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S1. EXPERIMENTAL METHOD 

We use single-crystalline Cu nano- and micro-pillars as our study system. We fabricate the 
cylindrical samples from a bulk single-crystalline copper (purchased from MTI Corporation) that 
is of purity > 99.9999% and with top surface polished to ܽ ൏ 30 Հ RMS roughness, following a 
concentric-circles top-down methodology using a Focused Ion Beam (FIB). We use 30 kV 
gallium ion beam starting with an ion current of 5 nA for outer-ring milling and reduce the 
current in steps to 30 pA for the finish up in order to suppress gallium ion implantation as well as 
sidewall tapering. The pillar diameters range from 300 nm to 3 ߤm. The nominal aspect ratio 
(height/diameter) is 3:1. Although FIB introduces surface damage to the pillars, the Ga+ ion 
implantation depth is limited, on the order of 5-10 nm, and usually manifests as dead dislocation 
loops or a thin amorphous layer and likely contribute negligibly to the overall mechanical 
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response. The mechanical properties of the exact 500 nm pillar arrays tested have been reported 
in Ref. [1]. The sample is oriented in the ~ <111> loading direction.  

We carry the nanomechanical experiments in a nanoindenter (Triboindenter, Hysitron) equipped 
with a custom made 8 ߤ m-diameter diamond flat punch. All performed tests are uniaxial 
compression tests that fall in one of the three categories: (1) displacement-controlled (DC) 
monotonic-loading, (2) load-controlled (LC) monotonic-loading, and (3) load-controlled (LC) 
cyclic-loading tests. In a monotonic test, the pillar is compressed to a target load/displacement 
and then fully unloaded. A cyclic test consists of multiple subsequent unload-reload tests. Note 
there are two types of cyclic tests: (i) gradually-increasing maximum stress unload-reload test 
designed to compare the in-general precursor avalanche behavior between large and small size 
pillars, and (ii) the constant-maximum-stress-in-one-step but increasing-stress-between-steps 
training test for the purpose of characterizing RIT behavior. 

Both load and displacement control are implemented via standard PID feedback loop. The 
sampling rate of the controller is 78 kHz. The physical input-output response involves a time lag 
that depends on the sample as well as the designed PID control gain parameters. In our 
experiments, we set proportional gain P = 0, integral gain I = 1, and derivative gain D = 0 for LC 
tests, whereas P = 0, I = 0.6, D = 0 for DC tests.  

An example of the system’s response to a step displacement function in air using the same 
control parameters as in our tests is shown in Fig. S1, where the system response time is found to 
be  14 ms.  

 

Fig. S1. System response to a prescribed step function in air. The displacement is controlled with 
control parameters P=0, I=0.6, D=0. The data (blue) is fitted to a standard exponential function (red) to 
find the characteristic response time. 

During a fast avalanche, the pillar stiffness quickly drops to near zero, leaving only the axial 
machine stiffness (~ 102 N/m) in effect at the same load level, which will result in a displacement 
burst to release the extra stored elastic energy as well as an abrupt drop in load. After the energy 
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release, in LC tests, the decrease in load is accounted for through sequential reloading, whereas 
in displacement-controlled tests, the overshot displacement  is unloaded to resume the prescribed 
displacement.  

Maaβ et. al2 did uniaxial compression tests on Au micropillars using the same instrument as used 
in this study. The work shows that the LC mode lowers the effective machine stiffness to the 
order of ~ 1 N/m, whereas the DC mode imposes an artificial stiffening to the system and raised 
the effective machine stiffness to ~ 103 N/m, resulting in the LC mode producing overall larger 
dislocation avalanches than the DC mode, which explains the large difference in the plastic 
avalanche size between DC and LC tests. In our experiment on copper pillars, we measure the 
LC effective machine stiffness to be ~ 260 N/m while DC stiffness to be ~ 450 N/m. 

We report all our experimental results in engineering stress ߪ and strain ߝ , which have 
simple linear relationships with the raw load ܲ and displacement ݑ measurements: ߪ ൌ ߝ ,ܣ/ܲ ൌ ,ܮ/ݑ #ሺS. 1ሻ  

where ܣ is the original cross-sectional area and ܮ is the original height of the pillar. Fig. S2(a) 
shows the displacement-load measurements of a representative training experiment on a 3 µm 
diameter copper pillar, in comparison to the its linearly-converted engineering stress-strain data 
shown in Fig. S2(b).  

 

Fig. S2. Representative test measuring (a) the displacement and load data, and (b) the reported 
engineering stress strain (blue) in comparison to the estimated true stress strain data (red). 

In Fig. S2(b), we also present the theoretically estimated true stress ߪ௧௨ and true strain ߝ௧௨ with 
zero-stress state volume conservation assumption (which holds true for uniaxial compression 
experiments on micropillars loaded in a high-symmetry orientation), i.e. under elastic loading the 
pillar can dilate or contract, but plastic volume must conserve at unloaded state: 

(a) (b)
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ܮܣ ൌ .ܮܣ #ሺS. 2ሻ  

The subscript   here denotes the unloaded plastically-deformed state of the pillar. When 
plasticity happens the zero-stressed sample evolves via plastic strain, 

ߝ ൌ  െ න బܮܮ݀ ൌ  െ ln ܮܮ  . #ሺS. 3ሻ  

The elastic deformation does not change the sample intrinsically. The elastic strain follows 
Hooke’s law in uniaxial loading case, ߝ ൌ ,ܧ/௧௨ߪ #ሺS. 4ሻ  

where ܧ is the Young’s modulus of the sample material. Then the true stress and true strain are 
calculated as, 

௧௨ߪ ൌ ܣܲ ൌ ܮܣܮܲ ௧௨ߝ , ൌ ߝ  ߝ ൌ ܮܣܧܮܲ െ ln ܮܮ . #ሺܵ. 5ሻ  

In the equations, the only unknown variable, the plastically-deformed length of the pillar ܮ, can 
be estimated from the raw load-displacement measurement:  

The instrument measures stiffness ݇௦ as a series combination of pillar stiffness ݇ and 
Sneddon stiffness3 ݇௦ௗௗ, 1݇௦ ൌ 1݇  1݇௦ௗௗ  . #ሺS. 6ሻ  

The Sneddon stiffness considers the compliance associated with the pillar acting like a flat punch 
indenting into the bulk substrate, ݇ௌௗௗ ൌ ଶாೞೠ್ೞೝೌඥ√గሺଵିఔమሻ , #ሺS. 7ሻ
where ܧ௦௨௦௧௧ ൌ ܧ  is the Young’s modulus of the copper substrate, ܣ  is the contact area 
between the pillar and the substrate, and ߥ is the Poisson’s ratio of the pillar material. The total 
measured displacement is, ݑ ൌ ݑ  ݑ  ௦ௗௗ ൌݑ ൫ܮ െ ൯ܮ  ܮܣܧଶܮܲ  ሺ1ߨ√ܲ െ .  ܣඥܧଶሻ2ߥ #ሺS. 8ሻ  
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For simple analytical solution, we assume that ܣ  remains constant during deformation. The 
initial contact area can be estimated from the measured tapering angle ߠ of typical FIB-machined 
copper pillars, ܣ ൌ ߠtanܮሺߨ  ඥܣ/ߨሻଶ. 
We use experimentally measured modulus of the copper sample in the equation and solve for ܮ, 

ܮ ൌ 2ܲܮܣܧ ቌ1 െ ඨ1 െ ܮܣܧ4ܲ ሺܮ െ ݑ  ሺ1ߨ√ܲ െ   ሻቍܣඥܧଶሻ2ߥ . #ሺܵ. 9ሻ  

We substitute ܮ to Eq. (S.5) to obtain the true stress-strain estimation. Table S1 below shows 
the sample geometry and material parameters we use in the conversion for 3 µm diameter copper 
pillars. 

Table S1: Sample Parameters 
Initial Cross-Sectional 
Area 

ܣ ൌ 7 µmଶ 

Initial Length ܮ ൌ 9 µm 
Young’s Modulus ܧ ൌ 140 GPa 
Poisson Ratio ߥ ൌ 0.33 
Tapering Angle ߠ ൌ 4° 

 

As shown in Fig. S2 (b), as the true cross-sectional area ܣ increases with greater plastic strain, 
the true applied stress decreases while plastic deformation occurs at a constant load. As the true 
stress-strain conversion holds only in the conditions that (i) the lattice orientation does not 
change significantly and (ii) deformation remains approximately homogeneous on the pillar 
scale, the post-failure true stress-strain estimation is not reliable. 

 

S2. RECONSTRUCTION OF RELOADING STRESS-STRAIN 

In this paper, we apply a reloading stress-strain reconstruction protocol to analyze the yield-
precursor behavior for different sizes of pillars. Fig. S3(a) shows a sample stress-strain data of 
load-controlled (LC) uniaxial compression tests on a 500 nm diameter pillar with prescribed 
unload-reload cycles. The cyclic loading rate is ~ 400 MPa/s, while the maximum stress is 
increased by ~ 5 MPa per cycle, which is equivalent to a quasistatic ramping rate of ~ 1.4 MPa/s. 
We keep the minimum stress at ~ 40 MPa to maintain tip-sample contact. As the occurrence of 
avalanches upon reloading is stochastic in small-scale crystals, the main purpose of the stress-
strain reconstruction is to average all the reloading curves as a measure of the ensemble 
precursor deviation from the textbook “peak stress” yielding.  
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We first shift the origin of each reloading process such that the stress is zeroed at the previous 
maximum stress (usually at the start of unloading) and the strain is zeroed at the beginning of 
each reloading, which is demonstrated in Fig. S3(b). During reloading, if a new avalanche 
happens before reaching the previous maximum stress (re-zeroing stress), it is a precursor 
avalanche.  

 

FIG. S3. Re-zeroing reloading stress-strain in unload-reload experiments: (a) A sample stress-strain 
curve for the unload-reload test on a 500 nm diameter Cu pillar, marked with the start of each reloading 
(yellow circle) and the point at which the previous maximum stress occurs (purple circle) (b) A closer look 
at the sample unload-reload cycles, where the stress of each reloading is re-zeroed with the previous 
maximum stress (textbook yield stress updated upon deformation) and the strain is re-zeroed with the 
starting strain of the reloading process. The shifted stress-strain origin is labeled as O1 for the first marked 
reloading process (light green), O2 for the second (light blue), O3 for the third (dark red), and so on. 

Each re-zeroed reloading process for any pillar is then treated as an individual reloading test on 
one nanopillar. The total precursor behavior for the pillars can be reconstructed according to a 
Gedanken experiment on a macroscopic sample composed of stacks of nanopillars either in 
parallel or in series, as illustrated in Fig. S4(a). We interpolate and average the reloading 
response of each pillar along the monotonically increasing strain ߝ (in-parallel) or stress ߪ (in-
series) for the ensemble response. Fig. S4(b) shows examples of the in-series and in-parallel 
interpolation of the single reloading curve shown in Fig. S3(b) and zeroed at ଵܱ. 
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FIG. S4. Stress-strain reconstruction according to the Gedanken compression experiments on 
micropillars (a) Schematics of the Gedanken compression experiments with prescribed strain (in-parallel) 
and prescribed stress (in-series) configurations. (b) Examples of the in-series strain and in-parallel stress 
interpolation of the single reloading curve shown in Fig. S3(b) and zeroed at origin Oଵ. (c) The averaging 
stress-strain reconstruction of the reloading curves for both in-parallel and in-series cases for the sample 
load-controlled (LC) test shown in Fig. S3. 

In the in-parallel configuration, for the ݅௧  pillar, strain ߝ ൌ ߝ  is controlled and stress ߪ 
encodes the material’s response. The system composed of N pillars has a stress response, 

ߪ ൌ 1ܰ  ேߪ
ୀଵ  

ൌ 1ܰ  ሺܧ  ேߝሻܧߜ
ୀଵ   

ൌ ߝܧ  1ܰ  ேߝܧߜ
ୀଵ  ൌ ሺܧ  .ߝሻܧߜ #ሺS. 10ሻ  
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In Eq. (S.1), ܧߜ ൌ ଵே ∑ ேୀଵܧߜ  characterizes the plastic response of the N-pillar system. ߪ and ߝ 
are the reconstructed stress and strain. Similarly, the series reconstructed strain ߝ can be 
expressed with respect to the prescribed stress ߪ,  ߝ ൌ ሺܧ  .ߝሻିଵܧߜ #ሺS. 11ሻ  
Fig. S4(c) shows the sample in-series and in-parallel averaging reconstruction of reloading stress 
and strain for the same unload-reload test on a 500 nm diameter Cu pillar as shown in Fig. S3. In 
the main text, we present the in-parallel reconstruction for tests on seven identically-prepared 
pillars for each size. We keep only the Non-Hookean part of strain in the final results by 
subtracting the elastic strain fitted from the linear reloading regime, ߪ א ሾെ300, െ100ሿ MPa. 
The elastic fit for the sample in-parallel reconstruction stress-strain is shown in Fig. S4(c). 

The same reconstruction analysis can be applied to the conventional quasi-static load- or 
displacement-controlled nanomechanical experiments. In the monotonic, uniaxial loading 
experiments, the plastic strain bursts usually lead to drops in the applied force caused by the 
finite machine stiffness under either displacement or load control (See Sec. S1 for details). Fig. 
S5(a) shows a sample stress-strain of a load-controlled compression test on a 500 nm diameter 
Cu pillar, marked with the onset and finish of each avalanche event: at the beginning of a 
displacement burst of size Δݔ, the force applied to the sample drops by ݇Δݔ, with ݇ being the 
machine stiffness. Driven by the feedback control, the indenter tip will re-attain the prescribed 
load on the sample after a fast avalanche event is completed. This stress-drop-and-catch-up 
process is manifested as a spontaneous unload-reload response. The stress that initiates an 
avalanche can be regarded as the updated yield stress of the deformed pillar. The yielding 
avalanche triggers the following unloading process. When the avalanche finishes, the load 
control re-engages and starts the reloading process. 
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FIG. S5. Stress-strain reconstruction for finding precursor avalanches in the quasi-static load-
controlled experiment: (a) A sample stress-strain curve for the load-controlled test on a 500 nm 
diameter Cu pillar, marked with the onset and finish of each avalanche event. (b) A closer look at the 
avalanches, where the stress after each avalanche is re-zeroed with the previous maximum stress 
(textbook new yield stress) and the strain is re-zeroed with the starting strain of the reloading process. 
The re-zeroed stress-strain origin is marked as O1 for the first seen avalanche, O2 for the second, and so 
on. (c) Examples of in-series strain and in-parallel stress interpolation of the single reloading curve shown 
in (b), zeroed at origin Oଵ. (d) The averaging in-parallel and in-series stress-strain reconstruction of all 
reloading curves shown in (a). 

Fig. S5(b-d) exemplify the reconstruction process for the load-controlled experiment shown in 
Fig. S5(a) following the same protocol as the one applied to the unload-reload experiments: we 
(b) shift origins of the stress-strain data after each yielding avalanche with the stress zeroed at the 
start of the avalanche and strain zeroed at the end of the avalanche, (c) interpolate the in-series 
strain or in-parallel stress, and (d) take averages of the interpolated strain/stress for the stress-
strain reconstruction. 
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S3. PRECURSOR AVALANCHES IN DIFFERENT SIZE PILLARS UNDER DIFFERENT LOADING 

MODES 

We performed the stress-strain reconstruction analysis for displacement-controlled and load-
controlled quasistatic compression tests, as well as unload-reload cyclic compression tests, on 
different size Cu pillars with diameters of 300 nm, 500 nm, 700 nm, 1 ߤm, and 3 ߤm. The 
sample stress-strain measurements are shown in Fig. S6(a-c), while the in-parallel reconstructed 
reloading curves are correspondingly shown in Fig. S6(d-f). Each reconstruction analysis takes 
averages of all reloading curves from individual tests on seven identically-prepared pillars. We 
have subtracted the elastic strain from the reconstructed strain, leaving only the plastic precursor 
strain. The reconstructed non-Hookean reloading stress-strain quantitatively evaluates the 
averaging yield-precursor avalanche behavior of a specific size of Cu pillar under a specific 
loading mode. 

 

FIG. S6. Precursor avalanches present in different loading-mode uniaxial compression 
experiments on different size Cu pillars. Sample stress-strain (top) and in-parallel reconstructed non-
Hookean stress-strain (bottom) for (a, d) displacement-controlled (DC) monotonic-loading, (b, e) load-
controlled (LC) monotonic-loading, and (c, f) unload-reload cyclic-loading compression experiments on 
different size pillars. In general, less precursor dissipation is observed in larger Cu pillars. 

In all cases, precursor dissipation is prevalently observed in small pillars. We can gain some 
insights into the precursor avalanche behavior from a comparison amongst the different loading 
mode results. 1. Larger precursor strains are observed in displacement-controlled tests than load-
controlled tests. As shown in Fig. S6(a) and (b), the avalanche-induced unloading amplitudes in 
displacement-controlled tests are on average larger than those in the load-controlled experiments. 
This might infer that the size of precursor strains is dependent on unloading stress amplitude. 2. 

(a) (b) (c)

(d) (e) (f)
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The precursor strains in unload-reload tests are much smaller than those of the displacement-
controlled tests, though the unloading amplitude is of the similar scale (for the 500 nm diameter 
pillars). One possible explanation is that part of the “precursor strains” observed in the 
quasistatic compression tests are “unfinished” avalanches caused by non-perfect control: unlike 
the prescribed unloading in unload-reload tests, unloading processes in the monotonic loading 
test are spontaneously triggered by fast avalanches; thus, stress always drops during a slip event, 
which might interrupt the growing avalanche, leaving residual avalanche to be re-activated upon 
the subsequent reloading process. 3. Larger precursor dissipations are observed in smaller pillars. 
This emergent size dependency can be an intrinsic size effect of materials’ yield precursor 
behavior; on the other hand, it can also be a result of smaller pillars undergoing larger unloading 
amplitude as shown in Fig. S6 (a) and (b) – smaller pillars exhibit larger strain bursts, which in 
turn, will give larger stress drops due to the inherent machine stiffness in both displacement- and 
load-controlled tests.  

To the best of the authors’ knowledge, phenomena similar to the presented yield-precursor 
avalanche hysteresis has not been explicitly resolved in the conventional macroscopic 
mechanical tests nor in the uniaxial micro- or nanopillar compression experiments. Based on the 
unloading-reloading experiment results (Fig. S6(f), same as Fig. 1d in the main text), the 
precursor avalanches observed in the submicron-size samples (for example, an average ensemble 
precursor strain of  10ିସ that occurs at  5% (20 MPa) below the measured yield stress (400 
MPa) in 500 nm diameter pillars) are expected to be detectable in bulk experiments4 where the 
entire elastic strain at the yield stress is ordinarily ൏ 10ିଶ . To systematically study the size 
effect, we need to do the same experiments on significantly larger size pillars, which reaches the 
limit of our nanomechanical experiment capability: The instrument has a load limit of 10 mN 
and a displacement limit of 5 ߤm. While the critical failure of 3 ߤm pillar happens at a load of ~ 
3 mN and a displacement of ~ 1 ߤm, we can only reasonably increase the system size by a factor 
of ~ 2. 

Note that the reduction in the precursor avalanche hysteresis for larger system sizes is not related 
to the difficulties in measuring dislocation avalanches in macroscopic fcc materials (as opposed 
to lower symmetry hexagonal materials like zinc and ice12.). We measure the avalanche-induced 
hysteresis – the sum of the effects of avalanches that may (for large pillars) be individually 
beyond our instrumental resolution.  

The current observation that larger samples give smaller precursor avalanches is similar to the 
system size effect on plastic avalanches, which has been revealed also in micropillar 
compression experiments5. Former studies have attributed the finite-size effect on plastic 
avalanche size to single-arm source mechanism6,7 surface source nucleation and dislocation 
annihilation8,9, and thin film plasticity10,11. Similar statements could be made for the precursor 
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avalanches at the small-scale, but with the current available data, we cannot distinguish between 
these different speculations.  

We have also applied our analysis to simulated data (using 3D discrete dislocation dynamics) 
and observed similar qualitative behavior (G. Costantini and S. Zapperi, unpublished). Further 
investigation on the emergent size effect, e.g. doing same-amplitude unload-reload tests on 
different sizes of pillars, is beyond the scope of this work. 

 

S4. DRIFT AND ELASTIC STRAIN CORRECTION IN THE TRAINING EXPERIMENT 

We study how the precursor behavior changes over deformation using the training experiment, 
where we repeat loading to the same maximum stress and increase the maximum stress in steps. 
We evaluate the energy dissipated by precursor avalanches from an integral over each unload-
reload hysteresis cycle, ܷ ൌ   ,During tests with long unloading/reloading segment time .ߝ݀ߪ
the instrumental drift in the machine can result in large discrepancies between the measured 
displacement and the actual sample displacement. This can give rise to errors in the calculation 
of the precursor hysteresis, which is very sensitive to the measurement of displacement during 
each unload-reload cycle. Fig. S7(a) and (b) demonstrate the drift problem in the training 
experiment on 3 ߤm diameter Cu pillars by comparing the precursor hysteresis calculated over 
cycles of the same maximum stress ~ 350 MPa between the tests with 2 s (short), 80 MPa 
amplitude unloading/reloading segments and the tests with 4 s (long), 160 MPa amplitude 
unloading/reloading segments. Both tests use the same loading rate of 40 MPa/s. For the 4 s 
segment tests shown in Fig. S7(b), the precursor dissipation decays to negative values, which is 
unphysical for a uniaxial compression test on single crystalline metals. The negative hysteresis 
that is slowly-varying over time can be explained by the usually negative thermal drift present in 
the nanoindentation tests. We apply drift correction to each unload-reload cycle. Fig. S7(c) 
shows the post-drift-correction precursor hysteresis vs. cycle data for the same set of 4 s segment 
tests, which mitigates the unphysical negative values and exhibits similar decay-over-cycle 
behavior as that for the short segment test. 

 
FIG. S7. Effect of instrumental drift on the calculated precursor dissipation for 3 μm diameter Cu 
pillars. (a) Tests with 2 s (short) individual unloading/reloading segments show a clean decay of the 
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average precursor dissipation. (b) Average precursor dissipation for tests with 4 s (long) 
unloading/reloading segments exhibit unphysical negative values, which indicates a potential error in the 
strain measurements due to instrumental drift. (c) A drift correction on the 4 s segment test data mitigates 
the negative values and discloses a decay behavior. 

 
FIG. S8. Demonstration of the drift correction process: (a) An example raw stress vs. strain data of 
subsequent unloading and reloading segments (of a 1 μm diameter copper pillar). The segments are 
individually linearly fitted to account for the slow instrumental drift in addition to the Hookean elastic strain; 
The fitting excludes data in the top 80 MPa segment within which precursor avalanches are present. (b) 
The linearly fitted strains are subtracted from the unloading and reloading segments respectively to 
correct for the instrumental drift. The shaded area in the figures indicates the precursor hysteresis 
calculated from its corresponding set of data. 

The drift correction is applied to each unload-reload cycle as the following. We take one raw 
stress-strain cycle shown in Fig. S8(a) as an example. The precursor hysteresis associated to the 
cycle is marked by the shaded area. Since the individual unloading/reloading segment duration 
(< 1s) is short, the drift rate during each segment is assumed to be constant. A linear fit is 
prescribed to each unloading/reloading segment below the onset stress of precursor avalanches 
(the top 80 MPa segment), to account for the Hookean strain as well as the linear drift. In Fig. 
S8(b), we subtract the linearly fitted strain from the overall unloading/reloading strain for the 
drift-corrected hysteresis behavior. The post-correction deformation is plastic only. 
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FIG. S9. Tangent modulus estimate vs. cycle. The tangent modulus stays almost constant at around 
~140 GPa before loading reaches σୡ. 

The linear fit is a combination of modulus and instantaneous drift. When the instrumental drift 
and the change in pillar geometry is small, the fitting results should not deviate much from the 
nominal Young’s modulus for copper. Fig. S9 shows the tangent estimated modulus vs. cycle 
analysis for four sample training tests. Before the catastrophic failure occurs, where our true 
stress-strain conversion holds in the conditions that (i) the lattice orientation does not change 
significantly and (ii) deformation remains approximately homogeneous on the pillar scale, the 
tangent modulus estimate stays constant at around ~ 140 GPa and agrees well with the nominal 
Young’s modulus of copper. 
 

S5. WEIGHTED FIT AND SIGNIFICANCE 

Each training experiment is prescribed with five 100 cyclic loading steps with maximum stress ߪ௫ that fall in the range of 228 – 452 MPa. We extend the cycle number at step 452 MPa to 
500 for a more sufficient decay around the critical stress – we prescribe long cycles only at the 
last step of the training test due to concerns for instrumental drift. We apply the multistep cyclic 
load function to twenty-four identically prepared 3 ߤm-diameter copper samples. Among the 24 
pillars, 13 were tested at maximum stresses from 228 to 452 MPa with an interval of 56 MPa, 7 
were tested from 340  to 452 MPa  with an interval of 28 MPa , and 4 were tested at 172, 200, 228, 340, and 452 MPa. We normalize ߪ௫ by the flow stress of each experiment, 
and then binned it for the training behavior analysis. The binning average ߪ௫ spans the stress 
range 0.5 െ .ߪ 1.0  It is reasonable to assume that for the ݊ th cycle at a specific ߪ௫ , the 
intrinsic precursor dissipation behavior ܷሺ݊ሻ is equivalent across all samples within statistical 
variation. We therefore report ܷሺ݊ሻ in stress-binning mean and standard error. 

We characterize the decay behavior ܷሺ݊ሻ at each ߪ௫ using a fitting function ܷሺ݊ሻ13, 

 ܷሺ݊ሻ ൌ ሺܷ െ ܷஶሻ݁ି/ఛ݊ିఋ  ܷஶ, (S.12)
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where we evaluate the steady-state value ܷஶ as the average of the last ܰ cycles† in which range ܷ settles to a plateau, and fit for  ܷ and ߬.  We presume ܰ ൌ 100 െ 3߬, ( ܰ  1) using the 
empirical scaling13, ߬ ൌ 3ሺ1 െ  ሻିଵ.ଵ. δ is evaluated from a simple power law fitting to theߪ
approximate critical behavior at ߪ௫ ~ ߪ,  
 ܷᇱሺ݊ሻ ൌ ܷሺ݊; ߬ ՜ ∞, ܷஶ ՜ 0ሻ ൌ ܷ݊ିఋ. (S.13)
 
We use the 500 cycle training data at stress step ߪ௫     for the power-law fitting for δ, asߪ
shown in Fig. S10. Over large number of cycles with the engineering maximum stress prescribed 
to be constant, the large plastic deformation in high-symmetry direction can cause a decrease in 
the true maximum stress applied to the sample due to volume conservation. As the cycling at the 
stress level above the critical stress goes, the maximum stress eventually falls below the critical 
stress over large precursor strain – the precursor dissipation does not decay to finite steady-state 
value over long cycling tests. The approximate power-law fitting gives δ ൌ 0.68 േ 0.02.  

 

FIG. S10. Power-law fitting to the long cycling training behavior. The precursor dissipation vs. cycle 
behavior at the stress σ୫ୟ୶~σୡ is approximately critical and can be characterized by a simple power-law 
decay for the fitting of the power-law exponent δ in the general model. The mean value spikes at n ~ 55, 
92, 162 are occasional large precursor avalanches present in individual tests. 

For a crosscheck, we use the general model Eq. (S.12) but release ߜ as a third fitting parameter in 
addition to ܷ and ߬. The fitting results shown in Fig. S11 verify a relatively constant ߜ for all 
stress steps, of which the average is 0.7 and agrees with the power-law fitting value. We report 
the standard deviation of the collective fit as a ߜ-fluctuation estimation. The fitted values for ߬ 
using this method does not give much information due to the large error bars related to releasing 
a third degree of freedom in the fitting process.  

                                                 

† In the all-steps, truncated power-law fitting analysis, we use only the first 100-cycle data of the 
500-cycle step. 
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FIG. S11. Fitting for the power-law exponent. The fitted exponents are relatively constant for all stress 
steps and average to agree with the power-law fitted exponent ߜ  0.7. 

We apply the fitted mean power-law exponent ߜ ൌ 0.70 back to the general fitting model Eq. 
(S.12) for all stress steps. ܷ is the initial value of ܷ. The fitting parameters, τ and ܷ, as well as 
their confidence intervals were obtained using a nonlinear regression model featuring the 
Levenberg-Marquardt nonlinear least squares algorithm14,15. Each data point is weighted by the 
measurement error. The estimation error for the k-th parameter is taken as the 95% confidence 
interval, 2ߪ.  

 

S6. THEORETICAL PREDICTION FOR THE POWER-LAW EXPONENT 

Bandi et al.16 proposed a model for the history dependence of cyclic training in a uniaxially-
compressed granular system, which we can modify to generate a ‘mean-field’ model for the RIT 
transition. They presume a recurrence relation ܺାଵ ൌ ݃ሺܺሻ between successive cycles that are 
loaded to the same maximum pressure, where the variable ܺ is defined as the packing volume 
fraction difference between consecutive cycles. The function ݃ሺݔሻ has a fixed point ݃ሺݔ ൌ 0ሻ ൌ0, so assuming analytically, they posit a series expansion: ܺାଵ ൌ ݃ሺܺሻ ൌ ܺ െ ଶܺܥ  ڮ #ሺS. 14ሻ  

The solution of this equation for ݊  large is: ܺ ൌ షభ . They propose that the corresponding 
exponent ߜ should be universal.  

We can generalize this model to exhibit a RIT transition, by noting that analyticity does not 
require the coefficient of the linear term ܺ to be 1. We therefore modify this theoretical model 
to incorporate the exponential decay rate ߬, 

0.6 0.8 1
0

0.5

1

1.5



17 

 

ܺାଵ ൌ ݃ሺܺሻ ൌ ܺܣ െ ଶܺܥ  ڮ #ሺS. 15ሻ  

The Taylor series of ݃ሺܺሻ begins with ܺܣ with ܣ ൌ ݁ି/ఛ ൏ 1. Then the RIT happens when ܣ 
goes to one. This modified model provides a mean-field description of the RIT phenomenon with ߜ ൌ 1. This critical exponent ߜ, however, is far outside our statistical errors for the collective fit 
(Fig. S10), but within the fluctuations for ߜ fit separately for different ߪ௫ (Fig. S11). 

 

S7. JUSTIFICATION OF CRITICAL STRESS AND TRANSITION BEHAVIOR 

The critical failure stress during each test, ߪ, is determined as the stress level above which the 
plastic deformation deviates from the linear hardening behavior. From this critical point the 
micropillar runs into a short segment of stress plateau, which corresponds to an onset of ‘perfect 
failure’ – the sample is no longer able to support any additional applied load, and the sample 
continually deforms plastically at a constant stress. 

However, the drop in the true flow stress post ‘perfect failure’ (See Fig. 2a in the main text, or 
Fig. S2b) is an inevitable characteristic of the load/engineering-stress controlled micropillar 
compression experiments. Pillar loaded in a high-symmetry <111> orientation plastically deform 
via crystallographic slip on six slip systems, which have the highest Schmid factor of 0.27. 
Sample volume is conserved during plastic deformation. Based on these geometrical 
considerations, the cross-sectional area of the pillar increases with larger strain while the applied 
load is monitored by the nanoindenter. This will inevitably lead to a decrease in the true applied 
maximum stress when plastic deformation happens at a constant load, as shown in Fig. S2(b). 
Plastic flow at a controlled engineering stress is not sustainable for single crystals because the 
dislocations will glide in the readily available slip planes at a shear stress that corresponds to 
axial engineering stress above the critical stress, and the true stress ߪ௧௨, which is different from 
engineering stress ߪ  through ߪ௧௨ ൌ ܣ ሻ, whereܣ/ܣሺߪ  is the original cross-sectional 
area and ܣ  is the true cross-sectional area, will eventually fall below the critical stress at a 
sufficiently large precursor strain, as was already described in Sec. S1 (Fig. S2). An increase in 
engineering stress is required to compensate for the contact area change to maintain the true 
applied stress above the critical stress level. 

The nominally controlled maximum stress close to or post the critical stress is only an 
approximation, due to the intrinsic limitation of load-controlled micropillar compression tests 
that perfect flow is not sustainable as large deformation proceeds. Nevertheless, a transition 
behavior at   is unambiguous. If we force ܷஶߪ ൌ 0 for all stress steps, the fitted decay time ߬ 
blows up (߬  10ଵଶሻ around and ߪ௫ ~ ߪୡ, as is shown in Fig. S11. The ߬ divergence from 
below the critical stress exhibits RIT behavior robustly. 
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Fig. S12. The characteristic decay time ૌ  versus maximum stress ોܠ܉ܕ ൌ ો  estimated for  ૄܕ 
diameter pillars with ܃ஶ ൌ൏ ܷሺ݊  ሻۼ  ሺܵ݁ܿ. ஶ܃ ሻ and܁ ൌ  cases on (a) a linear scale and (b) a 
logarithmic scale. 

When the distance from the maximum stress to the critical stress becomes less than 0.1, the fitted 
decay time constant ߬ deviates from the RIT scaling,  ߬  ߪ| െ ,|ିఈߪ #ሺS. 16ሻ  

where ߙ ൌ 1.1  [Ref. 13]. One possible explanation is that when ߬  becomes large as ߪ  is 
approaching ߪ, the last ܰ-cycle average estimation for ܷஶ (Sec. S5) is no longer an accurate 
approximation for a steady state value. When we overestimate ܷஶ , the decay time ߬  is 
underestimated, which agrees with what we have observed here. 

To prove that the deviation of ߬ from the theoretical prediction is caused by the limited number 
of cycles cutting off a sufficient decay for a precise steady state measurement, we apply the same 
fitting method (Sec. S5) to a simulated ܷሺ݊ሻ data, where ߬ is prescribed according to the scaling 
relation. The simulation generates random ܷሺ݊ሻ  with mean values following Eq. S.12. We 
extrapolate ܷ from the fit of experimental data and set ܷஶ to be zero. Fig. S13 (a) below shows 
the simulation data for each theoretical stress step. Fig. S13 (b) and (c) show the fitted ߬ in 
comparison with the theoretically prescribed values. The fitted ߬ deviation shows up in the same 
way as it does for the experimental data, which means that with only 100 cycle data within one 
stress step, we do underestimate decay time at stress level close to the critical stress where the 
theoretical decay constant exceeds 100, using our current fitting method (estimate ܷஶ ൌ൏ܷሺ݊  ܰሻ ) .  
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FIG. S13. Fitting for the decay time constant τ using simulation data with prescribed τ (a) The 
simulated data U(n) (Data 0 in (b) and (c)) at each representative maximum stress σ with τ prescribed 
according to Eq. (S.16). (b) τ vs. σ estimated for the simulation data, in comparison with the theoretical 
prescription on a linear scale, and (c) on a logarithm scale, for seven independent simulation runs. We 
show the representative error bars with one simulation run (Data 0). The error bars are statistical fitting 
errors. The deviation from the theoretical dashed line is the systematic error due to the procedure used to 
measure the steady-state baseline. 
 

S8. EFFECT OF STRESS RATE ON PRECURSOR DISSIPATION 

We apply fast unload-reload cycles with a symmetric loading rate of ~ 570 MPa/s in the training 
experiment to help reduce the effect of instrumental drift problem. However, this loading rate is 
too fast to be quasistatic. It is therefore reasonable to suspect that the precursor dissipations could 
have arisen because of the fast loading mode. To address this issue, we performed small stress 
amplitude (~ 40 MPa) training tests on 3 ߤm diameter pillars using 3 different stress rates, 40 
MPa/s, 290 MPa/s, 570 MPa/s, and calculated the corresponding precursor dissipation over 
cycles. No drift corrections are applied because of the small stress amplitude which leads to too 
short linear segment for reliable fitting. The results are shown in Fig. S14 in an increasing stress 
rate order; it is clear that for the three loading rates the precursor dissipation exhibit a decay 
behavior over cycles. 
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FIG. S14. The precursor dissipation over cycles data and the decay behavior fit for the training 
experiments with different loading rate of 40 MPa/s, 290MPa/s, and 570 MPa/s. 

We characterize the decay behavior using the fitting model ܷሺ݊; ߜ ൌ 0.70ሻ. The decay time 
constants for the three tests are estimated to be 6.8 േ 1.8, 9.8 േ 3.9, and 7.2 േ 5.9. This ensures 
that the precursor avalanches and their self-organizing behavior are not generated by fast loading. 
On the other hand, the initial precursor dissipation is larger in the slower loading experiments. 
The emergent stress rate dependency might relate to intrinsic time scales of the small-scale 
crystal, such as the rate of dislocation relaxation1.  

 

S9. PRECURSOR DISSIPATION TRAINING FOR DIFFERENT PILLAR SIZES 

In addition to 3 ߤm diameter pillars, we have also performed training tests on 500 nm and 1 ߤm 
diameter pillars. For 500 nm diameter pillars, we performed training experiments on a total of 
twenty-six pillars using six step maximum stress ranging from 550 MPa to 800 MPa with 
increments of 50 MPa. For 1 ߤm pillars, we tested seven pillars using five step maximum stress 
ranging from 300 MPa to 600 MPa with increments of 75 MPa. For both training tests, we 
unload to a constant minimum stress of 100 MPa (we unload to 56 MPa for 3 ߤm diameter 
pillars) to maintain contact between the actuation punch and the sample. 
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FIG. S15. The precursor dissipation vs. number of cycle data for (a) 3 μm, (b) 1 μm, and (c) 500 nm 
diameter pillars. For all sizes and in all steps with σ୫ୟ୶ ൏ σୡ, the precursor dissipation can be trained 
away after a certain number of cycles. The magnitude of precursor dissipation is in general larger in 
smaller size pillars. The initial precursor dissipation for (a) 3 µm, and (b) 1 μm pillars, grows as the 
maximum stress grows; the decay time also increases with stress. (c) There is no conclusive stress-
dependent trend for the decay behavior of 500 nm pillars. 

We examine and compare the cyclic precursor dissipation behavior between 500 nm, 1 ߤm and 
the 3 ߤm diameter pillars following the same fitting analysis procedures described in Sec. S5 but 
with ܷ∞ ൌ 0. The data and fitting curves are shown in Fig. S15. It is worth noting that the 
training tests for 500 nm diameter pillars have too small unloading/reloading amplitude for drift 
correction. For all sizes of pillars, the precursor dissipation can be trained away after a certain 
number of cycles.  
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FIG. S16. Characteristic decay time τ versus the maximum stress estimated for different pillar 
sizes (1 μm vs. 3 μm diameter copper pillars).   

For 1 ߤm diameter pillars, the initial precursor dissipation grows as the maximum stress grows; 
the decay time also increases with stress, as shown in Fig. S16 in comparison with the ߬ 
divergence behavior of 3 ߤm diameter pillars. In this comparison, the stress is not normalized 
because a quasi-static measurement for the critical stress is not accessible – the smaller pillars 
cannot be loaded to ߪ  before the large plastic deformation collapses their compression 
geometry. For 500 nm diameter pillars, we can hardly distinguish the training behaviors at 
different maximum stress from the available data.   
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