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Elastic Theory Has Zero Radius of Convergence
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In nonlinear elastic theory, the inverse bulk modulusK, for example, depends on the compress
P: 1yKsPd ­ c0 1 c1P 1 c2P2 1 · · · 1 cnPn 1 · · · . Elastic materials that allow cracks are unsta
at finite temperature with respect to fracture under a stretching load. As a result, the above
series has zero radius of convergence: it is an asymptotic series. For a two-dimensional isotropi
medium allowing cracks we compute the asymptotic formcn11ycn ! Cn1y2 asn ! `. We present an
explicit formula forC as a function of temperature and material properties. [S0031-9007(96)009

PACS numbers: 62.20.Mk, 46.30.Nz, 62.20.Dc, 64.60.Qb
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Hooke’s law,F ­ kx, representing the elastic respon
of a body to an external stress, is only the first term
a Taylor’s series. This Letter addresses the converge
properties of this expansion. We argue generally t
the radius of convergence of elastic theory is zero,
for two-dimensional isotropic elastic theory allowing fo
brittle fracture, we can calculate the asymptotic behav
of the coefficients.

For simplicity, let us consider the bulk modulusKsPd,
1

KsPd
­ 2

1
V

µ
≠V
≠P

∂
T

­ c0 1 c1P 1 c2P2 1 · · · 1 cnPn 1 · · · . (1)

Under stretchingsP , 0d, the true ground state is frac
tured into pieces (relieving the strain energy). As a res
P ­ 0 cannot be a point of analyticity forKsPd, and thus
(1) has zero radius of convergence.

Similar arguments were used by Dyson [1] in 195
where he argued that calculations in quantum electro
namics, expressed as a power series in the fine struc
constante2yh̄c ø 1y137, have zero radius of convergenc
(because negative values ofe2 lead to unstable theories
This did not prevent these calculations from being u
ful (indeed, they represent the best quantitative agreem
between theory and experiment known to science). T
community believes these expansions are asymptoti
the same sense as is Stirling’s approximationGsnd ­ sn 2

1d! , e2nnns2pynd1y2s1 1 1y12n 1 1y288n2 1 · · ·d: at
any fixedn no matter how large, Stirling’s series in1yn
eventually diverges, but the difference between the fu
tion and theMth approximation goes to zero faster th
1ynM asn ! `.

Since Dyson’s work, field theoretic methods have be
developed [2–5] to relate the instabilities in the theor
at small negative couplings to the high-order terms in p
turbation theory. Here we apply these methods to a p
ticular case, using the statistical mechanics of therm
nucleated cracks to calculate the high-order termscn in
the inverse bulk modulus (1). Statistical and thermo
namic approaches to crack nucleation and fracture hav
established history [6]. However, most work in this ar
0031-9007y96y77(8)y1520(4)$10.00
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is concentrated on failure at rather high stresses, nea
threshold for instability (the spinodal point). The hig
order terms in the perturbative expansion of the inve
bulk modulus are governed by the elastic response of
material to infinitesimally small tension (see below),
we are far away from the spinodal point and linear ela
theory is an adequate description.

Consider an infinite two-dimensional isotropic elas
material subject to uniform compressionP at infinity.
Creation of a cut of length, will increase the energy b
2a,, wherea is the surface tension (the energy per u
length of edge), with a factor of 2 because of the t
free surfaces. On the other hand, for negativeP (uniform
tension) the cut will open up because of elastic relaxat
Calculating this relaxation energy we find the total ene
E of a crack of length,:

Es,d ­ 2a, 2
pP2s1 2 s2d,2

4Y
, (2)

wheres is the Poisson ratio andY is Young’s modulus
of the linear elastic material (ignoring crack fluctuation
Introducing

,c ­
4Ya

pP2s1 2 s2d
(3)

we can rewrite the energy of the crack as

Es,d ­ 2a, 2 a
,2

,c
. (4)

It follows that cracks with, . ,c will grow, giving rise
to the fracture of the material, while those with, , ,c

will heal—a result first obtained by Griffith [7]. Thi
is the instability that is responsible for the breakdown
elastic perturbation theory. Because the energyEs,cd ­
a,c grows as 1yP2 as P ! 0, interactions between
thermally nucleated cracks are unimportant at smalP
and low temperatures (allowing us to use the “dilute
approximation”).

The thermodynamic properties of a macroscopic sys
can be obtained from its partition functionZ:

Z ­
X̀

N­0

X
n

exps2bEnN d , (5)
© 1996 The American Physical Society



VOLUME 77, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 AUGUST 1996

f

on
er

nd
ld
e-
ne

te
s
ca

of
th
f
th
a

st

ed
ti

era
es
ted
ion
th
s-
io
th
m
e
if-

at
pe

the
tion
ck
nal

s

),
e-
ic

t
-

where the summationN is over all possible numbers o
particles (cracks in our case) and the summationn is
over all states of the system withN cracks. Once a
perturbative expansion for the free energy is known,
can calculate the power series expansion for the inv
bulk modulus using

1
KsPd

­ 2
1

PA

µ
≠F
≠P

∂
T

. (6)

For P , 0, our model is in a metastable state, a
direct computation of the partition function should yie
a divergent result. A similar problem for the thre
dimensional Ising model was solved by Langer [8]: o
has to compute the partition function in a stable stateP .

0, and then do an analytical continuation in parame
space to the state of interest. The free energy develop
imaginary part in the unstable state, related to the de
rate for fracture [9]: the situation is similar to that
barrier tunneling in quantum mechanics [10], where
imaginary part in the energy gives the decay rate o
resonance. The calculation of the imaginary part of
partition function is dominated by a saddle point, th
in our case is a straight cut of length,c. The straight
cut is the saddle point because it gains the most ela
relaxation energy for a given number of broken bonds.

We will show now how this procedure is implement
for a simplified model that does not include the quadra
fluctuations around the saddle point. Following the gen
prescription, we put our material under uniform compr
sion P. In this case the opening of a thermally nuclea
cut does not relieve the energy of the elastic deformat
but rather increases it. We cannot use (2) directly for
calculation of the material partition function: the latter a
sumes the equilibrium opening of the cut under tens
2P, which for the case of compression corresponds to
unphysical overlap of the elastic material. To overco
this obstacle we introduce another collective coordinaty

describing the elliptical opening of a cut. More spec
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ically, if the cut is parametrized asxsud ­ s,y2d cosu,
u [ f0, 2pd, this opening isysud ­ y sinu. (The choice
for this collective coordinate is motivated by the fact th
for the material under tension the equilibrium crack sha
is exactly of this form.) A cut of length, in equilibrium
under pressureP with an elliptical opening of height2y

increases the elastic energy of the material by

Es,, y, Pd ­ 2a, 1
pY

4s1 2 s2d
y2 1

pP,

2
y , (7)

where the first term is the energy to create the cut,
second term is due to the increase in the elastic deforma
energy introduced in the surrounding material by the cra
opening, and the third term is the work against the exter
pressure. [Note that minimizing (7) with respect toy

for P , 0 gives Eq. (2).] The partition function for the
material with a single cutZcut can be calculated directly

Zcut ­ Z0

µ
2p

A
l2

∂ Z `

0

d,

l

Z `

0

dy

l
expf2bEs,, y, Pdg

­ Z0

µ
2p

A
l2

∂ Z `

0

d,

l

Z `

0

dy

l

3 exp

Ω
2b

µ
2a, 1

pY
4s1 2 s2d

y2 1
pP,

2
y

∂æ
,

(8)

where the factor2pAyl2 comes from the zero mode
for rotating and translating the cut,l is the ultraviolet
cutoff of the theory (roughly, the interatomic distance
and Z0 is the partition function for the uncracked mat
rial (unity for the present calculation without quadrat
fluctuations). From (8) it follows thatZcut is holomor-
phic in the complexP plane except for a branch cu
P [ s2`, 0d. The analytical continuation to the up
per branch cut2P 1 i0 is now straightforward. Using
[11] lime!10

R
fsxd dxysx 1 ied ­ P.V.

R
fsxd dxyx 2

ipfs0d we find
Zcuts2Pd ­ lim
e!10

Zcuts2P 1 ied

­ lim
e!10

Z0

µ
2p

A
l2

∂ Z `

0

d,

l

Z `

0

dy

l
exp

∑
2b

µ
2a, 1

pY
4s1 2 s2d

y2 1
p,s2P 1 ied

2
y

∂∏
­ Z0

2
b

µ
2p

A
l2

∂
P.V.

Z `

0

dy

l

expf2sbpYy2dy4s1 2 s2dg
4al 2 pPly

2 Z0
2i

bPl2

µ
2p

A
l2

∂
exp

Ω
2

4bYa2

pP2s1 2 s2d

æ
. (9)
e

on
In a dilute gas approximation the partition function for t
material withN cutsZN is given by

ZN ­ Z0
sZcutyZ0dN

N!
, (10)

which from (5) determines the material free energyF ­
2s1ybd ln Z,

F ­ 2
1
b

ln
X̀

N­0

ZN ­ 2
1
b

ln Z0 2
1
b

Zcut

Z0
. (11)
Following (9) and (11) we find the imaginary part of th
free energy for negative pressure (stretching)

Im Fs2Pd ­
2

b2Pl2

µ
2p

A
l2

∂
exp

Ω
2

4bYa2

pP2s1 2 s2d

æ
.

(12)

The analytical properties of the partition functionZcut

in the complexP plane allows a Cauchy representati
1521
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[3,5] for the free energy

FsPd ­
1
p

Z 0

2`

Im FsP0d
P0 2 P

dP0. (13)

As was first established for similar problems in fie
theory [2–4], this relation determines the high-order ter
in the expansion of the free energyFsPd ­

P
n fnPn,

fn ­
1
p

Z 0

2`

Im FsP0d
P0n11 dP0. (14)

Because the saddle-point calculation becomes more
more accurate asP ! 0, and because the integrals
Eq. (14) are dominated by smallP as n ! `, using the
saddle-point form for the imaginary part of the free ene
yields the correctn ! ` asymptotic behavior of the high
order coefficientsfn in the free energy. For the prese
(simplified) calculation (12)

fn ­ s21dn11G

µ
n 1 1

2

∂ µ
ps1 2 s2d

4bYa2

∂ny2

3

µ
2p

A
l2

∂
s1 2 s2d1y2

2p1y2b5y2al2Y1y2
. (15)

We can then use the thermodynamic relation (6) to sh
cn ­ 2sn 1 2dfn12yA, and thus calculate the asympto
behavior of the expansion of the bulk modulus:

cn11

cn
°! 2n1y2

µ
ps1 2 s2d

8bYa2

∂1y2

asn °! ` , (16)

which indicates that the high-order termscn in the
perturbative expansion for the inverse bulk modu
roughly grow assny2d! [In principle one could obtain
the asymptotic coefficients of the expansion (15) and (
directly from the real part of the free energy (9) and (1
but this is not convenient when we incorporate quadr
fluctuations.]

In a companion, longer publication [12] we flesh out th
simplified calculation into a complete asymptotic analys
including quadratic fluctuations. There we calculate a
lytically the prefactors arising from the following two type
of quadratic fluctuations: (i)curvy cuts—changes in the
shape of the tear in the material: deviations of the bro
bonds from a straight-line configuration, and (ii)surface
phonons—thermal fluctuations of the free surface of t
crack about its equilibrium opening shape. Here we m
tion only the results. (1) We find that fluctuation mod
that do not open the cut decouple from the normal mo
that have a displacement discontinuity along the cut,
therefore act the same as they did in the uncracked mate
contributing toZ0 in Eq. (8). (2) The collective coordinat
y, describing one of the discontinuous normal modes,
couples from the rest of the discontinuous normal mod
and is the only mode coupled to external pressure. (3)
transformation from the functional space of the displa
ment fields $Usx, yd to the vector space of the collectiv
coordinates is orthogonal. So if we assume the mea
1522
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to be Cartesian in the original functional spaceDUxDUy ,
it will remain Cartesian in the space of the collective co
dinates [no Jacobians multiplyd,dy in Eq. (8)]. (4) The
quadratic fluctuations renormalize the prefactor in (12)
the surface tensiona develops temperature dependent c
rections. (5) The precise form of the surface tension ren
malization and the prefactor depends on the regulariza
prescription (exactly how the ultraviolet cutoff is intro
duced to the theory). (6) For the types we have triedj

function and cutoff regularization), the asymptotic ratio
the elastic coefficients (16) areindependent of regulariza
tion, except for the temperature-dependent correction
the surface tensiona. For cracks in three dimensions, w
expect the scalingcn11ycn , n1y4 asn ! `, using simi-
lar arguments.

We warn the reader to treat our results in the pro
context. First, we do not expect this calculation to ha
experimental implications in the near future. Real fract
invariably occurs on inhomogeneities in the material: p
existing surface or bulk microcracks, dislocation tang
or grain boundaries. Even for a perfect dislocation-f
crystal with stabilized surfaces, the effects we desc
will remain immensely small: the reason that incredib
tiny compression makes (relatively) large changes
volume (leading to large high-order terms in the pow
series) is because the compression suppresses the (a
incredibly rare) opening of large thermally nucleat
cracks. Measuring these effects would seem infeasib

Second, our results can be viewed as a straightforw
extension to the solid-gas sublimation point of Lang
[8,9] and Fisher’s [13] theory of the essential singularit
at the liquid-gas transition. Indeed, if we allow for vap
pressure in our model, then our system will be in the
phase atP ­ 0. The essential singularity we calcula
shifts from P ­ 0 to the vapor pressure. If we measu
the nonlinear bulk modulus as an expansion about (
atmospheric pressure, it should converge—but the ra
of convergence would be bounded by the differen
between the point of expansion and the vapor pressur

Third, we have forbidden dislocation nucleation a
plastic flow in our model. Dislocation emission is cruc
for ductile fracture, but by restricting ourselves to
brittle fracture of defect-free materials we have esca
many (lethal) complications. Dislocations are in princip
important: the nucleation [14] barrierEdis for two edge
dislocations in an isotropic linear-elastic material un
uniform tension P with equal and opposite Burger
vectors$b is

Edis ­
Yb2

4ps1 2 s2d
ln

Y
P

1 E0 , (17)

whereE0 is a P independent part that includes the dis
cation core energy. The fact thatEdis grows like1y ln P
asP ! 0 (much more slowly than the corresponding b
rier for cracks) tells that in more realistic models d
locations and the resulting plastic flow [15] cannot
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ignored. While dislocations may not themselves lead
catastrophic instability in the theory (and thus to an ima
nary part in the free energy?), they will strongly affect t
dynamics of crack nucleation (e.g., nucleation on gr
boundaries and dislocation tangles).

Fourth, we ignore void formation. It would seem na
ural to associate the pressureP times the unit cell size
with the chemical potentialm of a vacancy. At negative
chemical potentials, the dominant fracture mechanism
comes the nucleation of vacancy clusters or voids (ra
than Griffith-type microcracks), as noted by Golubov´
and collaborators [16]. For negative chemical poten
m, their vacancy clusters (up to constants) have ene
EvacsRd , aR 2 jmjR2. If we identify m with P, com-
paring with (2) we see that the vacancy cluster gains
energy linear inP (while the crack gain is only quadratic
This leads to a problem that maps onto Langer’s ca
lation, yielding the asymptotic relationcn11ycn , n, so
the coefficients in this case would diverge more strong
cn , n! However, the identification ofm with P demands
a mechanism for relieving elastic tension by the crea
of vacancies. The only bulk mechanism for vacancy f
mation is dislocation climb, which we have excluded fro
consideration; creation of vacancies at surfaces will
relieve forces applied to the lattice planes.

It is amazing to us how the extreme nonlinear terms
the response are determined from the linear elastic the
and how little impact this has in practice.
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