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Elastic Theory Has Zero Radius of Convergence
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In nonlinear elastic theory, the inverse bulk moduKisfor example, depends on the compression
P:1/K(P) = ¢y + ¢iP + ¢,P> + --- + ¢,P" + ---. Elastic materials that allow cracks are unstable
at finite temperature with respect to fracture under a stretching load. As a result, the above power
series has zero radius of convergence: it is an asymptotic series. For a two-dimensional isotropic elastic
medium allowing cracks we compute the asymptotic farm, /c, — Cn'/> asn — ». We present an
explicit formula for C as a function of temperature and material properties. [S0031-9007(96)00920-9]

PACS numbers: 62.20.Mk, 46.30.Nz, 62.20.Dc, 64.60.Qb

Hooke’s law,F = kx, representing the elastic responseis concentrated on failure at rather high stresses, near the
of a body to an external stress, is only the first term inthreshold for instability (the spinodal point). The high-
a Taylor’s series. This Letter addresses the convergenagder terms in the perturbative expansion of the inverse
properties of this expansion. We argue generally thabulk modulus are governed by the elastic response of the
the radius of convergence of elastic theory is zero, andhaterial to infinitesimally small tension (see below), so
for two-dimensional isotropic elastic theory allowing for we are far away from the spinodal point and linear elastic
brittle fracture, we can calculate the asymptotic behaviotheory is an adequate description.

of the coefficients. Consider an infinite two-dimensional isotropic elastic
For simplicity, let us consider the bulk modul&gP), material subject to uniform compressidh at infinity.
1 1 {0V Creation of a cut of length will increase the energy by
W =y <5>T 2af, wherea is the surface tension (the energy per unit

length of edge), with a factor of 2 because of the two
=cy+ c P+ PP+ -+ c¢,P"+ ... (1) freesurfaces. On the other hand, for negafiv@uniform
tension) the cut will open up because of elastic relaxation.

Under stretching? < 0), the true ground state is frac- Calculating this relaxation energy we find the total energy
tured into pieces (relieving the strain energy). As aresultg of a crack of lengtHt:

P = 0 cannot be a point of analyticity fak (P), and thus 7Pl — o)

(1) has zero radius of convergence. EW) =20 — —————— (2)
Similar arguments were used by Dyson [1] in 1952, 4Y

where he argued that calculations in quantum electrodywhere o is the Poisson ratio an#l is Young’s modulus

namics, expressed as a power series in the fine structueé the linear elastic material (ignoring crack fluctuations).

constani?/fic = 1/137, have zero radius of convergence Introducing

(because negative values of lead to unstable theories). AY

This did not prevent these calculations from being use- l = 7P = oF) 3)
ful (indeed, they represent the best quantitative agreement

between theory and experiment known to science). Th&e can rewrite the energy of the crack as

community believes these expansions are asymptotic in E(0) = 20l — a ﬁ @)
the same sense as is Stirling’s approximafign) = (n — €.

D!~ e "n" 2 /m)V2(1 + 1/12n + 1/288n% + --): at It follows that cracks witl > €. will grow, giving rise

any fixedn no matter how large, Stirling's series Ifn (g the fracture of the material, while those with< ¢,
eventually diverges, but the difference between the funcyj| heal—a result first obtained by Griffith [7]. This
tion and theMth approximation goes to zero faster thanjs the instability that is responsible for the breakdown of

1/”1_” asn — . _ _ elastic perturbation theory. Because the endf¢f,.) =
Since Dyson’s work, field theoretic methods have beerhgc grows as1/P? as P — 0, interactions between

developed [2-5] to relate the instabilities in the theoriehermally nucleated cracks are unimportant at snall
at smgll negative couplings to the high-order terms in peryng jow temperatures (allowing us to use the “dilute gas
turbation theory. Here we apply these methods to a parypnroximation”).

nucleated cracks to calculate the high-order teemsn -5 pe obtained from its partition functiah
the inverse bulk modulus (1). Statistical and thermody-

namic approaches to crack nucleation and fracture have an 7 — S ext(— BE 5
established history [6]. However, most work in this area Zog A=BEw), ®)
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where the summatiow is over all possible numbers of ically, if the cut is parametrized as(#) = (£/2) cos#,
particles (cracks in our case) and the summatiois 6 & [0,2), this opening is/(#) = v sinf. (The choice
over all states of the system witN cracks. Once a for this collective coordinate is motivated by the fact that
perturbative expansion for the free energy is known, ondor the material under tension the equilibrium crack shape
can calculate the power series expansion for the inverss exactly of this form.) A cut of lengthf in equilibrium

bulk modulus using under pressur® with an elliptical opening of heightv
[ <£> (6) increases the elastic energy of the material by
K(P) PA\oP);" y pe
E(6,v,P) =2ab + ———> + =y, (7)
For P < 0, our model is in a metastable state, and 41 — o?) 2

direct computation of the partition function should yield \,here the first term is the energy to create the cut, the

a divergent result. A similar problem for the three- qo:0nq term is due to the increase in the elastic deformation
dimensional Ising model was solved by Langer [8]: one

i A energy introduced in the surrounding material by the crack
has to compute the partition function in a stable sB®  onening, and the third term is the work against the external
0, and then do an analytical continuation in parametep .ocqre. [Note that minimizing (7) with respect o
space to the state of interest. The free energy develops %r P < 0 gives Eq. (2).] The partition function for the
imaginary part in the unstable state, related to the decay,aterial with a single cuf., can be calculated directly
rate for fracture [9]: the situation is similar to that of
barrier tunneling in quantum mechanics [10], where the A “dt [* dv
imaginary part in the energy gives the decay rate of ent = Z°<27Tﬁ>f0 7[ A

resonance. The calculation of the imaginary part of the

exd—BE,v,P)]

partition function is dominated by a saddle point, that = ZO<27T£2>[ d_€j’ dv

in our case is a straight cut of length. The straight A o AJo A

cut is the saddle point because it gains the most elastic y p{— < LY 2 7L )}

relaxation energy for a given number of broken bonds. exp — A\ 2l 41 — o?) v 2 V)
We will show now how this procedure is implemented (8)

for a simplified model that does not include the quadratic

fluctuations around the saddle point. Following the generalvhere the factor2A/A> comes from the zero modes
prescription, we put our material under uniform compres{or rotating and translating the cuj, is the ultraviolet
sion P. In this case the opening of a thermally nucleatedcutoff of the theory (roughly, the interatomic distance),
cut does not relieve the energy of the elastic deformatiorand Z is the partition function for the uncracked mate-
but rather increases it. We cannot use (2) directly for theial (unity for the present calculation without quadratic
calculation of the material partition function: the latter as-fluctuations). From (8) it follows thaf.,, is holomor-
sumes the equilibrium opening of the cut under tensiorphic in the complexP plane except for a branch cut
— P, which for the case of compression corresponds to th& € (—,0). The analytical continuation to the up-
unphysical overlap of the elastic material. To overcomeper branch cut-P + i0 is now straightforward. Using
this obstacle we introduce another collective coordinate [11] lim._.o [ f(x)dx/(x + i€) = P.V. [ f(x)dx/x —
describing the elliptical opening of a cut. More spec\f-irrf(o) we find

Zcut(_P) = Eirnozcut(_l) + lE)

. A *dt (* dv Y , . m—=P + ie€) )}
= = = ZZexg - + +
EMHOZb<2#A2>j; 3 j; 3 exq: ﬁ<2a€ 40,—-02)v 5 v

A P “dv exd—(BmYv?)/4(1 — o] 2 A _ 4pva®
- ZO,B<27TA2>P‘V']0 A daA — wPAv ZOIBP)\2<27T)\2>eXp{ 7TP2(1 _ 0.2)}' (9)

In a dilute gas approximation the partition function for the Following (9) and (11) we find the imaginary part of the

material withN cutsZy is given by free energy for negative pressure (stretching)
Zewt/ Zo)N
Zv = Zo M, (10) 2 A 4BY a?
N! Im F(—P) = FIrEY) 277—2 ex T pa o[-

which from (5) determines the material free enefgy= B=PA A 7P(1 — 0?)
—(1/B)InZ, (12)

1 * 1 1 Z . . .. .

F=——1n T = ——InZy — — Zeut 11 The analytical properties of the partition functi@q,,
B NZO N B 0 B Zy (11) in the complexP plane allows a Cauchy representation
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[3,5] for the free energy to be Cartesian in the original functional spde&,DU,,
1 (° Im F(P) it will remain Cartesian in the space of the collective coor-
F(P) = —f P _p dP'. (13) dinates [no Jacobians multipk¥dv in Eq. (8)]. (4) The
m J - —

quadratic fluctuations renormalize the prefactor in (12) and
As was first established for similar problems in field the surface tensioa develops temperature dependent cor-
theory [2—4], this relation determines the high-order termsections. (5) The precise form of the surface tension renor-

in the expansion of the free energyP) = >, f,P", malization and the prefactor depends on the regularization
1 (9 Im F(P') prescription (exactly how the ultraviolet cutoff is intro-
fn = ;f i dpP’. (14)  duced to the theory). (6) For the types we have triéd (

function and cutoff regularization), the asymptotic ratio of
the elastic coefficients (16) anedependent of regulariza-

n, except for the temperature-dependent corrections to
the surface tensioa. For cracks in three dimensions, we
expect the scaling,,+1/c, ~ n'/4 asnp — oo, using simi-

Yar arguments.

We warn the reader to treat our results in the proper
context. First, we do not expect this calculation to have
experimental implications in the near future. Real fracture

Because the saddle-point calculation becomes more al
more accurate a® — 0, and because the integrals in
Eq. (14) are dominated by smat asn — o, using the
saddle-point form for the imaginary part of the free energ
yields the correctt — o asymptotic behavior of the high-
order coefficientsf,, in the free energy. For the present
(simplified) calculation (12)

_ (_Dnﬂr(n + 1)(77(1 ) >”/2 invariably occurs on inhomogeneities in the material: pre-
- D) 4BY a2 existing surface or bulk microcracks, dislocation tangles,
A (1 — o2)1/2 or grain boundaries. Even for a perfect dislocation-free
<27Tﬁ> T Y (15) crystal with stabilized surfaces, the effects we describe

will remain immensely small: the reason that incredibly
We can then use the thermodynamic relation (6) to showiny compression makes (relatively) large changes in

c, = —(n + 2)fn+2/A, and thus calculate the asymptotic volume (leading to large high-order terms in the power
behavior of the expansion of the bulk modulus: series) is because the compression suppresses the (already
Cntl i (1 — o2)\'/? incredibly rare) _ opening of large thermally _ nucle.ated
_— <—> asn — o, (16) cracks. Measuring these effects would seem infeasible.

Cn 88Ya? Second, our results can be viewed as a straightforward
which indicates that the high-order terms, in the extension to the solid-gas sublimation point of Langer
perturbative expansion for the inverse bulk modulug8,9] and Fisher’s [13] theory of the essential singularities
roughly grow as(n/2)! [In principle one could obtain at the liquid-gas transition. Indeed, if we allow for vapor
the asymptotic coefficients of the expansion (15) and (16pressure in our model, then our system will be in the gas
directly from the real part of the free energy (9) and (11)phase atP = 0. The essential singularity we calculate
but this is not convenient when we incorporate quadratighifts from P = 0 to the vapor pressure. If we measure
fluctuations.] the nonlinear bulk modulus as an expansion about (say)

In a companion, longer publication [12] we flesh out thisatmospheric pressure, it should converge—but the radius
simplified calculation into a complete asymptotic analysispf convergence would be bounded by the difference
including quadratic fluctuations. There we calculate anabetween the point of expansion and the vapor pressure.
Iytically the prefactors arising from the following two types  Third, we have forbidden dislocation nucleation and
of quadratic fluctuations: (ifurvy cuts—changes in the plastic flow in our model. Dislocation emission is crucial
shape of the tear in the material: deviations of the brokeffor ductile fracture, but by restricting ourselves to a
bonds from a straight-line configuration, and @rface brittle fracture of defect-free materials we have escaped
phonons—thermal fluctuations of the free surface of the many (lethal) complications. Dislocations are in principle
crack about its equilibrium opening shape. Here we menimportant: the nucleation [14] barridfy;s for two edge
tion only the results. (1) We find that fluctuation modesdislocations in an isotropic linear-elastic material under
that do not open the cut decouple from the normal modeaniform tension P with equal and opposite Burger's
that have a displacement discontinuity along the cut, angectorsb is
therefore act the same as they did in the uncracked material, vb2
contributing toZ, in Eq. (8). (2) The collective coordinate Egs = ————
v, describing one of the discontinuous normal modes, de- 4m(l - ‘72)
couples from the rest of the discontinuous normal modesyhereE, is a P independent part that includes the dislo-
and is the only mode coupled to external pressure. (3) Theation core energy. The fact thag;; grows like1/In P
transformation from the functional space of the displaceasP — 0 (much more slowly than the corresponding bar-
ment fieldsU (x, y) to the vector space of the collective rier for cracks) tells that in more realistic models dis-
coordinates is orthogonal. So if we assume the measutecations and the resulting plastic flow [15] cannot be

Y
+ Ey, (17)
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ignored. While dislocations may not themselves lead to a[1] F.J. Dyson, Phys. Re\85, 631 (1952).
catastrophic instability in the theory (and thus to an imagi- [2] C.M. Bender and T.T. Wu, Phys. Rew84 1231
nary part in the free energy?), they will strongly affect the  (1969). . . _
dynamics of crack nucleation (e.g., nucleation on grain [3] E. BreZn, J.C. Le Guillou, and J. Zinn-Justin, Phys. Rev.
boundaries and dislocation tangles). ] g 155&;5?3&/27&&668 167 (1977)

Fourth, we ignore void formation. It would seem nat- . ' ' ' y
ural to associate the pressuPetimes the unit cell size % EI|3BB%%?Ir:;énrszC\)gnléeﬁnglﬁ (cl;9e|7b2}t, Phys. Rev.
with the chemlcgl potentigh Qf a vacancy. At negative A 43, 4396 (1991), and references therein.
chemical potentials, the dominant fracture mechanism be{7] a A, Griffith, Philos. Trans. R. Soc. London 821, 163
comes the nucleation of vacancy clusters or voids (rather ~ (1920).
than Griffith-type microcracks), as noted by Golubovic [8] J.S. Langer, Ann. Phys. (N.Y31, 108 (1967); see also
and collaborators [16]. For negative chemical potential N.J. Gunther, D. A. Nicole, and D. J. Wallace, J. Phys. A
wm, their vacancy clusters (up to constants) have energy 13, 1755 (1980).
Evac(R) ~ aR — |u|R?. If we identify u with P, com-  [9] J.S. Langer, Ann. Phys. (N.Y34, 258 (1969).
paring with (2) we see that the vacancy cluster gains aht0] |- Affleck, Phys. Rev. Lett6, 388 (1981).
energy linear inP (while the crack gain is only quadratic). [111 J- Mathews and R.L. WalkeMathematical Methods of
This leads to a problem that maps onto Langer’s calcu- Egysmsigfdson-Wesley, Redwood City, CA, 1970), 2nd
lation, yielding the asymptotic relation, i /c, ~ n, SO 1157 o Buchel and J.P. Sethna (to be published).
the coefficients in thls'case_ yvogld dlverge more stronglytls] M.E. Fisher, Physic8, 255 (1967).
¢, ~ n! However, the identification o with P demands  [14] p.R. Nelson, Phys. Rev. B8, 2318 (1978).
a mechanism for relieving elastic tension by the creation15] Two-dimensional dislocation-mediated plastic flow is
of vacancies. The only bulk mechanism for vacancy for-  closely related to the problem of vortex nucleation and
mation is dislocation climb, which we have excluded from superflow decay in superfluid films: V. Ambegaokar, B.I.
consideration; creation of vacancies at surfaces will not  Halperin, D.R. Nelson, and E.D. Siggia, Phys. Rev. Lett.
relieve forces applied to the lattice planes. 40, 783 (1978); V. Ambegaokar, B.I. Halperin, D.R.

It is amazing to us how the extreme nonlinear terms in ~ Nelson, and E.D. Siggia, Phys. Rev.Z, 1806 (1980);
the response are determined from the linear elastic theory, Ehy'\gmgg\?gfgt’ﬂa. ?\,/gstzm(alggg Jonsson, and P. Olsson,
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: y correct statement that voids smaller than the Giriffith
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