many years and more data is still available. More data might couple the

nine parameters dominating the sloppiest eigenmodes to the rest of the system.

Several known components of the quorum sensing network have been left out of

the current model (e.g. negative regulation by TraR sequestration with TrlR or

TraM and OOHL degradation by AttM) because no data related to those mecha-

nisms were included in the training set. Incorporating more data would allow for

expanding the definition of the model to include these mechanisms. Before any

further optimization is done (or in fact before an ensemble is generated), more

informative priors should be placed on the parameter values. In other models of

biological networks it has been found that the system dynamics alone still allow

for parameter values that are plainly not relevant or physically possible [4, 16]. In

these situations, any educated limits on the parameter values can be of great aid in

hastening the optimization procedure and preventing the ensembles from encoun-

tering a variety of computational difficulties arising from unphysical parameter

values.

In the area of changes to model structure, it should be noted that most of

the relevant experiments probe the structure of this network more than the quan-

titative dynamics. Experiments that knock out a given gene and discover that

quorum sensing is completely blocked (e.g. Figure F.2) are extraordinarily useful

in answering the question of whether the gene (or protein product) is part of the

network but offer little constraint on any biochemical parameters. For this reason,

it would be worthwhile considering whether a different structure entirely for the

model might be more useful. Bayesian networks, which describe the network of

interactions simply by conditional probabilities (if X is high then, with probability

65



p, Y is low) may connect to this type of data more closely then the differential

equations describing the biomolecular interactions. Another interesting question

about the type of model being developed is the absence of spatial structure. The

dimensionality of the experimental setup (i.e. whether the bacteria are cultured in

3D broth culture or on 2D plates) has been shown to have significant effects on the

process of quorum sensing [11] but the current form of the model incorporates no

spatial information. The effects of dimensionality could be due to active signaling

processes but it would be interesting to learn whether the differences between 2D

and 3D diffusion of the autoinducer could explain the differences.

One very interesting question about the quorum sensing network in Agrobac-

terium tumefaciens that the model might be useful in understanding is the effects

of noise on the activation of the network. Before the quorum is counted, the levels

of TraR in the cell are so low that the difference between a few proteins and no

proteins might be relevant. The positive feedback loop should also amplify the

effects of this noise—if just enough copies of TraR happen to bind OOHL in one

bacterium but not another, the expression of TraI will be greatly upregulated in

the former relative to the latter. This could lead to great differences in the activa-

tion states of different bacteria under similar experimental conditions. Preliminary

experiments in the lab of Dr. Winans suggest that this is indeed the case, where

GFP under the control of a promoter responsive to TraR shows noisy induction

kinetics from culture to culture [35]. The model could perhaps be used to sug-

gest which components of the network have particularly strong influences on this

stochastic onset and what experiments could reveal this effect.
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Appendix A

Eigenvalues of ESE

Figures A.1 and A.2 are histograms demonstrating that the eigenvalues of matrices

of the form ESE are bounded by the corresponding row sums of EES (Conjec-

ture 1). In creating such histograms there are a few choices one can make: the size

of the matrices, the distribution for the elements of S̃ (S = S̃>S̃), and the value

of ε (it must be between 0 < ε ≤ 1. Empirically we find that smaller system sizes

lead to eigenvalues which approach the row sum bound more closely so Figures A.1

and A.2 are for 2 × 2 matrices. Larger values of ε also lead to ratios λi/ri closer

to one. We find that if the absolute value of the mean of the distribution for S̃ij

is large, then λ1 is closer to r1 (λ1/r1 ≈ 1) but λn is further from rn (λn/rn ≈ 0).

Neither the sign of the mean nor the width of the distribution of S̃ij appears to

have any significant effect on the relationship between the eigenvalues and the row

sums. In general we find that for a given system size, distribution for S̃ij, and

ε, the larger eigenvalues approach the row sum bound much closer than smaller

eigenvalues. This is demonstrated by the fact that the histogram in Figure A.1 is

dominated by ratios near one while Figure A.2 is dominated by ratios near zero.

We were lead to this discovery by considering the Gershgorin Circle Theo-
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Figure A.1: Row sum bound on first eigenvalue of ESE. Histogram of ratios

of largest eigenvalue, λ1, of ESE to first row sum of EES, r1 = ε0
∑

i |S1i|. For

this ensemble both E and S are 2 × 2 matrices and ε = 1/10. S is formed by

creating a 2 × 2 matrix, S̃ with each element selected randomly from a Gaussian

distribution with mean 0 and standard deviation 1 (S̃ij = N(0, 1)) and then forming

the symmetric, positive definite matrix S by S = S̃>S̃. Note the hard wall at

λ1/r1 = 1 showing that over the entire ensemble λ1 came very close to, but never

superseded, r1.
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Figure A.2: Row sum bound on second eigenvalue of ESE. Histogram of ratios

of second eigenvalue, λ2, of ESE to second row sum of EES, r2 = ε2
∑

i |S2i|. For

this ensemble both E and S are 2 × 2 matrices and ε = 1/10. S is formed by

creating a 2 × 2 matrix, S̃ with each element selected randomly from a Gaussian

distribution with mean 0 and standard deviation 1 (S̃ij = N(0, 1)) and then forming

the symmetric, positive definite matrix S by S = S̃>S̃. Note the hard wall at

λ1/r1 = 1 showing that over the entire ensemble λ1 came very close to but never

superseded r1.
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rem [14]. While the original theorem pertains to the eigenvalues of complex, un-

symmetric matrices we quote here the more relevant result for real, symmetric

matrices:

Theorem 1 Suppose A ∈ � n×n is symmetric and that Q ∈ � n×n is orthogonal. If

Q>AQ = D +F where D = diag(d1, . . . , dn) and F has zero diagonal entries, then

λ(A) ⊆
n
⋃

i=1

[di − ri, di + ri] (A.1)

where ri =
∑n

j=1 |fij| for i = 1 : n.

This result provides a very useful bound for the eigenvalues of a matrix: the

eigenvalues of A are contained within the n Gershgorin Circles of radius ri centered

at di. Note that there is no guarantee that each circle contains an eigenvalue, simply

that the space covered by all the circles contains all the eigenvalues. Considering

the off diagonal elements, F as a perturbation on D and considering how the

eigenvalues of D+F move as the perturbation becomes larger, it is clear that each

disconnected set of Gershgorin circles contains precisely as many eigenvalues as

their are overlapping circles. Concretely, if a 4 × 4 system has three overlapping

circles and one separate circle, then the one separated circle contains precisely

one eigenvalue while the union of the three other cirlces contains the other three

eigenvalues. It may easily be the case that of these three overlapping circles, one

or two do not contain any eigenvalues however. A similar situation is depicted

in Figure A.3—one Gershgorin circle is wholly contained within the other but

contains no eigenvalues itself. The row sum bound we describe in Conjecture 1 is

a slight modification of the Gershgorin Circle Theorem where we use the similarity

transform E(ESE)E−1 = EES and can now place (at least) one eigenvalue within
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Figure A.3: Gershgorin circle bounds on eigenvalues. The eigenvalues of a sym-

metric, positive definite 2 × 2 matrix and the corresponding Gershgorin Circle

bounds (Q = I, the Identity matrix, in Theorem 1). Note that since the two

Gershgorin circles overlap, the theorem allows one circle to contain no eigenvalues.

each circle but they are instead centered at the origin with a radius given by |di|+ri

and A must be positive definite. This bound is depicted in Figure A.4 which is the

same system (same A, Q, D, and F ) as for Figure A.3.
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Figure A.4: Row sum bounds on eigenvalues. The eigenvalues of a symmetric,

positive definite 2 × 2 matrix and the corresponding row sum bounds from Con-

jecture 1. Note that, as opposed to Figure A.3, each circle contains at least one

eigenvalue.
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Appendix B

Eigenvectors of Vandermonde

Ensemble

Figures B.1 and B.2 are histograms of the dot products between eigenvectors of

random Hessians (H = V >A>AV ) and the corresponding right singular vectors of

the Vandermonde matrices (Vij = ε
(i−1)
j ). The difference between the two figures

is that the typical size of ε in Figure B.1 is ten thousand times larger than in

Figure B.2. Even over this large range, the eigenvalues are incredibly well-aligned

with the right singular vectors, since even for the larger ε the overwhelming ma-

jority of dot products are near one. Furthermore, the fact that the width of these

distributions is correlated with the size of ε is evidence that as ε decreases the align-

ment improves. Since both eigenvectors and singular vectors have unit length, a

dot product of one means that the angle between the two vectors is near zero,

(~a ·~b = |a||b| cos(θ) for any two vectors ~a and ~b).

Depicted in Figures B.3 and B.4 are the eigenvectors of the Hessian after it

has been transformed into the basis of right singular vectors of the Vandermonde

matrix. If this basis were exactly the eigenvectors of the original untransformed
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Hessian, these vectors would be standard basis vectors (the kth standard basis

vector has value one at index k and zero at all other indices). Figure B.3 depicts

an ensemble of size five hundred for fixed eigenvector number (three) and fixed

ε (1/1000). The various members of the ensemble are plotted as circles and the

function y = ε|x−3| (here ε = 1/1000) is shown to make the scaling behavior of the

eigenvector components clearer. Figure B.4 differs only in that a different eigen-

vector is plotted (the fifth) and a different value of ε (1/100) is used to demonstrate

that the results are general. It is clear that while there is an interesting structure

to the higher order corrections, they do approach zero as ε → 0 and thus, to lead-

ing order in ε the eigenvectors of the Hessian are indeed the right singular vectors

of the Vandermonde matrix.
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Figure B.1: Eigenvectors of Vandermonde ensemble matrices with large ε. His-

togram of dot products between eigenvectors of random Hessians (H = V >A>AV )

and right singular vectors of Vandermonde matrices (V ). An ensemble of size 500

was generated where each matrix had dimensions 6 × 6, the elements of A were

drawn from a normal distribution with mean 0 and variance 1 (Aij = N(0, 1)), and

6 ‘parameters’ defining the Vandermonde matrix (Vij = ε
(i−1)
j ) were selected from

a log uniform distribution between -10 and 10 (ln(εj) = U(−10, 10)).
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Figure B.2: Eigenvectors of Vandermonde ensemble matrices with small ε. His-

togram of dot products between eigenvectors of random Hessians (H = V >A>AV )

and right singular vectors of Vandermonde matrices (V ). Note the remarkably

small range for the horizontal axes. An ensemble of size 500 was generated where

each matrix had dimensions 6 × 6, the elements of A were drawn from a normal

distribution with mean zero and variance one (Aij = N(0, 1)), and 6 ‘parameters’

defining the Vandermonde matrix (Vij = ε
(i−1)
j ) were selected from a log uniform

distribution between -1/100 and 1/100 (ln(εj) = U(−1/100, 1/100)).
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Figure B.3: Third eigenvector components in Vandermonde ensemble. Ensemble

of components of third eigenvector for Hessians (H = V >A>AV ) transformed into

basis of right eigenvectors of the Vandermonde matrix (V ), H̃ (Conclusion 3). The

matrices are all of size 6 × 6. H̃ = Σ>A>AΣ was generated by creating a random

matrix A with elements from a normal distribution with mean zero and variance

one (Aij = N(0, 1)) and a diagonal matrix Σii = ε(i−1) with ε = 1/1000. If the

eigenvectors of H were the same as those of V , then H̃ would be diagonal and

its eigenvectors would be the standard basis vectors, e
(j)
i = δij (the jth standard

basis vector has value one at index j and zero everywhere else). As can be seen

from the plot, the eigenvectors of H̃ are indeed the standard basis vectors to lowest

order. The corrections for the jth eigenvector are O(ε|x−j|). The absolute value of

all eigenvector components is plotted here to clarify the scaling behavior.
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Figure B.4: Fifth eigenvector components in Vandermonde ensemble. Ensemble

of components of fifth eigenvector for Hessians (H = V >A>AV ) transformed into

basis of right eigenvectors of the Vandermonde matrix (V ), H̃ (Conclusion 3). The

matrices are all of size 6 × 6. H̃ = Σ>A>AΣ was generated by creating a random

matrix A with elements from a normal distribution with mean zero and variance

one (Aij = N(0, 1)) and a diagonal matrix Σii = ε(i−1) with ε = 1/100. If the

eigenvectors of H were the same as those of V , then H̃ would be diagonal and

its eigenvectors would be the standard basis vectors, e
(j)
i = δij (the jth standard

basis vector has value one at index j and zero everywhere else). As can be seen

from the plot, the eigenvectors of H̃ are indeed the standard basis vectors to lowest

order. The corrections for the jth eigenvector are O(ε|x−j|). The absolute value of

all eigenvector components is plotted here to clarify the scaling behavior.
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Appendix C

Subsystem Sloppiness

How many parameters should a model have before we expect it to look sloppy? One

convenient method we can use is to study subsystems of larger models. Consider

taking the 48 parameter PC12 growth factor model described in Section 1.2, fixing

thirty eight of those parameters and allowing the remaining ten to be free. The

Hessian for this restricted model would simply be the 10 × 10 submatrix of the

original Hessian defined by these parameters. Since there are
(

48
10

)

≈ 6.5 billion

different ten parameter submodels it is then quite easy to get good statistics on

their sloppiness. In Figure C.1 we assemble ensembles of five-, eight-, ten-, and

twelve-parameter submodels from the PC12 network and calculate the eigenvalues

of their Hessians. A typical five parameter submodel may or may not be sloppy,

quite a few have eigenvalues that only span one or two orders of magnitude. A

typical eight parameter model is, however, certainly sloppy with typical eigenvalue

ranges of five orders of magnitude (less than two parameters per decade). Not

only is the total range of eigenvalues large, they are spaced roughly equally in

logarithms.

From Figure C.1 we have strong evidence that the eigenvalue distribution for
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Figure C.1: The eigenvalues of subsystems of the PC12 model with varying num-

bers of parameters. Notice that the typical five parameter submodel is arguably

sloppy and that the typical eight parameter is certainly so.

relatively small models is recognizably sloppy. Now we would like to know the

statistics of sloppiness for a fixed number of parameters. In Figure C.2 we take 10-

parameter subsystems of three separate biological models ((a) the PC12 network

described in Section 1.2, (b) a model of EGF receptor signaling, trafficking, and

down-regulation [6], and (c) a model of the yeast cell-cycle [9]) and examine the

total range of eigenvalues in these subsystems. The total range of eigenvalues,

λmax/λmin, is a quantity called the condition number. In each case we see that,

over the entire ensemble, all 10-parameter models have strikingly large ranges of

eigenvalues, even if only the first of the peaks is considered. We conclude that

real-world models with more than about ten parameters are likely to be sloppy.

The remainder of this discussion will be concerned with the clear multi-modal

structure in these plots. In brief, we find that there exist individual parameters

as well as small groups of parameters that are particularly unconstrained. If they
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Figure C.2: Condition number for subsystems of biological models. The condition

number (λmax/λmin) for ten parameter subsystems of (a) the PC12 model [4, 16],

(b) the EGFR model [6], and (c) the yeast cell-cycle model [9]. The multimodal

structures are due to the presence or absence of sets of particularly unconstrained

parameters.

happen to be included in a given 10-parameter submodel, then the condition num-

ber is particularly large. This kind of few-parameter model degeneracy is what we

näıvely expected to find, and we view it as distinct from the collective, emergent

sloppiness on which we focus elsewhere.

In Figure C.2 (a) we see that when considering just ten parameter submodels

of the PC12 network and looking at only the total range of the eigenvalues there

appear to be two separate classes. A given submodel will have a (log base ten)

condition number from one of two Gaussian distributions, a lower one centered at

roughly six and a higher one centered at roughly nine.

By analyzing the frequency with which the original 48 parameters appears in

submodels from these two classes we see that the distinction arises from a few

particularly unconstrained parameters or sets of parameters. Figure C.3 (a) shows

the frequency with which each of the 48 parameters appears in a submodel in the

lower condition number class and Figure C.3 (b) shows the frequency for the higher
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Figure C.3: PC12 submodel parameter frequencies. Each plot is the fre-

quency with which each of the 48 parameters in the PC12 model appear in a

10-parameter subsystem. The two distributions are for (a) the low condition

number peak (log10(λmax/λmin) < 6.6) and (b) the high condition number peak

(log10(λmax/λmin) > 7.6) of Figure C.2 (a).

class. The most striking difference is that parameter one never appears in the lower

class. This is the rate constant for unbinding of EGF and the EGF Receptor. This

reaction was separately identified by other means as being unnecessary—in all the

experimental conditions considered with the model all of the receptors become

bound (EGF is either absent or in excess) and the unbinding rate has no effect on

the fits, as long as it is small enough to be effectively zero.

The other effects that lead to particularly high condition numbers are slightly

more subtle. By comparing Figure C.3 (a) and (b) we see that parameters 18, 42,

and 28 through 31 are noticeably enriched in the higher peak and depleted in the

lower peak. These six parameters fall into two sets. Parameters 18 and 42 are

both involved in the protein BRaf (its activation by Rap1 and its activation of

Mek1/2) while parameters 28 through 31 are involved in the PI3K branch of the

network. As opposed to the situation with the EGF/EGFR unbinding rate, these

parameters do not necessarily lead to large condition numbers just by themselves.
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Figure C.4: Cooccurrence of PI3K parameters in PC12 submodels. Each plot

is the frequency with which the four PI3K parameters from the PC12 network

occur together in 10-parameter submodels. The two distributions are for (a) the

low condition number peak (log10(λmax/λmin) < 6.6) and (b) the high condition

number peak (log10(λmax/λmin) > 7.6) of Figure C.2 (a).

In Figure C.4 we show the frequency with which the four PI3K related parameters

occur never, alone, as a pair, a triple, or all together in (a) the lower condition

number peak and (b) the higher condition number peak. The higher condition

number peak is clearly enriched for cooccurrences of these parameters, providing

another source of redundancy expanding the range of the eigenvalues.

In Figures C.5 (a) and (b) we show similar plots for the pair of BRaf related pa-

rameters and it is clear that when these parameters occur together, the (sub)model

is particularly ill-conditioned.

We have performed similar analyses of two other models and in both instances

we get similar results. The first of these models is of EGF Receptor signaling,

trafficking, and down-regulation [6]. Figure C.2 (b) shows the distribution of (log

base 10) condition numbers for ten parameter submodels of this EGFR model.

Again there is a clear double-peak structure. By examining the relative frequencies
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Figure C.5: Cooccurrence of BRaf parameters in PC12 submodels. Each plot

is the frequency with which the two BRaf parameters from the PC12 network

occur together in 10-parameter submodels. The two distributions are for (a) the

low condition number peak (log10(λmax/λmin) < 6.6) and (b) the high condition

number peak (log10(λmax/λmin) > 7.6) of Figure C.2 (a).

with which each of the 56 original parameters occur in these two peaks we see

that the sources of ill-conditioning are even more straight forward than in the

PC12 model. Figure C.6 (a) and (b) show the relative frequencies for each of the

original 56 parameters in submodels from the lower and higher condition number

peak, respectively. Three parameters (indices 12, 44, and 46) stand out as never

occurring in the lower peak and being more than twice as common as the other 53

parameters in the higher peak. While not every single submodel in the higher peak

contains one of these three parameters, the possibility that they are the dominant

source of the difference is supported by by the relative number of models in each

peak. If the difference between the two is only these three parameters, then the

fraction of models in the lower peak should be given by the product of probabilities

that when selecting each of the ten parameters, neither of the three were selected.

This probability is
∏9

i=0
56−3−i
56−i

≈ 0.55 and the actual fraction of the ensemble in
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Figure C.6: EGFR submodel parameter frequencies. Each plot is the fre-

quency with which each of the 56 parameters in the EGFR model appear in

a 10-parameter subsystem. The two distributions are for (a) the low condition

number peak (log10(λmax/λmin) < 8.2) and (b) the high condition number peak

(log10(λmax/λmin) > 9.) of Figure C.2 (b).

this peak is about 51% (51,406 out of 100,000 models had a condition number less

than 108.2). The three parameters that segregate so strongly are (a) the unbinding

of the protein Cbl from the heterodimer of proteins Cool-1 and Cdc42, (b) the

transcription rate for the EGF Receptor, and (c) the rate at which the Recycling

pathway operates. This result confirms other tests indicating that the precise value

of these parameters were insignificant for the behavior of the model.

The final model which we have analyzed in this way is a 143-parameter model

of the cell-cycle in budding yeast [9]. Figure C.2 (c) shows that the condition

numbers for ten parameter submodels fall into three well-separated peaks. By

analyzing the relative frequency of the 143 original parameters in each of these

peaks we see that there are fourteen special parameters which are not present in

the lowest peak (Figure C.7 (a)), are moderately enriched for in the middle peak

(Figure C.7 (b)), and are greatly enriched for in the highest peak (Figure C.7
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(c)). By calculating the probability of choosing ten random parameters from the

original 143 and never selecting any of these fourteen parameters (
∏9

i=0(
143−14−i

143−i
) ≈

0.344) and comparing to the relative number of submodels in the lowest peak

(34,601/100,000 have condition numbers less than 1010) we see that the cause

for these distinct peaks is primarily whether or not any of these parameters is

selected. By analyzing the frequency with which these fourteen parameters occur

alone, as a pair, as a triple, etc in the middle and highest peaks (Figure C.8

(a) and (b), respectively) we see that, for the most part, if the submodel has

one of these parameters then the condition number lands in the mid-range peak

and if it has more than one of these parameters the condition number is in the

highest peak. Four of these parameters appear in conservation laws (e.g. without

degradation and synthesis, the total concentration of some molecular species is

constant) that are already satisfied by the differential equations and hence it is

not surprising that they are unimportant for proper functioning of the model. In

fact the condition number of submodels with these parameters should be infinity

because, up to numerical noise, they are exact 0 modes of the model. These

modes are reminiscent of gauge invariances in physics where a physical theory

has more detail than occurs in nature. For example, in a spin-glass system if

the sign of a spin is changed as well as the sign of all the neighboring spins, the

total energy is unchaged. Of the remaining special parameters, eight are involved

in defining discontinuous transitions occurring in the dynamics (such ‘events’ are

used to represent the various checkpoints in the cell-cycle: when the concentration

of species X crosses some threshold, the ODEs are ignored and concentrations

are set by some other rule). It is not clear why parameters associated with these

events are so redundant. Anecdotally, many of the events in this model are directly
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Figure C.7: Yeast cell-cycle submodel parameter frequencies. Each plot is the

frequency with which each of the 143 parameters in the yeast cell-cycle model

appear in a 10-parameter subsystem. The three distributions are for (a) the low

condition number peak (log10(λmax/λmin) < 10), (b) the midrange condition num-

ber peak (10 < log10(λmax/λmin) < 28), and (c) the high condition number peak

(log10(λmax/λmin) > 28) of Figure C.2 (c).

triggered by other events [15]. If the events these eight unconstrained parameters

appear in are being triggered directly by other events, then no infinitesimal change

in the triggering parameters will have any effect on the model behavior. This

would explain why at least the trigerring parameters are so unconstrained. The

remaining two special parameters are basal synthesis rates for the proteins Cln2

and Pds1. It is again not clear why these basal synthesis rates are so insignificant.

Further investigation of this novel analysis could be valuable in understanding the

model.
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Figure C.8: Cooccurrence of ‘special’ parameters in yeast cell-cycle submodels.

Each plot is the frequency with which the fourteen parameters from the yeast cell-

cycle network occur together in 10-parameter submodels. The two distributions

are for (a) the midrange condition number peak (10 < log10(λmax/λmin) < 28) and

(b) the high condition number peak (log10(λmax/λmin) > 28) of Figure C.2 (c).
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Appendix D

Identifying Sloppy Parameter Sets

Parameters and parameter combinations related to sloppy directions in parameter

space are precisely the type of object that should be coarse-grained out to simplify

a model. In a true member of the Vandermonde ensemble (Section 1.8) one could

remove a degree of freedom simply by reducing the number of parameters by one

since the model treats them all symmetrically. Real-world models are not strictly

symmetric in each of the parameters, so that procedure becomes infeasible.

One might imagine that removing the sloppiest eigenvectors of the Hessian is

the sensible approach since these are by definition the combinations of parameters

to which the model is most insensitive. This, however, is not appropriate for

the following four reasons. First, the accuracy to which the components of any

eigenvector can be resolved is determined by the magnitude of the eigenvalue and

its separation from other eigenvalues. The sloppiest eigenvectors are therefore

those most affected by noise and while the definition of the large sloppy space is

relatively well-determined, the precise composition of the sloppy eigenvectors is

not [19]. Second, the sloppy eigenvectors tend not to be well-localized and are

instead composed of significant fractions of many of the bare parameters [5]. The
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bare parameters are relatively easy to add and remove but combinations of many

bare parameters are both difficult to remove from a model sensibly and difficult to

learn from (an admirable goal of any coarse-graining process). Third, as described

in Section 1.8 and detailed in Appendix B, the composition of eigenvectors for

sloppy systems is not usually informative. In that case, it was dominated by by

the singular vectors of the Vandermonde matrix, which in turn are determined

by the parameters values, not the structure of the model. More broadly, we find

strong analogies there to random matrix theory, where eigenvectors in the universal

ensembles are uncorrelated and random. Fourth, most real-life models are actually

composed of many separate Vandermonde ensemble style systems (Section 1.9).

This means that the eigenvectors of the entire system mix together parameters

which should be largely uncoupled.

While being able to identify entire subsystems that belong to the Vandermonde

ensemble would be incredibly useful, it is a difficult task which we have not solved

yet. Instead, we focus here on simply identifying small numbers of bare param-

eters to which the model is insensitive. Knowing such parameters and pairs of

parameters should be useful in simplifying the model.

Let us first identify single parameters which can be most easily removed from

a model. As elsewhere in this work we focus on cost functions that are sums-of-

squares. The Jacobian, the matrix of first derivatives of the residuals with respect

to the parameters, is then Jiα = ∂ri/∂pα. The Hessian, the matrix of second

derivatives of the cost function with respect to the parameters is then

Hαβ =
∑

i

ri
∂2ri

∂pα∂pβ
+

∂ri

∂pα

∂ri

∂pβ
(D.1)

=
∑

i

ri
∂2ri

∂pα∂pβ
+
(

J>J
)

αβ
(D.2)
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At the best fit parameters the residuals ri in general are often small. When

this is the case, ri ≡ 0 and we can ignore the first term in equation D.2. This

approximation, H ≈ J>J , is the basis of the Levenberg-Marquardt optimization

algorithm [28]. Parameter α is ignorable if Jiα ≡ 0 for all i. The diagonal compo-

nents of J>J are given by the 2-norm of the corresponding columns of the Jacobian

(
(

J>J
)

αα
=
∑

i J
2
iα), and so ignorable parameters lead to small diagonal entries

of the Hessian. This means that to identify single parameters which can be re-

moved from a model with the least impact, one should identify the columns of the

Jacobian with smallest norm.

We now turn to identifying pairs of parameters that lead to sloppiness. Two

parameters are ‘close’ in the model if some linear combination of the two can be

removed with minimal impact. Any normalized linear combination of two param-

eters pα and pβ can be written as p̃ = λpα +
√

1 − λ2pβ. Motivated by the results

in finding single sloppy parameters, we now wish to find α, β, and λ such that

|∂ri/∂p̃|2 is small. Expanding this derivative, we have

∂ri

∂p̃
= λ

∂ri

∂pα

+
√

1 − λ2
∂ri

∂pβ

(D.3)

∣

∣

∣

∣

∂ri

∂p̃

∣

∣

∣

∣

2

= λ2
(

J>J
)

αα
+ (1 − λ2)

(

J>J
)

ββ
+ 2λ

√
1 − λ2

(

J>J
)

αβ
(D.4)

To find, for given α and β, the sloppiest linear combination we can now take

derivatives with respect to λ, set the function equal to zero, and solve for λ∗.

2λ∗

(

J>J
)

αα
− 2λ∗

(

J>J
)

ββ
+

(

2
√

1 − λ2
∗ −

2λ2
∗

√

1 − λ2
∗

)

(

J>J
)

αβ
= 0. (D.5)

This equation has four solutions related by taking λ∗ → −λ∗, λ∗ →
√

1 − λ2
∗,

and λ∗ → −
√

1 − λ2
∗. Precisely which one yields the minimum is determined by

the signs and magnitudes of the relevant components of J>J . Aside from these
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transformations, the solution is

λ∗ = −

√

√

√

√

√

Dαβ − (J>J)αα + (J>J)ββ

2
√

Dαβ

(D.6)

where Dαβ =
(

(

J>J
)

αα
−
(

J>J
)

ββ

)2

+ 4
(

J>J
)2

αβ
. For this linear combination of

pα and pβ, the squared sensitivity is given by

∣

∣

∣

∣

∂ri

∂p̃

∣

∣

∣

∣

2

=
−Dαβ + 4

(

J>J
)2

αβ

2
√

Dαβ

+

1

2

(

(

J>J
)

αα
− 4

(

J>J
)

αβ

√

(J>J)2
αβ /Dαβ +

(

J>J
)

ββ

)

.

(D.7)

We can now take the Hessians for some real-life models and look for particular

linear combinations of pairs of parameters that cause substantial sloppiness. Both

models we will consider are of biological networks. In both cases, derivatives were

taken with respect to the logarithms of the biochemical reaction constants (rate

and Michaelis-Menten constants). Because of these logarithms, the sum of any

two parameters is equal to the product of the two biochemical constants and the

difference of any two parameters is the ratio of the biochemical constants.

The first model we consider is for growth factor signaling network in PC12

(Section 1.2). In Figure D.1 we show the matrix of |∂ri/∂p̃|2 values for each pair of

the 48 parameters. Figure D.2 shows the corresponding values of λ∗. While there

is much information that could be gleaned from these plots, as a demonstration

of the usefulness we will focus on the pair of parameters indexed by 42 and 18.

Parameter 42 is the (logarithm of the) rate constant for activation of BRaf by Rap1

and parameter 18 is the (logarithm of the) rate constant for activation of Mek1/2 by

BRaf. This analysis shows that the model is particularly insensitive to the ratio of

these two rate constants (λ∗ = −0.709 for the combination p̃ = λp42 +
√

1 − λ2p18).

This result confirms the findings in Appendix C that these two parameters lead to
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Figure D.1: PC12 model sensitivity to parameter pairs. The horizontal and

vertical axes are the indices of the 48 parameters in this model. The color is a log

scale, log10(|∂ri/∂p̃|2).

particularly sloppy submodels. This suggests that perhaps the network does not

need both proteins to be in the model and could be simplified by lumping them

into one effective mechanism for activating Mek. As further confirmation that this

particular combination of the two rate constants constitutes a sloppy direction, in

Figure D.3 we show the dot product of this direction with each of the eigenvectors

of the Hessian (approximated by J>J). It is clear that while not precisely an

eigenvector itself, this direction in parameter space falls well within the sloppy

subspace and is not aligned with the stiff directions at all.

Since this new measure, |∂ri/∂p̃|2 defines how close any two parameters are to

one another, we can use it to cluster the parameters. This can help us determine

which sets of parameters consitute Vandermonde subsystems because they will all

cluster together. In Figure D.4 we show the results of clustering the PC12 network

parameters in just this way. On the top we see the original Jacobian, Jij = ∂ri/∂pj,
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Figure D.2: Insensitive parameter pairs in PC12 model. The horizontal and

vertical axes are the indices of the 48 parameters in this model. The color scale

represents λ where the linear combination of the given pair of parameters to which

the model is most insensitive is p̃ = λpα +
√

1 − λ2pβ (α and β are the column and

row indices, respectively).
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Figure D.3: PC12 sensitivity to p̃. The horizontal axis indexes the PC12 Hessian

(approximated by J>J) eigenvectors with 0 being the stiffest and 48 being the

sloppiest. The vertical scale is the dot product of p̃ with each eigenvector, where

p̃ = λpα +
√

1 − λ2pβ (λ = −0.709, α = 42, and β = 18).

and on the bottom we see the same Jacobian but with the columns permuted

according to the results of clustering based on |∂ri/∂p̃|2. There is one important

detail: clustering simply on |∂ri/∂p̃|2 would be dominated by single parameters

that have no effect on the residuals by themselves. What we are interested in is

identifying sets of parameters which have significant and redundant effects. For

this reason divide by the effects of each parameter alone and cluster on:

PairProximityαβ =
|∂ri/∂p̃|2

λ2|∂ri/∂pα|2 + (1 − λ2)|∂ri/∂pβ|2

= 1 +
2λ

√
1 − λ2

(

J>J
)

αβ

λ2 (J>J)αα + (1 − λ2) (J>J)ββ

. (D.8)

In the hierarchical clustering process one must decide how to define the distance

between any already clustered sets of parameters. Since we want to identify the

closest neighbors in this space (as opposed to, for instance, centroids defining the

clusters) we define the distance between two clusters as the minimum distance
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Figure D.4: Clustering the PC12 Jacobian parameters. In (a) the Jacobian

matrix, Jij = ∂ri/∂pj for the PC12 growth factor signaling network is shown.

The columns have been ordered by a hierarchical clustering algorithm based on

the ‘distance’ measure |∂ri/∂p̃|2. Note that there do in fact exist several sets of

parameters which have equivalent patterns of effects on the model behavior and

thus constitute Vandermonde subsystems. In (b) the same matrix is shown but the

columns have each been normalized to have unit magnitude. This allows the effects

of parameters which have little effect overall (such as the two left-most columns)

to be noticeable to the eye.

between any two members of the clusters.

The next model that we analyze in this way is a model for signaling, trafficking

and down-regulation based around the EGF receptor [6]. In Figure D.5 we plot

|∂ri/∂p̃|2 values for the sloppiest combination of each pair of the 56 parameters.

The particular combinations are depicted in Figure D.6, where we plot λ as a

function of the parameter indices α and β for p̃ = λpα +
√

1 − λ2pβ. The rows and

columns which appear as dark stripes in Figure D.5 are individual parameters to

which the model is insensitive. This is shown in Figure D.6 where the values of
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λ∗ are either -1, 0, or 1. These are also the very same parameters which lead to

particularly sloppy submodels (Appendix C).

As with the previous model, we could analyze these matrices in much greater

detail but for now we focus on a particular entry. Consider the pair of parameters

indexed by 41 and 39. These are the (logarithms of the) Michaelis-Menten con-

stants for activation of Focal Adhesion Kinase (FAK) by Src and for activation of

Src by EGFR, respectively. Active FAK then activates Cbl, a particularly impor-

tant protein in the model. Figures D.5 and D.6 show that the model is particularly

insensitive to the ratio of these constants1. This is supported by Figure D.7 which

plots the dot product of this direction in parameter space with each of the eigen-

vectors of the Hessian (approximated by J>J). These results suggest that the two

proteins are not both necessary to recreate the experimental dynamics and that

instead a single-step for activating Cbl by the EGFR would be sufficient.

In Figure D.8 we show the results of clustering the 56 parameters in this model.

As before with the PC12 network, this clustering is based on the ‘distance’ defined

by Equation D.8. Note that several sets of parameters are immediately identifiable

as having similar patterns of effects on the residuals, suggesting that they constitute

Vandermonde subsystems of the full model.

1Interestingly, the product of these two Michaelis-Menten constants appears in
some of the stiffest eigenvectors [6].

97



� ��� ��� ��� ��� ��� 	���

���

���

���

���

���

	��


 �
� �


 	 � �


 � � �


 � � �

� � �

� � �

Figure D.5: EGFR model sensitivity to parameter pairs. The horizontal and

vertical axes are the indices of the 56 parameters in this model. The color is a log

scale, log10(|∂ri/∂p̃|2).

� ��� ��� ��� ��� ��� ����

���

���

���

���

���

���

� ��� �

� �
� �

��� �

��� �

��� �

Figure D.6: Insensitive parameter pairs in EGFR model. The horizontal and

vertical axes are the indices of the 56 parameters in this model. The color scale

represents λ where the linear combination of the given pair of parameters to which

the model is most insensitive is p̃ = λpα +
√

1 − λ2pβ (α and β are the column and

row indices, respectively).
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Figure D.7: EGFR sensitivity to p̃. The horizontal axis indexes the EGFR Hessian

(approximated by J>J) eigenvectors with 0 being the stiffest and 56 being the

sloppiest. The vertical scale is the dot product of p̃ with each eigenvector, where

p̃ = λpα +
√

1 − λ2pβ (λ = −0.834, α = 41, and β = 39).
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Figure D.8: Clustering the EGFR Jacobian parameters. In (a) the Jacobian

matrix, Jij = ∂ri/∂pj for the EGFR trafficking network is shown. The columns

have been ordered by a hierarchical clustering algorithm based on the ‘distance’

measure |∂ri/∂p̃|2. Note that there do in fact exist several sets of parameters

which have equivalent patterns of effects on the model behavior and thus constitute

Vandermonde subsystems. In (b) the same matrix is shown but the columns have

each been normalized to have unit magnitude. This allows the effects of parameters

which have little effect overall (such as many of the right-most columns) to be

noticeable to the eye.
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Appendix E

Model Equations

The system of coupled ordinary first order differential equations that define the

model of quorum sensing in Agrobacterium tumefaciens is as follows. Chemical

species with names beginning with ‘hot’, as well as the variables ‘radiolabel’ and

‘unradiolabel’, are for radiolabeled pulse-chase experiments.

Differential Equations

d [octopine]
dt

= 0

d [OOHL]
dt

= kOOHL · [TraI]

− kROOHL · [FreeTraR] · [OOHL]

− kdOOHL · [OOHL]

− kROOHL · [hotFreeTraR] · [OOHL]

d [traAPromoter]
dt

= kdoublingtime · [traAPromoter]

d [traAmRNA]
dt

= ktraAbasal · [traAPromoter]
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+ ktmA·[traAPromoter]·[TraRDimer]
([TraRDimer]+KmtmA)

− kdmA · [traAmRNA]

d [TraA]
dt

= ktpA · [traAmRNA]

− kdpA · [TraA]

d [traRPromoter]
dt

= kdoublingtime · [traRPromoter]

d [traRmRNA]
dt

= ktraRbasal · [traRPromoter]

+ ktmR·[traRPromoter]·[octopine]
([octopine]+KmtmR)

+ kPlac · [Plac]

− kdmR · [traRmRNA]

d [FreeTraR]
dt

= ktpR · [traRmRNA] · [unradiolabel]

− kdpR · [FreeTraR]

− kROOHL · [FreeTraR] · [OOHL]

d [BoundTraR]
dt

= kROOHL · [FreeTraR] · [OOHL]

− kdimR · [BoundTraR]2 · 2

d [TraRDimer]
dt

= kdimR · [BoundTraR]2

d [traIPromoter]
dt

= kdoublingtime · [traIPromoter]

d [traImRNA]
dt

= ktraIbasal · [traIPromoter]

+ ktmI·[traIPromoter]·[TraRDimer]
([TraRDimer]+KmtmI)

− kdmI · [traImRNA]

d [TraI]
dt

= ktpI · [traImRNA]
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− kdpI · [TraI]

d [Plac]
dt

= 0

d [hotFreeTraR]
dt

= ktpR · [traRmRNA] · [radiolabel]

− kdpR · [hotFreeTraR]

− kROOHL · [hotFreeTraR] · [OOHL]

d [hotBoundTraR]
dt

= kROOHL · [hotFreeTraR] · [OOHL]

− kdimR · [hotBoundTraR]2 · 2

d [hotTraRDimer]
dt

= kdimR · [hotBoundTraR]2

d [radiolabel]
dt

= 0

d [unradiolabel]
dt

= 0
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Appendix F

Fits and Eigenvectors

Figures F.1,F.2,F.3,F.4,F.5, and F.6 contain the data used to constrain the model

as well as the simulation output with the best fit parameters. Table F.1 contains

the best fit parameter values. The eigenvectors of J>J , sorted by their correspond-

ing eigenvalues, are available in Figures F.7, F.8 and F.9.
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Figure F.1: TraR protein half-life with and without OOHL [39]. Radiolabeled

TraR translation was carried out in either the presence or absence of 100 nM

OOHL. Without OOHL TraR is very unstable and has a half life of roughly two

minutes. When OOHL is present during translation, TraR binds and is stable

for the length of the experiment. The circles and error bars are the experimen-

tal measurements and the straight lines are the model output with the best fit

parameters.
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Figure F.2: Activation of quorum sensing requires both octopine and OOHL [11].

In wild type Agrobacterium tumefaciens the lacZ gene was put under TraR control.

When present, octopine concentration was 2 mg/ml and OOHL concentration was

0.5 nM. The open circles and error bars are the experimental measurements and

the solid circles are the model output with the best fit parameters.
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Figure F.3: Activation of quorum sensing requires the gene traR [11]. The lacZ

gene was put under control of TraR in Agrobacterium tumefaciens. All experiments

in this table were with a strain that had a disruption in the traR gene. When

present, octopine concentration was 2 mg/ml and OOHL concentration was 0.5

nM. The open circles and error bars are the experimental measurements and the

solid circles are the model output with the best fit parameters.
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Figure F.4: Activation of quorum sensing requires the gene occR [11]. The lacZ

gene was put under control of TraR in Agrobacterium tumefaciens. All experiments

in this table were with a strain that had a disruption in the occR gene. When

present, octopine concentration was 2 mg/ml and OOHL concentration was 0.5

nM. The open circles and error bars are the experimental measurements and the

solid circles are the model output with the best fit parameters.

108



Strain R1 
- octopine

Strain R1 
+ octopine

Strain RO1 
- octopine 

Strain RO1 
+ octopine

0

5

10

15

20

 β
-G

al
ac

to
si

da
se

 s
p 

ac
t (

M
ill

er
 u

ni
ts

)

Figure F.5: Activation of traR expression requires the occR gene [11]. Agrobac-

terium strain R1 is wild-type and strain RO1 has a disruption in the occR gene.

Read out of activation is a traR-lacZ fusion. The open circles and error bars are

the experimental measurements and the solid circles are the model output with

the best fit parameters.
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Figure F.6: Dose response curve for activation of quorum sensing network in

response to various concentrations of OOHL [38]. Readout for activation is lacZ

gene under control of traA promoter. The open circles and error bars are the

experimental measurements and the solid circles are the model output with the

best fit parameters.
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Table F.1: Best fit parameter values. Parameters beginning with a lower case

‘k’ have units of inverse minutes and ‘Km’ parameters have units of molecules

per cell. Note that precisely because the system is sloppy, these values are not

to be interpreted as the ‘true’ values. For instance, the basal transcription rate

for traR of 4.31 × 10−29min−1 is equivalent to roughly 1 transcribed traR mRNA

every ten millenia. The model with this set of training data simply needs this

rate to be small (effectively zero) and the optimization algorithm has allowed it

to evaporate to unbiological ranges. Similarly the value for the Michaelis-Menten

constant involved in transcription of traA mRNA of 2.29×1012 simply means that

the model does not need this relationship to saturate.

Index Parameter Value Index Parameter Value

0 ktraRbasal 4.31e-29 14 kOOHL 3.43e-11

1 ktmR 6.99e11 15 ktraAbasal 3.22e-08

3 kdmR 6.71e-16 16 ktmA 1.47e8

4 ktpR 6.20e-11 18 kdmA 9.77e-09

5 kdpR 0.457 19 ktpA 1.02e-05

6 kROOHL 4.10e-06 20 kdpA 2.74e-23

7 kdimR 4.44e-4 21 kdOOHL 6.08e-2

8 ktraIbasal 6.61e-08 22 kPlac 1.72e15

9 ktmI 6.28e10 23 kdoublingtime 8.65e-4

11 kdmI 3.61e-15 2 KmtmR 1.05e-07

12 ktpI 4.59e3 10 KmtmI 6.00e8

13 kdpI 1.59e-05 17 KmtmA 2.29e12
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Figure F.7: First eight eigenvectors of quorum sensing Hessian. Eigenvectors one

through eight of J>J evaluated at the parameters in Table F.1. The eigenvectors

are sorted by eigenvalue (Figure 2.4).
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Figure F.8: Second eight eigenvectors of quorum sensing Hessian. Eigenvectors

nine through sixteen of J>J evaluated at the parameters in Table F.1. The eigen-

vectors are sorted by eigenvalue (Figure 2.4).
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Figure F.9: Final eight eigenvectors of quorum sensing Hessian. Eigenvectors

seventeen through twenty four of J>J evaluated at the parameters in Table F.1.

The eigenvectors are sorted by eigenvalue (Figure 2.4).
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