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The statistical properties of fracture strength of brittle and quasibrittle materials are often described in
terms of the Weibull distribution. However, the weakest-link hypothesis, commonly used to justify it, is
expected to fail when fracture occurs after significant damage accumulation. Here we show that this implies
that the Weibull distribution is unstable in a renormalization-group sense for a large class of quasibrittle
materials. Our theoretical arguments are supported by numerical simulations of disordered fuse networks.
We also find that for brittle materials such as ceramics, the common assumption that the strength
distribution can be derived from the distribution of preexisting microcracks by using Griffith’s criteria is
invalid. We attribute this discrepancy to crack bridging. Our findings raise questions about the applicability
of Weibull statistics to most practical cases.
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I. INTRODUCTION

The applicability of the Weibull distribution to describe
the fracture strength of brittle and quasibrittle materials has
been a topic of intense debate [1–9]. Several experimental
studies argue that the Weibull distribution is not always the
best statistical distribution to fit fracture data [1,2,6,8,10–12]
(numerous others argue otherwise), particularly for quasi-
brittle materials that have significant precursor damage.
These observations demand a general theoretical explan-
ation. The suggested explanations for these empirical
observations include bimodal or multimodal flaw-size dis-
tribution [1,13–15], R-curve behavior [6], small size of the
data sets [1,9], and thermal-activated crack nucleation
[16,17]. Here we provide a general explanation for these
observations by showing that the Weibull distribution is
unstable in the renormalization-group sense for quasibrittle
materials and, thus, not applicable at long length scales.
In deriving the Weibull distribution of fracture strengths,

it is invariably assumed that the material volume has a
population of noninteracting cracklike defects, and fracture
happens as soon as theweakest of these defects starts to grow
[18–20]. This assumption is also known as the “weakest-link
hypothesis.” Experimental observations suggest that this
assumption does not hold for a large class of quasibrittle
materials. These materials, including paper [21], granite
[22,23], antler bone [24], wood [23,25], and composites
[26,27], etc., typically “crackle” [5,28], suggesting that

several local cracks grow and get arrested prior to global
fracture. Advanced composites are designed to fail grace-
fully; that is, they have multiple failures before the ultimate
fracture. It is clear that for such materials the weakest defect
does not dominate the fracture properties of thematerial, and
the defects interact via elastic fields. The emergent scale-
invariant properties of these interactions have been a topic of
intense study in the statistical physics community [29–32].
Several researchers have used the Weibull theory to model
these quasibrittle materials. We show that even if the
microscopic strength distribution is Weibull, the emergent
distribution is significantly distorted due to elastic inter-
actions and metastability. Thus, the Weibull distribution is
not stable in the renormalization-group sense. We provide
numerical evidence to support our theoretical claims.
For brittle materials such as glasses or ceramics that

fracture catastrophically without precursor damage, it is
assumed that the distribution of fracture strength can be
derived from the distribution of flaw sizes by using
Griffith’s criteria (or, equivalently, the stress-intensity
approach) and ignoring effects such as crack bridging or
coalescence [1,33]. For exponentially distributed cracks,
the fracture strength is expected to be described by the
Duxbury-Leath-Beale (DLB) distribution [5,34,35], while
only in the case of power-law-distributed cracks, one
expects to obtain the Weibull distribution [36]. It is,
however, challenging to measure the flaw-size distribution
experimentally and, thus, these assumptions are rarely
verified empirically [14,37,38]. One of the aims of this
paper is to use numerical simulations to show that the*stefano.zapperi@cnr.it

PHYSICAL REVIEW APPLIED 2, 034008 (2014)

2331-7019=14=2(3)=034008(8) 034008-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevApplied.2.034008
http://dx.doi.org/10.1103/PhysRevApplied.2.034008
http://dx.doi.org/10.1103/PhysRevApplied.2.034008
http://dx.doi.org/10.1103/PhysRevApplied.2.034008


simple relations that are widely used in the literature are not
accurate, and further study is needed to understand the
discrepancy. This observation has important implications
for material engineers who aim to improve the fracture
properties of brittle materials by controlling the
microstructure.
In light of the above-discussed limitations of the Weibull

theory, what distribution should one use to fit fracture data?
To answer this question, we consider two classes of fuse
networks to model brittle and quasibrittle materials. Both
of the these models are derived from the classical fuse-
network models [34,39]. In the model for brittle materials,
the fuse network is seeded with power-law-distributed
cracks with varying morphology. This is different from
the classical diluted-fuse-network model which has an
exponential distribution of cracks [5,34,35]. The model
for quasibrittle materials has a continuous distribution of
fuse strengths, where each fuse strength is a random
number drawn from a standard Weibull distribution. In
this manner, we can ensure that the microscopic strength
distribution is Weibull and study the emergent macroscopic
distribution. This model differs from its counterparts in the
literature [29,40] by the choice of the microscopic disorder
and enables a numerical study of the stability of the Weibull
distribution. Analyzing the simulations, we find that the
recently proposed T method (T denotes transformation)
provides a suitable alternative to fit the numerical data [41].
The method is general enough that it can be applied in a
wide variety of cases.
The rest of the paper is organized as follows. Section II

presents the basics of the classical Weibull theory and the
commonly used relation between the strength distribution
and the defect-size distribution. The details of the numeri-
cal models used in this study are discussed in Sec. III.
Section IV presents theoretical and numerical evidence to
show that the Weibull distribution is unstable under coarse
graining for quasibrittle materials. In Sec. V, we present the
numerical evidence to show that the relation between the
strength distribution and the flaw-size distribution is non-
trivial and cannot be obtained by a straightforward appli-
cation of Griffith’s criteria. We discuss the possible sources
of the observed discrepancy. Section VI presents a com-
parison of the performance of the Weibull distribution and
the recently proposed T method for fitting the simulation
data for quasibrittle fuse networks. The conclusions are
presented in Sec. VII.

II. WEIBULL THEORY

In this section, we review the classical Weibull theory in
order to facilitate the discussion in the following sections.
We consider a material volume V subjected to a stress field
σðrÞ. The material should have a density of defects of
various shapes and sizes, such that e−fðσÞ is the probability
of not finding a defect with critical stress less than σ in a
volume V0 of the material. Here we assume that the stress

in uniaxial and tensile; the case of full tensorial stress is
similar and is not presented here to avoid unnecessary
notational complexity. The volume V0 should be large
enough that it contains a sufficient number of cracks and
yet small enough that the stress can be considered roughly
constant across it; it is sometimes also called the repre-
sentative volume element. fðσÞ is a homogeneous material
property. Then, the probability that the material volume V
will survive the stress field σðrÞ is given by

SVðσÞ ¼ exp

�
−

1

V0

Z
V
f(σðrÞ)dr3

�
: ð1Þ

Weibull recognized that taking fðσÞ ¼ ðσ=σ̄Þk, where σ̄ is a
material-dependent scale parameter and k is the material-
dependent Weibull modulus, gave a good fit for several
brittle materials and introduced what is now known as the
standard Weibull distribution [18]:

SVðσÞ ¼ exp

�
−

1

V0

Z
V

�
σ

σ̄

�
k
dr3

�
: ð2Þ

It turns out that the empirical choice made by Weibull
can be justified by a renormalization-group calculation in
which one writes recursive equations describing the failure
distribution as the scale is changed [42]. The Weibull
distribution is one of the possible fixed points of the
renormalization-group transformation [42].
The Weibull distribution can alternatively be derived by

connecting the function fðσÞ to the microscopic-defect-size
distribution. The basic calculation outlined in the remainder
of this section can be found in a number of important
references [1,33]. According to Griffith’s criteria, a crack of
length w is stable at applied normal stress σ if

K ¼ σYw1=2 ≤ KIc; ð3Þ
where Y is the geometry factor of the crack, and KIc, the
critical stress-intensity factor, is a material property. The
exponent of 1=2 is applicable for ideally sharp cracks and
can have a different value for wedge-shaped or blunted
cracks. Thus, if we take e−hðwÞ to be the probability that
the volume element V0 does not contain any crack longer
than w, we have

fðσÞ ¼ hðK2
Ic=σ

2Y2Þ: ð4Þ

If the defect-size (crack-length) distribution is a power
law with exponent γ, then hðwÞ ∼ w−γ , which gives fðσÞ∼
ðσ=σ̄Þ2γ, where σ̄ ¼ KIc=Y. Thus, a power-law defect-size
distribution with exponent γ leads to a Weibull distribution
of fracture strength with modulus k ¼ 2γ.
As pointed out before, this entire analysis assumes that

the flaws do not interact and that the failure of the weakest
flaw leads to the failure of the entire material volume. We
also show in Sec. IV that relaxing the assumption that the
weakest flaw leads to global failure has important
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consequences and results in the strength distribution flow-
ing away from the Weibull form. Our numerical calculation
reported in Sec. V shows that crack bridging is an important
form of crack interaction that can significantly alter the
resulting Weibull modulus away from the dilute limit
(but does not change the Weibull form for power-law-
distributed cracks).

III. THE RANDOM-FUSE MODEL

In this section, we describe the computational model
that we use for various classes of brittle and quasibrittle
materials. The theoretical arguments presented in later
sections benefit from having a concrete model as a point
of reference. We study several variants of the basic
two-dimensional random-fuse model (RFM) [34,39]. The
RFM is a well-accepted model of brittle fracture where each
fuse represents a coarse-grained material region (analog of
the classical representative volume element). The model
consists of a set of conducting fuses with unit conductivity
gj ¼ 1 and breaking threshold σj arranged on a 45°-tilted
square lattice composedbyL × L nodes.Aunit voltage drop
is applied along two parallel edges of the lattice while
periodic boundary conditions are imposed along the other
two edges. The Kirchhoff equations are solved numerically
using the algorithm proposed in Ref. [43] to determine the
current flowing in each of the fuses. We then evaluate the
ratio between the current ij and the breaking threshold σj,
and the fuse having the largest value maxj

ij
σj
is irreversibly

removed (burned). The current is redistributed instantane-
ously after a fuse is burned. Each time a fuse is burned, it is
necessary to recalculate the current distribution in the lattice.
The process of burning fuses, one at a time, is repeated until
the lattice system fails completely (becomes nonconduc-
tive). The random-fusemodel is equivalent to a scalar elastic
problem where we consider a pure antiplane shear defor-
mation. In this condition, the shear stress σ is related to the
total current I by σ ¼ I=L, the shear strain ϵ to the voltage
drop v by ϵ ¼ v=L, and the conductivity g is equivalent
to the shear modulus. From the breaking sequence, we can
derive the current-voltage (or stress-strain) curve of the
network under adiabatic loading as discussed in Ref. [44].
In this study, we employ two different disorder distri-

butions to model quasibrittle and brittle materials:
(i) Weibull disorder (quasibrittle). The fuse strength

threshold is chosen to be a random variable drawn
from a Weibull distribution with modulus k; thus,
the survival probability of a fuse at applied stress σ
is S1ðσÞ ¼ e−σ

k
. Fuse networks with continuously

distributed strengths have been studied previously
[29]. In those studies, the thresholds were drawn
from the uniform [29], power-law [30,31], and
hyperbolic distributions [45]. However, the focus
of those studies was on the morphology and
dynamic properties, while we focus on strength.

Further, by letting the local thresholds be Weibull
distributed, we can directly study the stability of the
Weibull distribution under coarse graining.

(ii) Diluted cracks (brittle). We remove a fraction p of
the fuses and assign the same breaking threshold
(¼ 1) to the intact fuses [5,34]. We take
0.05 ≤ p ≤ 0.2, thus, keeping the initial damage
fairly dilute in order to avoid the phenomena that
happen near the percolation threshold (at p ¼ 0.5
for the tilted square lattice we are using). Note that
the missing fuses are not chosen randomly but rather
in a way that they form a set of cracks with power-
law-distributed crack lengths with 2.5 ≤ γ ≤ 9,
where γ is the exponent of the power law. We
employ both straight and fractal flaws grown by
using self-avoiding random walks. Fuse networks
with diluted cracks were originally studied in
Refs. [34,39]. However, in those studies the cracks’
lengths had an exponential distribution (as opposed
to power law). The exponential distribution of
defect sizes leads to a Gumbel-type distribution of
strengths and, thus, are markedly different from
our model.

For each case, we do extensive statistical sampling for
network sizes L ¼ 32, 64, 128, 256, 512.

IV. STABILITY OF WEIBULL DISTRIBUTION
FOR QUASIBRITTLE MATERIALS

The standard Weibull distribution reported in Eq. (2) is
derived under the assumption that the failure of the weakest
flaw (or representative volume element) leads to complete
global failure. Under this assumption, if the strength
distribution of the representative element is standard
Weibull with modulus k, i.e., SV0

ðσÞ ¼ e−σ
k
, then the

survival probability of the material volume V is given by

SVðσÞ ¼ SV0
ðσÞV=V0 ¼ exp

�
−

V
V0

σk
�
: ð5Þ

In mathematical terms, we can say that the Weibull
distribution is stable under coarse graining: A system
composed by subsystems described by the Weibull dis-
tribution is itself described by the Weibull distribution.
As we mentioned earlier, however, the weakest-link

assumption is not accurate in quasibrittle materials. We
can then derive the condition for Eq. (5) to remain valid if
this assumption is relaxed. The stress at which the weakest
flaw fails scales as σmin ∼ ðV0=VÞk. The failure of this
volume element enhances the stress on its neighbors due to
stress concentration. However, the neighbors of the weakest
flaw are typically not very weak, and we safely assume that
their strength is near the mean strength hσi ¼ 1. Assuming
that the stress concentration factor scales as YVβ

0, where Y
is a geometry factor, the neighboring volume element
fails if σminYV

β
0 > hσi, which yields k≳ logðV=V0Þ as
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the approximate condition for the validity of the weakest-
link hypothesis. Outside of this range, the local failure of
the weakest link does not trigger global failure. In this
calculation, we ignore the details and make several sim-
plifications; thus, it gets only the correct scaling.
The above arguments show that the weakest-link hypoth-

esis is self-consistent, and the Weibull distribution is stable
under coarse graining only if the Weibull modulus is large
enough, k≳ logðV=V0Þ. Clearly, the strength distribution
flows away from the Weibull distribution in the limit of
V → ∞. The typical ranges for the Weibull modulus are
k > 30 for metals, 5 < k < 20 for ceramics [46], and
2 < k < 4 for biomaterials such as nacre [47]. It is clear
that for materials with small to moderate values of k (such
as biomaterials), the applicability of Weibull analysis is
questionable. Indeed, the weakest-link hypothesis is man-
ifestly false—these materials exhibit significant precursory
fracture events (crackling noise) before failure [28].
Figure 1 shows the emergent strength distribution for

fuse networks of various sizes where the fuse threshold is
taken from a Weibull distribution with k ¼ 25. We choose
such a high value of k to show the crossover away from
Weibull; for smaller values of k, the distribution has already
flown away from Weibull even for the smallest networks
that we can simulate. According to the Weibull theory,
the emergent distribution of strength would be given by
Eq. (5) with V=V0 ¼ L2 (there are L2 fuses), thus, giving
SL2ðσÞ ¼ e−L

2σk . Figure 1 shows that while this prediction
holds for small values of L, the distribution flows away
from the Weibull distribution at longer lengths. This shows
that the Weibull distribution is unstable to disorder in a
renormalization-group sense and must be used with caution
for quasibrittle materials.
We establish that the strength distribution flows away

fromWeibull in quasibrittle materials, but what does it flow

towards? It is an unsolved problem to compute the new
emergent distribution of strengths analytically. However, to
get some idea about the distribution, we compute a very
simple-minded upper bound to the survival probability for
the fuse-network model. From Eq. (3), at any given stress σ,
the length of the critical crack goes as wcrðσÞ ∼ ðσ̄=σÞ2
(i.e., a crack longer than wcr will have unstable growth).
If the fuse strength threshold is standard Weibull, then the
probability of having a crack of size wcr at any given lattice
site is at least ð1 − e−σ

kÞwcrðσÞ. Since there are L2 lattice
sites, the global probability of survival is at most

½1 − ð1 − e−σ
kÞwcrðσÞ�L2

: ð6Þ

Making asymptotic expansions for small σ, we get

SL2ðσÞ < expð−L2e−kðσ̄=σÞ2 logð1=σÞÞ: ð7Þ

If we take the slowly varying logð1=σÞ to be a constant,
then the above expression is reminiscent of DLB distribu-
tion [34]. The factor of logð1=σÞ can be removed in a more
natural way if one takes into account the stress concen-
tration at each step of crack growth (see Ref. [40] for a

FIG. 1. Emergent survival probability for L ¼ 4;…; 128, with
k ¼ 25 for the threshold distribution. If the emergent distribution
is Weibull, it will follow the solid black line. Clearly, the
distribution flows away from Weibull at long length
scales, showing that the Weibull distribution is not stable in a
renormalization-group sense.

FIG. 2. Survival probability for (a) k ¼ 1.5 and (b) k ¼ 4. The
main figures show the DLB test, while the insets show the
Weibull test; straight lines indicate agreement with the tested
form.
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similar treatment). Our observation is supported by exper-
imental results for some quasibrittle materials where the
DLB distribution was found to fit the data better than the
Weibull distribution [10–12].
Since the upper bound that we establish decays faster

than any Weibull function at σ ¼ 0, the macroscopic
survival probability cannot be of the Weibull form, even
if the microscopic distribution is Weibull. Note that the
arguments made here are fairly general, and, thus, we
expect the macroscopic strength distribution for any
material with significant precursor damage to deviate from
the Weibull distribution. We confirm that these ideas are
consistent with the results of our numerical simulations.
Figure 2 shows the survival probability obtained by
statistical sampling of fuse networks with different values
of k. The main plot in the figure shows that the survival
probability is consistent with a DLB distribution. If instead
the survival probability is consistent with a Weibull dis-
tribution, then the insets in the figure (so-called Weibull
plots) will be straight lines. However, the plots show
considerable curvature, suggesting a deviation from the
Weibull distribution at long length scales.

The DLB distribution was originally associated with
samples having an exponential distribution of crack length
[5,34]. We confirm this hypothesis in our simulations by
measuring the crack-length distribution just before cata-
strophic failure. The result reported in Fig. 3 shows, indeed,
the presence of an exponential tail.

V. DEFECT DISTRIBUTION AND WEIBULL
MODULUS FOR BRITTLE MATERIALS

It is widely assumed that the emergent Weibull modulus
for brittle materials can be derived by using Griffith’s
criteria if the crack-length distribution is known. This
assumption has been used in several important studies
[1,33]. However, it has never been verified empirically due
to experimental challenges. We examine this assumption
numerically by simulating fuse networks seeded with
power-law-distributed cracks. Cracks are created by remov-
ing a certain fraction p of fuses from the network. The net
density of cracks p is kept low (< 0.2) to mimic materials
such as glasses or ceramics where the density of micro-
cracks is small. The critical effects associated with
approaching the percolation threshold are also avoided
by keeping p small. Unlike the classical fuse-network
models, the removed fuses are chosen so as to generate a
power-law distribution of crack lengths (Sec. III).
We derive the strength distribution based on the

standard Griffith’s-criteria-based assumption and compare
the result to simulations. According to Griffith’s theory,
if the exponent of the power-law distribution of crack
lengths is γ, then for Eq. (4) we have hðwÞ ∼ pw−γ giving
fðσÞ ∼ pðσ=σ̄Þ2γ , where σ̄ ¼ KIc=Y. This yields the
following Weibull distribution of strengths for a fuse
network of linear size L and “volume” L2 (assuming
uniform stress):

SL2ðσÞ ¼ e−L
2pðσ=σ̄Þ2γ : ð8Þ

Thus, the Weibull modulus is given by k ¼ 2γ.
The above discussion assumes that flaw distribution does

not change at all in the fracture process. In real materials,
as well as in our fuse-network model, there is at least a
small amount of damage before catastrophic fracture. This
damage can change the tail of the crack-width distribution.
Let γi, γf be the exponent of the crack-size distribution
before loading and at peak load, respectively. We inves-
tigate the relation between γi, γf, p, and k numerically.
We find in our simulations that γi < γf. Further, we find
that the modulus of the emergent Weibull distribution is
related to the damage distribution at peak load, k ¼ 2γf.
Figure 4(a) shows the comparison of the crack-size dis-
tribution at zero and peak load for γi ¼ 5. Figure 4(b)
shows the corresponding survival probability on a so-called
Weibull plot. The slope of the Weibull plots agrees well
with 2γf.

FIG. 3. Crack-width distributions at peak load for Weibull-
distributed fuse strengths with exponents (a) k ¼ 1.5 and
(b) k ¼ 4. The distribution is a power law with an exponential
tail for all values of k.
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Thus, the standard assumption of k ¼ 2γi is incorrect.
We further explore the relation between γi and γf
by carrying out extensive numerical simulations for
2.5 < γi < 9.0 and 0.01 ≤ p ≤ 2. We also investigate the

effect of the shape of initial cracks. We seed the network
either with straight cracks or fractal-looking cracks grown
by using self-avoiding random walks. In both cases, we
maintain the width distribution hðwÞ ∼ w−γi and the defect
density as dictated by p. Figure 5 shows the relation
between γi and γf for various values of p for straight as
well as grown cracks. For all the cases, we observe that
γf > γi. It is reasonable to expect a slight increase in the
exponent γ due to crack bridging. However, it is not clear
what causes the almost 3-times increase in γ for some
configurations.

VI. T METHOD TO FIT THE
STRENGTH DISTRIBUTION

Except for the case of power-law-distributed cracks,
we see that the strength distribution is not Weibull and is
probably of the DLB type. In a previous paper [5], we
discussed how the extreme value functions are an extremely
poor approximation to the DLB form. These considerations
raise the following question: What form should be used to
fit fracture data in practice?
One of the major concerns while fitting data to extreme-

value distributions is the accuracy of extrapolations in the
low-probability tail. We compare the standard Weibull
theory and the recently proposed T method [41] by fitting
the data fracture data for the quasibrittle fuse networks with
the two techniques. In Weibull theory [Eq. (2)], the survival
probability of the network is given by SL2ðσÞ ¼ e−L

2ðσ=σ̄Þk.
Given the observed data vector X (¼ vector of fracture
strengths observed in simulation) of length n, the param-
eters ðσ̄; kÞ are determined by using the maximum like-
lihood estimation as the values that maximize the following
log-likelihood function:

LWðσ̄; kjXÞ ¼
Xn
i¼1

∂Xi
log½SL2ðXiÞ�: ð9Þ

The parameters that minimize the above log-likelihood
function give the best-fit parameters ðσ̄; kÞ for the Weibull
theory. The T method first applies a nonlinear transforma-
tion to the data, TðXÞ ¼ X−α and then fits the transformed
data of an extreme value form, thus, giving the following
log-likelihood function [41]:

LTðα; a; bjXÞ ¼
Xn
i¼1

logf∂Xi
G0½ðTðXiÞ − b�=ag; ð10Þ

where the parameters ðα; a; bÞ are estimated by minimi-
zation, and G0ðxÞ ¼ expð−e−xÞ is the standard Gumbel
distribution. We use the data set of over 20 000 simulations
corresponding to the random-fuse model with k ¼ 1.5 and
L ¼ 128 to test the applicability of the above method for
such extrapolations. We choose 20 random samples of 200
data points from the data set. We then fit each of the smaller
data sets using the Weibull theory and the T method.

FIG. 4. (a) Crack-width distributions at peak load for a system
with power-law-distributed cracks. The power-law tail has an
exponent γf that is larger than the initial one γi. (b) The
corresponding survival distribution obeys the Weibull law with
k ¼ 2γf .

FIG. 5. Relation of the exponents of the crack-width distribu-
tion initially γrmi and at peak load γf. For linear-grown cracks, the
relation depends strongly on p and γi, while for random-walk-
grown cracks we find γf ≈ cγi þ d for both investigated dilution
parameters p ¼ 0.05 and p ¼ 0.1.

BERTALAN et al. PHYS. REV. APPLIED 2, 034008 (2014)

034008-6



We extrapolate the fits and compare predictions in the low-
probability tail with the empirical data. Figure 6 shows the
�1 standard deviation predictions of such fits. It is clear
from the figure that the T method outperforms the standard
Weibull theory in accuracy of the fit and extrapolation in
the low-stress tail.

VII. CONCLUSIONS

In conclusion, we study the conditions for emergence of
the Weibull distribution for fracture strength in brittle and
quasibrittle materials. We show the Weibull distribution is
unstable under coarse graining for a large class of materials
where the weakest-link hypothesis is not strictly valid,
and there is significant precursor damage. For the case of
brittle materials, we show that the relation between strength
distribution and the defect-size distribution is highly non-
trivial and cannot be obtained by simple application of
Griffith’s criteria. Crack bridging has a significant effect on
the tails of the crack-size distribution and, thus, changes the
Weibull modulus considerably. We find that the recently
proposed T method does a significantly better job at fitting
the fracture strength data, as compared to the Weibull
distribution. We hope that the our results will lead to further
research and discussion about the applicability of the
Weibull distribution for fracture data, particularly for
quasibrittle materials that crackle.
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