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This thesis is a practical study of how to report universal scaling functions for critical

phenomena. We demonstrate, through three examples, how parametrized functional forms

are flexible and useful in (1) describing critical systems with multiple control parameters,

(2) extending the range of validity for the scaling theory, (3) providing accurate and reliable

predictions, and (4) incorporating corrections to scaling and other non-universal effects. In

Chapter 2 we find a effective form for the spin-spin correlation function for the 2d Ising

model as a function of temperature and field, a useful observable for comparison with

biomembrane lipid composition. In Chapter 3, we examine a common experimental

problem: how to describe the scaling of events within a limited field of view, such as those

observed under a microscope. In Chapter 4, we smoothly describe a crossover between two

models of depinning in a concise function. We also describe a software environment

SloppyScaling that facilitated these studies.
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CHAPTER 1
Introduction

The study of phase transitions and critical phenomena has long been a fascinating

subject to physicists. In particular, second order, continuous phase transitions exhibit

scale-invariance and universality, allowing a particularly elegant theoretical framework.

One of the most striking features about universality is that simple caricatures (such as the

Ising Hamiltonian) are adept at describing the behavior of physical systems with intricate

fluctuations across multiple length scales. Ideas from the Renormalization Group (RG)

allow us to systematically explore the behavior of such Hamiltonians, and compute answers

that are valid for scales that extend across orders of magnitude, and across a variety of

systems that are dramatically different microscopically.

Many experiments and computational studies have milked this scale invariance by

reporting power laws (the natural scale-invariant function), scaling collapses or scaling

functions, and critical exponents, as evidence of a continuous phase transition or as

verification or falsification of correspondence between experimental systems and a certain

model class. In some cases, for certain models, analytic solutions for critical exponents or

scaling functions are possible using mean-field theory, perturbative techniques (such as

the momentum space ε-expansion), exact results, or variational approaches (such as

density-matrix RG). However, in many cases, the analytical results are not helpful for any

real-world system (such as a 6− ε result), or so far unobtainable (such as the crossover in

Chapter 4), and hence there is a need for more practical numerical or experimental methods
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for obtaining predictions. In this thesis, we will emphasize how, using the implications of

RG, we can build parametrized functional forms for universal scaling functions. We

will show that these forms are a useful and powerful tool for describing criticality and

understanding the underpinnings of continuous phase transitions.

1.1 Why universal scaling functions?

While power laws and critical exponents have been the focus of many theoretical and

experimental studies, we argue that reporting and measuring universal scaling functions

should become standard practice in the study of critical phenomena– even in cases where it

is not feasible to have analytic predictions for their forms.

The utility of reporting universal scaling functions can be summarized into the following:

• Multiple variables: In systems with more than one control variable, or more than

one length scale, a scaling collapse will not suffice to capture the criticality or make

predictions about the universal shape. In using parametrized forms, we can deal with

as many variables as need be.

• Better predictions: Often power laws and exponents can be poorly measured when

there are not enough decades of good quality data. Most scientists know from

experience that data plotted on a log-log plot tends to look like a straight line. We

can do better than reporting straight-line power laws. In this thesis, we demonstrate

that it is not difficult to try to measure the full universal scaling function, and report

the fit results with honest error bars which reflect the quality of our predictions.

• Inclusive and extensive: One very useful feature of using functional forms is

that one may include non-universal effects, such as lattice corrections, amplitude
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corrections, or finite-size effects. Often these subtle features themselves may have rich

information about the system at hand. When we add these features, our predictions

become much more powerful, the accuracy of the universal pieces may improve, and

we extend the range of validity for which we can compare the data against our

function.

The three different topics included in this thesis will more concretely demonstrate the

points stated above. We start with a well-studied and widely known model system: the

2D Ising model in Chapter 2. We find an effective form for the spin-spin correlation

function for the 2D Ising model as a function of temperature and field–a useful observable

for comparison with biomembrane lipid composition which exhibits Ising criticality; In

Chapter 3, we examine a common experimental problem: how to describe the power-law

scaling of events within a limited field of view, such as those observed under a microscope;

In Chapter 4, we smoothly describe a crossover between two models of depinning in a

concise function that accounts for finite-size scaling in two different ways.

1.2 The various playgrounds of this thesis

Below we give background on the three topics studied in this thesis, and the context in

which the scaling forms we provide for these problems become useful.

1.2.1 The 2D Ising Model

Invented nearly a hundred years ago to describe ferromagnetism, the Ising Hamiltonian

H = −J
∑
ij

σiσj − h
∑
i

σi (1.1)
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has been one of the most thoroughly studied model systems in statistical physics, and it

has contributed significantly to our understanding of phase transitions. In the case of

two-dimensions, at external field H = 0, Onsager solved the free energy exactly [1], and

McCoy and Wu solved the spin-spin correlation function [2]. More recently, there have been

conformal field theory solutions for T = Tc at non-zero field [3, 4]. However, a full solution

of the free energy as a function of temperature and field has eluded theorists, and even

practical forms describing the spin-spin correlation function at arbitrary temperatures and

fields has not been written down.

In recent years, interest in the Ising model has been renewed in the context of biology,

and it is with this motivation that we would like an effective functional form for comparison

to membrane experiments. The cell membrane is composed of lipid-bilayers, and when

removed from the cell structure and cooled 5% below body temperature they phase separate

into two liquid phases. This phase transition is well described as an Ising critical point [5].

As one varies the lipid composition in the phase diagram, the behavior of the cell lipids

correspond to Ising models sitting at non-zero field. Methods of probing the structure of

these membranes include Nuclear Magnetic Resonance (NMR), Florescence Resonance

Energy Transfer (FRET) and fluorescence microscopy, which indirectly measure a spatial

correlation of lipid molecules.

A spin-spin correlation function as a function of temperature and field therefore would

allow for more direct comparison to these biomembrane probes, and also provide an

approximate form that has been lacking in the Ising literature. In Chapter 2, we show how

a simple interpolation between known results at H = 0, coupled with constraints of a

high-precision equation of state calculation, describes simulation data to good precision and

serves as a useful starting point for experimental comparison. In our study, we also

systematically organize the available corrections to scaling scattered through the literature,
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which will be important to include in any experimental comparison, since the magnitude of

these corrections for a membrane would differ from an Ising square lattice simulation.

1.2.2 Crackling noise in windows

As a ferromagnet switches magnetization direction under an external field, the domain

wall moves in a jerky fashion, and the magnetic spins flip in avalanches, this is termed

Barkhausen noise. If the magnet is placed in a coil and connected to speakers, one can hear

crackling; this is the signature of a power-law size distribution of events. Traditionally, the

avalanche size distributions and time evolution have been measured in such a fashion, with

induction coils. In recent years, experiments have been developed to look at the domain

wall motion of ferromagnet thin films under a microscope using the reflection of a polarized

beam of lasers – the magneto-optical-kerr-effect (MOKE) – where the polarization of the

laser beam switches directions according to the direction of magnetization of the film [6].

This has allowed experimentalists to measure new features of one of the most studied

disordered critical systems.

However, measuring avalanches with a microscope has a disadvantage compared to the

induction coil method– only events inside the viewing window are visible. This is especially

a problem given that optical microscopes and recording devices have finite resolution–

zooming out one sacrifices resolving smaller events, while zooming in one causes more

distortion of your data set. It turns out that the exponent is modified, and an additional

cutoff, in addition to finite-size effects of the sample, is introduced when viewing events

through windows.

One experiment [7] on magnetic thin films that uses MOKE observes a temperature

dependent crossover by measuring a change in the size-distribution exponent τ (where the

5



probability of sizes P (s) ∼ s−τ ) while varying temperature. (See Figure 1.1). While the

drift in exponent they observe is interesting, from our point of view a more careful analysis

is warranted. For one, there may be windowing effects like mentioned above and in

Chapter 3. (We do not know if they included avalanche segments that cross the window

boundaries.) Measurements of exponents by power-law fits more generally is problematic.

Exponents for competing universality classes often do not differ by a large factor. For

Barkhausen noise in three dimensions, the prediction for the size-distribution exponent

is different for models in the mean-field (τ = 3/2), with only short-range interactions

(τ = 1.6), and including long-range dipolar forces (τ = 1.3) [8]; whereas in two dimensions,

an interface with only short-range elasticity has τ = 1.1 [9], while long-range dipolar

forces give τ = 4/3 [10]. Notice that in all these cases, τ only varies around 30%, these

experiments may indicate a crossover (as the authors suggest), or a temperature dependent

correction to scaling, or may purely be an artifact of finite-window distortions. It would be

advantageous to measure the predicted scaling functions [11, 12] for better exponents. Or,

even better, describe the proposed temperature dependent crossover with a clear crossover

function that includes the limiting behavior in the two fixed points, as we do in Chapter 4.

We further realized that the finite viewing window is common to many experiments, and

not just MOKE measurements of Barkhausen noise– any experiment that records power-law

distributed events within a finite viewing window would have the same type of distortion in

the form of a modified exponent, and a finite-window cutoff. These include experiments

which record a movie of a pile of rice falling down an incline, fracture, and fluid imbibition.

In Chapter 3 we write down how the scaling laws change in a finite-viewing window, and

use complete functional forms of three variables: size s, characteristic avalanche width Lk,

and window size W to describe the problem. We generate avalanches from a disordered

interface simulation, and artificially window each set to test our scaling ideas and come up
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Figure 1.1: Power Law Scaling Crossover From reference [7]. This experiment uses MOKE
to measure avalanche sizes. A temperature dependent crossover is reported by
looking at shifts in τ , from 1.32 to 1.04, for the size-distribution. The three different
colors of the curves correspond to different effective windows of observation. Notice
that only the straight-line power law is fit in these curves. We argue that this drift
in exponent, while striking, could be better measured if the data was fit to a
crossover scaling function, such as we provide in Chapter 4. Furthermore, in the
paper, it is not specified how their data analysis is performed given the finite-size
viewing window; are the avalanches cut off by the boundary discarded in the
analysis, or are they kept in the data set? We demonstrate in Chapter 3 that these
two practices would lead to different observed size-distribution exponent τ , and
that window effects need to be considered for experiments.
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with accurate functional forms to describe them. We believe these results will be very

valuable towards evaluating experiments with viewing windows, both in direct predictions,

and in an overall methodology of presentation.

1.2.3 Interfaces in Disordered Media

Although the concepts of RG apply to all critical points, not all critical phenomena can be

dealt with using the same machinery. Systems that are non-equilibrium and/or contain

disorder often prove more difficult to deal with analytically in comparison to equilibrium

systems without noise (such as the 2D Ising model in Section 1.2.1). Nonetheless they

exhibit behavior that are physically interesting and relevant. The depinning transition is an

example of non-equilibrium disordered criticality. Depinning is a competition between an

external force and a pinning potential; experimental systems described by these models

include the dynamics of materials with charge density waves (CDW), or interfaces (such as

the magnetic domain wall mentioned in Section 1.2.2, or in fluid imbibition) [13, 14].

Consider the simplest model of a interface h(~x) in d-dimensions with elastic forces

between the interface segments, some type of external driving field F (the applied magnetic

field in magnets, or the applied voltage in CDW), and some type of pinning force η(h, ~x)

(the impurities or defects in magnets). The equation can be written as:

dh(~x, t)

dt
= F + γ∇2h(~x) + η(h, ~x). (1.2)

This is the quenched Edwards-Wilkinson (qEW) equation. Notice this equation has

translation invariance in space and time, and rotation and inversion symmetry in the

direction h(~x, t) is moving. And if we set F = 0 or constant, there is up/down symmetry

for h. In general, if we would like to add some other interaction, and break one of the

symmetries, we can choose to break the up/down symmetry, and the appropriate lowest-order
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term to choose would be (∇h)2, which would lead to the quenched Kardar-Parisi-Zhang

(qKPZ) equation.

The breaking of this symmetry drives the behavior of the system away from the qEW

fixed point, and changes the universality class. Although other crossovers between interface

dynamics have been studied and observed [10], systematic treatment of this crossover has

been lacking. Although there have been a number of analytic studies for qEW [15, 16] and

numerical studies for qKPZ [17, 18], the qEW to qKPZ crossover is not well described due

to difficulty in computing analytic results [19].

We connect simulations of these two models to a universal crossover function in

Chapter 4, using the height-height correlation function to describe the change in the

morphology of the interface between qEW and qKPZ. The crossover proves to be a

fascinating subtle problem where finite-size effects become important at the qEW fixed

point, while a non-universal amplitude also plays a role in the height-height correlation

function. Simulations for this problem are also less than straightforward– it is plausible that

lattice automata break the same symmetry that the (∇h)2 term (the KPZ term) breaks,

and prevents us from accessing the true qEW fixed point. Therefore, we also provide ideas

for an efficient continuous-motion algorithm at the end of the chapter.

1.3 SloppyScaling

To facilitate the fitting and visualization of the universal scaling functions reported

in this thesis, we have written a software environment SloppyScaling in Python [20].

It includes (a) capabilities to fit and plot scaling functions with up to four variables,

(b) generate parameter ensemble predictions and error bars, (c) access to many of the fitting
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algorithms recently developed by Mark Transtrum [21], and (d) use a covariance matrix for

least-squares fitting. Currently this is written as a collection of convenient classes to be used

interactively in a Python command line environment. A more user-friendly GUI version is

currently under development [22]. User documentation is included in Appendix A.

1.4 Outlook

We hope that our work in these three examples will encourage others to report and describe

universal scaling functions in addition to the commonly reported power-laws and scaling

collapses, even when analytical results are not available. This approach should not be

limited to simulations and theory; we are currently analyzing data from Barkhausen

noise experiments with which we will apply the same principles– using complete and

descriptive functional forms for reporting results. The use of universal scaling functions,

while incorporating analytic and singular corrections, is a discerning tool for the study of

critical phenomena; they enable us to provide complex predictions for multivariable

properties in a broad region of parameter space around the critical point.
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CHAPTER 2
Universal scaling function for the

two-dimensional Ising model in an external field: A

pragmatic approach 1

We report an effective functional form for the spin-spin correlation function of the 2D

Ising model as a function of temperature and field. Although the Ising model has been

well-studied, no analytical result for the spin-spin correlation function exists for arbitrary

magnetic fields and temperatures. We show the validity of our form by comparison with

simulations using the Wolff algorithm, and obtain useful precision by including analytic

corrections to scaling. Given recent interest in comparing biomembrane heterogeneity to

Ising criticality, our spin-spin correlation function may be used as a predictive quantitative

measure for FRET or NMR membrane experiments.

2.1 The spin-spin correlation function

The two-dimensional (2D) Ising model occupies a unique place in statistical physics. As the

simplest example of a system displaying nontrivial critical phenomenon it has long been a

testing ground for theoretical and computational methods, having spawned thousands of

1This is work done in collaboration with Natalie Paquette, Benjamin B. Machta, and James P. Sethna,
submitted, arXiv:1307.6899.
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papers. In addition, it is the canonical member of the 2D Ising universality class. Members

of the 2D Ising universality class include many current experimental systems, some (e.g.

liquid-vapor phase transitions or membrane phase diagrams) far removed from its original

conception as a simple model of ferromagnetism.

In the vicinity of its critical point the spin-spin correlation function for the 2D Ising

model approaches a two parameter universal scaling function

C(r|H,T ) = 〈σrσ0〉 = r−ηC(r/t−ν , h/tβδ) (2.1)

with η = 1/4, ν = 1, β = 1/8, δ = 15, reduced temperature t = T−Tc
T

and field

h = βH = H/T . σ is the value of the spin (either 1 or 0), and r is the distance between

spins. The form of the universal function C is known along two lines through its parameter

space: when H = 0 it can be written in terms of an integral over Painlevé transcendents [2]

and when T = Tc there exists a complete asymptotic expansion that uses exact results

from integrable field theory [4, 23]. Approximate functional forms for the correlation

function and the correlation length have been developed for the 3D Ising model in a field in

momentum space [24, 25]. Here we leverage the known exact results and a high precision

approximate form for the free energy [26] to develop an elegant interpolation for the scaling

form for the 2D Ising correlation function in an external field.

In addition to filling a surprising gap in the theoretical Ising literature, our results

are of practical relevance for the interpretation of experiments in multicomponent lipid

membranes. Phase diagrams for these membranes often contain miscibility critical points in

the two-dimensional Ising universality class [27, 28]. Recent experiments suggest that cells

maybe tuning their own membranes to the proximity of this critical point [29] suggesting

cells may be taking advantage of criticality’s unique physics [30, 31]. NMR [27], FRET [32],

and fluorescence microscopy [33] all yield observables that are simply related to the
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underlying membrane’s correlation functions. Although scattering experiments in typical

three dimensional systems more naturally probe the Fourier transform of C(r), membrane

probes more typically measure real-space properties. With our scaling forms it will be

possible to map the Ising axis of t and M (the magnetization) onto the composition and

temperature parameters of these membranes.

It is useful to describe the scaling behavior near the critical points using the Schofield

‘polar coordinate’ parametrization [26, 34, 35], which is expressed as follows:

t =
T − Tc
T

= R(1− θ2) (2.2)

h = H/T = h0R
βδh(θ) (2.3)

M = m0R
βθ (2.4)

Here, we use Caselle’s [26] high precision form for h(θ):

h(θ) = (θ − θ3/1.16951)(1− 0.222389θ2 − 0.043547θ4 − 0.014809θ6 − 0.007168θ8).

(2.5)

We take m0 = 0.90545 [36] and h0 = 0.940647 [26]. Figure 2.1 shows a representation of the

coordinate transform, with curves of constant R plotted in (T,H). Exact scaling results

exist at three points along each curve, θ = 0 (H = 0, T > Tc), θ = θc (H = 0, T < Tc),

θ = 1.0 (T = Tc). Other systems (like membrane miscibility phase diagrams) can be treated

by suitable mappings of their control variables into (R, θ).

We would like to compare our functional form to simulation results from systems that

are close enough to the critical point to be in the scaling regime yet which have a correlation

length small compared to our lattice size L = 1024 so as to minimize finite-size corrections.

Therefore we run simulations at a range of θ values at a fixed R value chosen to have

correlation lengths between ξ+ ≈ L/60 and ξ− ≈ L/10 above and below Tc. Interpolating
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Figure 2.1: Curves of constant ‘polar coordinate’ R are plotted against the Ising parameters of
T and H, from outwards in: R = 0.4 (magenta), R = 0.336737 (blue), R = 0.2
(green), R = 0.1 (red). The critical point is labeled by the red circle. We compare
to Monte-Carlo results for 1024× 1024 simulations with parameters given by the
blue dots. Note that the half-plane T < Tc spans a small range of θ, namely from
θ = 1 to θ = θc ≈ 1.08144 [26].
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between known results along h = 0 above and below T = Tc [37], and using a high-precision

form [26] of the susceptibility as an integration constraint, we are able to arrive at an

interpolating correlation function that matches our simulation data for all values of θ.

As one component of the functional form, we need an interpolating form for the asymptotic

correlation length ξ(H,T ) = ξ(R, θ) giving the long-distance exponential decay of the corre-

lation function. Here we define a scaling variable s = r/ξ(H,T ), where s ≈ (4/Tc)(r/t
−ν)

along H = 0 and s ≈ r(h/hs)
8/15 with hs =

(
Γ(2/3)Γ(8/15)

4 sin(π/5)πΓ(1/5)

)15/8 (
Γ(1/4)Γ2(3/16)

4π2Γ(3/4)Γ2(13/16)

)1/2

along T = Tc [4]. We design an even polynomial in θ in the form of ξ(R, θ) = Ξ(θ)/R, since

ξ ∼ t−ν ∼ R−ν where ν = 1.

Ξ(θ) = a0 + a1θ
2 + a2θ

34 (2.6)

Matching the two known values at H = 0 and the value at T = Tc we fix a0, a1, and a2.

a0 = 0.567296, a1 = 0.0284915 and a2 = 0.19171. The power 34 is taken from a fit of

a0 + a1θ
2 + a2θ

n to known values at Ξ(0), Ξ(1), Ξ(θc), where 34 is the smallest even power

that allows Ξ(θ) to be monotonic with increasing θ. This large power is likely due to the

strong asymmetry of the Schofield coordinates (Figure 2.1), which compress the range

T < Tc into 1 < θ < θc ≈ 1.08144.

Now, with the scaling variable r/ξ = rR/Ξ(θ) we can further use known scaling

solutions to find an interpolating form for the correlation function. We design a function

that interpolates between the exact scaling solution [37] F+(s) at T > Tc and F−(s)−M2

for T < Tc, replacing the scaling variable with our form s = rR/Ξ(θ). The function f(θ)

controls the interpolation, and is designed such that f(0) = 0 and f(θc) = 1. Outside of the
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interpolation, we add back the magnetization in Schofield coordinates with (m0R
βθ)2.

C(r|R, θ) =r−1/4

(
(1− f(θ))F+

(
r

RΞ(θ)

)
+ f(θ)

(
F−

(
r

RΞ(θ)

)
− 23/8

(
r

RΞ(θ)

)1/4
))

+ (m0R
1/8θ)2

(2.7)

Here 23/8s1/4 is the limit of F−(s) as s → ∞, which is the scaling part of the exact

magnetization M(T )2 = (1 − sinh(2/T )−4)1/4 ≈ r1/4F−(∞) ≈ m2
t t

1/4. Also, we have

m0 = mt|1− θ2
c |1/8/θc. The exact zero-field scaling solutions F+ and F− are integrals of

Painlevé transcendents of the third kind, which are not expressible in closed form functions

of s, nor readily available in subroutine libraries. In Section 2.3.1.2, we offer a high-precision

implementation for the necessary Painlevé function. In addition, we provide a simple fitting

form for F+ and F−, accurate to within 3.4% and 1% respectively for three orders of

magnitude of scaling arguments and written in terms of simple elementary functions.

The interpolating function f(θ) is chosen to match the scaling form for the susceptibility,

namely χ(R, θ) = R−7/4X(θ) =
∫
dr2πr (C(r, R, θ)−m(R, θ)2), using a high-precision

polynomial form for X(θ) from [26] (see Section 2.3.2), this leads to:

f(θ) =
X(θ)/2π − Ξ(θ)7/4I+

Ξ(θ)7/4(I− − I+)
(2.8)

where I+ =
∫
dyy3/4F+(y), I− =

∫
dyy3/4(F−(y)−m2

0y
1/4θ2

cΞ(θc)
1/4). Numerical integra-

tion of the exact scaling results gives I+ = 0.413135114 and I− = 0.010959562. Using our

approximate forms the two constraints f(0) = 0 and f(θ0) = 1 give I+ = 0.413134 and

I− = 0.0104234 at our current R.
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θ = 0

θ = 1.0

F+

θ = θc F−

Figure 2.2: Spin-spin Correlation Function Our functional form (lines) for the disconnected
correlation function is in excellent agreement with large r simulation data (symbols)
from systems of size L = 1024. Results are plotted at fixed R over the allowed
range of θ as shown in Figure 2.1. At small distances (inset), there are other effects
that the scaling function fails to capture.
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2.2 Corrections to scaling

This simple interpolation description for the correlation function (Figure 2.2) is in agreement

with simulation results within 2% relative error except at distances less than three spin

spacings, below which nonuniversal lattice effects dominate (see Section 2.4 for discussion).

Although our interpolating form is approximate even in the scaling limit, its agreement

with simulation results can be improved by including analytic and singular corrections to

scaling that vanish with increasing r.

There has been theoretical work [38, 39] on the amplitudes of the dominant analytic

corrections to scaling in the 2D Ising model on a square lattice, and evidence that the

dominant singular corrections to scaling happen to vanish. In an experimental system (e.g.,

biomembranes), the magnitudes of these analytic and singular corrections to scaling must

be experimentally determined. They will give small corrections near (Tc, Hc), but will

extend the validity of the theory further into the phase diagram – perhaps facilitating

systematic identification of phase boundaries.

We begin at H = 0, where due to exact results [37] and perturbative studies [39, 40] we

can write a general form for both analytic and singular corrections to scaling and can add

the leading corrections exactly. Although Equation 2.1 becomes exact as r →∞, for finite

r there are a hierarchy of corrections that arise from a more complete form:

C(r|T ) = a(T )r−ηC(r/ξ(T ), u3t
∆, · · · ). (2.9)

where ui for i > 2 are irrelevant directions under the renormalization group, with u3 the

leading singular correction. The T-dependent functions can be written in a series expansion
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of t,

a(T ) = a0(1 + a1,0t+O(t2)) (2.10)

ξ(T ) = ξ0t
−ν(1 + cξt+O(t2)), (2.11)

where a0 = 23/8 and ξ0 = Tc/4 are Ising specific prefactors for the scaling form [37].

Expanding the exact form of a(T ) and ξ(T ) given by McCoy and Wu [37], we get

a1,0 = 2−3/2(4/Tc), and cξ = −1/(
√

2Tc) which are the first analytic corrections to scaling.

Figure 2.3 shows the improvement in accuracy enabled by these analytic corrections along

H = 0.

The first order effect of the leading irrelevant direction u3 to scaling is to generate a

power-law, singular correction that looks like r−η−∆:

C(r|t, u3) = r−ηC(r/t−ν , u3t
∆) (2.12)

= r−ηC(r/t−ν , 0) + u3(t)r−η−∆C(1)(r/t−ν , 0)

where C(1)(r/t−ν , 0) is the derivative of the scaling function C(r/t−ν , u3t
∆) with respect

to u3 at u3 = 0. For the Ising critical point, studies have found that u3 = 0 [39, 40],

and in our data we also see no evidence for a power-law of r−η−∆ upon subtracting

the exact scaling solutions from the numerical data. However, there is no reason that

biomembrane experiments should expect u3 = 0. For example, it is non-zero in Ising-like

models (square-lattice Klauder and double-Gaussian model) [39], with ∆ ≈ 1.35

One can also expand the non-universal amplitude a(T ), noticing a10t = 23/2s/r, to get:

C(r) = r−1/4F±(s)± 2−3/2r−5/4sF±(s) + (9/64)r−9/4s2F±(s). Estimated values of ∆ give

η + ∆ ≈ 1.6 and so in principle:

C(r) = r−0.25F±(s)± 2−3/2r−1.25sF±(s)

+
9

64
r−2.25s2F±(s) + u3(t)r−1.6C(1)(r/t−ν , 0). (2.13)
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In the case of Ising-like criticality in experiments, where no exact results are known,

the combination of the effect of powers of r−1.25, r−1.6, and r−2.25 would not be easy to

disentangle, requiring a fit to a function that looks like C(r) = r−0.25C(s) + r−1.25C1(s) +

r−2.25C2(s) + cu3r
−1.6C(1)(s, 0). This fit will likely be sloppy [41], with the individual

coefficients ill-determined.

Now that we have investigated corrections to scaling at H = 0, let us return to our

main goal. The correlation function that we provide in this paper is a function of both

temperature and field, so we will need to consider analytic corrections in a field. In

principle, instead of the scaling form correlation function written in Equation 2.1, the full

correlation function should look like:

C(r|T,H) = a(T,H)r−ηC(r/u−νt , uh/u
βδ
t , · · · ). (2.14)

Here we incorporate analytic corrections to scaling (as in eqns 2.11) via the scaling fields ut

and uh, which are only consistent with the tuning parameters t and h up to first order. We

may instead write the non-universal amplitudes and scaling fields in terms of t and h.

Using the notation of [40] they are,

a(T,H) = a0(1 + a1,0t+ a0,2h
2 + a2,0t

2 + ....) (2.15)

ut = t(1 + ctt+O(t2, h2)) (2.16)

uh = h(1 + cht+O(t2, h2)) (2.17)

ξ(ut) = ξ0t
−ν(1 + cξut +O(u2

t , u
2
h)) (2.18)

By the inversion symmetry of the Ising lattice, only terms of h2n are should be allowed. As

h has the same scaling dimensions as tβδ = t15/8, the leading analytic corrections should be

controlled by temperature up to t3 and we only consider leading order corrections arising

from t.
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For the 2D Ising model it is known that ct = ch = βc/
√

2 [26], so we can add all forms

of analytic corrections to our scaling function. For the nonlinear scaling fields ut and uh, we

can translate the effective temperature and field teff = t(1 + ctt) and heff = h(1 + cht) to

effective Schofield coordinates, Reff = R(1 + g1(θ)R) and θeff = θ(1 + g2(θ)R) assuming that

since R scales with t, they will have the same leading order effects, and assuming an

arbitrary form for the corrections dependent on θ. Using our parametric definition (see

eq 2.5) we can arrive at closed form expressions for g1(θ) and g2(θ) (see Section 2.3.3), and

incorporate θeff and Reff into Equation 2.7. For the amplitude corrections and scaling

function corrections, we include them respectively in F±(s) according to the McCoy/Wu

expansion. Including the analytic corrections in a(T ), ξ(T ), uR and uθ for the constant-R

data in Figure 2.2 leads to a improvement in the accuracy for the data sets at θ = 0, θ = 1,

and θ = θc (Figure 2.3), but no systematic improvement for the data sets in between these

special points. This is perhaps unsurprising so near to the critical point, where the analytic

corrections are small compared to the residual errors in our scaling form. Overall, including

the corrections to scaling, our functional form has an average relative error of 1.5% per data

point.

2.3 Methods and Accuracies

2.3.1 Scaling solutions at H = 0

2.3.1.1 Numerical evaluation of scaling solutions

In Section 2.1, we make use of the scaling solutions for the disconnected correlation

function at H = 0,

〈σrσ0〉 = r−1/4F±(s) (2.19)
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Figure 2.3: Analytic Corrections Dots are simulation data from L = 1024 size simulations
using the Wolff algorithm. The dashed line for all the plots are the scaling solutions,
with a(T ) ≈ a0, ξ(T ) ≈ ξ0t

−ν , and ut = t. The solid line is including corrections
to first order in a(T ), ξ(T ), and ut.
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which is valid as T → Tc and r →∞ with s fixed. The symbol ± denotes solutions for

T > Tc and T < Tc respectively. Analytical studies use s∗ = |z2 + 2z − 1|/
√
z(1− z2)r

with z = tanh(1/T ) as the argument for this function, however in section 2.1 we used the

scaling form s = (4/Tc)(r/t
−ν). The solutions are of the form [37]:

F±(s) =2−1/2(2 sinh(2/T ))1/8(s/2)1/4 (1∓ η(s/2)) η(s/2)−1/2

exp

(∫ ∞
s/2

dx
x

4
η(x)−2((1− η(x)2)2 − η′(x)2)

)
(2.20)

η(θ) is the solution to the Painleve differential equation of the third kind,

d2η

dθ2
=

1

η

(
dη

dθ

)2

− η−1 + η3 − θ−1dη

dθ
(2.21)

with boundary conditions

η(θ) = −θ
[
ln

(
θ

4

)
+ γE

]
+O(θ5ln3θ) (2.22)

as θ → 0, and

η(θ) = 1− 2

π
K0(2θ) +O(e−4θ) (2.23)

as θ → ∞ with K0(x) is a modified Bessel function of the 2nd kind. The Painleve

transcendent η(θ) is not expressible in terms of elementary functions; to evaluate it

numerically, we choose to use tools available in the Chebfun Matlab package [42]. We use a

Chebyshev polynomial approximation for η(θ) between arguments of 0.003 and 3, while we

use the asymptotics given in Equations 2.22and 2.23 for arguments outside of this range.

To evaluate Equation 2.20, we use integration subroutines available in Matlab and Python,

the adaptive Simpson quadrature function quad in Matlab, and the scipy.integrate.quad

function which draws from the Fortran library QUADPACK (mainly adaptive quadrature

techniques). Our Matlab implementation and the Python module containing the Chebyshev

polynomial for η(θ) and the F±(s) scaling function is available online [43].
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2.3.1.2 Effective Functional Form

For convenience and less opaque representation of the scaling solutions, we also provide an

effective functional form, which is good to 3.4% relative accuracy for F+ and 1% relative

accuracy for F−. These functions are an interpolation between the small and large distance

asymptotics for the exact scaling solutions at H = 0.

Both scaling functions have F±(0) = C0 = 0.7033801577.... The asymptotic large-r

behavior is different depending on whether one is above or below criticality. The T > Tc

case is particularly simple, partially since 〈M2〉 = 0. We simply choose the effective large-r

functional form to be the exponential decay given by the Ornstein-Zernike decay, which is

like s−1/4 exp(−s) for T > Tc. The amplitude of this piece, called p1, is determined by an

asymptotic expansion of the large distance Bessel functions, and we get p1 = 1/(21/8
√
π).

We find a simple and effective nonlinear interpolation that we will employ in both the

high and low-temperature cases. Empirically, we find that both functions are well-described

by F fit
± = (B(s)|k|(Small-r)k + (1−B(s)|k|)(Large-r)k)1/k, where k is a fit parameter, that

controls the nonlinear interpolation of the functions, whereas a weighting function B(s)

that has the limits B(0) = 1 and B(∞) = 0 controls the weight of each piece of the

interpolation. For T > Tc we write:

F fit
+ (s) =

(
0.70338kB(s)|k| + (1−B(s))|k|(p1 · s−1/4 exp(−s))k

)1/k
. (2.24)

with

B(s) = exp(−(cx)b) (2.25)

If k is negative, we need to make the weights (1/B(s))k and (1/(1−B(s)))k, for F fit
+ (s) to

have the right limits at s = 0 and s =∞, hence the absolute value |k| in the power of those

terms.
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Figure 2.4: Fit to Painleve Results at T > Tc this is a fit to equation 2.24. Fit parameters
c = 1.73, b = 0.92, k = 3.8. Red dots are Painleve results, and the black line is the
result of the fit.

Our form matches the exact solution to within 3.4% maximum relative error, with an

average of 1.5% error, for the range of our fit 0.01 ≤ s ≤ 10. (See figure 2.4).

Now let’s turn our attention to the T < Tc case. The philosophy for constructing

the effective functional form is identical to the high temperature case, although for the

disconnected correlation function, the long distance asymptote is dominated by the

magnetization 〈M〉2. For the connected correlation function 〈σ0σr〉 − 〈σ0σ0〉, with the

magnetization squared subtracted off, the long distance decay for the scaling function is

p2s
−7/4 exp(−2s), with p2 = 1/(221/8π). In our effective functional form, for simplicity, we

choose to fit only the connected correlation function, interpolating between the short

distance behavior and long distance decay, while adding the scaling magnetization squared

to the result. (if one wishes, analytic corrections may be incorporated into the scaling

magnetization as well). We use:

F fit
− (s) =

(
(B(s)|k| · 0.700883)k + ((1−B(s))|k|(p2s

−7/4 exp(−2s))k)
)1/k

+23/8s1/4 (2.26)
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Here,

B(s) = exp(−(s/c)b) (2.27)

From fits, we find c = 0.007± 0.07, b = 0.4± 2, and k = −0.2± 0.1 . The fit is accurate to

within 1% relative error; see figure 2.5. The fit is good to a maximum of 1% error when
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F
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Figure 2.5: Fit to Painleve Results at T < Tc this is a fit to equation 2.26. Fit parameters
are: c = 3.62, b = 0.87, and k = −0.4. The magnetization is separated out, so that
we may subtract it off for the interpolation- which makes things less complicated.
Red dots are Painleve results, and the black line is the result of the fit.

compared against our Chebyshev form for the range of our fit 0.01 ≤ s ≤ 10.

2.3.2 High-precision scaling form for the susceptibility

We use a high-precision form of the susceptibility as an integration constraint for our

functional form. The susceptibility was derived from the high-precision approximate
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forms for the equation of state in Reference [26]. Using the parametric representation

t =
T − Tc
T

= R(1− θ2) (2.28)

h = H/T = h0R
βδh(θ) (2.29)

M = m0R
βθ (2.30)

the high-precision form for the equation of state,

h(θ) =

(
θ − θ3

1.16951

)
(1− 0.222389θ2 − 0.043547θ4 (2.31)

− 0.014809θ6 − 0.007168θ8). (2.32)

and the definition χ = dM/dh, we have:

χ(R, θ) =R−7/4m0

(
1 + (2β − 1)θ2

)
/
(
h0

(
1− 0.482344θ2 − 0.0750424θ4 − 0.0262771θ6

−0.0234342θ8 + 0.0385732θ10 − 0.0444357θ12
))

(2.33)

2.3.3 Analytic Corrections to Scaling

The analytic corrections to scaling to the RG field ut and uh are given in coordinates of t

and h in the literature. Since we give our function in parametric coordinates, here we

provide forms for the corrections to be expressed in R and θ. In Section 2.2 we state that:

ut = t(1 + ctt+O(t2)) (2.34)

uh = h(t+ cht+O(t2)). (2.35)
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Since t = R(1− θ2), R scales with t, so the first order corrections should also be linear in R.

However, θ is not small as it can take any value from 0 to θc ≈ 1.08144..., so we will assume

that

uR = R(1 + g1(θ)R +O(R2)) (2.36)

uθ = θ(1 + g2(θ)R +O(R2)). (2.37)

We can then solve for g1(θ) and g2(θ) using the Schofield definition:

g1(θ) =
(
chθ

3
(
2− 6.1549θ2 + 6.60301θ4 − 2.69648θ6 + 0.214502θ8 + 0.0351324θ10

−0.0135271θ12 + 0.0122581θ14
)

+ ctθ
(
1− 6.23234θ2 + 13.4301θ4 − 12.7392θ6

+5.00997θ8 − 0.343026θ10 − 0.210889θ12 + 0.152808θ14 − 0.0674197θ16
))
/(

θ − 1.48234θ3 + 0.407301θ5 + 0.0487653θ7 + 0.00284291θ9 + 0.0620074θ11

−0.0830089θ13 + 0.0444357θ15
)

(2.38)

g2(θ) =
(

(ch − βδct)
(
1− θ2

)2 (
θ − 0.855059θ3

) (
1.− 0.222389θ2 − 0.043547θ4

−0.014809θ6 − 0.007168θ8
))
/
(
θ − 0.482344θ3 − 0.0750424θ5 − 0.0262771θ7

−0.0234342θ9 + 0.0385732θ11 − 0.0444357θ13
)

(2.39)

2.3.4 Accuracies and Errors

Here we report the quality our interpolation form in terms of average cost per data

point, and average relative error per data point (See Equation 2.42) for each of the
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simulation datasets at R = 0.0336737 with and without analytic corrections. We define the

un-weighted residual to be:

rj = D(j, θ, R)− C(j, θ, R) (2.40)

where D(j, θ, R) is the data, C(j, θ, R) the interpolating form. The average cost per data

point was calculated with the covariance matrix multiplying the residual:

cost = riσ
cov
ij rj/N. (2.41)

The relative error was measured as 〈e2
rel〉, where

erel =
D(j, θ, R)− C(j, θ, R)

C(j, θ, R)
. (2.42)

We may note that the relative error and cost do not necessarily reflect the same measure of

theory quality. Relative error gives us a measure of the level of accuracy for the theory

numbers, irrespective of how large the error bars are on the data. Cost, on the other hand,

is weighted by the error of the data, and when the average cost is near or smaller than 1.0,

the error is mainly caused by statistical fluctuations in the data. The higher the cost, the

less well the theory is capturing the data to within error bars.

The accuracies in Table 2.1 and 2.2 were calculated for distances where the value of the

disconnected correlation function C(j, θ, R) > 0.01, this means skipping the points above

r = 44 for θ = 0, and r = 51 for θ = 0.1. This is due to the fact that for θ = 0 and r > 44,

the errors are around 50% of the data value. We’ve also skipped the first 3 points of each

data set due to the fact of short distance corrections dominated by lattice effects of

higher-order analytic corrections to scaling. (see Section 2.4).

Notice in both tables that the special points θ = 0 and θ = θc whose exact results we

interpolate between have a cost that is relatively small, and also that the corrections to
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scaling improves the overall accuracy. As noted in the main text, the analytic corrections to

scaling are small, and do not uniformly improve fits away from these special values. This is

not surprising. Since the analytic corrections to scaling this close to the critical point

are smaller than our interpolation errors in the scaling function, we might expect they

would have cancelling effects roughly half the time. The analytic corrections should be of

significant value farther from the critical point at all fields and temperatures.

2.4 Small Distance Discrepancies
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Figure 2.6: Small Distance Discrepancies for T > Tc H = 0 This figure shows the small
distance discrepancies for data along T > Tc, H = 0. The dashed line is the scaling
theory, while the solid line is including all first order corrections in a(T ), ξ(T ), and
ut. One can see that the discrepancy between simulation data and theory gets
smaller as the distance increases.

The scaling solutions differ from the numerical data at small distances, as shown in

Figures 2.6, 2.7 and 2.8. We have investigated where this discrepancy stems from, by

looking along the H = 0 axes where exact scaling solutions are known, and consistent with
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θ h T cost error (%)

0 0 2.348260 0.5 2.85

0.10 1.612125e-04 2.347442 5.1 1.74

0.20 3.119619e-04 2.344991 2.9 3.55

0.30 4.420782e-04 2.340918 3.4 1.45

0.40 5.419973e-04 2.335240 3.8 2.72

0.50 6.031200e-04 2.327979 4.5 2.14

0.60 6.182554e-04 2.319166 5.1 0.91

0.70 5.822216e-04 2.308836 6.1 2.17

0.80 4.927350e-04 2.297031 8.7 1.96

0.90 3.518271e-04 2.283797 8.6 1.28

1.00 1.681982e-04 2.269185 0.7 0.20

1.01 1.481081e-04 2.267650 2.1 0.53

1.02 1.277970e-04 2.266102 2.4 2.58

1.03 1.072934e-04 2.264541 6.3 0.86

1.04 8.662751e-05 2.262967 6.8 1.00

1.05 6.583165e-05 2.261380 6.9 1.02

1.06 4.494000e-05 2.259780 5.5 0.92

1.07 2.398890e-05 2.258167 3.1 0.95

1.08 3.016912e-06 2.256541 1.0 0.19

θc 0 2.256306 3.6 0.85

Table 2.1: Cost and Errors for Interpolation The quality of our interpolation function is
tabulated here in terms of average relative error (Equation 2.42) and average
cost (Equation 2.41). For the calculation of this table, we skip the first 3 points
(where lattice effects and higher-order corrections to scaling dominate) and data for
C < 10−2 (where the error is dominated by insufficient numerical statistics). (Note
that the only data sets with values smaller than 10−2 are θ = 0 and θ = 0.1.) For
θ = 0, the statistical error becomes comparable to the data value once C(r) < 0.01,
the error approaches 50% of the data value and exceeds that once C(r) < 0.01, and
for θ = 0.1 it approaches 5− 10% after C(r) < 0.01. We expect our scaling form to
be excellent in these large-distance regimes, where the corrections to scaling are
negligible and the effects of the external field are small.
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θeff Reff cost error (%)

0.0000000 0.0339815 0.8 1.81

0.0992207 0.0340277 1.4 1.43

0.1985608 0.0340413 1.1 2.91

0.2981203 0.0340234 1.2 2.11

0.3979613 0.0339790 1.4 1.95

0.4980952 0.0339168 1.3 1.41

0.5984751 0.0338478 1.3 1.28

0.6989978 0.0337834 1.6 1.52

0.7995184 0.0337330 1.5 1.49

0.8998839 0.0336999 1.4 1.34

1.0000000 0.0335563 0.1 0.14

1.0099992 0.0336703 0.5 0.53

1.0199971 0.0336664 2.0 2.49

1.0299941 0.0336619 0.9 0.95

1.0399909 0.0336568 1.0 1.06

1.0499883 0.0336507 1.1 1.10

1.0599874 0.0336434 0.9 0.91

1.0699899 0.0336345 0.7 0.74

1.0799981 0.0336234 0.6 0.56

1.0814389 0.0336216 0.4 0.43

Table 2.2: Cost and Errors with Corrections Here are the accuracies of the interpolation
with all first order corrections (for a(T ), ξ(T ) ut, and uh) reported in terms of
average relative error (Equation 2.42) and average cost (Equation 2.41). As in
Table 2.1, we skip the first 3 points, and data below 10−2. Note that with corrections
the errors are smaller.
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Figure 2.7: Small distance corrections for T < Tc H = 0 This figure shows the small
distance discrepancies for data along T < Tc, H = 0. The dashed line is the scaling
theory, while the solid line is including all first order corrections in a(T ), ξ(T ), and
ut. One can see that the discrepancy between simulation data and theory gets
smaller as the distance increases.

the literature we see no existence of singular corrections (which would be indicated by a

power law), nor do we see a dependence between the discrepancy and the distance from the

critical point. Most likely the small distance discrepancy is due to the fact that the form of

the scaling solution goes as Ctheory(r) ∼ a0r
−1/4 for small distances, diverging as r → 0,

however for any data, Cdata(0) = 1.0. Therefore, the ratio between the theory and data

Ctheory/Cdata diverges as r → 0. We attempted to multiply our function by 1/ exp(A/r) or

equivalently exp(−A/r) with A > 0 to incorporate the lattice corrections, but a fit to with

this correction does not noticeably improve the quality of our fit.

2.4.1 Numerical Methods: Wolff Algorithm in a field

The Wolff algorithm [44] efficiently simulates the 2D Ising model in zero field, and requires

small modifications to be used in non-zero magnetic field. In the usual Wolff algorithm,
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Figure 2.8: Small Distance Corrections for All Data This is a plot that shows the small
distance discrepancies for all the data we included in matching our interpolation
results. It is a larger version of the inset of 2.2, so that we may see the details of
where the scaling theory fails.

which generates members of the ensemble of the Ising model in zero magnetic field, a

random spin is chosen which ’seeds’ a cluster. All of the nearest neighbors of this new

cluster that have the same spin are then stochastically added to the cluster with the Wolff

Probability, PWolff = 1− e−βJ . The nearest neighbors of these new additions to the cluster

are again added with the Wolf probability, and this process is iterated until a step adds no

new spins to the cluster. At this juncture, the entire cluster is flipped. To implement a

positive magnetic field, h, we distinguish between clusters which flip spins from up to down,

and those that flip spins from down to up. Clusters that flip spins from down to up proceed

as usual, but whenever an up spin is added to a down cluster, the entire cluster is rejected

stochastically with probability 1− exp(−h). In implementing this algorithm, we were

careful to use a predetermined number of proposed cluster flips, rather than a set number of

spins, or successful cluster flips.

We implemented all of our simulations on 1024× 1024 square lattices. Equilibration
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times were conservatively estimated by waiting for many times the amount of time

it takes for the magnetization to reach and then oscillate around its long time value.

After equilibrating we determined the approximate correlation time- the number of

proposed clusters that must on average be flipped to generate a new configuration whose

magnetization is almost uncorrelated with the previous one. We generated 100 such

independent configurations for each h and t value, and used these to estimate the correlation

functions.

2.5 Conclusion

We have constructed a functional form for the spin-spin correlation function of the 2D Ising

model at arbitrary temperature and field, which matches known analytical results at H = 0,

and numerical simulations to high precision. By virtue of the real-space representation,

comparing Ising predictions to laboratory experiments is reduced to the relatively simple

matter of converting experimental parameters (such as biomembrane temperature and

composition) to the Ising variables of temperature and magnetization or magnetic field or,

equivalently, R and θ. This makes our functional form a robust tool for testing whether or

not real systems fall into the Ising universality class
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CHAPTER 3
Avalanche Spatial Structure and Multivariable

Scaling Functions; Sizes, Heights, Widths, and Views

through Windows 1

We introduce a systematic method for extracting multivariable universal scaling

functions and critical exponents from data. We exemplify our insights by analyzing

simulations of avalanches in an interface using simulations from a driven quenched

Kardar-Parisi-Zhang (qKPZ) equation. We fully characterize the spatial structure of these

avalanches- we report universal scaling functions for size, height and width distributions,

and also local front heights. Furthermore, we resolve a problem that arises in many imaging

experiments of crackling noise and avalanche dynamics, where the observed distributions

are strongly distorted by a limited field of view. Through artificially windowed data, we

show these distributions and their multivariable scaling functions may be written in terms

of two control parameters, the window size and the characteristic length scale of the

dynamics. For the entire system and the windowed distributions we develop accurate

parameterizations for the universal scaling functions, including corrections to scaling and

systematic error bars, facilitated by a novel software environment SloppyScaling.

1This chapter was published as: “Avalanche Spatial Structure and Multivariable Scaling Functions;
Sizes, Heights, Widths, and Views through Windows”, Yan-Jiun Chen, Stefanos Papanikolaou, James
P. Sethna, Stefano Zapperi, and Gianfranco Durin, Phys. Rev. E 84, 061103 (2011)
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3.1 Introduction

Systems that have crackling noise and avalanches exhibit scale invariance and power laws,

which point to the notion of underlying universality [45]. These systems include many of

the best-studied examples of non-equilibrium critical phenomena, and much progress

has been made in a renormalization group context [13, 46]. The renormalization group

implies that the long length and time behavior near critical points is governed by universal

exponents and scaling functions. However, the predictive power of these theoretical studies

has hiterto been underutilized; the primary focus of experiments and numerical simulations

has been on precise estimates of critical exponents, rather than on the universal joint

predictions of properties involving several control parameters and/or measured quantities.

A wide variety of materials and natural systems have been studied in the context of

non-equilibrium critical phenomena. Many of these systems exhibit avalanches which have

power law size distributions. These include Barkhausen noise in ferromagnets [7, 8, 47–49],

fluid imbibition into porous media, flux-line depinning [13, 14, 50–53], and martensitic

transformations [54, 55], to name a few. In the first three of these systems, avalanches are

the result of the jerky motion of an interface (domain wall, fluid front, flux-line) in a

disordered environment, and can be described by the same family of front-propagation

models.

In this manuscript, we study the spatial structures of avalanches in a front-propagation

model in two dimensions, developing tools and methods needed for systematic study and

extraction of these multiparameter universal scaling functions. To illustrate the utility and

importance of these functions, we apply them systematically to a practical experimental

problem – the size distributions of avalanches seen through a viewing window. This problem

illustrates (a) the complexity and sophistication of the different emergent size distributions,
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(b) the relationships amongst the probability distributions of heights, widths, and sizes and

their utility in generating predictions for windowed avalanches, and (c) the use of functional

forms and least-squares fits to analyze and report on these multiparameter scaling functions.

Imaging experiments have been used in recent years to study a wide variety of

systems exhibiting crackling noise or similar dynamics. Barkhausen noise is measured

making use of the magneto-optical Kerr effect [6, 7, 47], allowing one to examine the

domain wall motion in 2D thin films in real-time. In experiments on superconducting

vortices [56], a magneto-optical (MO) setup is also used. In experiments of fracture [57],

fluid imbibition [58] and granular systems [59, 60], the dynamics are also followed with a

camera.

These visualization experiments provide an unusual opportunity: we now can study the

universal properties of the spatial morphology – various distributions of heights, widths,

angles, local heights, etc of either the avalanches or the fronts. However, the measurements

of these properties are often distorted by a limited field of view. We hereby take this

problem and develop the scaling theory for the universal functions needed to characterize

the results of a generic imaging experiment – the distribution of avalanche sizes seen

through windows.

The limited field of view in experiments distort the size distributions of avalanches, and

cause difficulties in characterizing the critical exponents. Naturally, there is a bias towards

small avalanches; large ones are cut off by the boundaries of the window. It can also distort

the size distribution if pieces of large avalanches cut off by window boundaries are counted

as small ones. Experiments have taken a variety of approaches to deal with such windowing

effects: “Laser reflectometry” [6] on Barkhausen noise uses the magneto-optical Kerr effect,

but lacking spatial resolution, lumps fragments and avalanches together; meanwhile, other
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optical Kerr experiments have shown [47] that the effective size exponent τ for this lumped

distribution depends strongly on the window width. Work by Kim et al. [61] report quite

striking distributions but do not specify whether their data includes avalanches that touch

the boundary. In experiments on superconducting vortices, or magnetic flux avalanches [56]

avalanches exceeding a certain size are discarded. In fluid imbibition [58], the edges of

the system are purposely left out to avoid any distortion produced by side walls. In

granular systems, where avalanche dynamics in piles of rice are studied with real-time

reconstruction [59, 60], and fracture experiments [57], where the dynamics are followed with

a high-speed camera, boundary effects are not considered but may also be important.

We will show comprehensively how to analyze all of the size data lying within a window,

and how to use the different classes of avalanches to get independent measures of various

critical exponents. Indeed, window-width finite-size effects need not be avoided, but

properly treated may provide additional measures of the critical exponents and the spatial

structure.

Characterizing spatial structures of avalanches must go far beyond the traditional focus

on critical exponents. Many experiments report power laws, however through this study we

emphasize that one can make predictions about both power laws and scaling shapes from

data, as has been demonstrated in a previous study of avalanche temporal shapes [62].

Indeed, traditional scaling collapse methods fail for functions of more than two variables.

To optimally extract the behavior and estimate errors, we need to do simultaneous analysis

of many different properties. We thus introduce a software environment, SloppyScaling [20],

which facilitates the exploration and development of simultaneous fits of multiple data sets

with parameterized forms of universal scaling functions. With this approach we are taking

the first steps towards the use of scaling methods as a practical engineering tool.
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3.2 Summary of Key Results

Since our theme is multifaceted, readers may be interested in focusing on different aspects

of this work. In this section we present an overview of key results in this paper and a

summary of their corresponding sections.

1. Universal spatial structures of avalanches in directed percolation depinning.

We provide a substantive analysis of the universal spatial morphology of avalanches in the

quenched KPZ (qKPZ) model in 1+1 dimensions (the model is discussed in Section 3.3).

Figure 3.1(a) shows avalanches in a typical simulation of this model. Analogous to magnetic

systems, we have added a ”demagnetization factor“ k that parameterizes the restoring force,

which allows us to access many metastable configurations of the front near the depinning

transition, and controls the typical width of an avalanche, Lk ∼ k−νk . Figure 3.2 shows

examples of these resulting avalanches from simulations of various k. In Section 3.4, we

thoroughly examine the spatial structure of the avalanches, including sizes s (the total area

covered between pinned fronts, which would correspond to the total magnetization change

in magnets, or the avalanche size of a rice pile), and also widths w and heights h (which

measure the length of an avalanche in directions perpendicular and parallel to the direction

of the motion of the front; this corresponds to studying the shapes of the magnetic domains

or flux lines). We examine and fit the distributions of these sizes, heights and widths in

Section 3.4.

2. Avalanches in Windows. As mentioned in the Introduction, in many imaging

experiments the limited field of view distorts the avalanche size distribution. This is

illustrated in Fig. 3.1(b) and (c). In Fig. 3.1(b) most of the avalanches are cut off by the

left and right boundaries- if one were to count the area of these avalanches, we would count

large ones as smaller ones. The resulting size distribution inside the window (dashed line of
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Figure 3.1: Windowed Distributions (a) The full system of avalanches. This figure shows a
qKPZ simulation with avalanches. (b) A limited field of view: we can only see part
of the system. The avalanches inside the artificial viewing window are brightly
colored, and those outside are washed out. Notice that the avalanches within
the window are cut off at top and bottom, and (more importantly for short,
wide avalanches with roughness exponent ζ < 1) on the two sides. (c) The size
distributions for the different types of avalanches: (d) internal 00 avalanches,
(e) split 10 avalanches, (f) split 01 avalanches, and (g) spanning 11 avalanches
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Figure 3.1(c)) has a very different power law and shape compared to the full system

distribution (solid line of Figure 3.1(c)).

In Section 3.5, we show in detail how avalanches which cross boundaries exhibit

distinctly different size distributions and critical exponents. For simplicity, we consider a

strip geometry where only the left/right boundaries are relevant (since avalanches in

our system are flat and wide, few touch the top or bottom). We can therefore separate

avalanches into four different categories, 00, 01, 10, and 11, depending on whether

avalanches touch (1) or do not touch (0) the left or right boundaries: internal avalanches

(00) (Figure 3.1(d)), split avalanches (10 and 01)(Figure 3.1(e) and (f)), and spanning

avalanches (11) (Figure 3.1(g)). The internal (00) avalanches share the same power law as

that of the full distribution, with a cutoff controlled by both the system size Lk and the

window size W . The split (10 or 01) avalanches have a modified power law- a smaller

exponent as larger avalanches are counted as smaller halves. (See Figure 3.1)(c)). The

spanning avalanches also exhibit a smaller exponent, although this is not obvious in the

shape of its scaling function. We can see that it has both an outer cutoff due to Lk and an

inner cutoff due to the window size W , since avalanches must be large enough to span the

window (purple dash-dotted line in Figure 3.1(c)). The internal and spanning avalanches

also have distinct universal scaling functions with a cutoff controlled predominately by the

window size for windows comparable to or smaller than the size of Lk. In Section 3.5 and

Section 3.6 we give a thorough analysis of these modified power laws, the different scaling

shapes, and the results of fits to data.

Having established a sophisticated method of analyzing both experimental and

simulation data, we can utilize this analysis to enhance the collection of data in visualization

experiments. Section 3.7 has some suggestions for how to collect data and simultaneously

analyze the scaling behavior of different magnifications, and extract multiple exponents.

42



3. Functional forms A main emphasis of our work is that we fit an entire functional

form instead of power laws [63], this includes the shape of the scaling function, and analytic

and singular corrections to scaling. The benefit of approaching a scaling problem this way is

that it allows us to account for both universal and non-universal effects in a consistent way.

Writing down the functional form that is given by the data for a certain universality class

will also be useful for identifying and characterizing other systems that are thought to

belong to the same universality class.

We have found that, to analyze the windowed distributions, we need to first thoroughly

examine the spatial structure of avalanches for the full system. In particular, in order to

analyze the avalanche pieces left inside the window, we need to define height and width

distributions and also joint distributions of sizes and widths. Section 3.4 discusses these and

also the results of fits for such distributions for the qKPZ model we are studying. To focus

on the scaling region, and minimize lattice effects, we will discuss these distributions in

terms of fractional area distributions, A(S) ∝ SP (S), the average fraction of the system

that a given size takes up.

A remarkable result is that size, height, and width distributions can be fitted with a

nearly identical functional form. For example the size distribution is:

A(S|Lk) = (S/L1+ζ
k )2−τASk(S/L1+ζ

k )/S (3.1)

= S2−τ
k exp((USS

1/2
k − ZSSδSk ))/S.

Here we have the shorthand Sk = S/L1+ζ
k . The width A(w|Lk) and height A(h|Lk)

distributions are similar, with the form of 1
X
Y αA(Y), where X = {S, h, w} and Y =

{S/L1+ζ
k , h/Lζk, w/Lk}. A(Y) is identical in form to the one quoted above in Eq 3.1.

Fitting the size, height and width distributions at once, we can extract multiple

exponents- not only the commonly measured size distribution exponent τ , but also the
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exponent νk which, as mentioned in point 1, relates the typical width of an avalanche to k,

and also the roughness exponent ζ. The roughness exponent ζ, which measures the

fluctuations of the interface, is typically quoted for front propagation models as a means of

characterizing the universality class. (In our analysis, we have found a range for the

roughness exponent ζ (from 0.62 to 0.72) that differs from the literature value 0.63 [53]; we

discuss this in Section 3.9.) One must note that the functional forms we choose are a

practical tool to summarize existing information. While they may be inspired by analytical

calculations, and chosen to be consistent with known asymptotics, they should be trusted

only in the ranges over which they have been measured.

4. Multivariable scaling problems. The size distribution in Eq. 3.1 has a scaling

form with one scaling variable. However, in this paper we will consider many scaling forms

with more than one variable, such as a joint size and width distribution (3.4), or the

windowed distributions (Section 3.5 and 3.6). In these cases, two or more scaling variables

are important for describing the shape of the distribution (as seen in Figure 3.1(c)). For

example, the general form for the 11 windowed distributions is:

A11(s|W Lk) =
1

s

(
sk
Wk

)(2−τ)(1+ζ)/ζ

A11(sk,Wk). (3.2)

Here the scaling functions become distributions with two scaling variables, the rescaled size

sk and rescaled window width Wk. The traditional “scaling collapse” methods become

problematic when multiple scaling variables are simultaneously important; this has hitherto

retarded the effective study and use of these powerful universal joint distributions.

We present a systematic method for analyzing scaling problems with multiple control

variables. In our problem, the two control parameters are the demagnetization factor k, and

the window width W . We will show that the interplay between k and W is important for

determining the shape of the avalanche size distributions. In particular, we can write
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scaling functions for the distributions of the avalanche pieces in terms of these two scaling

variables sk = s/L1+ζ
k and Wk = W/Lk (as seen in Figure 3.1(c)). For example, the scaling

function for the 11 distribution is:

A11(sk,Wk) = exp(−(T11 + U11s
1/2
k + Z11s

δ11
k +D11

(
sk
Wk

)m1

+ C11

(
sk

W n11
k

)−m2

) (3.3)

Section 3.6 discusses in detail the functions A00(sk,Wk), A10(sk,Wk), and A11(sk,Wk)

that we consider. One may also find the results of fits (figures and tables of parameters) in

Section 3.5.

5. SloppyScaling The analysis in this paper is done in the software environment

SloppyScaling and includes a Bayesian analysis of systematic error bars, which are explained

in Section 3.8.4. SloppyScaling allows us to fit data without collapses, which as mentioned

above is problematic when there is more than one scaling variable involved. Included in the

software setup are automatic fits of data to theory functions with nonlinear least-squares

and ease of visualizing results. This software may be applied to many different multivariable

scaling problems, making full use of universality and the predictions of the renormalization

group. All of the fits in this paper and their corresponding figures (including axis labels)

were generated directly and automatically using SloppyScaling.

3.3 Model

We use a model for imbibition fronts to produce avalanches, it is extensively studied, with

well-established critical exponents.

We simulate crackling noise using a quenched KPZ model in 1+1 dimensions (see

Section 3.8.1 for details on the implementation) [50], with dynamics given by:

∂h(x, t)

∂t
= F − k〈h〉+ γ∇2h+ λ(∇h)2 + η(x, h) (3.4)
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Figure 3.2: Scale Invariance in Crackling Noise. Three simulations of crackling noise, with
different “demagnetization fields”, k. (a) k = 10−5 (b) k = 10−6 (c) k = 10−7 (k is
what controls the typical avalanche sizes in a given system, giving a characteristic
width Lk.) Larger demagnetization fields stop avalanches more strongly, hence
large k corresponds to smaller avalanches. The colored regions represent avalanches.
The fronts are moving from bottom to top. Notice that the two simulations are
statistically similar to one another apart from a rescaling of heights and widths.
Note that most of the area is covered by the largest avalanches.

where h(x, t) is the height of the front, F the driving force increasing quasistatically, linear

and non-linear terms for the KPZ model controlled by the parameters γ and λ respectively,

and η Gaussian quenched disorder. In the spirit of magnetic avalanche models [64], we have

added a term analogous to a demagnetization field −k〈h〉, which allows us to have pinned

fronts at many metastable configurations. Models like these have been simulated [14]

mostly near the depinning transition (and with k = 0). With k 6= 0, we define the area

between each pinned front as an avalanche of size S. Avalanches produced by this model

are thought to belong to the directed percolation depinning (DPD) universality class

[53, 65]. The avalanches are self-affine, long and wide, with ζ < 1. The roughness exponent

ζ characterizes the ruggedness of the front, and also governs the scaling of avalanche heights

h with widths w, h ∝ wζ [14, 66]. In our model, k controls the typical size of the avalanche

(Figure 3.2), the larger the k the smaller the typical size of an avalanche. We define the

characteristic width of an avalanche in the full, unwindowed system to be Lk = k−νk . We
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will write all the scaling forms in terms of the length Lk rather than the demagnetizing

factor k directly to emphasize the analogies to finite-size scaling, as we are also studying

finite window sizes compared to the size of Lk.

3.4 Avalanche Shapes and Distributions of the

Full System

In this section we will introduce various avalanche spatial distributions and their scaling

forms. These forms will allow us to motivate the windowed distributions, and also serve as

an example where traditional collapses may lead to questionable results.

3.4.1 Area-weighted size distributions

Traditionally, to describe an avalanche size distribution, we write the probability distribution

as a power law times a universal scaling function. For example:

P (S|Lk) = S−τP(S/L1+ζ
k ). (3.5)

Lk is the characteristic width of an avalanche, and h ∼ Lζk the typical largest height,

and therefore the appropriate scaling variable to describe the area of an avalanche is

Sk = S/L1+ζ
k .

When studying the spatial properties as in our case, the probability distribution P (S)

(Eq. 3.5) is not the best choice, as its normalization is highly affected by non-universal

effects at the lattice spacing (Figure 3.3). In fact, for τ > 1, the normalization integral

N−1 =

∫ ∞
a2

P (S|Lk) dS ∼
∫ L1+ζ

k

a2

S−τ dS ∼ a2(1−τ) − L(1−τ)(1+ζ)
k (3.6)
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(a) Size Distribution (Probability)

(b) Area-weighted Size Distribution

Figure 3.3: A(S) vs P (S). Here one can see the difference between the more traditional P (S)
and the area-weighted A(S). (a) P (S): most of the area under the curve is from
small avalanches, where non-universal lattice effects are important. (b) A(S): the
normalization is dominated by large avalanches, avoiding the lattice effects, so that
we can focus instead on the dependence on the large scale cutoffs- Lk and, in later
sections the window size. The data here is from qKPZ simulations of different k
with different simulation size L. The lines in (b) are a result of a joint fit with
the maximum height and width distributions. The fitting function and fitting
parameters are shown in Table 3.1.
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diverges at its lower (ultraviolet) limit a→ 0, but not for Lk →∞. Although we could

study scaling functions that include a lattice cutoff, it is more interesting to focus on the

large (infrared) avalanche cutoff, which depends on Lk in a universal way. To this end,

it is more appropriate to make use of the first moment of P (S), and to consider the

area-weighted size distribution A(S)

A(S) ∼ S · P (S). (3.7)

A(S)dS has a natural physical interpretation: it is the fraction of the full system area

covered by avalanches with sizes between S and S + dS. Its scaling form is thus:

A(S|Lk) = L
(τ−2)(1+ζ)
k S1−τASk(S/L1+ζ

k )

= (S/L1+ζ
k )2−τASk(S/L1+ζ

k )/S

= S2−τ
k ASk(Sk)/S. (3.8)

We use the subscripts Sk to distinguish the scaling of the size distributions governed by k

from those governed by other control variables. The power of Lk we pull out of the scaling

function is needed to normalize A(S) to one, since A(S) is sensitive to the long-distance

cutoff. In particular,

N−1 =

∫ ∞
a2

A(S|Lk)dS =

∫ ∞
a2

S2−τ
k ASk(Sk)/SdS =

∫ ∞
a2/L1+ζ

k

S2−τ
k ASk(Sk)/SkdSk

=

∫ ∞
a2/L1+ζ

k

S1−τ
k ASk(Sk)dSk =

∫ ∞
0

S1−τ
k ASk(Sk)dSk −

∫ a2/L1+ζ
k

0

S1−τ
k ASk(Sk)dSk

≈ 1−ASk(0)(a2/L1+ζ
k )2−τ ≈ 1 (3.9)

where the last integral converges for τ < 2 2 and becomes small as Lk becomes large. Notice

that the normalization of a power law must either diverge at the lower or at the upper

2All of the front propagation models have 1 < τ < 2, but we would need to use the second moment S2

for the 3D nucleated RFIM [67], which has τ ∼ 2.06.
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limit. By studying avalanches weighted by their first moment, the normalization depends

explicitly on Lk, the infrared cutoff. This is the regime we are mainly interested in, since we

would like to study the finite size effects imposed by both k and the window size W .

Alternatively, as done in [68], one may also define a scale Sm = 〈S2〉
2〈S〉 , redefine the sizes as

S/Sm and a corresponding p(S/Sm) which has normalization
∫∞

0
dssp(s) = 1. Here p(s) is

universal, but is also not a probability distribution in the conventional sense. This definition

has an effect equivalent to what we do here: to make the function universal and insensitive

to non-universal lattice effects on normalization. Namely, our definitions are related in

the following way: A(S) = S
S2
m
p(S/Sm) and ASk(S/Sm) = (S/Sm)2p(S/Sm). Here we use

Sm ≡ Sk = S/L1+ζ
k , which is consistent with their definition of Sm up to a constant factor.

We prefer to focus on the more directly interpretable fractional area distribution A(S).

Furthermore, notice that we have been unorthodox in writing the scaling form (3.8) for

A(S|Lk) with a power of both Lk and of S outside the scaling function. Normally one

factors out a single variable from the scaling function. For example, one could in principle

write

A(S|Lk) =
1

S
BSk(Sk). (3.10)

In this form, A(S|Lk) dS is invariant under rescaling, and also clearly preserves normalization.

However, B(Sk) = S2−τ
k A(Sk) vanishes as Sk → 0, so this form of the scaling function

disguises the power law behavior of the avalanche size distribution. By choosing the form

ASk which is defined to be finite and non-zero as S → 0, we make manifest both the

avalanche size dependence and the system size dependence.
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3.4.2 Maximum height and width distributions

In addition to the size distributions, we can also study the avalanche height and width

distributions. We define height along the direction of front propagation, measuring the

maximum height of an avalanche, and width perpendicular to heights, measuring the

maximum width of an avalanche.

How do the height and width distributions scale? An avalanche of height h has size

S ≈ hw ∼ hh1/ζ = h(1+ζ)/ζ , so the system area A(h|Lk)dh covered by avalanches with

heights between h and h+ dh scales as

A(h|Lk)dh ∼ A(S|Lk)dS

= L
(τ−2)(1+ζ)
k S1−τASk(S/L1+ζ

k ) dS

= L
(τ−2)(1+ζ)
k h(1−τ)(1+ζ)/ζAhk(h/Lζk) dS

(3.11)

and since dS/dh ∼ h1/ζ ,

A(h|Lk) = L
(τ−2)(1+ζ)
k h(2−τ)(1+ζ)/ζ−1Ahk(h/Lζk)

= (h/Lζk)
(2−τ)(1+ζ)/ζAhk(h/Lζk)/h

= h
(2−τ)(1+ζ)/ζ
k Ahk(hk)/h (3.12)

where hk = h/Lζk is the appropriate scaling variable to describe the avalanche height.

Similarly, we can write the scaling form for the width distributions as:

A(w|Lk) = (w/Lk)
(2−τ)(1+ζ)Awk(w/Lk)/w

= w
(2−τ)(1+ζ)
k Awk(wk)/w (3.13)

where wk = w/Lk is the scaling variable for widths.
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Notice the pattern in all these formulas: A(X|L) is a function with A(Y ) of scaling

variables (combinations of X and L invariant under the renormalization group rescaling)

multiplying a power of the scaling variable, divided by the independent variable X , making

A(X|L)dX invariant under rescaling, allowing it to be universal.

3.4.3 Joint fit of size, height and width distributions

In Figs. 3.3(b), 3.4(a), 3.4(b) we show the size, height and width distributions for our qKPZ

simulations at various k, and at different simulation sizes L. The curves are theoretical fits

using a functional form of the type

A(Y ) = exp(UxY
1/2 − ZxY δx) exp(Ax1/x+ Ax2/x

2). (3.14)

where x = {S, h, w}, and Y = {Sk, hk, wk}, and Ux, Zx, δx, A
x
1 , A

x
2 are (5x3) fitting

parameters (results are listed in Table 3.1). The first exponential term is the universal

scaling function, while the second accounts for non-universal analytic corrections at small x

due to lattice effects [67]. (See Section 3.8.5).

One may ask why we choose this particular scaling form. When fitting data to a

function, there are many parameterizations we could use to describe the data. This form is

motivated from a functional renormalization group expansion by Le Doussal and Wiese for

static avalanche size distributions in a linear model [69]. Our model differs in that there is a

nonlinear KPZ term leading to anisotropy, so that our avalanches belong to a different

universality class, the DPD universality class.

Le Doussal and Wiese find the avalanche size distribution for the linear model, for

all static universality classes (random-bond, random-field, and random-periodic), to
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(a) Maximum heights

(b) Maximum widths

Figure 3.4: Area-weighted Avalanche Distributions for Maximum Heights and
Widths Area-weighted avalanche distributions of (a) maximum heights, and (b)
maximum widths for qKPZ simulations at different k, and simulation sizes L (dots
are binned data). The critical exponents were jointly fit with the size distributions
A(S|Lk) of Fig. 3.3, using the scaling forms of Eqs. 3.12, 3.13, and 3.14. The best
fit values for the critical exponents, parameters for universal scaling functions, and
non-universal corrections are given in Table 3.1.
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leading order in d = 4− ε (where d is the dimension of the interface), to be:

P (S) ∝ S−τ exp(C(S/Sm)1/2 − B

4
(S/Sm)δ) (3.15)

Here their scaling form includes the large scale cutoff Sm. Le Doussal and Wiese claim

that their results for both static and dynamic avalanches agree up to one loop for systems

with ζ < 1. Static avalanches are separated by equilibrium configurations (or ground

states), and dynamic avalanches are connected through a sequence of metastable states.

Our avalanches result from a moving interface near the depinning transition, so they belong

to a dynamic universality class. We thus use Eq. 3.15 as inspiration for the scaling form of

Eq. 3.14. However, one may note that there is no theoretical basis that it should work,

since it is from a distinctly different universality class.

One cannot determine the values of νk and ζ independently, if we fit the size, height, or

width distributions with Eqns. 3.8, 3.12, and 3.13 separately. For example in the size

distribution we can only determine the combination νk(1 + ζ). We determine the three

critical exponents τ , νk, and ζ, by jointly fitting the size, height and width distributions.

The results of our fits are reported in Table 3.1 and shown in Figures 3.3(b) and 3.4. In

particular, we find ζ = 0.62± 0.02 which is close to the highly-precise value of ζ = 0.63

found in the literature [52, 66, 70–72]. We note that the parameters δx, which in principle

control the aymptotic decay of the scaling function, are estimated here from a fit to the

entire distribution. The quoted errors do not represent a confidence on the asymptotic

decay - merely a confidence in the predictions over the range where data has been fit.

Finally, the respective scaling collapses for the size, height, and width distributions are

shown in Figures 3.5, 3.6, and 3.7. Although scaling collapses are very useful in verifying

critical behavior, we argue that they may be problematic for the purpose of determining

critical exponents, and one should fit and make use of functional forms. In Section 3.8.5 we
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Figure 3.5: Size Distribution A(S|Lk) Scaling Collapse We collapse the size distribution
data using the universal exponents of τ = 1.24, νk = 0.45, and ζ = 0.62, the best
fit values of the joint fit between A(S|Lk), A(h|Lk) and A(w|Lk).

Figure 3.6: Height Distribution A(h|Lk) Scaling Collapse We collapse the simulation
data using the universal exponents of τ = 1.24, νk = 0.45, and ζ = 0.62, the best
fit values of the joint fit between A(S|Lk), A(h|Lk) and A(w|Lk).
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Figure 3.7: Width Distribution A(w|Lk) Scaling Collapse We collapse the width
distribution data using the universal exponents of τ = 1.24, νk = 0.45, and
ζ = 0.62, the best fit values of the joint fit between A(S), A(h) and A(w).
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parameter best fit standard errors systematic errors

in linear approx.

Universal Exponents

Shared Exponents

τ 1.2414 ± 0.0006 ± 0.04

νk 0.4513 ± 0.0001 ± 0.008

ζ 0.6155 ± 0.0004 ± 0.02

ASk(Sk) = exp(USS
1/2
k − ZSSδSk )

US 0.173 ± 0.003 ± 0.2

ZS 0.0099 ± 0.0002 ± 0.01

δS 1.832 ± 0.004 ± 0.3

Ahk(hk) = exp(Uhh
1/2
k − Zhh

δh
k )

Uh 0.94 ± 0.01 ± 0.9

Zh 0.307 ± 0.004 ± 0.3

δh 1.255 ± 0.003 ± 0.2

Awk(wk) = exp(Uww
1/2
k − Zww

δw
k )

Uw 0.401 ± 0.005 ± 0.6

Zw 0.0291 ± 0.0004 ± 0.2

δw 2.202 ± 0.005 ± 0.9

Non-Universal Exponents

exp(Ax1/x+ Ax2/x
2)

As1 -0.36 ± 0.03 ± 2

As2 -0.35 ± 0.06 ± 4

Ah1 2.30 ± 0.04 ±2

Ah2 -1.90 ± 0.04 ± 2

Aw1 -0.99 ± 0.03 ± 2

Aw2 -0.06 ± 0.03 ± 1

Table 3.1: Best Fit Exponents and Parameters Here are the results of our joint fit for the
size A(S|Lk), width A(w|Lk), and height A(h|Lk) distributions. The corresponding
universal scaling forms which were fit are quoted in the table alongside the parameter
results; on the bottom of the table are multiplicative corrections for each distribution,
with x equal to either S, w, and h. Here systematic error bars which account for
errors in the theory (see Section 3.8.4 for explanation) are given. The traditional
standard error bars are typically ∼ 64 times smaller than the systematic error bars
quoted; however, they are a gross underestimate of the actual errors expected since
our theory is both highly nonlinear and sloppy [73]. We quote each parameter to the
significant figure indicated by its standard error, since the parameters are strongly
correlated, truncating each parameter to its significant figure would yield a poor fit.



will show how scaling collapses are unable to incorporate the effects of corrections to scaling,

and how these corrections may cause a drift in the critical exponents.

3.4.4 Local height distributions

Figure 3.8: Area-weighted Local Height Distributions Here are the area-weighted
local height distributions, the fraction of area taken up by a cross sectional height
hx. The fits shown in the figure were with the form of Eq. 3.16, where Ahxk is the
scaling function of the fit to 11 spanning avalanches (Eq: 3.33) which cross both
window boundaries, taking W = 0. Details for this function are explained in
Section 3.5.

In our analysis of the next section, we will make use of another scaling function of the

same form: not the maximum height of an avalanche, but the distribution of heights given

by random cross sections of avalanches. Let A(hx|Lk) dhx be the fraction of the system

area consisting of points (x, y) where the enclosing avalanche has vertical cross-sectional

height at x in the range (hx, hx + dhx), then,

A(hx|Lk) ∼ (hx/L
ζ
k)

(2−τ)(1+ζ)/ζAhxk(hx/L
ζ
k)/hx. (3.16)
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This distribution gives a different measure of the typical shape of an avalanche. The local

height distribution is shown in figure 3.8. Here the curves show a fit we have generated with

a scaling function of the fit to 11 spanning avalanches (Eq 3.33) which cross both window

boundaries, taking the limit of W = 0. Our best measure of the local heights is equivalent

to a 11 distribution with window size 1. Details for how this works are provided in the

Section 3.5.3.

3.4.5 Joint distributions and multivariable scaling functions

Once we have distributions for the measures of size S, width w and height h, we can also

explore the forms of joint distributions. The area A(w, S|Lk) dS dw of avalanches in the

range of size (S, S + dS) and widths (w,w + dw) will go to zero strongly if the size S

becomes either much larger than or much smaller than the typical size w1+ζ of an avalanche

of width w – so we may factor out any combination of powers of w and S without changing

the singularity. It still makes sense, though, to factor out the Lk-dependence. If we choose

to factor out powers of S, therefore, we find

A(w, S|Lk) (3.17)

=

(
S

L1+ζ
k

)2−τ

AwSk
(

w

S1/(1+ζ)
,
w

Lk

)
1

S S1/(1+ζ)

= L
(τ−2)(1+ζ)
k S1−τ−1/(1+ζ)AwSk

(
w

S1/(1+ζ)
,
w

Lk

)
.

where again we have a power of a dimensionless scaling variable, times a scaling function,

divided by Sw ∼ SS1/(1+ζ) since A(w, S|Lk) is multiplied by dS dw in its invariant form.

The last joint distribution that will be useful is related to right-most pieces of an

avalanche. Consider the right-most piece of width x of an avalanche of total width w and

total size S; let this segment have size s. (This will be the size measured by a window that
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cuts the avalanche at the left-hand window boundary at x.) Let A(s, w, S|x, L) be the

fraction of the system covered by such avalanche pieces. Then, in the same logic as before,

this five-variable distribution can be written as a power law times a universal function of

four variables:

A(s, w, S|x, L) = L
(τ−2)(1+ζ)
k s−τ−1/(1+ζ)AswSxk

(
x

s1/(1+ζ)
,
S

s
,

w

S1/(1+ζ)
,
w

Lk

)
. (3.18)

One can clearly work out scaling forms for joint distributions of several variables and

other combinations. The ones we have discussed here will be needed in our analysis of

windowing effects.

3.5 Window Effects

Now that we have laid the groundwork for exploring the shapes of avalanches, we focus on

analyzing avalanches inside a viewing window. In this section, we focus on how to define

the right power laws and scaling; we also give results for fits, extracting critical exponents.

In the next section, we go into more detail about the scaling shapes of these distributions -

the universal scaling functions for avalanche sizes viewed through windows.

In imaging experiments one often runs into the problem of not being able to see the

whole system, distorting the avalanche size distribution. In particular, for Barkhausen noise,

typical magnetic avalanches span many decades in size, far beyond the spatial resolution

of optical microscopes. The natural solution is to take measurements at a variety of

magnifications. Even though at the weakest magnifications the window size W > Lk and

most avalanches avoid the window boundaries, the effects of the boundaries will always

dominate at the highest magnifications. The analysis in this section not only provides a
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method to correct for finite-size-like window effects on exponents, but allows us to actively

make use of all the data for a range of magnifications.

We show in detail in this section and the next how the avalanches which cross different

boundaries exhibit distinctly different size distributions and critical exponents (Figure 3.1

and 3.9). As described in Section 3.2, we consider the avalanches measured in an infinite

strip of width W (Figure 3.1(b)), for a system with characteristic length Lk. We separate

avalanches into different categories: internal avalanches (00), split avalanches (10 and 01),

and spanning avalanches (11). Let us call A00(s|W,Lk) ds the area fraction covered by such

avalanches with sizes in the range s, s+ ds. (For A00, the segment size equals the total

size.) The split (10 or 01) avalanches will have area fraction A10(s|W,Lk) ds for each s.

The distribution A01 (Figure 3.1(f)) of avalanches touching the right boundary naturally

equals A10 on average. A11(s|W,Lk) ds is the fraction of the strip spanned by 11 spanning

avalanches. We mentioned in Section 3.2 that the 00 avalanches have a power law that

matches the full system, whereas the 10, 01, 11 avalanches all have modified power laws

with a smaller exponent τ .

Besides different power law scaling, the universal scaling functions for these different

avalanche distributions are also distinct. In particular, the cutoff dependence on window

size is different for internal avalanches and split avalanches, while the spanning avalanches

have both an outer and an inner cutoff due to the window size (since avalanches must be

large enough to span the window). We present the fits of these universal scaling functions

in this section and discuss their shapes in more detail in the next.

We know that all avalanches in the window are of one of the 00, 10, 01, 11 types, so∫
dsA00(s|W,Lk) + 2A10(s|W,Lk) + A11(s|W,Lk) = 1. (3.19)

As in the previous section, consider how each of these distributions Azz rescales under
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10 
11 

00 
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W

W = wmax 

hedge 

hmax 

wmin 

hmin 

Figure 3.9: An Avalanche Cut by Windows in the Extreme Limits. Drawn here are
two fronts separated by an avalanche event. Here we are depicting cases where this
avalanche (or its segment) is the maximum avalanche size for the 00, 10, and 11 at
different window widths. Boxes of different widths and colors are used to show the
cases in which this may happen. The main avalanche may count as a 00 avalanche
for a wide window, while part of it would count as a 11 avalanche for a smaller
window; it could also count as a 10 avalanche if it happens to cross the window
boundary. This figure illustrates our arguments for the shape of the cutoff (the
exponent nzz) given a window size W for the 00, 11, 10 cases. Another small
avalanche is drawn for the 11 case to show that the minimum size to cross the 11
window also introduces a separate cutoff.
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a coarse-graining by a factor b. The zz denote our indices for the various windowed

distributions (00, 10, 01, 11). Each Azzds, being a geometrical quantity (a fractional area),

must be invariant under rescaling (with two invariant scaling variables):

Azz(s|W,Lk) ds = Azz(s/b
1+ζ |W/b, Lk/b)ds/b1+ζ

= (1/s)Bzz(s/L1+ζ
k ,W/Lk)ds. (3.20)

However, this is clearly not the form which makes the size and window-width dependence of

the avalanche sizes manifest. We are allowed to factor powers of the invariant scaling

variables W/Lk and s/L1+ζ
k out of the scaling function B:

Azz(s|Wk, Lk)

=
1

s

(
s

L1+ζ
k

)2−τzz (
W

Lk

)−υzz
Azz

(
s

L1+ζ
k

,
W

Lk

)

= L
(τzz−2)(1+ζ)+υzz
k W−υzzs1−τzzAzz

(
s

L1+ζ
k

,
W

Lk

)
. (3.21)

The appropriate powers of s, Lk, and W to pull outside depend upon which of the three

distributions we are considering. For the distributions A00 and A10, A01, we choose τzz and

υzz (powers of the invariant scaling variables X = s/L1+ζ
k and Y = W/Lk) to make the

resulting scaling function go to a constant at small X and/or Y . This way the power

laws we pull out describe the behavior of the limit of small s, and the way in which the

avalanches are cut off by the window size (as s approaches W 1+ζ) are described by the

scaling function. On the other hand for A11 there are no small avalanches (they have to be

large enough to span the window), and as Lk →∞, all avalanches span the window and

become 11 avalanches, and in this limit the distribution will not go to zero, so for this

distribution we instead pull out powers of W and s.
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3.5.1 Internal Avalanches

First let us consider A00(s|W,Lk)ds, the window area spanned by avalanches of sizes in

(s, s+ ds) that do not touch the boundaries. This can be computed explicitly from the

function A(w, S|Lk) (Eq. 3.17) which gives the area covered by avalanches of width w and

size S (note that for 00 avalanches, the segment pieces s = S):

A00(s|W,Lk) =

∫ W

a

W − w
W

A(S,w|Lk)dw

=

∫ W

a

dw
W − w
W

L
(τ−2)(1+ζ)
k S1−τ−1/(1+ζ)AwSk

(
w

S1/(1+ζ)
,
w

Lk

)
= L

(τ−2)(1+ζ)
k S1−τ−1/(1+ζ)

∫ W

a

dw
W − w
W

AwSk
(

w

S1/(1+ζ)
,
w

Lk

)
(3.22)

where (W −w)/W is the probability that an avalanche whose center lies within the window

is entirely contained in the window (i.e., the avalanche center lies within (W − w)/2 of the

center of the window). Changing variables from w to Ω = w/s1/(1+ζ),

A00(s|W,Lk) = L
(τ−2)(1+ζ)
k s1−τ

∫ W/s1/(1+ζ)

a/s1/(1+ζ)
dΩ

W − s1/(1+ζ)Ω

W
AwSk

Ω,Ω

(
s

L1+ζ
k

) 1
(1+ζ)


= L

(τ−2)(1+ζ)
k s1−τA00(s/W 1+ζ ,W/Lk),

(3.23)

with no explicit dependence on the window width W (so υ00 = 0), and the same critical

exponent τ00 = τ that is given by the non-windowed distribution. Note that Eq. (3.23) is of

the general form given by Eq. (3.20) and (3.21). This scaling equation is also consistent

with our numerics: the normalization of the distribution for small avalanches is independent

of W , and τ00 = 1.26± 0.02 is consistent with the bulk τ = 1.24± 0.04.

Using this scaling form, we fit the 00 data (jointly with 11 and 10 data) with a scaling
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function given by a parameterized functional form:

A00(s|W,Lk) =L
(τ−2)(1+ζ)
k s1−τ exp(−(T00 + U00s

1/2
k + Z00s

δ00
k + C00(

sk
W n00
k

)m00)

exp((A00
1 /s+ A00

2 /s
2)) (3.24)

with sk = s/L
(1+ζ)
k . Our fit for the parameter n00 is 1.62, which we believe to be 1 + ζ (see

next section). This makes the term sk/W
n00
k = S/W 1+ζ which is another natural invariant

scaling variable.

Figure 3.10 shows the results of a nonlinear least squares fit, with shaded areas as

estimations of fluctuations in the theory corresponding to systematic error bars on our

parameters. In Eq. 3.24, τ , ζ, (and νk which is hidden in Lk) are universal exponents

shared amongst the three different distributions, A00
1 and A00

2 are (non-universal) analytic

corrections to scaling reflecting lattice effects on small avalanches, and the other parameters

encapsulate the shape of the universal scaling function A00. The fitted results for the other

universal and non-universal parameters are quoted in Table 3.2. We describe the scaling

shapes and their motivation in more detail in Section 3.6.

One may note the exponent ζ in our fits is fixed to the literature value of 0.63. If we

allow for a free fit on all the parameters, it shifts to ζ = 0.68± 0.02. Although the free fit is

2.5σ away from the accepted value of ζ, the fit with fixed ζ = 0.63 has only a 50% higher

cost than the free fit minimum, suggesting an average of 0.5σ drift on the parameters

instead of 2.5σ as seen in Table 3.2. This suggests three cautions (1) The estimate on our

systematic error (0.02) is a lower bound estimate, and in fact the systematic error should be

higher. (2) The fact that our systematic error should be higher also implies that the scaling

functions are imperfect and may be improved upon. (3) There could be corrections due to a

crossover that depends on both λ and k which we have not accounted for, which are
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distorting the fit. The subtleties and nuances in measuring the exponent ζ, and the possible

origins of this drift are discussed in more detail in Section 3.9.

100 101 102 103 104 105 106
s

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

A
00

k,Ws =10−5 ,0.36

k,Ws =10−7 ,0.36

k,Ws =10−4 ,1.01

k,Ws =10−6 ,1.02

k,Ws =10−3 ,2.86

k,Ws =10−6 ,4.09

k,Ws =10−5 ,5.76

k,Ws =10−4 ,16.23

k,Ws =10−5 ,46.07

Figure 3.10: Internal Avalanches Data and Fit Shown here are the area-weighted size
distributions for internal (00) avalanches. The lines are the joint best fit of A00,
A10 and A11 to the functional forms of equations 3.24, 3.27, and 3.33, whereas
the shaded areas are the fluctuations in theory corresponding to the systematic
covariant errors on our exponents and parameters (individual parameter best fit
values and errors are quoted in Table 3.2).

3.5.2 Split Avalanches

Next, consider the avalanches that are split by one side of the window, say the left side,

with the distribution A10(s|W,Lk). Physically, for small avalanches s and large Lk/W this

is clearly proportional to 1/W : the small avalanches extend only a small distance into
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the window (smaller than the window width), so the fractional area covered by them is

proportional to one over the width of the window. This leaves us with a scaling form

A10(s|W,L) = (3.25)

1

W
L(τ ′−2)(1+ζ)s1−τ ′+1/(1+ζ)A10(s/L1+ζ

k ,W/Lk).

with τ ′ to be determined. Note again that Eq. (3.25) is of form Eq. (3.20).

We can also write A10 in terms of the distribution of right-most pieces A(s, w, S|x, Lk)

from Eq. 3.18, integrating over all possible sizes S, all possible widths w, and all possible

pieces x (from lattice size a to window width W ):

A10(s|W,Lk) =

∫ ∞
a2

dS

∫ ∞
a

dw

∫ W

a

dx

W
A(s, w, S|x, Lk)

∼

(
s

L1+ζ
k

)2−τ
1

s2 s1/(1+ζ)

∫ L1+ζ
k

a2

dS

∫ Lk

a

dw

∫ W

a

dx

W
AswSxk

(
x

s1/(1+ζ)
,
S

s
,

w

S1/(1+ζ)
,
w

Lk

)
=

(
s

L1+ζ
k

)2−τ
1

s

∫ L1+ζ
k /s

a2/s

d

(
S

s

) ∫ Lk/s
1/(1+ζ)

a/s1/(1+ζ)
d
( w

s1/(1+ζ)

)
×
∫ W/s1/(1+ζ)

a/s1/(1+ζ)

s1/(1+ζ)

W
d
( x

s1/(1+ζ)

)
AswSxk

(
x

s1/(1+ζ)
,
S

s
,

w

S1/(1+ζ)
,
w

Lk

)
=

1

W
L

(τ−2)(1+ζ)
k s1−τ+1/(1+ζ)A10(s/L1+ζ

k ,W/Lk) (3.26)

dx/W is the relative probability that the avalanche intersects the left-hand boundary,

and we have changed the integration limits at ∞ to the avalanche length scale Lk. (For

w < x < W , the original distribution is naturally zero.) After we rewrite the integration

variables in terms of the invariant scaling variables, we can organize the form of the scaling

function into the form of Eq. 3.25. This tells us that τ ′ = τ . These results are consistent

with our numerical fits: W has an exponent of minus one, and τ ′ is equal to the system τ .

With the correct power laws pulled out, we can now write down a function to describe
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the data and cutoff:

A10(s|W,Lk) =
1

W
L

(τ−2)(1+ζ)
k s1−τ+1/(1+ζ) exp(−(T10 + U10s

1/2
k + Z10s

δ10
k + C10(

sk
W n10
k

)m10)

exp((A
(10)
1 /s+ A

(10)
2 /s2))

(3.27)

Again, our best fit n10 is nearly 1 + ζ, so sk/W
n10
k ∼ s/W 1+ζ . Also note that this

distribution has the same functional form as A00 in eqn 3.24 aside from a factor of

s1/(1+ζ)/W in front.

Figure 3.11 shows the results of a joint nonlinear least squares fit with the 00 and 11

avalanche data, with shaded areas representing estimations of fluctuations in the theory

corresponding to systematic error bars on our parameters. Here, as in the 00 distributions,

τ , ζ (and νk which is included in Lk and the scaling variables sk and Wk) are universal

exponents shared amongst the three different distributions, A10
1 and A10

2 are (non-universal)

analytic corrections to scaling reflecting lattice effects on small avalanches, while the other

parameters describe the shape of the universal scaling function A10(sk,Wk). Fitted results

for the other universal and non-universal parameters are quoted in Table 3.2. We describe

the scaling shape and its motivation in more detail in section 3.6.

3.5.3 Spanning Avalanches

Finally, consider the spanning avalanche distribution A11. First, remember that most of the

area in general is spanned by the largest avalanches (since τ < 2). Therefore, as Lk →∞,

100% of the area is covered by avalanches of widths much larger than W , and hence A11

must integrate to one in this limit. This makes it natural to pull out only powers of W and

s outside the scaling form for A11.
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Figure 3.11: Split Avalanches Data and Fit. Shown here are the area-weighted size
distributions for split (10) avalanches with different k and window size W . The
lines are the joint best fit of A00, A10 and A11 to equations 3.24, 3.27, and
3.33, whereas the shaded areas are the fluctuations in theory corresponding to
the covariant systematic errors on our exponents and parameters (individual
parameter best fit values and errors Table 3.2).
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Second, notice that the size of an 11 avalanche is basically given by its height. More

specifically, as W → 0, the avalanches have size s = Whx, where hx is the height of the

vertical cross section of the avalanche. Hence we can write A11 in the limit W → 0 in terms

of the distribution A(hx|Lk) of randomly chosen vertical cross sections of avalanches

(eqn 3.16), choosing hx = s/W :

A11(s|W=0, Lk)ds ∼W→0 dhxA(hx=s/W |Lk)

A11(s|W=0, Lk) ∼W→0
1

W
A(hx=s/W |Lk) (3.28)

where dhx/ds = 1/W . Remembering from Eq. (3.16) that

A(hx|Lk) ∼ (hx/L
ζ
k)

(2−τ)(1+ζ)/ζAhxk(hx/L
ζ
k)/hx, we substitute s/W for hx and take the

limit of Wk → 0 in Eq. 3.28 to give:

A11(s|W = 0, Lk) ∼Wk→0
1

W

(
s

W Lζk

)(2−τ)(1+ζ)/ζ

Ahxk

(
s

W Lζk

)
/(s/W ), (3.29)

we cancel the two W ’s and add the dependence on the second scaling variable Wk = W/Lk

to derive the scaling form for A11:

A11(s|W,Lk) =
1

s

(
s

WLζk

)(2−τ)(1+ζ)/ζ

A11

(
s/(WLζk),W/Lk

)
. (3.30)

Here limY→0A11(X, Y ) = Ahxk(X) and thus
∫
A11(X, 0) dX = 1 (implied by the fact that

almost all avalanche area touches both boundaries as W/Lk → 0). Also notice that since:

X =
s

WLζk
=

s

L
(1+ζ)
k

Lk
W

= sk ·
1

Wk

, (3.31)

we can rewrite A11(s|W,Lk) as:

A11(s|W,Lk) =
1

s

(
sk
Wk

)(2−τ)(1+ζ)/ζ

A11

(
sk
Wk

,Wk

)
. (3.32)
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Figure 3.12 shows the results of a joint fit with the simulation data of the previous 00 and

10 distributions. For the 11 distributions we use the functional form:

A11(s|W Lk) =
1

s

(
sk
Wk

)(2−τ)(1+ζ)/ζ

exp

(
−

(
T11 + U11s

1/2
k + Z11s

δ11
k +D11

(
sk
Wk

)m1

+C11

(
sk

W n11
k

)−m2
))

exp(A
(11)
1 /s)

(3.33)

τ (and also ζ and νk which are hidden in the scaling variables sk and Wk) are universal

exponents shared amongst the three different distributions, A1
11 is the (non-universal)

analytic correction to scaling reflecting lattice effects on small avalanches, while the other

parameters describe the shape of the universal scaling function A11(sk,Wk). Note that we

don’t include the term A2
11, as we have done in the 00 and 10 distributions; this term turns

out to be the same as another term in the universal scaling function in the limit of W → 0,

and so it is redundant. (See Section 3.8.5). The best fit universal and non-universal

parameters are given in Table 3.2. We discuss in more detail the motivation and form of the

scaling function A11(X, Y ) in Section 3.6.

We also test the limiting case of our scaling function with our data sets of W = 1 in

Figure 3.8 of Section 3.4.5. The curves drawn in Figure 3.8 are with the function given in

equation 3.33, using the best fit values of the joint fit of A11, A10 and A00. Notice that the

predictions of equation 3.33 matches the data for Wk = 0, indicating our function satisfies

limY→0A11(X, Y ) = Ahxk(X) as expected.
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Figure 3.12: Spanning Avalanches Data and Fit Shown here are the area-weighted
size distributions for spanning (11) avalanches with different k and window
size W . The lines are the joint best fit value using the functional forms using
equations 3.24, 3.27, and 3.33, whereas the shaded areas are the fluctuations in
theory corresponding to the systematic errors on our exponents and parameters
(individual parameter best fit values and errors are quoted in Table 3.2).
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Parameter Best Fit Standard Errors Systematic Errors Drift from Best Fit

in Linear Approx. with free ζ

Universal Exponents

τ 1.2636 ± 0.0006 ± 0.02 -0.006

νk 0.4630 ± 0.0002 ± 0.01 -0.02

ζ 0.63 (fixed) ± 0.0007 ± 0.02 +0.05

A00(sk,Wk) = exp(−(T00 + U00s
1/2
k + Z00s

δ00
k + C00( sk

W
n00
k

)m00)

T00 2.488 ± 0.004 ± 0.1 -0.01

U00 -0.150 ± 0.005 ± 0.1 + 0.04

Z00 0.0040 ± 0.0004 ± 0.01 -0.0009

δ00 2.21 ± 0.03 ± 0.9 +0.06

C00 5.60 ± 0.01 ± 0.7 +1.8

m00 1.371 ± 0.003 ± 0.1 -0.04

n00 (1 + ζ) 1.621 ± 0.004 ± 0.7 +0.04

A10(sk,Wk) = exp(−(T10 + U10s
1/2
k + Z10s

δ10
k + C10( sk

W
n10
k

)m10)

T10 1.437 ± 0.004 ± 0.1 -0.1

U10 0.244 ± 0.244 ± 0.1 -0.03

Z10 0.027 ± 0.001 ± 0.03 +0.005

Continued on next page
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Table 3.2 – continued from previous page

Parameter Best Fit Standard Errors Systematic Errors Drift from Best Fit

in Linear Approx. with free ζ

δ10 1.64 ± 0.01 ± 0.4 -0.06

C10 1.153 ± 0.004 ± 0.2 +0.7

m10 1.962 ± 0.005 ± 0.2 +0.04

n10 (1 + ζ) 1.624 ± 0.004 ± 0.1 +0.06

A11(sk,Wk) =

exp(−(T11 + U11s
1/2
k + Z11s

δ11
k +D11( sk

Wk
)m1 + C11( sk

W
n11
k

)−m2)

T11 0.47 ± 0.03 ± 1.2 -0.3

U11 -0.5 ± 0.1 ± 3.6 -0.5

Z11 0.21 ± 0.06 ± 1.7 +0.4

δ11 1.102 ± 0.03 ± 1.0 -0.12

D11 0.52 ± 0.03 ± 1.0 +0.1

C11 0.83 ± 0.05 ± 1.6 -0.3

m1 1.48 ±0.01 ± 0.4 -0.0008

m2 1.64 ± 0.02 ± 0.6 -0.02

n11 (1 + ζ) 1.655 ± 0.004 ± 0.1 +0.02

Continued on next page
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Table 3.2 – continued from previous page

Parameter Best Fit Standard Errors Systematic Errors Drift from Best Fit

in Linear Approx. with free ζ

Corrections to Scaling Azz1 /s+ Azz2 /s
2

A00
1 -0.94 ± 0.02 ± 0.5 +0.06

A00
2 0.27 ± 0.01 ± 0.4 -0.04

A10
1 0.15 ± 0.01 ± 0.4 -0.2

A10
2 -0.07 ± 0.01 ± 0.3 +0.1

A11
1 0.8 ± 0.07 ± 2.1 -0.3

Table 3.2: Best Fit Exponents and Parameters for Windowed Distributions. Here
are the results of our joint fit for the windowed A00, A11, A10 distributions. The
corresponding scaling forms which were fit are quoted in the table alongside the
parameter results. Here systematic error bars which account for errors in the theory
(see Section 3.8.4 for explanation) are given. The traditional standard error bars are
typically ∼ 30 times smaller than the systematic error bars quoted. The last column
is the drift in parameters seen when allowing ζ to be a free parameter. Notice that
these numbers are more or less similar or smaller than the estimated systematic
error, except for ζ. (The problems in measuring ζ are discussed in Section 3.9) As in
Table 3.1, we quote several digits more than the error bars warrant for individual
parameters, because the errors are strongly correlated; truncating each parameter to
its significant figures would yield a poor fit.

75



3.6 Scaling Shapes and Results

In the previous section we wrote down scaling functions for each type of avalanche inside a

window. In principle there are many possible parameterizations we can choose that would

be able to capture the behavior of the data. In this section we explain how and why we

chose each one, and also discuss the scaling function in the limit of small windows.

3.6.1 Scaling shapes and functional forms

We would like to capture the scaling behavior of both the finite size of the avalanches, and

the effect of the window size on the distributions. We choose forms inspired by a functional

renormalization group expansion for static avalanche size distributions for all universality

classes [69], and further motivated by heuristic arguments for the cutoff dependence on the

two scaling variables, sk = s/L1+ζ
k and Wk = W/Lk.

Similar to in Section 3.4.3, we start with an avalanche size distribution of the form:

A(sk) = exp(−(T + Us
1/2
k + Zsδk)) (3.34)

We expect that as W →∞, we will not see the effect of the window size, and the

scaling forms will go to the limit of our proposed avalanche size distribution in Eq. 3.34.

Keeping this in mind, we would like to write a function of A(sk,Wk), including the effect of

the window size. For the 00 and 10 distributions, we expect the avalanche sizes to be cutoff

by the window size W when W/Lk < 1, hence a cutoff dependent on sk/W
n
k should be

expected, where n > 0. While when W >> Lk, their scaling forms should go to the limit

of our proposed avalanche size distribution in Eq. 3.34. Therefore for the 00 and 10
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avalanches, we propose a scaling form of:

Azz(sk,Wk) = exp

(
−
(
Tzz + Uzzs

1/2
k + Zzzs

δzz
k + Czz

(
sk

W nzz
k

)mzz))
. (3.35)

We have heuristic arguments for what this nzz value should take. Figure 3.9, a schematic

of an avalanche cut by different windows, is meant to help illuminate our discussion.

For the 00 internal avalanches, the largest avalanche contained fully within the window

should have a width w that is roughly W . And since smax ∼ wmaxhmax ∼ w1+ζ
max, then

smax ∼ W 1+ζ and it follows that sk ∼ W 1+ζ
k , giving us an expectation value of n00 = 1 + ζ.

Numerically, we find n00 ∼ 1.62 when we fix ζ = 0.63. The fit plotted against one of the

scaling variables sk and also the contour plot of the scaling shape is shown in Figure 3.13.

For the 10 or 01 spilt avalanches, since we are effectively measuring the ends of

avalanches that spill into the window, n10 depends on what the shape of the avalanche is at

the edges. The largest portion of an avalanche to spill into the window will again be

limited by the size of the window W . Here the shape follows the roughness of the two

fronts preceding and following the avalanche, where h(x) ∼ xζ for each, so plausibly

hedge = hafter − hbefore ∼ W ζ . The size is then limited by smax ∼ wmaxhedge ∼ W 1+ζ ,

giving us an expectation value of n10 = 1.63. Numerically, we find n10 ∼ 1.62 (ζ is

estimated from 0.62− 0.72 in our various measures), matching our expectation. The fit

plotted against one of the scaling variables sk and also the contour plot of the scaling shape

is shown in Figure 3.14.

Now we move on to discuss the 11 spanning avalanches. Here the situation is slightly

more complicated than the previous two cases, due to the distribution being strongly cut off

at two length scales, as one may note from the shapes of the distributions shown in

Figure 3.12. First of all the avalanches need to be large enough to cross the window,

implying an inner cutoff that depends on W 1+ζ
k /sk (i.e. the cutoff is for smin/s . 1 and
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Figure 3.13: Internal Avalanches Scaling Function. (a) Scaling collapse showing
A00(sk,Wk) as a function of sk. The separate curves show the effects of the
scaled window size Wk. (b) Logarithmic contour plot of best fit scaling function
against both scaling variables sk and Wk. Each contour reflects a drop of a factor
of e in the scaling function. The black dots are at locations of the simulated data
points used in the fit indicating where the fit should be a reliable prediction. The
red solid line is log10Wk = n00 log10 sk which is the slope at the large avalanche
cutoff, with n00 = 1.62, the best fit value. (n00 = 1 + ζ = 1.63 is the expected
value from our heuristic arguments).
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Figure 3.14: Split Avalanches Scaling Function. (a) Scaling collapse showing A10(sk,Wk)
as a function of sk. The separation between curves shows the dependence on the
scaled window size Wk. (b) Logarithmic contour plot of best fit scaling function
against both scaling variables sk and Wk. Each contour reflects a drop of a factor
of e in the value of the scaling function. The black dots are at locations of the
simulated data points used in the fit. The red solid line is log10Wk = n10 log10 sk
which is the slope at the large avalanche cutoff, with n10 = 1.62, the best fit value.
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so smin/s = W 1+ζ
k /sk); here the argument for the minimum size 11 avalanches follows

from a similar argument for the maximum size 00 avalanches. The smallest avalanche

that is able to span the window will have a width wmin = W , whereas hmin ∼ wζmin, and

smin ∼ hminwmin ∼ W 1+ζ . However, in this case sk should be in the denominator of the

scaling variable, since for smax >> s > smin the probability of the having a spanning

avalanche grows as s increases. For the outer cutoff we expect that the maximum size

is given by the window size W and the typical maximum height, i.e. smax ≈ Whmax

which implies that sk
max ≈ Wk

max(hmax/Lζk). This rescaled height (hmax/Lζk) is constant.

Therefore the cutoff for the large size avalanches should depend on sk/Wk. Hence, we

propose the scaling form below for the 11 spanning avalanches:

A11(sk,Wk) = exp

(
−

(
T11 + U11s

1/2
k + Z11s

δ11
k + C11

(
sk

W n11
k

)−m2

+D11

(
sk
Wk

)m1
))

(3.36)

where C11controls the strength of the inner cutoff and D11 the outer cutoff.

Figure 3.15(a) shows the shape of the scaling function plotted against one scaling

variable sk, and Figure 3.15(b) gives the contour plot of this function against both variables.

The best fit value of n11 is n11 ∼ 1.65, whereas the expected was n11 = 1 + ζ = 1.63.

Finally, one may note that in our system all the nzz turn out to fit to our expected

1 + ζ within the error bars of ζ. One may be tempted to set nzz as 1 + ζ and have fewer fit

parameters in one’s form; however, we recognize that our geometrical arguments do

not hold for front propagation that is super-rough with ζ > 1, or for models that allow

overhangs, so we leave nzz as a free parameter to signify this geometrical constraint.

80



(a)

Log (S
k
) 

L
o
g
 (
W
k
) 

!5 !4 !3 !2 !1 0 1 2

!3

!2

!1

0

1

2

log10 (Sk) 

lo
g

1
0
 (
W
k
) 

log10 (sk) 

lo
g

1
0
 (
W
k
) 

(b)

Figure 3.15: Spanning Avalanches Scaling Function. (a) Scaling collapse showing
A10(sk,Wk) as a function of sk. The curves move leftward and become more
sharply rounded with increasing Wk. (b) Logarithmic contour plot of best fit
scaling function. Each contour reflects a drop of a factor of e in the scaling
function. The black dots are at locations of the simulated data points used in the
fit. The upper orange solid line is the slope of the contour plot at the small
avalanche cutoff, and has log10Wk = 1/1.65 log10 sk where 1.65 is the best fit n11

value. The orange dashed has logWk = 1/1.63 log10 sk where 1.63 is the 1 + ζ
value. The lower red solid line is log10Wk = log10 sk which is the slope at the
large avalanche cutoff.
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3.6.2 The limit of small windows

Although there are noticeable imperfections in the theory function, the agreement is

impressive between theory and simulation as seen in figures 3.13, 3.14, and 3.15 .

The scaling function for each of the three distributions is a competition between two

types of terms: the rescaled size sk = S/L1+ζ
k and the rescaled window size Wk = W/Lk.

Upon examining the fit parameters of the scaling function, all three distributions share

the characteristic that at small Wk the terms with pure powers of s
1/2
k and sδzzk become

unimportant, leaving only sk/W
nzz
k for the 00 and 10 distributions, and for the 11 a sk/Wk

term. Notice that for the 00 and 10 distributions, since nzz is 1 + ζ, the Lk dependence

disappears for the universal scaling function at small Wk. Therefore, the shape of the

scaling function is cut off mainly by the window size W . In fact removing the sk terms for

these functions does not affect the shape for Wk < 5. For experiments that study systems

in the same universality class as this one, this implies that data may be measured at large

magnifications (small windows) and fit to extract exponents and scaling behavior without

the extra, often unknown, scale of Lk.

3.7 Suggestions for Experiments and Conclusions

What does our analysis imply for current experiments? How should one conduct the

experiment and analyze the data? Here we discuss for the particular case of magnetic

avalanches in Barkhausen noise, how to take into account window effects and further

enhance the collection of data.

There are two optical methods for detecting avalanche distributions for Barkhausen

noise in 2D thin films, and both make use of the magneto-optical Kerr effect (MOKE).
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When a polarized beam of light reflects off a magnetized sample, the reflected polarization

is affected depending on the magnetization. A second polarizer can be used to filter this

signal, and then using either a photodiode [6], or an optical microscope [7, 47], we can

collect data about the avalanches from the signal. For experiments using a photodiode (let

us call this “laser reflectometry”), one can only measure the total magnetization change over

time, and not individual avalanches. For experiments using an optical microscope (let us

call this “avalanche visualization”), one can resolve individual avalanches and their shape.

In laser reflectometry experiments [6] we only have information for the magnitude of

magnetization as a function of time, and cannot see which avalanches touch the boundary.

Furthermore, in current techniques the laser spots are Gaussian in shape, and do not

have sharp boundaries. However, there seems to be no fundamental reason why the

illuminated region could not be optically generated with uniform illumination and sharp

edges, up to some diffraction limit depending upon the geometry of the experiment. (A

typical avalanche of interest is a few microns in size, large compared to the wavelength of

optical light which is 400-700 nm). If one could make the edges of the laser spots sharper,

one could adjust the laser spots to flicker between two sizes, one with a radius slightly

larger than the other. Events that occur with the same magnitude in both the large size

measurement and the smaller size measurement would be 00 internal avalanches. More

elaborate sequences of spot shapes could be used to further distinguish 01 and 10 split

avalanches from 11 spanning avalanches.

For avalanche visualization experiments [7, 47, 61], it is straightforward to separate the

data into 00, 10, 01, and 11 avalanches for systems which have our strip geometry and flat

fronts with ζ < 1. Our analysis will remain valid with minor corrections due to real-world

experimental circumstances. For example, sometimes the propagation direction of the front

is not parallel to the top and bottom boundaries. In this case there would be corrections
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depending on the angle of the tilt θ and the size of the window. The local heights hx would

need to be adjusted with the factor of cos θ. The 10, and 01 avalanches would be cut off

at an angle, but for self-affine (short, wide) avalanches these size corrections are likely

irrelevant.

For materials with dipolar interactions and zig-zag shaped fronts [7, 74], we are less

confident that our methods can be applied without modification. The large vertical extent

of the zig-zag front suggests that all four boundaries of the window will matter; therefore

we will need to divide avalanches into more categories (0000, 1000, 0100, 0010, 1010...).

The analysis for these types of avalanches will be more complicated. This would be an

interesting problem to pursue by simultaneous analysis of simulations and the experimental

data.

Knowing how to deal with window effects can be an important tool for these visualization

experiments. By combining data at several magnifications (corresponding to different

window sizes), we resolve a larger range of length scales. Higher magnifications will show

the small avalanches, while lower magnifications will allow us to both capture larger

avalanches and explore more fully the 00 internal avalanches. For example, if our CCD

camera recording the images has a resolution of 10002 pixels, and we have a magnification

of up to 5x-50x, we can simultaneously explore a range of window sizes and extend our

effective spatial resolution from 10002 to 100002.

More generally, this paper has provided the tools needed to extract from the experimental

data for systems of similar interface dynamics the critical exponents τ , ζ and the universal

scaling functions ASk, Ahk, etc. For these experiments, we can also measure widths and

heights and the average shape, giving us an independent measure of ζ, and the universal

scaling function Ahxk. Our detailed analysis and comprehensive methods presented in
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this paper enable a more powerful interpretation of current experiments, and improved

construction of future experiments.

3.8 Methods and software

3.8.1 Numerical simulation

The avalanche simulations in this paper were produced using a quenched KPZ model [50, 51],

with dynamics given by:

∂h(x, t)

∂t
= F − k〈h〉+ γ∇2h+ λ(∇h)2 + η(x, h) (3.37)

where h(x, t) is the height of the front, F the driving force, k the “demagnetization field”,

linear and non-linear terms for the KPZ model controlled by the parameters γ and λ

respectively, and η gaussian random noise. This was run for system sizes of width L

4096, 8192, and 16384. The simulations have been run in a strip geometry (4096× 8192,

8192× 16384, and 16384× 32768) and the bottom half of the simulations have been

truncated to avoid transient effects due to the initially flat front. The left-right boundaries

have periodic boundary conditions.

The simulations are done using a discrete cellular automaton model, in which the

displacement of the string h, the time t and the space x are all discretized and take integer

values [17, 53]. For a configuration {hi}, we compute the local force Fi at each site i,

leading to a discretized version of Eq. 3.37

Fi = F − k〈hi〉+
γ

a2

∑
nn

(hi+nn − hi) +
λ

a2

∑
i

(hi+i − hi−1)2 + ηi(hi), (3.38)

where the sum runs over all the nearest neighbors nn for the site i, a is the discretization

length that we set to 1, and ηi(hi) is a random force. The automaton dynamics are as
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follows: (1) increment the external field until one site is unstable (Fi > 0); (2) determine for

each site along the interface whether it is stable (Fi < 0) or unstable (Fi > 0); (3) advance

all unstable sites by one step hi = hi + a = hi + 1 in parallel, generating a new value of the

pinning force ηi(hi); (4) repeat until no sites are unstable (the end of the avalanche);

(5) repeat (1-4) until the front passes the top of the simulated window.

3.8.2 Nonlinear least squares fitting

We use nonlinear least squares methods for fitting data to theory functions, minimizing a

cost defined as:

C(θ) =
1

2
Σi

(
ytheoryi − ydatai (θ)

σi

)2

(3.39)

Here θ are the parameters, y the function value, and σi the error on the data points. The

weight σ in our case is determined by fluctuations from run to run. Namely, we bin the

data (in equispaced log bins) for each of N simulations, calculate the standard deviation of

this value across runs, divide by
√
N − 1 to get the fluctuation in the mean of that bin. 3

In our distributions, small avalanches occur more often (leading to small error bars), but

large avalanches are more important, and the smallest avalanches suffer from non-universal

lattice effects. So during the fitting process there is a tradeoff between fitting the region

where there is good data and where the variations are most important. We use a number of

methods to compensate for this imbalance. (1) We set a minimum error bar (1% of the

data value) on the data points, making the error bars on smaller avalanches larger, and

therefore decreasing their weight. 4 (2) Analytic and singular corrections to scaling can

3This definition of fluctuations in the (simulation) data assumes that the error in each bin is
uncorrelated.

4We choose this 1% empirically. We adjust error bars to be large enough so that the theory is not
distorted over the data points with small error bars, but not so large that the points don’t matter.
Therefore this value depends on the size of the error bars overall in the data set.

86



also account for non-universal effects. We include analytic corrections to scaling for the

lattice effects in our scaling functions. These corrections appear in all distributions we

discuss. A more detailed discussion is in Section 3.8.5. (3) One may also skip points that

have non-universal behavior when fitting. For our fits in this paper, all points are included.

Another issue arises in regions where one has sparse data; there may be bins that do not

have any observations. For these zeros, the error bar should not be zero! We can use

maximum likelihood methods to estimate theoretical errors. Say we have N experiments,

and bin the data with Li sizes in each bin i. With the median size in the bin Si, the expected

probability for each size is ρi = A(Si)/Si, where A(S) is the theoretical distribution of sizes,

and so getting a zero in one of the bins will have the probability p = (1− ρi)NLi . Using

maximum likelihood, this results in a cost of C = − log p = −NLi log(1− ρi) ∼ NLiρ

given that ρ is small. The residual we add to the total cost is therefore:

rzero =
√
NLiρi(θ). (3.40)

This calculation is generalizable to sparse data that is non-zero- say one has n events in a

bin for N measurements, then the probability is p = (NLi)!
n!(NLi−n)!

(1− ρi)NLi−nρni , and the

appropriate error bar we get is approximately σ = 1
NLi

. One could then use the larger of

the error bar given by this argument or the statistical error bars from the simulation. In

practice, for our simulations, we find it sufficient to use the statistical error bars but to

compensate with minimum error bars given by Eq. 3.40.

In non-linear least squares fitting, we can also include priors in the cost if we have

assumptions or information a priori about the parameters. For example, in our problem, we

put priors on the exponents inside the scaling functions (n00, δ00, etc) to prevent them from

going to large values and forcing their corresponding coefficients to zero. As a result our
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cost function now becomes:

C(θ) =
1

2
Σi

(
ytheoryi − ydatai (θ)

σi

)2

+ Σn2 + log(δ2
11) (3.41)

In Eq. 3.41, n represents all the arbitrary exponents that occur inside the scaling functions

(nzz, mzz, δzz etc...). log(δ2
11) is included to prevent δ11 from going to zero.

A clear understanding of these techniques for fitting is important for increasing the

reliability of our results, and acknowledging its limitations. In a following subsection,

Section 3.8.4, we will further discuss how to estimate the reliability of results inferred by

fitting data to a theory, generating systematic error bars for fitting results.

3.8.3 Software for fitting

To facilitate the exploration of this problem, we have developed a software environment,

SloppyScaling, in Python. This code is downloadable at http://www.lassp.cornell.edu/

sethna/Sloppy/SloppyScaling/SloppyScaling.htm. The main features of this code include

various nonlinear-least squares fitting methods [75], automatic plotting for visualization,

and methods for generating systematic error bars on the theory.

3.8.4 Systematic Error Bars

We have quoted in our results systematic error bars instead of the more commonly used

standard error bars in the parameters. Standard errors given by the covariance matrix are

expected to be erroneous for our problem, since our problem is highly nonlinear in the

parameters, and also sloppy- parameter combinations in the sloppiest directions can vary an

infinite amount without affecting the fit. We use a method due to Frederiksen et. al [73]

for Bayesian estimation of errors. This method involves assuming that given a theory (M)
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which is imperfect, a spread of parameters (each corresponding to different models) may fit

the data(D) in an equally acceptable matter. We can define a probability of a certain model

with

P (θ|D,M) = exp(−C(θ)/T ) (3.42)

where C(θ) is the cost at a given set of parameters θ, and the effective temperature T sets

a scale for the fluctuations away form the best fit. Since the cost at the best fit parameters

Cbf is a measure of how well the theory is doing, we choose T = 2Cbf/N , where N is the

number of parameters with ”equipartition” allowing each degree of freedom a contribution

of 1
2
T to the total cost.

Ideally, after defining such a probability, one should sample parameter space to

determine the systematic error bars on parameters. However, in our functions sampling is

non-trivial due to parameter evaporation [76], the “entropy” for parameters drifting

to infinity overwhelms their cost in degrading the resulting fits. Therefore, we make a

quadratic estimate of the fluctuations in predictions, essentially using propagation of error

to estimate the systematic error. The covariance matrix gives an error σstat that assumes

the temperature of 1, corresponding to P (θ|D,M) = exp(−C(θ)). Using propagation of

error, we calculate the systematic error according to our effective temperature T = 2Cbf/N :

σsys =
√
Tσcov (3.43)

The shaded plots are generated by sampling according to the Hessian at the best fit,

weighting our steps in each eigendirection by the inverse square root of the eigenvalue, and

scaling the steps with a low temperature (TL). Then for our ensemble of parameters we

calculate the fluctuations in the theory (residuals δrens) corresponding to the ensemble.

We scale up these fluctuations according to the temperature defined by the best fit, or
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δrT =
√

Tbf
TL
δrens,

δrT = Σ
∂r

∂θ
δθT (3.44)

We have also estimated systematic errors by removing large k curves (which we believe have

larger corrections), and looking at the corresponding drift in exponents and parameters.

The estimate of the systematic error that this procedure gives is often similar (sometimes

smaller) to the one using our temperature-scaled propagation of error.

3.8.5 Corrections to scaling

Corrections to scaling play an important role in our scaling functions, their inclusion

accounts for non-universal effects, and helps increase the reliability of universal predictions.

In each of the scaling functions in this paper we have included analytic corrections to

scaling that capture the lattice effects of our automata simulations. They are of the form:

exp(A1/S + A2/S2) (3.45)

This expansion for small S corrects for the lattice effects on small size avalanches which we

believe to be present in the distributions. One can imagine that experiments may have

other origins of non-universal effects, such as a nonlinear signal amplifier or distorting lens;

one should always attempt to account for and include these [67].

One caveat is that, just as adding extra free parameters does not necessarily increase

the quality of one’s fits, adding corrections is not a guarantee for increasing the accuracy of

one’s scaling function. One should be careful in checking that the terms included in the

corrections to scaling behave as expected in the region of interest, are subdominant when

taking the appropriate limits, and do not confuse the main universal scaling function, either

by canceling out terms or having the same effect. An example of this complication is seen
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in our studies of using the limit of the 11 distribution at W = 0 for the local height

distributions.

In sections 3.4.4 and 3.5.3, we take the view point of using the parameterized from of

A11(s|Lk,W = 0) as the proper limit of A(hx|Lk). However, this data should be matched

as well by A11(s|Lk,W = 1), since in effect this is what we are fitting for the local height

distributions. We can view the ratio between the two functions as a multiplicative correction

to scaling from lattice effects (without considering the corrections to scaling for lattice

effects in equation 3.45):

f(hx, Lk) =
A11(s|Lk,W = 1)

A11(s|Lk,W = 0)
(3.46)

= exp(−(U11(
hx

L1+ζ
k

)1/2 + Z11(
hx

L1+ζ
k

)δ11 + C11

(
hx

L1+ζ−n11

k

)−m2

))

= exp(−(U11L
−1/2
k h1/2

s + Z11L
−δ11
k hδ11s + C11L

(1+ζ−n11)m2

k h−m2
x ))

Here we define hs = hx/L
ζ
k. Note however that for the term C11L

(1+ζ−n11)m2

k h−m2
x , the

value of the fit for n11 equals 1.65, which is within the range of error for 1 + ζ = 1.63± 0.02.

Therefore this term is nearly C11h
−m2
x , where m2 = 1.61± 0.6. This term then has the

same effect as the correction to scaling term A11
2 /s

2 at small W (since s ∼ hW for 11

avalanches at small W ). Since A11
2 /s

2 is only significant in the range of small s, which only

occur in the 11 distributions at small W , these two parameters serve the same purpose, and

it is redundant to include both for the fits. We therefore remove the term A11
2 /s

2 for the 11

distributions for our fits.

One can also check the corrections and see all powers of Lk are negative, and the

multiplicative correction approaches unity as we get closer to the critical point. With our

current fit, the term with L
−1/2
k dominates the corrections. Notice that, originally, to account

for lattice effects, we have added corrections in integer powers of hx (exp(A11
1 /hx+A11

2 /h
2
x)),
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which are subdominant compared to L
−1/2
k . This implies that there are more dangerous

corrections to scaling than originally inferred. By this method, one might check if the

corrections originally included are sufficient- in this case they are close, but could be

improved upon by systematically adding similar terms.

In a continuum case, the concept of local heights hx should describe a smooth shape

tracing the depinning line, in our automata, since the smallest width is naturally 1 lattice

spacing, the smallest possible window width is W = 1. In measuring the local heights, this

discreteness limits the smoothness of the shape of hx, and gives rise to the corrections we

see. Here we’ve seen that if we “know” from other measurements (in our case the 11

spanning avalanches) the right limit the universal scaling form should take, we may find the

form of the corrections.

3.8.6 Scaling collapses and their limitations

We have argued at various points in the paper that scaling collapses are limited and

may lead to questionable results. Here we will illustrate an example of this. Using the

critical exponents given by a free fit of the windowed distributions (ζ allowed to vary), we

collapse the sizes, heights and widths. Comparing the figures included here and the ones in

Section 3.4 (Figures 3.5, 3.6, and 3.7.), one can see that the collapses are of similar quality.

The fact that such distinct values of ζ can yield similar quality collapses may imply

(1) our ”systematic error” bars on ζ, estimated to be ±0.02, are in reality much larger,

(2) collapses do not incorporate non-universal corrections to scaling, and these may have an

important effect, (3) collapses are not a reliable way of verifying the values of critical

exponents. In particular, we expect corrections to scaling due to large k to be responsible

for the drift in exponents.
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Figure 3.16: Size distribution collapse Here we collapse the size distributions with exponents
τ = 1.25, νk = 0.44, and ζ = 0.68. Notice that the collapses are similar to the
ones shown in Figure 3.5. Here only the combination of νk(1 + ζ) affect the
scaling collapse, the large shifts in νk and ζ mostly cancel in the product, yielding
similar collapses.
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Figure 3.17: Height distribution collapse Here we collapse the size distributions with
exponents τ = 1.25, νk = 0.44, and ζ = 0.68. Here only the combination of νkζ
affect the scaling collapse, the large shifts in νk and ζ mostly cancel in the
product, yielding similar collapses. Comparing this with the collapse shown in
Figure 3.6, we see that the two collapses are comparable in quality, where in
Figure 3.6 the large avalanche cutoff is collapsed nicely, and here the smaller
avalanches are collapsed better.

With these software tools and analytical methods, data at critical points may be

analyzed while including multiple scaling variables, allowing for the treatment of a broad

range of experiments, and also allowing for a far more rigorous estimation of statistical and

systematic errors. By using automatic fits to entire scaling functions, instead of traditional

collapses, and by estimating systematic error bars, we facilitate the interpretation of data

with multiple scaling variables and analytic corrections to scaling. This advance will allow

for better characterization not only of noise in magnetic thin films and similar avalanche

dynamics, but should be broadly applicable to all applications of critical phenomena and

scaling theories to experiments and simulations.
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Figure 3.18: Width distribution collapse Here we collapse the size distributions with
exponents τ = 1.25, νk = 0.44, and ζ = 0.68. Notice that the collapses are similar
to the ones shown in Figure 3.7. Here only the combination of νk affects the
scaling collapse and (τ − 2)(1 + ζ) affects the shape of the scaling collapse. Since
νk does not change significantly, the quality of the collapses are similar.

3.9 The roughness exponent ζ

In the investigations presented in this chapter, we have found that the estimates of the

critical exponent ζ have been problematic. In this section, we will discuss various means of

measuring this exponent, the significance of the range of values we find from various

measurement methods, possible origins of this range, and implications for future research.

We emphasize that any value of ζ in the range we observe (0.62± 0.02 to 0.72± 0.02) can

describe all of our data essentially equivalently well.

The shape of the front has been studied as an identifying feature for front propagation

models, which is usually characterized by defining a roughness exponent ζ, which is

measured through a height-height correlation function:

C(r) = 〈(h(x+ r)− h(x))2〉 ∼ r2ζ (3.47)
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Figure 3.19: Height-height Correlations for the qKPZ Simulations Shown here are the
roughness exponents for various simulation sizes L and k. We measure the
height-height correlation function C(r) ∼< (h(x+ r)− h(r))2 >. A power law fit
shows ζ falls between 0.63 and 0.68. The lower red-dashed line shows ζ = 0.63
and upper black-dashed line ζ = 0.68. The lines were shifted to show each
individual power law.

The quenched KPZ model we use is conjectured to belong to the Directed Percolation

Depinning (DPD) universality class [14], which is conjectured in turn to belong to the

Directed Percolation(DP) universality class. For a pinned interface in DPD, the roughness

exponent ζ = 0.63± 0.01 [50, 51] matches that of the ratio of correlation length exponents

in DP ν⊥/ν‖ = 0.6326± 0.0002 [77]. (Here ξ⊥ ∼ |p− pc|ν⊥ and ξ‖ ∼ |p− pc|ν‖ , where p is

the branching probability, and pc is the percolation threshold.). One may note that for a

moving interface, the picture is less well known; there has been numerical study that

shows ζ = 0.70 [52, 78], but also arguments that the interface under this condition is not

self-affine [53], that the moving regions have ζ = 1 and the pinned regions have ζ = 0.63.

One could imagine that our demagnetizing force, like the velocity in DPD, could lead to a

heterogeneous mixture of different scaling regions, converging to ζ = 0.63 as k = 0.

Figure 3.19 shows measurements of the height-height correlations in our model. Using

96



lo
g

2
(C

(r
)/

C
(r

/2
))

 

lo
g 2

(C
(r

)/
C

(r
/2

))

lo
g 2

(C
(r

)/
C

(r
/2

))

Figure 3.20: Roughness Exponents for the qKPZ Simulations Shown here are the
measurements of the local-log slope ln[C(r)/C(r/2)]/ ln(2) of the height-height
correlation function; this is a measure for the roughness exponents for various
simulation sizes L and k. The results of the local-log slope ln[C(r)/C(r/2)]/ ln(2)
is consistent with what is seen in Figure 3.19. The lower red-dashed line
shows ζ = 0.63, corresponding to directed-percolation depinning (DPD) and
suggested by literature to be the correct value for our model. Whereas the upper
black-dashed line shows ζ = 0.68 which is the result of our fits of windowed
avalanche distributions. In the blowup of the region of r/2 = 10− 100, we can see
there is a trend of larger ζ corresponding to larger k simulations.

97



finite-size scaling for a numerical fit, we see that as k is tuned away from zero, ζ falls

between 0.64 and 0.68, increasing with k. Measuring the local log-slope, one can see clearly

a drift in the measured exponent in Figure 3.20.

The range of our estimates (varying from ζ = 0.63± 0.02 to ζ = 0.72± 0.02) is large

compared to our error estimates; however, best fits with ζ fixed within this range had costs

within 1.5 times that of the best fit value, indicating both that our quadratic estimates for

the systematic errors are too small and that it may be challenging to definitively measure ζ

in either simulation or experiment.

In our fits we find that ζ = 0.62± 0.02 for the size, width and height distributions joint

fit, and ζ = 0.68± 0.02 for the 00, 10, 11 joint distributions. Notice that although the

direction of front propagation is in general along the y-axis in our problem, portions of

the front will be at various angles to the y-axis. Since the local direction of the front

propagation is not fixed, we can also choose a rotationally invariant definition of height and

width: defining the height and width of an avalanche along the axes of the moment of

inertia tensor. We define root-mean-square heights and widths as the square root of its

eigenvalues. So if we fit rms heights and widths jointly, we get ζ = 0.72± 0.02 much

higher than 0.62 measured along the global axes. The difference in these two exponents

seems to indicate that the local avalanche shape has a different geometry than the global

avalanche front. Many front propagation models spontaneously break rotational symmetry

through the orientation of the front. (Envision a circular front growing from a point, with

differing front orientations.) Note, however, that the qKPZ dynamics is anisotropic,

breaking rotational invariance.

We have also looked at fits with the windows scaling functions involving subsets of

simulations with different k. Using smaller values of k generally lead to fits of ζ closer to
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0.63. This may point to imperfections in our theory function (are we missing some of the

scaling behavior dealing with k?), or corrections to scaling (analytic or singular). One

possibility is that there is a residual crossover effect having to do with another relevant

variable. In the anisotropic form of the qKPZ model, the nonlinear term (Eq. 3.4) λ is a

relevant variable, and is non-zero under renormalization [13, 14, 79], and although we

simulate the model at fixed λ, we have observed there is a crossover effect following a

direction having to do with both k and λ. We note that without the nonlinear KPZ term

the qKPZ model becomes the quenched Edwards-Wilkinson (qEW) model, and that for the

qEW ζ > 1. Literature suggests there also may be a crossover effect due to a runaway fixed

point [79]. We think these last two possibilities can be explored with more simulations

done on different λ and k, examining a crossover to the linear version of the qKPZ model

(the quenched Edwards-Wilkinson), to make a more complete picture of the phase space.
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CHAPTER 4
A scaling function description of a crossover

between two models of depinning 1

In experimental systems where scaling is observed, it is common to have more than one

fixed point influencing the behavior, and it is usually tricky to tune the system such

that there are no crossover effects. As we will demonstrate in this chapter, an accurate

description of the observed behavior may be provided by functional forms that account for

shifts in the scaling laws as a function of the crossover parameter. We use our methods to

examine a crossover between the qEW (quenched Edwards-Wilkinson model) and qKPZ

(quenched Kardar-Parisi-Zhang) model, which are examples of disordered interface sitting at

the depinning transition.

4.1 Interfaces in Random Media

Models that describe a fluctuating interface are a simple way to describe physical systems

that exhibit wiggles in their morphology. There has been evidence that with a suitable

choice of terms these simplistic models may mimic many interesting phenomena, including

fluid imbibition, crack front roughening, dislocation hardening, superconducting flux

lines, the equilibrium motion of piles of rice down an incline, and domain wall motion in

1This chapter represents preliminary, unpublished work done in collaboration with Stefano Zapperi and
James P. Sethna.
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magnets [13, 14]. Indeed, in Chapter 3, we’ve used a model in this class to generate

avalanches for the study of avalanche scaling through observation windows. These simple

models have been studied in many contexts, through analytic studies, simulations and

comparing observations from experiments. In this chapter, we will examine ways to study a

crossover between two of these models, the quenched Edwards-Wilkinson model (qEW) and

the quenched Kardar-Parisi-Zhang (qKPZ) model.

The equations of an interface in a disordered environment may be written generally as

follows. Let the 1-dimensional interface, h(x, t) be driven by a force H(t) through a

disordered environment with a local quenched random force η(h(x), x):

∂u

∂t
= F [h](x) + η(h(x), x)−D[h](x) +H(t). (4.1)

F [h](x) is a general interaction kernel, which controls the interface morphology, and is

dependent on h(x) and x. Here F [h](x) could represent short-range surface tension in the

interface (∇2h), or long-range interfacial self-interaction fields such as dipole fields in

magnets or elastic strains in delamination fracture (as a suitable convolution). H(t) is a

time-dependent external driving force. Equations of this form have been extensively studied

using continuum simulations [80–83], automata [17, 18, 80, 84–86], and field-theoretic

ε-expansions [16, 80, 87–91]

Notice that if we set ∂h
∂t

= 0, we arrive at a steady-state force equilibrium, where

H(t) = H0 = −η(h(x), x) − F [h](x). The interface h(x, t) sits at a local minima in

the energy landscape at this point. First, let’s consider the case D[h](x) = 0, if we

increase H(t) = H0 + ε, the force balance is disturbed, and the front only stops if at some

point η(h(x), x) is large enough to counter this force. Therefore, in any finite random

system, there exists some Hdepinning, such that the interface moves without stopping when

H(t) > Hdepinning, but when H(t) < Hdepinning, the interface is stuck in a minima.
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In simulations, D[h] represents a restoring force that ‘self-organizes’ the depinning

transition to the fixed point. This D[h] allows simulations to access many metastable states,

without having to enforce an actual quasi-static field. In simulations describing magnets,

this term is the demagnetization force [92] D[h] ≡ −k〈h〉x which approximates the effects

of the long-range dipolar field cost of a net advance in the front. We employ the same type

of force in studying the qEW and qKPZ models.

How well do simple mathematical caricatures capture the behavior of systems

with complicated microscopic interactions, such as magnetic domain wall motion or

superconducting flux lines? To answer this question, one tries to compare predictions from

calculations and simulations, such as exponents and scaling functions, against experimental

measurements. One characterization of this class of models is a geometrical exponent, the

roughness exponent ζ, that describes the interface morphology, which is the exponent that

corresponds to the coarse graining operation of the heights. Namely, when we change all

length scales by a factor b, or x→ bx, then h→ bζh, or,

h(x) ∼ b−ζh(bx). (4.2)

For many experiments and simulations, it is convenient to measure ζ by computing the the

height-height correlation of the interface2.

〈h(x)h(x+ r)〉 ∼ r2ζ (4.3)

ζ should be uniquely determined by which universality class the system belongs to.

However, in practice, the observed ζ varies (See table 4.1) even for the same type of

system, such as paper wetting. In the previous chapter, we saw a drift in the roughness

exponent from tuning the nonlinear term in our qKPZ model. We argue that measuring a

single exponent for these systems may prove inadequate, that real-world systems may be

2As we shall see in the next section, this measurement is only valid for ζ < 1.
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exhibiting crossover behavior. The variation in these exponents may be due to a subtle

crossover between universality classes, and in the next section, we will present a way of

measuring if this is true, and quantifying the crossover with a crossover exponent.

experiment ζ Reference

Fluid flow 0.73 [93]

0.81 [94]

0.65-0.91 [95]

Paper wetting 0.63 [51]

0.62-0.78 [96]

Bacteria growth 0.78 [97]

Burning fronts 0.71 [98]

Table 4.1: Roughness Exponents in Experiments. Table reproduced from [14]. Notice
that there is a wide range of ζ reported, even for the same experimental system.

Crossovers have been studied for similar systems [51], however theoretical studies have

proven challenging in different ways [79]. For thin film magnets, the experiments [7, 61, 99]

observe a crossover between short-range and mean-field universality classes as long-range

dipolar fields are introduced, which can be done by changing the thickness of the film.

However, for models of that type, simulations are challenging, both because of the

long-range fields and because of the striking zig-zag morphologies that emerge and compete

with the avalanche behavior. In the next section, we will analyze a numerically more

tractable, but analytically challenging crossover [79]: the transition between the linear,

super-rough, quenched Edwards-Wilkinson model (qEW) and the nonlinear quenched

KPZ model (qKPZ) [13, 51]. We focus on the crossover behavior of the height-height

correlation function.
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4.2 Preliminary Results

The isotropic qEW and anisotropic qKPZ have the general structure of Equation 4.1, where

for qEW, F [h] = γ∇2u and for qKPZ F [h] = γ∇2h + λ(∇h)2. Using the automaton

simulation employed in 3, we tune λ/γ from 0 to 5, and observe how the behavior changes.

Figure 4.1 shows how the front morphology qualitatively changes while we increase the

nonlinear parameter λ. Notice that with increasing λ the fronts between events are flatter

than at small λ.

!"#$ !%#$ !&#$ !'#$

Figure 4.1: Crossover of qKPZ to qEW Model. Fronts generated from simulations with
the nonlinear KPZ term coefficients set to (a) λ = 0, (b) λ = 0.001, (c) λ = 0.1,
(d) λ = 5. The random colors represent the area between each pinned front. One
can see that the morphology of the interfaces change dramatically as λ increases.

According to Equation 4.3, naively one would assume we could recover the exponent ζ

by measuring the local-log slope of the height-height correlation functions (Figure 4.2) for

both the qEW and qKPZ fixed points. From other numerical studies, for qEW, we expect

ζEW = 1.19− 1.25 (Cellular automata [17, 100] models show ζEW = 1.25± 0.01; continuous

string models [101] found ζEW = 1.19± 0.01.). For qKPZ, we expect ζKPZ = 0.63 [18].
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However, there are two things about Figure 4.2 worth noting: (1) the slope-measure of ζ

drifts between 0.63 and 1.0 as we change λ, (2) the measured value is never greater than 1

as is naively expected for the linear qEW model.

The second issue has an easy resolution: for ζ > 1, when the interface is ‘superrough’,

the height cannot grow faster than linearly with distance, so the height-height correlation

function cannot directly exhibit a power law larger than 1 [102]. Instead, we need to

consider the finite-size scaling form,

CEW (r|L) ∼ L2ζEW (r/L)2CEW (r/L). (4.4)

and measure the roughness exponent ζEW as a function of the system size.

The drift in the exponent ζ, however, proves to be more complicated to explain.

The role of λ in generating this crossover from qEW to qKPZ has only been studied

qualitatively [18, 81, 84, 86], with no full description of the crossover scaling [19]. We

can use a crossover function that describes the drift between the two limits. For qKPZ

(Fig. 4.1c), the correlation function in a system size L takes the finite-size scaling form

CKPZ(r|L) = Ar2ζKPZCKPZ(r/L). (4.5)

The crossover describes the RG flow from the qEW fixed point to the qKPZ as the relevant

parameter λ is added. The scaling form for the height-height correlation function is thus

that of a relevant variable λ added to the qEW scaling:

C(r|L, λ) = L2ζEW C(r/L, λφr) (4.6)

. For λ >> 0, C(r|L, λ)→ CKPZ(r|L), therefore,

C(r/L, λφr) = r2ζKPZCKPZ(r/L)A(λ)/L2ζEW

= (r/L)2ζKPZL2(ζKPZ−ζEW )A(λ)CKPZ(r/L)

= (r/L)2ζKPZ (λφL)2(ζKPZ−ζEW )CKPZ(r/L). (4.7)
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(a)

(b)

Figure 4.2: Local Log Slope. The measured local-log slope of the height-height correlation
function for varying λ and k. The dashed red line is ζ = 0.63, the dashed black
line is ζ = 1.0. The curves nearest to ζ = 1 are for small lambda, with ζ increasing
as we increase λ.
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In the last equation we solve for A(λ) using the fact that C(r/L, λφr) must be a scaling

function with only invariant combinations of r, L, λ. Furthermore, we have, at the other

limit λ = 0, that C(r/L, 0) ∼ (r/L)2. Using this, Equation 4.7, and including finite size

effects exp(−Mr/L), we can construct a function that obeys these limits:

C(r|L, λ) =r2ζKPZ (tanh(λ))2(ζKPZ−ζEW )φ A1

A2 + (r/L)2ζKPZ−2(tanhφ(λ)L)2(ζKPZ−ζEW )

exp(−Mr/L)

(4.8)

We use as an interpolating form tanh(λ) which at small argument goes as λ, and at large

argument goes to 1, and obeys the scaling limits at both qEW and qKPZ. Note that this

scaling form has three control variables, and that there exists a singularity at small λ in the

form of a divergent non-universal amplitude A ∼ λ2(ζKPZ−ζEW )φ in the qKPZ correlation

function (eqn 4.5) as λ→ 0.

The current form of Equation 4.8 gets us a measure of ζEW > 1 which is more consistent

with the literature than the naive measure of the slope of the power law. It also accounts

for finite-size effects in the form and the non-universal amplitude of the qKPZ fixed point.

4.3 Unresolved Issues

There remain questions about whether with our automata simulation we are able to see the

qEW fixed point. It has been suggested 3 that interactions or lattice effects that break

a statistical tilt symmetry (STS) [103] h→ h+ cx, will drive the behavior of a qEW

simulation to the qKPZ fixed point [19]. It is known that terms which break the STS, such

as an anharmonic energy term (δhx)2 in the Hamiltonian [81], or the KPZ term λ(∇h)2 do

3attributed to discussions with Kay Wiese
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Figure 4.3: Height-height Correlation Function. The numerics generated with an automata
code are well described by Equation 4.8 with fit parameters ζKPZ = 0.78± 0.003,
ζEW = 1.20±0.02, φ = 1.02±0.04, A1 = 0.37±0.09, A2 = 1.0±0.2, M = 4.1±0.07
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exhibit behavior more indicative of a qKPZ fixed point. The lattice automata breaks this

symmetry, especially at small distances. However, it has not been systematically studied

how or what the magnitude of the effect is.

The roughness exponent ζ can be measured in other ways, other than with the

height-height correlation function mentioned above. In particular, we can measure instead

the Fourier transform of the heights (the structure factor):

S(q) =
¯|

∑
j

hj exp(−iqj)|2 ∼ q−(1+2ζ). (4.9)

Shown in figure 4.4 is our measure of this structure factor for a qEW automata simulation

with λ = 0, we can see that it is unclear (to within error bars) whether or not we are

measuring ζqEW , or are driven to a smaller exponent by the lattice.

We can also measure the roughness exponent with the mean-width fluctuation

(Figure 4.5) (the variance of the length of the interface) 〈w(L)2〉 as a function of system-size

L,

〈w(L)2〉 ∼ L2ζ . (4.10)

This picture is consistent with what we see in the structure factor, that it is ambiguous

whether or not we can see the true qKPZ fixed point, and also, we do not have a definitive

measure of ζ to within error bars of our data point.

In the next section, we will present a proposal for a continuous time piecewise linear

simulation to address this issue, that although far from being free of lattice effects, can

allow us to quantify the symmetry breaking in a more controlled way, and verify the

magnitude of its effects.

Another subtlety stems from a relevant term we introduced in our simulations, the

self-organizing avalanche-limiting term D[h](x) in Equation 4.1. Since it is a relevant

109



100 101 102 103

q

100

102

104

106

108

1010

1012

S
(q

)

data
ζ=1.1

ζ=1.25

Best Fit ζ=1.10

Figure 4.4: Structure Factor. This is the Fourier transform of heights from simulations with
the qEW equations with λ = 0, k = 0.01, γ = 1, and L = 1024. According to
Equation 4.9, the slope should be given by −(1 + 2ζ). A best fit yields ζ = 1.1±,
however, as one can see from the dashed line ζ = 1.25 is also within error bars of
the solution, so there is ambiguity to determining this exponent.

.

110



102 103

L

102

103

104

105

106

107

〈 w2 (
L

)〉

k=0.01

Best Fit ζ=1.04

ζ=1.0

ζ=1.25

Figure 4.5: Mean-squared Elongation. Measuring the fluctuations in the length of the
interface across different system sizes also gives a measure of ζ (Equation 4.10).
However, here, with just three data points so far, the best fit is ζ = 1.04.

.

111



perturbation away form the fixed point, it should also affect the height-height correlation

function. Simulations (including ours) use the demagnetization form D[h] = −k〈h〉

described above. However, analytical studies [46, 69] often choose a stopping force

−m2h(x), giving a nice measure of the average length scale. We have found empirically

that the correlation length for a demagnetizing field −k〈h〉 scales as Lk ∼ k−νk with

νk = 0.45. One can show that using the stopping force one has Lm ∼ 1/m [69]. Preliminary

simulations show that the mean-squared elongation is cutoff earlier by finite-size effects if

we use m instead of the k term.

4.4 Continuous time piecewise linear simulation

In trying to resolve the many issues in accurately capturing our crossover, we have

developed and partially implemented a continuous time piecewise linear simulation, which

would allow a controlled way of accessing the qEW fixed point. In designing the concept,

we also expect the simulation will be flexible enough to test other ideas, such as the widely

accepted equivalence of continuous-time and discrete (cellular automata) models.

ODE-solvers exist for simulating interfaces in disordered media, however, they are

computationally slow. In the context of avalanches, the bulk of the computational time is

spent near the starting and stopping points of avalanches. One resolution is thresholding,

assuming the avalanche stops once the velocity crosses below a small threshold. The

problem with this approach is it can prematurely split ‘paused’ avalanches in two, and it

also sacrifices the accuracy of the configuration at which the front is pinned.

Notice in the Equation 4.1, for the qEW model, F [u](x) = γ∇2u(x) andD[u](x) = −k〈u〉

are linear in u. In an intriguing approach to continuous front motion, Rosso and
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Krauth [82, 83] introduced a piecewise linear disorder force η(u(x), x). The linearity of this

model, presents an opportunity for using linear algebra to replace the slow pieces of the

trajectory, allowing for numerically precise resolution of starting and stopping-points of

avalanches.

We can write the linear disorder as,

η(h(xi), xi) = cih(xi) + ai. (4.11)

The stationary points of the qEW model:

∂h/∂t = γ∇2u+ η(u(x), x)−m2u(x) +H (4.12)

are given by solving an (efficient) cyclic tridiagonal system:

Mijhj = wi (4.13)

with diagonal terms Mii = −2γ− 2m2 + ci, off-diagonal terms Mi,i±1 = γ, and source terms

wi = −ai +H. If we start out at a stationary configuration with ∂h/∂t = 0 or equivalently

Mijhj = wi, then a new avalanche starts only after H is increased enough to push part of

the interface past a point where the local random force slope ci changes. At such points, we

can use an efficient update scheme4 to solve for the new minimum without re-decomposing

the matrix (even when long-range fields are included). Similarly, during the propagation of

an avalanche (when the external field H is fixed) one can solve for the final equilibrium

position by a ‘coarse-grained’ method determining the front position within the granularity

of the piecewise linear grid, and then a linear solution for the final equilibrium point.

Our current implementation in Python is a hybrid method, using a traditional ODE

solver for the fast parts of the avalanche propagation, but solves for the zero-velocity

4These are analogues to the Sherman-Morrison formula [104] which update the inverse or other matrix
decomposition in a time much faster than the original decomposition.
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configuration with the linear-solver after the front velocity slows to a small value. For the

crossover studies aforementioned, where precise duration measurements are not crucial, we

can implement a variant of Middleton’s algorithm [105] and Rosso and Krauth’s algorithm

for a long-range elastic string [82], utilizing no-passing to identify the rough configuration,

and then linearly solving for the stationary state. By randomly staggering the force

cusps in the piecewise linear force, we can impose the statistical tilt symmetry perfectly

(especially if we allow for free boundary conditions). By aligning them, we can induce a

(presumably weak) crossover field to qKPZ.

Other questions in the overall field could be answered using this efficient, precise solver.

For traditional simulations, how many small avalanches are missed as one creeps up

the external field, and how many avalanches are chopped during ‘pauses’ for a given

convergence criterion? For experiments, how does the use of a velocity threshold distort the

avalanche duration distribution and the average temporal shape? [106]. We could also use

our algorithm to test the correspondence between continuous-time and automata models.

Are the ‘pauses’ where the avalanches nearly stop, where only a few ‘saddle-node’ degrees of

freedom dominate the dynamics, truly irrelevant to the dynamics? Or do the universal

predictions of the renormalization-group as reflected in the automata models only describe

the avalanches during the collective periods when many degrees of freedom are active?

Finally, it is recognized that the continuous-time dynamics is a mean-field fixed point for

infinite-range interactions [107], albeit different from the true fixed point [87] describing

experiments and simulations5. This suggests that for sufficiently long-range forces, there

should be a crossover scaling from the saddle-node dynamics for smaller avalanches to the

5The development of a ‘cusp’ in the disorder correlator was a key initial result of the functional
renormalization group methods; this cusp implies that the long-range automaton with abrupt avalanche
initialization and halting is the correct mean-field theory, rather than the slow saddle-node bifurcations of
continuous-time mean-field dynamics.
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cusp-controlled dynamics for large avalanches. This picture could perhaps resolve some of

the longstanding dynamical puzzles in the Barkhausen noise power spectra [108].

4.5 Outlook

Although the qEW to qKPZ crossover has remaining questions to be resolved, we have

presented a clean way of describing the crossover. A new algorithm with more controllable

ways of tuning the crossover could lead to a more definitive answer, but the scaling form

and methods we have presented with our current simulations should provide a useful

framework with which to explore any new data.
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APPENDIX A
SloppyScaling User Documentation

Welcome to SloppyScaling ! This is a module designed to help match scaling theories to

data. Below is a concise user documentation meant to get one started.

A.1 Preliminaries

A.1.1 Python

We use the convenient matplotlib and scipy functionality of Python. The module is written

assuming the following dependencies:

• Python 2.7

• Numpy 1.6 and Scipy 0.9

• Matplotlib version 1.0

Most of the functionality is backwards compatible with and has been tested with Python

2.5 and Python 2.6.
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A.1.2 Installation

The most recent version of the code is available for download at https://github.com/

gdurin/SloppyScaling. Once the files are downloaded, if you would like to be able to

access the module through Python in any folder, stick your files in a folder and add the

folder path to your PYTHONPATH in your .cshrc, .bashrc, or .profile files. Then you

should be good to go!

For example, suppose I put my files in ’/usr/bin/SloppyScaling/’.

For .cshrc the command is:

setenv PYTHONPATH /usr/bin/SloppyScailng:${PYTHONPATH}

For .bashrc or .profile:

export PYTHONPATH=/usr/bin/SloppyScaling:$PYTHONPATH

Conversely, you could also just keep a copy of the files in whichever folder you are

working in and not worry about all that.

A.1.3 How to look for help

One way to get a list of the functions available for each module and object and their

descriptions is to use the pydoc package available in the Python standard library.

pydoc SloppyScaling

In IPython, typing “help <function name>” will provide the docstring for each function.

For general Python errors, or other issues, turning to google is usually very helpful.

Otherwise, e-mail the developers.

117

https://github.com/gdurin/SloppyScaling
https://github.com/gdurin/SloppyScaling


A.2 The SloppyScaling Module

The main module is composed of four classes for inputting the scaling theory and importing

data. Before we get started, we’ll specify some terminology we use below:

• indpendent variables This is the specifications of a particular data set, corresponding

most often to control variables in an experiment, such as the temperature and field,

(h, t) in the Ising model, or the reverse voltage bias and laser power, (V,W ) in a

photoelectric experiment.

• parameters These are the parameters that are in the scaling theory. For example,

when fitting a straight line to (X, Y ) data, Y = AX +B, (A,B) are the parameters.

• standard error of the mean This is meant to represent the fluctuations in

estimating the mean from a given sample size. The standard error of the mean is

usually estimated by calculating the standard deviation of the samples σI , then

dividing by the square root of the sample size N , σI/
√
N .

• covariance matrix This is a matrix that gives the covariance between data entries i

and j, and has dimensions of the M ×M , where M is the length of the data set. The

covariance matrix gives a two-dimensional estimate of the variance, accounting for

correlations between data points, whereas just specifying the standard error of the

mean for each value assume uncorrelated data.

A.2.1 The ScalingTheory class

A ScalingTheory object specifies the theory function Y(X), which is also a function of the

independent variables for each curve. Parameters specify the function, and most often
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should include the universal critical exponents. The theory function should be represented

as a string that is a valid Python command. The variables are unpacked on the fly and the

string is executed. Example of implementation:

sizeHisto = ScalingTheory(’S**(-tau)*numpy.exp((-(S*(R-Rc)**sigma)/XS)**nS)’, # theory equation
’tau, sigma, XS, nS, Rc’, (1.5,0.5,1.0,1.0,2.0), # parameter names and values
independentNames = ’R’, # independent variable names
scalingX = ’S*r**sigma’, scalingY = ’D*S**tau’, # scaling variables
scalingXTeX = r’$S r^\sigma$’, # LaTeX forms for plotting purposes
scalingYTeX = r’$D S^ \tau$’,
title= ’Avalanche histogram$’, # title of theory
scalingTitle= ’Avalanche histogram scaling plot’,
Xname = ’S’, XscaledName=’Ss’, Yname = ’D’, # names for variables
normalization = True) # whether function needs normalization

A.2.2 The Data class

A Data object contains a series of curves labeled by independent variables. Data X, Y,

ErrorBarY (optional) is stored separately (so they need to be the same length). The

label for each set of curves should be defined as a tuple, for example in the Ising model

the label would be (h, t) for each data set. The ErrorBarY, if provided, is assumed to

be the standard errors of the means. Each curve can be loaded from a file with the

method InstallCurve, it assumes the file is read in file format. There is also a method

LoadCovMatrix, which attaches a covariance matrix to each curve, to be used for fitting

and calculation of error bars if desired.

A.2.3 The Model class

A Model object connects a ScalingTheory object to a Data object. It’s primary task is to

calculate the residuals (difference between theory and data, weighted by error bars or

the covariance matrix) (method:Residual) and the cost (method:Cost). According to
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these, it can provide a best fit of the theory to the data (method:BestFit), and plot the

results of the fit (method:PlotBestFit) and the scaling collapse.

A.2.4 The CompositeModel class

A CompositeModel object combines several Model objects into one. The main job of the

CompositeModel is to combine parameter lists and initial values into a single structure, and

then to impose that structure on the individual theories. Shared parameters are identified

and dealt with accordingly. CompositeModel makes use of Model class methods for plotting

and calculating costs.

A.3 Additional Capabilities

A.3.1 Fitting Techniques

Various options exist for fitting with nonlinear least-squares algorithms in SloppyScaling, the

can be specified when calling the methods Model.BestFit or CompositeModel.BestFit,

with the option method= <keyword>. Keywords and corresponding algoritms are as follows:

• ’lm’ or None: scipy.optimize Levenberg-Marquadt

• ’lm accel’: Levenberg-Marquardt + acceleration

• ’bold’ : Delayed gratification

• ’boldAccel’: delayed gratification + acceleration

Details on these algorithms can be found in Ref. [109].
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Other than a choice of fitting algorithm, we can tweak the fitting routine in the

following ways. One can also choose to fix parameters to various values by the optional

argument fixedParams with a list of tuples [(’param1’, val1), (’param2’, val2)...] and so on.

We can also add priors to the Cost function by providing them to the Model.Residual

method via the optional argument dictResidual in the form of a dictionary, with the keys

being the independent values of the data set to which they apply.

A.3.2 Monte-Carlo Ensemble Predictions

We include capabilities to perform importance sampling [110] on a SloppyScaling Model, to

access this, include in your script or in your IPython terminal

from ensemble import ensemble

The function ensemble takes a SloppyScaling Model and does a weighted Monte-Carlo

random walk in parameter space to generate an ensemble of parameters of an acceptable

cost range defined by the magnitude of the best fit cost. The resulting ensemble is saved as

a Python pickle object, which then you can use directly with the SloppyScaling Model

class function PlotEnsemblePredictions to make shaded plots of your scaling theory, or with

the module PlotEnsembles to make histograms of your ensemble predictions, projections of

your ensemble cloud to 2 or 3-dimensions, or the shaded plots of your scaling theory.

Figure A.1 shows an example of such a shaded plot, which reflects the range of uncertainty

for the theory function against a data set measuring piano tuners in cities (we will discuss

this example in Section A.4.1).
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Figure A.1: Shaded Theory Predictions The colored regions represent the uncertainty in
the theory generated from a Monte-Carlo sampling of the parameter space.

A.3.3 Convenience Functions for Organization

There are a few other convenience functions we provide in the module Utils, which include

generating a list of tuples for all combinations of the independent variables when given a

list or range, and generating a dictionary of matplotlib colors plus symbols for use in

plotting each individual data set.

A.4 Examples

The way I like to program is just try things and see if they work. Hopefully the following

examples are descriptive enough to get you launched.
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A.4.1 Example of one scaling function

In the first example, we will try to measure the scaling of piano tuners in a cities in three

regions (this is made up data). This is a classic Fermi problem, but also inspired by the

paper [111]. We’ve decided that the number of piano tuners in a city scales roughly with its

population, but is cut off by limitations on the space available (so area means average area

per capita). There is also a baseline level of piano tuners determined by whether the

average population can afford pianos, which is dependent on GDP. So we have a theory that

the number of piano tuners is a function of area and GDP.

pianotuners = populationαF

(
areaγ

population
,
populationβ

GDP

)
(A.1)

We can set up the script included below to define a ScalingTheory, a Data, and a

Model, which we will name City.� �
1 from numpy import exp

2 import os

3 import SloppyScaling

4 reload(SloppyScaling)

5 import WindowScalingInfo as WS

6 reload(WS)

7 import Utils

8 reload(Utils)

9

10 name = ’piano_tuners ’ # This is the name used in the data files

11

12 ##############################################################

13 # set up all the variables for the ScalingTheory

14 ##############################################################

15

16 Xname = ’x’

17 XnameTeX = ’population ’

18 XscaledName = ’xs’
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19 Xscaled = ’x/GDP**beta’

20 XscaledTeX = r’$population ^\beta/GDP$’

21 WscaledName = ’As’

22 Wscaled = ’area** gamma/x’

23 WscaledTeX = r’$area ^\gamma/population$ ’

24

25 Yname = ’PianoTuners ’

26 YnameTeX = ’Piano Tuners ’

27 Ytheory = ’x**alpha*exp(-c*(1.0* area**gamma/x))*exp(-a*(x/(1.0* GDP**beta)))*(d*GDP

/10**4) ’ # this is the theory of how piano tuners scale

28 Yscaled = ’x**(- alpha)*PianoTuners *(10**4/(d*GDP))’ # formula for scaling collapse

29 YscaledTeX = r’tuners $\times population ^{-\alpha} / F(GDP)$’

30

31 title = ’Piano Tuners in the City’

32

33 scalingTitle = ’Scaling Collapse ’

34

35 parameterNames = "alpha ,beta ,gamma ,a,c,d"

36

37 # initial parameter guess for fitting

38 initialParameterValues = (1.1 ,0.9 ,1.2 ,0.003 ,0.1 ,0.0005)

39

40 # initialize a ScalingTheory with all the variables defined above

41 theory = SloppyScaling.ScalingTheory(Ytheory , parameterNames , \

42 initialParameterValues , ’GDP ,area’, \

43 scalingX = Xscaled , scalingY = Yscaled ,scalingW = Wscaled ,\

44 scalingXTeX = XscaledTeX , \

45 scalingYTeX = YscaledTeX , \

46 scalingWTeX = WscaledTeX , \

47 title = title , \

48 scalingTitle = scalingTitle , \

49 Xname=Xname , XnameTeX=XnameTeX , XscaledName=XscaledName , \

50 Yname=Yname , YnameTeX=YnameTeX , \

51 normalization = None)

52

53 # initialize a Data object

54 data = SloppyScaling.Data()

55
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56 #####################################################

57 # declare the data set labels , independent variables

58 #####################################################

59

60 independentNames = ’GDP’,’area’

61 independentValues= [(40000.0 ,1500.0) ,(10000.0 ,1000.0) ,(20000.0 ,4000.0)]

62

63 Symbol , Color = Utils.MakeSymbolsAndColors(independentValues)

64

65 ######################################################

66 # load the data

67 ######################################################

68 loaded = 0

69 for independent in independentValues:

70 GDP , area = independent

71 fileName = name+’_gdp_ ’+str(GDP)+’_area_ ’+str(area)+’.txt’

72 success = data.InstallCurve(independent , fileName , \

73 defaultFractionalError =0.1,\

74 pointSymbol=Symbol[independent], \

75 pointColor=Color[independent ])

76 loaded += success

77

78 nFiles = len(independentValues)

79

80 if loaded == nFiles:

81 print "Loaded %2d/%2d files (%s)" % (loaded , nFiles , name)

82 else:

83 print "====================="

84 print "Attention! %2d/%2d files are missing (%s)" % (nFiles -loaded , nFiles , name)

85 print "====================="

86

87 #########################################################

88 # combine theory and data into Model

89 #########################################################

90

91 City = SloppyScaling.Model(theory , data , name , independentValues)� �
Now that we have the City model set up, we can open IPython, and say:
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run CityModule.py

To see what the City model can do, let us type ”City.” into the command prompt and

press tab, you should see a list with all the functions.

Let’s execute

City.PlotBestFit()

, which generates the output:

initial cost = 594478.59707

fitting took (mins) 0.00405515034993

number of function evals: [177]

fitting took (mins) 0.00401621659597

number of function evals: [353]

optimized cost = 28.4257680692

====== Fitted Parameters (with one sigma error) ===============

alpha= 1.062805 +/- 0.042500

beta= 0.932665 +/- 0.075609

gamma= 1.087784 +/- 0.096873

a= 0.004082 +/- 0.002753
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c= 11.786177 +/- 9.273463

d= 0.000080 +/- 0.000043

======================================================

and three figures of the fit (Figure A.2), the collapse (Figure A.3, and the weighted residual

(Figure A.4).
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Figure A.2: The Piano Tuner Data and Fit

A.4.2 Example of a joint theory

Now that we know how to set up an individual theory, setting up a CompositeModel is

just one step more. Let us measure instead the number of rats in a city, and let’s say we’ve

set up this measure as a separate Model called Rats. And the intriguing thing about the
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Figure A.4: The Piano Tuner Fit Residuals
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rats is that they roughly scale the same way with population size as piano tuners do with

exponent α, and the scale invariant quantities and their exponents β and γ are also the

same, but of course there are less rats when the population is sparser and richer, so the

scaling function is different and given by something like G
(

areaγ

population
, populationβ

GDP

)
.

rats = populationαG

(
areaγ

population
,
populationβ

GDP

)
(A.2)

To connect these two models, the commands one needs to run is:

import CityModule as City

import RatsModule as Rats

jointModel = SloppyScaling.CompositeModel("RatsAndPiano")

obj_mod = City

m = getattr(obj_mod, City)

jointModel.InstallModel("City", m)

obj_mod = Rats

m = gettattr(obj_mod, Rats)

jointModel.InstallModel("Rats", m)

and you have a CompositeModel that will fit all three models at once, with shared

parameters. For example you can execute:

jointModel.BestFit()

which generates the output:
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initial cost = 597725.020273

fitting took time (mins): 0.0143965482712

number of function_calls: [582]

optimized cost = 66.8324647715

=== Fitting parameters (with one sigma error)==============

alpha = 1.111934 +/- 0.013164

beta = 0.868941 +/- 0.048116

gamma = 1.157076 +/- 0.086911

a = 0.002368 +/- 0.001056

c = 6.323110 +/- 4.245200

d = 0.000043 +/- 0.000007

r1 = 0.000467 +/- 0.000293

r2 = 0.163527 +/- 0.090991

r3 = 0.043401 +/- 0.006945

==========================================================

where r1, r2, r3 are the parameters associated with the rats theory, alpha, beta, gamma the

parameters shared between the two theories.

Six figures total will be shown when executing the above command, three of them from

the piano tuners data and fit like the ones shown in the single theory (piano tuners) example

(Figure A.2, A.3, A.4), in addition there will be figures from the data and theory of the rats,

including the fit (Figure A.5), the collapse (Figure A.6), and the residuals (Figure A.4).
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A.5 Frequently Asked Questions

• Why doesn’t your program automatically detect the scaling function for

my data?

There are actually efforts out there that try to find equations and detect math

relations: for example: Eureqa (http://creativemachines.cornell.edu/eureqa).

We have not done this. In our experience, humans are still better than computers at

finding an elegant function which obeys the limits we know for problems in critical

phenomena. Also, in the process of parametrizing and refining the answer, we tend to

learn a lot about the system at hand. However, having SloppyScaling interface with

something like Eureqa would be very valuable functionality.

• This is too difficult. Is there an easier interface?

We find that the scripting environment is very flexible for use, however, for people

who want a more intuitive interface, there is a GUI under development [22].
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