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We introduce a natural way to extend celebrated spin-cluster Monte Carlo algorithms for fast thermal lattice
simulations at criticality, such as the Wolff algorithm, to systems in arbitrary fields, be they linear magnetic
vector fields or nonlinear anisotropic ones. By generalizing the “ghost spin” representation to one with a “ghost
transformation,” global invariance to spin symmetry transformations is restored at the cost of an extra degree of
freedom which lives in the space of symmetry transformations. The ordinary cluster-building process can then
be run on the representation. We show that this extension preserves the scaling of accelerated dynamics in the
absence of a field for Ising, Potts, and O(n) models and demonstrate the method’s use in modeling the presence
of novel nonlinear fields. We also provide a C++ library for the method’s convenient implementation for arbitrary

models.
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I. INTRODUCTION

Lattice models are important in the study of statistical
physics and phase transitions. Rarely exactly solvable, they
are typically studied by approximate and numerical methods.
Monte Carlo techniques are a common way of doing this,
approximating thermodynamic quantities by sampling the
distribution of system states. These Monte Carlo algorithms
are better the faster they arrive at a statistically independent
sample. This becomes a problem near critical points where
critical slowing down [1] results in power-law divergences of
dynamic timescales.

Celebrated cluster algorithms largely addressed this in the
absence of symmetry-breaking fields by using nonlocal up-
dates [2] whose clusters undergo a percolation transition at the
critical point of the system [3]. These result in relatively small
dynamic exponents for many spin systems [4-7], including
the Ising, O(n) [8], and Potts [9,10] models. These algorithms
rely on the natural invariance of the systems in question under
symmetry transformations on their spins.

Some success has been made in extending these algorithms
to systems in certain external fields by adding a “ghost site”
[11] that returns global rotation invariance to spin Hamilto-
nians at the cost of an extra degree of freedom, allowing
the method to be used in a subcategory of interesting fields
[12-14]. Static fields have also been applied by including
a separate metropolis or heat bath update step after cluster
formation [15-17], and other categories of fields have been
applied using replica methods [18-20]. Monte Carlo tech-
niques that involve cluster updates at fixed magnetization
have been used to examine quantities at fixed field by later
integrating measured thermodynamic functions [21,22].

We show that the scaling of correlation time near the crit-
ical point of several models suggests that the ghost approach
is a natural one, e.g., that it extends the celebrated scaling
of dynamics in these algorithms at zero fields to various
nonsymmetric perturbations. We also show, by a redefinition
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of the spin-spin coupling in a generic class of spin systems,
arbitrary external fields can be treated using cluster methods.
Rather than the introduction of a ghost spin, our representation
relies on introducing a “ghost transformation,” an extra degree
of freedom residing on a ghost site coupled to all other sites
that takes its values from the collection of spin symmetry
transformations of the base model rather than resemble the
base spins themselves.

We provide an open-source implementation of this method
in the form of a C++ library, available in Ref. [23]. Use of
this library will be described briefly within, but extensive
documentation is also available Ref. [23].

II. CLUSTERS WITHOUT A FIELD

We will pose the problem in a general way, but several
specific examples can be found in Table I for concreteness.
Let G = (V, E) be a graph where the set of vertices V =
{1, ..., N} enumerates the sites of a lattice and the set of
edges E contains pairs of neighboring sites. Let R be a group
acting on a set X with the action of group elements r € R on
elements s € X denoted r x 5. X is the set of states accessible
by each spin, and R is the symmetry group of X. The set X
must admit a measure y that is invariant under the action of R,
e.g.,foranyA C Xandr € R, u(r x A) = u(A). This trait is
shared by the counting measure on any discrete set or by any
group acting by isometries on a Riemannian manifold, such
as O(n) on $"! in the O(n) models [24]. Finally, a subset
R, of elements in R of order two must act transitively on X.
This property, although apparently obscure, is shared by any
symmetric space [25] or by any transitive finitely generated
isometry group. In fact, all the examples listed here have
spin spaces with natural metrics whose symmetry group is
their set of isometries. We put one spin at each site of the
lattice described by G so that the state of the entire system is
described by elementss € X x --- x X = XV,

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.063306&domain=pdf&date_stamp=2018-12-07
https://doi.org/10.1103/PhysRevE.98.063306

JARON KENT-DOBIAS AND JAMES P. SETHNA

PHYSICAL REVIEW E 98, 063306 (2018)

TABLE I. Several examples of spin systems and the symmetry groups that act on them. Common choices for the spin-spin coupling in
these systems and their external fields are also given. Other fields are possible, of course: For instance, some are interested in modulated fields
H cos[27k0(s)] for integer k and 6(s) giving the angle of s to some axis applied to the O(2) model [27]. All models listed here have example

implementations in the provided C++ library [23].

Spins (X) Symmetry (R) Action (g * 5) Coupling [Z(s, t)] Common field [B(s)]
Ising {—1, 1} 7.]27 Oxst> 5, lxst+—> —s st Hs
O(n) sl O(n) M xs+— Ms st H-s
Potts {1,...,q} S, @1y eslg)*s =1y 8(s, 1) >, Hud(m, s)
Clock 7/q7 D, Fn kS =M +S, Sy %S =—m —§ cos (2715(1;’) >, H, cos (27152—’”)
DGM Z Diys T %S =M +S, Sy xS = —M —§ (s —1)? Hs?

The Hamiltonian of this system is a function #: X" — R
defined by

M) =— Y Z(si,s))— Y Bls), (1)

{i,jleE ieV

where Z: X x X — R couples adjacent spins and B: X — R
is an external field. Z must be symmetric in its arguments
and invariant under the action of any element of R applied to
the entire lattice, that is, forany r € R and s,t € X, Z(r x s,
rxt) = Z(s,t). One may also allow Z to be a function of
edge—for modeling random-bond, long-range, or anisotropic
interactions—or allow B to be a function of site—for applying
arbitrary boundary conditions or modeling random fields. The
formal results of this paper (that the algorithm obeys detailed
balance and ergodicity) hold equally well for these cases, but
we will drop the additional index notation for clarity. Some
extensions, such as adding strong random fields or bonds,
ultimately prove inefficient [18,26].

Implementation of a model in the provided library is as
simple as defining a class that represents an element of the
state space X with a default constructor (and destructor, if
necessary) and a class that represents an element of the group
R with a default constructor and member functions that define
the action and inverse action of the class in both states and
group elements. Specific details may be found in Ref. [23].

The goal of statistical mechanics is to compute expectation
values of observables A: XV — R. Assuming the ergodic
hypothesis holds (for systems with broken-symmetry states,
it does not), the expected value (A) of an observable A
is its average over every state s in the configuration space
XV weighted by the Boltzmann probability of that state
appearing, or

_ Jyn A®)e PO dpu(s)

= e dus)

, 2)

where for Y} X --- x Yy =Y € XV the product measure
w@¥)=pu¥) - -u(¥y) is the simple extension of the
measure on X to a measure on XV. These values are
estimated using Monte Carlo techniques by constructing a
finite sequence of states {sj, ..., Sy} such that

1 M
(4) ~ ; A(s:). 3)

Sufficient conditions for this average to converge to (A)
as M — oo are that the process that selects s;;; given the
previous states be Markovian (only depends on s;), ergodic
(any state can be accessed), and obey detailed balance (the
ratio of probabilities that s’ follows s and vice versa is equal
to the ratio of weights for s and s’ in the ensemble).

Measurements of observables during Monte Carlo tech-
niques in the provided library are made by the use of hooks,
which are member functions of a measurement class that are
run at designated points during the algorithm’s execution and
provide arbitrary information about the internal state of all
relevant objects. A detailed description of these hooks can be
found in Ref. [23].

Although any of several related cluster algorithms can be
described for this system, we will focus on the Wolff algo-
rithm [8]. In the absence of an external field, e.g., B(s) =0,
the Wollff algorithm proceeds in the following way.

Algorithm 1. Wolf

1. Pick a random site m, and add it to the stack.

2. Select a transformation r € R, distributed by f(r|m,, s). Often,
f is taken as uniform on R,, but it is sufficient for preserving a
detailed balance that f be any function of the seed site m( and
Z(s,r xs) forall s € s. The flexibility offered by the choice of
distribution will be useful in situations where the set of spin
states is infinite.

3. While the stack is not empty,

(a) pop site m from the stack.
(b) If site m is not marked,
i. mark the site.
ii. For every j such that {m, j} € E, add site j to the
stack with probability,

Pr(Sm, Sj) — min{O, 1— eﬂ[Z(mm,S_;)—Z<.rm,5,')l}. 4

iii. Take s,, > r * 5,,.

When the stack is exhausted, a cluster of connected spins
will have been transformed by the action of r. In order for this
algorithm to be useful, it must satisfy ergodicity and detailed
balance. Ergodicity is satisfied since we have ensured that R,
acts transitively on X, e.g., for any s, ¢t € X, there exists r €
R, such that r x s = t. Since there is a nonzero probability that
only one spin is transformed and that spin can be transformed
into any state, ergodicity follows. The probability P(s — ')
that configuration s is brought to s’ by the flipping of a cluster
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formed by accepting transformations of spins via bonds C C
E and rejecting transformations via bonds dC C E is related
to the probability of the reverse process P(s' — s) by

P(s—>s')  f(rlmo,s) 1—[ Pr(sivs)
P(s —s) f(r_1|mo,5’ pri(s), )
jleC ! J
y l—[ 11 —Pr(?i,sj)
{i.j}edC pri(sis 55)
_ l_[ eﬁ[Z(si’,s;)—Z(Si»Sj)]
{i.j}edC
e BHE) s
= e &)

I and

whence detailed balance is also satisfied, using r = r~
Z(rxs',sY=Z( *s,s).

The Wolff algorithm is well known to be efficient in
sampling many spin models near and away from criticality,
including the Ising, Potts, and O(n) models. In general, its
efficiency will depend on the system at hand, e.g., the structure
of the configurations X and group R. A detailed discussion
of this dependence for a class of configuration spaces with
continuous symmetry groups can be found in Refs. [24,28].

This algorithm can be run on a system using the provided
library. To construct a system, you must provide a graph
representing the lattice, the temperature, the spin coupling
function Z, and the field coupling function B. Once con-
structed, cluster flips as described in the algorithm can be
performed by directly providing seed sites m, and trans-
formations » or many in sequence by providing a function
that generates random (appropriately distributed to preserve
detailed balance) transformations r. The construction and use
of Wolff systems is described Ref. [23].

II1I. ADDING THE FIELD

This algorithm relies on the fact that the coupling Z
depends only on relative orientation of the spins—global
reorientations do not affect the Hamiltonian. The external field
B breaks this symmetry. Fortunately, it can be restored. Define

a new graph G = (‘7, E), where V = {0, 1, ..., N} adds the
new ghost site 0 which is connected by
E=EU{{0,i}|i e V} 6)

to all other sites. Instead of assigning the ghost site a spin
whose value comes from X, we assign it values in the
symmetry group sp € R so that the configuration space of
the new model is R x XV. We introduce the Hamiltonian
H:R x XV — R defined by

H(so.s)=— > Z(si.s;))— Y _B(sy' *s)
{i,j}eE ieV
— > ZGsi,s)), (7)
{i,j)eE

where the new coupling Z: (RU X) x (RU X) — R is de-
fined for s, € RU X by

Z(s, 1), ifs, t € X,
Z(@s,t)={B(s ' xt), ifseR, 8)
B(t 'xs), ifteR.

The modified coupling is invariant under the action of group
elements: For any r, so € R and s € X,

Bl(rso)”
= B(sO’1 * s)
= Z(s0, $). 9)

Z(rso,r*s) = U (r *8)]

The invariance of Z to global transformations given other
arguments follows from the invariance properties of Z.

We have produced a system incorporating the field function
B whose Hamiltonian is invariant under global rotations, but
how does it relate to our old system, whose properties we
actually want to measure? If A: XV — R is an observable
of the original system, we construct an observable A: R x
XV — R of the new system defined by

A(so, 8) = A(so_1 *s), (10)

whose expectation value in the new system equals that of
the original observable in the old system. First, note that
FL(1,s) = H(s). Since the Hamiltonian is invariant under
global rotations, it follows that, for any g € R, F(g, g *s) =
H(s). Using the invariance properties of the measure on X and
introducing a measure p on R, it follows that:

Jx Jn Also, )e P09 d(s)dp(s0)
fR fo e~ PRG0S dp(s)dp(so)
S Syw Alsy ' *)e P09 1u(s)dp((so)
[ Jxn € PH09d u(s)dp(so)
S fn A P00 d 1 (55 % 8')dp(s0)
S [yw €~ PRG050)d (50 % 8')dp(s0)
_ Jrdp(s0) [y ASYe POdp(s)
Jrdp(so)  [yn e PO dpu(s')
= (A). (11)

(A) =

Using this equivalence, spin systems in a field may be treated
in the following way.

(1) Add asite to your lattice adjacent to every other site.

(2) Initialize a spin at that site whose value is a represen-
tation of a member of the symmetry group of your ordinary
spins.

(3) Carry out the ordinary Wolff cluster-flip procedure on
this new lattice, substituting Z as defined in (8) for Z.

Ensemble averages of observables A can then be estimated
by sampling the value of A on the new system. In contrast
with the simpler ghost spin representation, this form of the
Hamiltonian might be considered the ghost transformation
representation.
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One of the celebrated features of the cluster representation
of the Ising and associated models is the improved estimators
of various quantities in the base model, found by measuring
conjugate properties of the clusters themselves [29]. How
many of these quantities survive this translation? As is noted
in the formative construction of the cluster representation for
the Ising and Potts models, all estimators involving correlators
between spins are preserved, including correlators with the
ghost site [30]. Where a previous improved estimator exists,
we expect this representation to extend it to finite fields, all
other features of the algorithm hold constant. For instance,
the average cluster size in the Wolff algorithm is often said
to be an estimator for the magnetic susceptibility in the Ising,
Potts, and (with clusters weighted by the components of their
spins along the reflection direction [31]) O(n) models, but
really what it estimates is the averaged squared magnetization,
which corresponds to the susceptibility when the average
magnetization is zero. At finite fields, the latter is no longer
true, but the correspondence between the cluster size and the
squared magnetization continues to hold [see (16) and Fig. 3
below].

IV. EXAMPLES

Several specific examples from Table I are described in the
following.

A. The Ising model

In the Ising model, spins are drawn from set {1, —1}. Its
symmetry group is C,, the cyclic group on two elements,
which can be conveniently represented by a multiplicative
group with elements {1, —1}, exactly the same as the spins
themselves. The only nontrivial element is of order two and
is selected every time in the algorithm. Since the symmetry
group and the spins are described by the same elements,
performing the algorithm on the Ising model in a field is fully
described by just using the ghost spin representation. This
algorithm or algorithms based on the same decomposition
of the Hamiltonian have been applied by several researchers
[12—-14]. The algorithm has been implemented by one of the
authors in an existing interactive Ising simulator in Ref. [32].

B. The O(n) models

In the O(n) model, spins are described by vectors on
the (n — 1)-sphere S"~!. Its symmetry group is O(n), n x n
orthogonal matrices, which act on the spins by matrix multi-
plication. The elements of O(n) of order two are reflections
about hyperplanes through the origin and 7 rotations about
any axis through the origin. Since the former generate the
entire group, reflections alone suffice to provide ergodicity.
Sampling those reflections uniformly works well at criticality.
The ghost spin version of the algorithm has been used to apply
a simple vector field to the O(3) model [33]. Other fields of
interest include (n + 1)-dimensional spherical harmonics [27]
and cubic fields [34,35], which can be applied with the new
method. The method is quickly generalized to spins whose
symmetry groups are other compact Lie groups [24,28].

At low temperatures or high external vector fields, se-
lecting reflections uniformly becomes inefficient because the
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FIG. 1. The scaled autocorrelation time of the energy H for
the Wolff algorithm on a 32 x 32 x 32 XY model at its critical
temperature as a function of applied vector field magnitude | H|. The
red points correspond to reflections sampled uniformly, whereas the
green points represent reflections sampled as described in Sec. IV B.

excitations of the model are spin waves in which the magneti-
zation only differs by a small amount between neighboring
spins. Under these conditions, most choices of the reflec-
tion plane will cause a change in energy so great that the
whole system is always flipped, resulting in many correlated
samples. To ameliorate this, one can draw reflections from a
distribution that depends on how the seed spin is transformed,
taking advantage of the freedom to choose the function f in
the algorithm. We implement this in the following way. Say
that the state of the seed of the cluster is s. Generate a vector ¢
taken uniformly from the space of unit vectors orthogonal to s.
Let the plane of reflection be that whose normalisn = s + ¢,
where ¢ is drawn from a normal distribution of mean zero and
variance o. It follows that the tangent of the angle between
s and the plane of reflection is also distributed normally with
zero mean and variance o. Since the distribution of reflection
planes only depends on the angle between s and the plane and
since that angle is invariant under the reflection, this choice
preserves detailed balance.

The choice of o can be inspired by mean field theory. At
high fields or low temperatures, spins are likely to both align
with the field and each other, and the model is asymptotically
equal to a simple Gaussian one in which in the limit of large
L the expected square angle between neighbors is

(0?) ~ = DT (12)
D+ H/2
We take o = /(62)/2. Figure 1 shows the effect of making
such a choice on autocorrelation times for the energy for a
critical three-dimensional (3D) XY [O(2)] model. At small
fields both methods perform the same as the zero field Wolff
algorithm. Intermediate field values see efficiency gains for
both methods. At large fields the uniform sampling method
sees correlation times grow rapidly without bound, whereas
for the sampling method described here the correlation time
crosses over to a constant. A similar behavior holds for the
critical O(3) model, although in that case the constant value
the correlation time approaches at large fields is larger than its
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FIG. 2. Scaling collapse of autocorrelation times t for the energy H scaled by the average cluster size as a function of an external field for
various models of Table I. Critical exponents are model dependent. The colored lines and points depict values as measured by the extended
algorithm. The solid black lines show a plot proportional to #~"/#% for each model. The dynamic exponents z are roughly measured as
two-dimensional (2D) Ising: 0.23(5); 3D Ising: 0.28(5); 2D three-state Potts: 0.55(5); 2D four-state Potts: 0.94(5); 3D O(2): 0.17(5); 3D
0O(3): 0.13(5). O(n) models use the distribution of transformations described in Sec. IV B. The curves stop collapsing at high fields when the
correlation length falls to near the lattice spacing; here noncluster algorithms can be efficiently used.

minimum value (see Fig. 2). This behavior is not particularly
worrisome since the very large field regime corresponds to
correlation lengths comparable to the lattice spacing and is
efficiently simulated by other algorithms. A more detailed dis-
cussion on correlation times and these numeric experiments
can be found in Sec. V.

C. The Potts model

In the g-state Potts model, spins are described by elements
of {1,...,q}. Its symmetry group is the symmetric group
S, of permutations of its elements. The element (i1, ..., i;)
takes the spin s to i;. There are potentially many elements
of order two, but the two-element swaps alone are sufficient
to both generate the group and act transitively on {1, ..., g},
providing ergodicity.

D. Clock models

In the g-state clock model, spins are described by elements
of Z/qZ, the set of integers modg. Its symmetry group
is the dihedral group D, = {ro, ..., 74—1, S0, ..., Sq—1}, the
group of symmetries of a regular g-gon. The element r,
represents a rotation by 2wn/q, and the element s,, represents
a reflection composed with the rotation r,,. The group acts on
spins by permutation: r, xm = n + m (mod g) and s, x m =
—(n 4+ m) (mod q). This is the natural action of the group on
the vertices of a regular polygon that have been numbered
0 through g — 1. The elements of D, of order 2 are all
reflections, and r,/, if ¢ is even, although the former can
generate the latter. Although reflections do not necessarily

generate the entire group, their action on Z/gZ is transitive,
and therefore the algorithm is ergodic.

E. Roughening models

Although not often thought of as a spin model, roughening
of surfaces can be described in this framework. Spins are
described by integers Z, and their symmetry group is the
infinite dihedral group Do, = {r;, s;|i € Z}, whose action on
the spin j € Zisgivenbyr; x j =i+ jands; x j = —i — j.
The elements of order two are reflections s;, whose action
on Z is transitive. The coupling can be any function of the
absolute difference |i — j|. Because the uniform choice of
reflection will almost always result in energy changes so large
that the whole system is flipped, it is better to select random
reflections about integers or half-integers close to the state
of the system. A variant of the algorithm has been applied
without a field whose success relies both on this and on
another technique [36]. They note that detailed balance is still
satisfied if the bond probabilities (4) are modified by adding a
constant 0 < x < 1 with

Pr(Sm, s51%) = min {0, 1 — xePIZ0xsms)=26ms)l} - (13)
When x < 1 transformations that do not change the energy of
a bond can still activate it in the cluster, they allow nontrival
clusters to be seeded when the height of the starting site
is also the plane of reflection. This modification is likely

useful, in general, for systems with large yet discrete state
spaces.
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V. PERFORMANCE

No algorithm is worthwhile if it does not run efficiently.
This algorithm, being an extension of the Wolff algorithm into
a new domain, should be considered successful if it likewise
extends the efficiency of the Wolff algorithm into that domain.
Some systems are not efficient under the Wolff algorithm,
and we do not expect them to fare better when extended
in a field. For instance, Ising models with random fields or
bonds technically can be treated with the Wolff algorithm
[37], but it is not efficient because the clusters formed do
not scale naturally with the correlation length [18,26]. Other
approaches, such as replica methods, should be relied on
instead [18-20].

At a critical point, correlation time 7 scales with system
size L = N~P as t ~ L%, Cluster algorithms are celebrated
for their small dynamic exponents z. In the vicinity of an
ordinary critical point, the renormalization group predicts
scaling behavior for the correlation time as a function of
temperature ¢ and field /4 of the form

T = h—Zl)/}%'Y'(hlt_lsa7 hLﬁ(S/U) (14)

If a given dynamics for a system at a zero field results in
scaling, such as L*, one should expect its natural extension
in the presence of a field to scale roughly, such as 7~2/#3 and
collapse appropriately as a function of h L%/,

We measured the autocorrelation time 7 of the energy H
for a variety of models at critical temperatures with many
system sizes and canonical fields (see Table I with h = BH)
using standard methods for obtaining the value and uncer-
tainty from the time series [38]. Since the computational
effort expended in each step of the algorithm depends linearly
on the size of the associated cluster, these values are then
scaled by the average cluster size per site (s;c)/L? to produce

something proportional to machine time per site. The resulting
scaling behavior, plotted in Fig. 2, is indeed consistent with
an extension to finite fields of the behavior at zero fields with
an eventual finite-size crossover to constant autocorrelation
time at large fields. This crossover is not always kind to the
efficiency, e.g., in the O(3) model, but in the large-field regime
where the crossover happens, the correlation length is on the
scale of the lattice spacing and better algorithms exist, such as
the Bortz-Kalos-Lebowitz algorithm for the Ising model [39].
Also plotted are lines proportional to 2~*"/#% which match the
behavior of the correlation times in the intermediate scaling
region as expected. Values of the critical exponents for the
models were taken from the literature [40—42] with the excep-
tion of z for the energy in the Wolff algorithm, which was de-
termined for each model by making a power-law fit to the con-
stant low-field behavior. These exponents are imprecise and
are provided in the figure with only qualitative uncertainty.

Since the formation and flipping of clusters is the hall-
mark of Wolff dynamics, another way to ensure that the
dynamics with field scales like those without is to analyze
the distribution of cluster sizes. The success of the algo-
rithm at zero fields is related to the fact that the clusters
formed undergo a percolation transition at the models’ critical
points. According to the scaling theory of percolation [43],
the distribution of cluster sizes in a full Swendsen-Wang
decomposition—where the whole system is decomposed into
clusters with every bond activated with probability (4)—of the
system scales consistently near the critical point if it has the
form

Psw(s) = s~ 7 f(ts°, th™ VP (L), (15)

The distribution of cluster sizes in the Wolff algorithm can be
computed from this using the fact that the algorithm selects
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FIG. 3. Collapses of rescaled average Wolff cluster size (s);cL /" as a function of field scaling variable h L%/’ for a variety of models.
Critical exponents y, v, B, and § are model dependant. The colored lines and points depict values as measured by the extended algorithm. The

solid black lines show a plot of g(0, x) o x>/ for each model.
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clusters with probability proportional to their size, or

(s1c) = Y _ s Pic(s)

= ZSN sw(s)

= L7 g(ht™ P nLP"). (16)

For the Ising model, an additional scaling relation can be

written. Since the average cluster size is the average squared

magnetization, it can be related to the scaling functions of

the magnetization and susceptibility per site by (with ht=#
dependence dropped)

(s1c) = LP(M?) = B(x) + LP (M)
— Ly/”[(hLﬂ‘s/”)_V/ﬂs,By(hLﬁs/”, ht_ﬁ‘s)

+(RLP Y MBLPYY | he =Py, (17)
We therefore expect that, for the Ising model, (le)L‘V/ v
should go as (hLP%/V)?/% for large arguments. We further
conjecture that this scaling behavior should hold for other
models whose critical points correspond with the percolation
transition of Wolff clusters. This behavior is supported by
our numeric work along the critical isotherm for the various
Ising, Potts, and O(n) models, shown in Fig. 3. Fields are
the canonical ones referenced in Table I. As can be seen, the
average cluster size collapses for each model according to
the scaling hypothesis, and the large-field behavior likewise
scales as we expect from the naive Ising conjecture.

VI. APPLYING NONLINEAR FIELDS TO THE XY MODEL

Thus far our numeric work has quantified the performance
of existing techniques. Briefly, we demonstrate our general
framework in a different way: harmonic perturbations to the
low-temperature XY, or 2D O(2), model. We consider fields
of the form B, (s) = h, cos[nf(s)], where 6 is the angle made
between s and the x axis. Corrections of these types are
expected to appear in realistic models of systems naively
expected to exhibit Kosterlitz-Thouless critical behavior due
to the presence of the lattice or substrate. Whether these fields
are relevant or irrelevant in the renormalization group sense
determines whether those systems spoil or admit that critical
behavior. Among many fascinating [17,27,44-46] results that
emerge from systems with one or more of these fields applied,
it is predicted that A4 is relevant whereas hg is not at some
sufficiently high temperatures below the Kosterlitz-Thouless
point [27]. The sixfold fields are expected to be present,
for instance, in the otherwise Kosterlitz-Thouless-type two-
dimensional melting of argon on a graphite substrate [47].

We performed a basic investigation of this result using our
algorithm. Since we ran the algorithm at fairly high fields
we did not choose reflections though the origin is uniform.
Instead, we choose the planes of reflection first by rotating our
starting spin by wm/n for m uniformly taken from 1,...,n
and generating a normal to the plane from that direction as
described in Sec. IV B. The resulting susceptibilities as a
function of system size are shown for various field strengths
in Fig. 4. In the fourfold case, for each field strength there is a
system size at which the divergence in the susceptibility is cut
off, whereas for the sixfold case we measured no such cutoff

1078 1076 107* 1072 10° 102

-r mn
L L L

10000 £~ T T i
(a) fourfold symmetric

1000 ¢

100 ¢

T

001 p*r—~—— —

10000 77777 CTTTT T "

(b) sixfold symmetric
1000 2 3

100

0.1 F

001 ¢ 3

FIG. 4. Susceptibilities as a function of system size for a 2D O(2)
model at 7 = 0.7 and with (top) fourfold symmetric and (bottom)
sixfold symmetric perturbing fields. The different field strengths are
shown in different colors.

even up to strong fields. This conforms to the expected result
that even in a strong field the sixfold perturbations preserve
the critical behavior. Previous work has used Monte Carlo
algorithms to investigate similar symmetry-breaking fields
and used a hybrid cluster-metropolis method [17]. We applied
a direct cluster method to this problem.

VII. CONCLUSIONS

We have taken several disparate extensions of cluster
methods to spin models in an external field and generalized
them to work for any model of a broad class. The resulting
representation involves the introduction of not a ghost spin
but a ghost transformation. We provide a C++ library with
example implementations of all models described here [23].
We provided evidence that algorithmic extensions deriving
from this method are the natural way to extend cluster meth-
ods in the presence of a field in the sense that they appear
to reproduce the scaling of dynamic properties in a field that
would be expected from renormalization group predictions.

In addition to uniting several extensions of cluster methods
under a single description, our approach allows the application
of fields not possible under prior methods. Instead of
simply applying a spinlike field, this method allows for the
application of arbitrary functions of the spins. For instance,
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theoretical predictions for the effect of symmetry-breaking
perturbations on spin models can be tested numerically
[27,34,35,48].
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