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Structural susceptibility and separation of time scales in the van der Pol oscillator
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We use an extension of the van der Pol oscillator as an example of a system with multiple time scales to
study the susceptibility of its trajectory to polynomial perturbations in the dynamics. A striking feature of many
nonlinear, multiparameter models is an apparently inherent insensitivity to large-magnitude variations in certain
linear combinations of parameters. This phenomenon of “sloppiness” is quantified by calculating the eigenvalues
of the Hessian matrix of the least-squares cost function. These typically span many orders of magnitude. The
van der Pol system is no exception: Perturbations in its dynamics show that most directions in parameter space
weakly affect the limit cycle, whereas only a few directions are stiff. With this study, we show that separating the
time scales in the van der Pol system leads to a further separation of eigenvalues. Parameter combinations which
perturb the slow manifold are stiffer and those which solely affect the jumps in the dynamics are sloppier.
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I. INTRODUCTION

In this paper, we analyze the sensitivity of a multiple-time-
scale dynamical system to perturbative changes in its evolution
laws. Rather than utilizing the traditional means of examining
the structural stability for probing qualitative changes to the
attractor as a response to perturbations, we study the structural
susceptibility for quantifying the effects of the perturbations on
the time series [1]. More specifically, we ask how sensitive is
the dynamical system dz/dt = f(z) to infinitesimal changes of
the form dz/dt = f(z) + a · g(z) for a family of perturbations
g(z) when the parameters a → 0.

This paper introduces the concept of “structural suscep-
tibility” in dynamical systems, and is an outgrowth of our
group’s previous work on “sloppiness” in multiparameter
systems wherein we have found that data fitting in a number
of nonlinear, multiparameter models is only sensitive to a
few directions in parameter space at the best fit [2–4]. The
key difference between studying sloppiness and structural
susceptibilities is that in the former, the parameters are intrinsic
to the system, i.e., there are no externally introduced changes
in their evolution laws. Nonetheless, the methodology we
have developed for studying sloppy models is also suited for
studying structural susceptibilities of dynamical systems. Our
approach cleanly isolates and ranks the directions in parameter
space in order of relevance to observed behavior, and has
previously led us to suggest improvements in experimental
design [5], extract falsifiable predictions from experiments
[6], and develop faster minimization algorithms [7]. Others
have developed our ideas to suggest further improvements
in experimental design [8] and parameter estimation [9], to
quantify robustness to parameter variations [10], and to set
confidence regions for predictions in multiscale models [11].
In this paper, we bring similar ideas together to analyze
sensitivities of time series to perturbations in dynamical
systems.

We demonstrate the utility of our approach with application
to a dynamical system with two time scales, namely the van
der Pol oscillator [12], which is a single parameter system
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and hence not amenable to sloppy model analysis. Instead,
by choosing appropriate perturbations g(z), we calculate the
susceptibility of its dynamics: We make perturbations on the
attractor and then systematically increase the separation of
time scales in its dynamics to show how it can generally
enhance the sloppiness in nonlinear systems.

II. MULTIPLE-TIME-SCALE DYNAMICS

Multiple time scales are often found in the solutions
of dynamical systems [13]. Broadly speaking, the defining
criterion of these models is that the trajectory of one or more
phase variables has an identifiable fast piece, such as a jump or
a pulse, and a slow piece where the value of the variable does
not change quickly [14]. In two dimensions, these systems
are commonly studied in the context of slow-fast vector fields
written as

εẋ = X(x,y,ε), ẏ = Y (x,y,ε), (1)

where the parameter ε > 0 is small and the overdot indicates
derivative with respect to time t . For O(1) functions X and Y ,
and X �= 0: ẋ = O(1/ε) and ẏ = O(1), so that ε is the ratio
of time scales in the system. On one extreme, the singular
limit ε = 0 corresponds to a differential algebraic system X =
0, Y = ẏ, where the solutions of X = 0 comprise the “critical
manifold” close to which the flow in phase space is slow
(the “slow manifold”). Similarly, ε = 1 corresponds to a limit
where there is no separation of time scales, with a crossover
at intermediate values of ε.

Originally introduced in 1927, the van der Pol equation,
ẍ − μ(1 − x2)ẋ + x = 0, is a well-studied example of a
second-order, nonlinear system with multiple time scales in its
solution. Using the Liénard transformation y = x − x3/3 −
ẋ/μ, and redefining time t → tμ, the equation can be written
as a two-dimensional system [14,15] given by

μ−2ẋ = x − x3

3
− y, ẏ = x, (2)

which has the same form as (1) with ε = μ−2. The global
attractor of this dynamical system is a structurally stable limit
cycle with two time scales [16].
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FIG. 1. (Color online) (a) Eigenvalues of the Hessian matrix of
the cost of fitting at μ = 1. (b) and (c) Top row: one period of time
series x(τ ) (dotted line) and y(τ ) (solid line) for 0 < τ < 1 are shown
for μ = 1 and 100 as a function of time along with schematic error
bars for the data-fitting of the trajectory of variable y. (d) Eigenvalues
for μ = 100 are shown on the right. As μ → ∞, the orbit collapses
onto the critical manifold with the trajectory spending most of its
time on the slow manifold and vanishingly short on the jumps. Also
shown in (b) and (c), bottom row, is the orbit in the xy plane (solid
line) and the critical manifold (dashed line).

The van der Pol system provides a convenient way to
separate time scales by varying μ: Small values of μ in the van
der Pol system correspond to a small separation of time scales.
It can be shown that the trajectory approaches that of the
harmonic oscillator as μ → 0 [12]. At large values of μ, the
system shows a separation of time scales which increases with
increasing μ. As shown in Figs. 1(b) and 1(c), with increasing
μ, the trajectory of x separates into a slow part that lies O(μ−2)
close to the phase space curve given by ẋ = 0, i.e., the critical
manifold y = x − x3/3, and a fast part which connects the
two branches of the slow flow. Likewise, the separation of
time scales in y is associated with the increasing sharpness of
the kink in its trajectory.

The fact that with an increasing separation of time scales
the trajectory spends an increasing amount time on the slow
manifold and a decreasing amount of time on the jumps has
important implications for fitting parameters to time series data
of the van der Pol system. With increasing scale separation, one
expects that the cost of fitting will be decreasingly sensitive to
changes in the jumps of the trajectory as they get progressively
shorter in duration.

III. SLOPPINESS IN NONLINEAR FITS

In this section, we discuss the concepts of sloppiness and
structural susceptibility in more detail with examples as a pre-
lude to our calculations. For time series z(t,a), a least-squares
fit to data di minimizes a cost C = 1

2

∑
i[z(ti ,a) − di]2/σ 2

i

in the space of system parameters, which are collectively
denoted as a. Our discovery of sloppiness is essentially that
the eigenvalues of the Hessian of the cost with respect to

parameters, Hαβ = ∂2C/∂aα∂aβ , at the best fit span many
orders of magnitude. The larger and smaller eigenvalues
correspond to stiffer and sloppier directions, respectively. For
concreteness, consider a time series of a multiparameter model,
such as the one denoted by y(τ ) in Fig. 1(b), top row. The error
bars schematically show the least-squares fit of y(τ ), and the
side bar [Fig. 1(a)] shows the eigenvalues of the corresponding
Hessian matrix. Note the broad range of eigenvalues (∼1011,
corresponding to a factor of almost a million in parameter
range)—a feature that turns out to be typical in nonlinear fits.

Another vivid example of sloppiness in nonlinear models
is provided by the well-established formalism behind the
characterization of the sensitivities of initial conditions using
Lyapunov exponents [17]. Consider dz/dt = f(z) as a model
whose parameters are the initial conditions aα = zα(0) and
whose predictions are the final positions zi(t) at time t . At
the best fit, Hαβ = (J T J )αβ , where Jiα = ∂zi(t)/∂zα(0) is
the Jacobian of the sensitivities to perturbations in the initial
conditions. The Lyapunov exponents, which are defined to be
the eigenvalues �n of L = limt→∞ 1/(2t) log(J T J ), utilize the
same Hessian we would use in calculating the sloppy model
eigenvalues λn = exp(2t�n). The roughly equal spacing of
Lyapunov exponents naturally explains both the exponentially
broad range of sloppy model exponents and the roughly equal
spacing of log(λn) for a model with initial conditions as
parameters.

Instead of the sensitivities with respect to the initial
conditions or other intrinsic parameters, we focus here on
the sensitivity of the dynamics to changes in the dynamical
evolution laws. Therefore, for the remainder of this paper we
will be interested in a cost function that measures the square of
the distance between two time series for the system dz/dt =
f(z) + a · g(z)—one with perturbations, i.e., z(t,a → 0), and
the other one without, i.e., z(t,a = 0),

C = 1

2

∫ T

0
||z(t,a → 0) − z(t,a = 0)||2 dt, (3)

with the perturbing terms gi(z) giving a power series in the
components of z. Later in the paper, we will use this form
of the cost to compute the susceptibility of the van der Pol
system and show how sloppiness is enhanced by increasing
the separation of time scales in the van der Pol equations. This
is in essence captured by Figs. 1(a) and 1(d), where we show
that an increase in the van der Pol parameter μ from 1 to
100 produces roughly a millionfold increase in the spread of
eigenvalues.

IV. SUSCEPTIBILITY OF THE van der POL SYSTEM

We perturb the van der Pol system in (2) by adding a series
of additional terms. There is a long tradition in dynamical
systems of studying equations of motion of polynomial
form [17,18]; indeed, the theory of normal forms suggests
that general dynamical systems, even at bifurcations, can be
generically mapped into a polynomial form by a nonlinear but
smooth change of variables. Adding extra polynomial terms
is routinely done to “unfold” the qualitative behavior near
bifurcations [19]. Here we focus on quantitative changes far
from bifurcations. In choosing our perturbations, we must cut
off the polynomials at some order. There are two ways in
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FIG. 2. (Color online) Eigenvalues of the Hessian matrix are
shown here as a function of μ. The range 1 � μ � 100 corresponds
to a ratio of time scales 1 � ε � 10 000. The five largest eigenvalues
(solid lines) correspond to stiff directions in the parameter space: these
directions perturb the slow manifold. The remainder (dashed lines)
affect the transient part of the trajectory, which becomes smaller with
an increasing separation of time scales, and hence these directions
are decreasingly relevant.

which we specialize our general susceptibility analysis to the
two-time-scale, periodic limit cycle of the van der Pol system.
First, we choose the family of perturbations of order 3N as
follows:

μ−2ẋ = x − x3

3
− y +

∑
m+n�N

am,n

(
x − x3

3
− y

)m

xn,

(4)
ẏ = x.

This choice has two noteworthy features. (a) We have grouped
the polynomial perturbations so that, for m �= 0, they vanish
on the critical manifold, y = x − x3/3. That is, the parameters
am,n with m �= 0 do not significantly affect the dynamics on
the slow manifold; we call these the “fast parameters,” and
correspondingly the a0,n are “slow parameters.” The parameter
a1,0 duplicates μ to the same effect as changing the period,
and we omit it. Surely, the eigenvalue spectrum of the gen-
eral polynomial expansion, am,nx

myn, behaves qualitatively

similarly to the one presented here, but our parametrization
greatly simplifies the analysis of the eigenvector perturbations.
(b) We only perturb the ẋ equation. Our choice corresponds
to a general expansion of a second-order equation, with the
acceleration ÿ = ẋ written as a polynomial in the position
y and velocity ẏ = x. Perturbing both equations produces
similar behavior.

Second, we modified the cost to focus on the limit cycle
of the van der Pol system in two ways: (a) by rescaling all
trajectories in our analysis so that they have the same unit
period, and (b) by changing the initial condition so that it lies
on the perturbed orbit and that the perturbed and unperturbed
orbits are in phase with each other [20]. When we correct the
period T by δT , initial conditions y0 by δy0, and do an overall
rescaling of the time variable t → τT , the cost functional for
the time series of y(τ ) at each μ takes the following form:

C(μ) = 1

2

∫ 1

0
[y(τ,a + δa,y0 + δy0,T + δT )

− y(τ,a,y0,T )]2 dτ. (5)

In principle, changes in both time series, x(τ ) and y(τ ), could
be incorporated in the cost function, but we get qualitatively
similar results by keeping either or both variables. Choosing
to measure changes only in y(τ ) corresponds again to studying
the second-order equation for ÿ as an expansion in y and ẏ.

The susceptibilities are still given by the Hessian matrix at
the best fit (a = 0):

H(μ)αβ = ∂2C(μ)

∂aα∂aβ

, (6)

which can be written out more completely as

H(μ)αβ =
∫ 1

0

(
∂y

∂aα

+ ∂y

∂y0

∂y0

∂aα

+ ∂y

∂T

∂T

∂aα

)

×
(

∂y

∂aβ

+ ∂y

∂y0

∂y0

∂aβ

+ ∂y

∂T

∂T

∂aβ

)
dτ.

FIG. 3. (Color online) Hessian eigenvectors are shown for μ = 1, 10, and 100. Each colored small square shows the magnitude of an
eigenvector component (the scale bar is shown on the right). Eigenvectors for each μ are sorted so that the stiffer ones appear on the left;
individual components are sorted so that “slow parameters” appear on the top. Note that with increasing μ, the stiff and sloppy eigenvectors
are separated by parameters: The stiff eigenvectors only have projections along the slow parameters, which perturb the slow manifold, whereas
the sloppy directions have projections along the fast parameters, which mainly perturb the jumps.
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Here, each of the two terms in the integral is to be interpreted
as a Jacobian matrix, a mapping from the finite-dimensional
parameter space to the infinite-dimensional data space:

Jτα = ∂y(τ )

∂aα

+ ∂y(τ )

∂y0

∂y0

∂aα

+ ∂y(τ )

∂T

∂T

∂aα

. (7)

The sensitivity trajectories in the Jacobian—∂y/∂aα , ∂y/∂y0,
and ∂y/∂T —were computed using the open source SLOPPY-
CELL package [21,22]. The expressions for the time invariant
quantities, ∂y0/∂aα and ∂T /∂aα , were found by enforcing
periodicity of the perturbed time series denoted by y(τ ) ≡
(x(τ ),y(τ )) as follows:

y(τ = 0,a + δa,y0 + δy0,T + δT )

= y(τ = 1,a + δa,y0 + δy0,T + δT ).

Taylor expansion of both sides of the previous equation leads
to a vector equation:

δy0 = ∂y
∂T

∣∣∣∣
τ=1

δT + ∂y
∂a

∣∣∣∣
τ=1

δa + ∂y
∂y0

∣∣∣∣
τ=1

δy0,

from which both constants can be computed following the
convention that the component denoting the change in the
initial condition of y(τ ) in δy0 is set to zero. Now with the
Jacobian calculated, the Hessian at best fit is simplyH = J T J .

A. Eigenvalues and eigenvectors

We computed the Hessian matrix given by the previous
equation at multiple values of μ. The spread of eigenvalues
(Fig. 2) increases as a function of μ confirming that sloppiness
increases with an increasing separation of time scales. Not
surprisingly [23], for N = 4, the 14 eigenvalues for μ = 1
already span 11 orders of magnitude, while for μ = 100, we
observe that the stiffest eigenvalue is 18 orders of magnitude
larger than the smallest one—the spread increases by 107 when
μ increases to 100.

Taken together with the eigenvectors shown in Fig. 3, some
interesting facts come to light: Figure 2 shows that with
increasing μ, the eigenvalues separate into two clusters of
closely related decay exponents. The largest N eigenvalues

FIG. 4. (Color online) Top three rows: Eigenpredictions δyk for k = 0, 3, 6, 9, 12 at μ = 1, 10, and 100 are shown as solid red lines
for stiff modes and dashed green lines for sloppy modes. These curves show the response of perturbations if the parameters are changed
infinitesimally along the Hessian eigenvectors: A parameter change of norm ε along eigendirection n will change the trajectories by λnε times
the eigenpredicton. Dotted gray lines show the unperturbed van der Pol solution for comparison (y scale on the right-hand side). As the time
scales separate, the amplitudes of the sloppiest eigenpredictions increase (roughly in proportion to μ), becoming increasingly concentrated at
the jumps. The bottom row shows the eigencycles for μ = 100 as solid red lines and green dashed lines corresponding to the perturbations in
row 3 (i.e., the new limit cycle for a perturbation of strength ε ∼ 1/λn). These curves show how the van der Pol orbit changes with perturbations
along the Hessian eigenvectors. Both the stiff and the sloppy modes change the orbit at the jumps (occurring at the extrema in the dashed lines);
the stiff modes also change behavior at the slow manifold, whereas the sloppy modes only affect the jumps.
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approach constants. The other eigenvalues decay with power
laws: two modes with exponents between −2 and −3 and
the remaining modes with exponents between −5 and −6.
Similarly, Fig. 3 shows that the eigenvectors also separate
into two groups with increasing μ: The stiffest directions are
linear combinations of the slow parameters, whereas the sloppy
directions are comprised of other parameters, as expected.

We can understand the effect of perturbations in parameter
combinations given by the eigenvectors (called eigenparam-
eters) êk more clearly by observing their behavior in the
data space. The Jacobian transformation of (7) projects the
eigenvectors to the data space: δyk = J · êk/

√
λk , where λk

corresponds to the kth largest eigenvalue. Defined in this way,
these data space vectors, called eigenpredictions [4], δyk , are
also orthonormal. Alternatively, the eigenpredictions are the
left singular vectors in the singular value decomposition of the
Jacobian (i.e., they are the columns of the unitary matrix U in
J = U�V T [24]). As shown in Fig. 4 for μ = 1, 10, and 100
(top three rows), we learn from the eigenpredictions that the
stiff modes affect behavior both along the slow manifold and
at the jumps. Moreover, with increasing μ, as the eigenvalues
associated with the stiff directions approach constants (Fig. 2),
so do the stiff eigenpredictions [Fig. 4, rows 2 and 3, columns
(a) and (b)]. The sloppy modes, on the other hand, affect
the dynamics on the jumps only. The maximum amplitudes
of the (normalized) sloppiest eigenpredictions appear to
increase roughly proportional to μ (corresponding to the jump
duration of ∼μ−2). In the limit, these become δ functions and
derivatives concentrated at the jumps. Figure 4 (bottom row)
also shows the limit cycles (eigencycles) with eigenparameter
perturbations as phase space trajectories (x,y + η δyk) for
small η.

V. DISCUSSION

In this paper, we have introduced a formalism that we call
“structural susceptibility” for analyzing the quantitative depen-
dence of dynamical systems to perturbations of the equations
of motion. It is a generalization of “unfolding” methods of
bifurcation theory and the Lyapunov exponents governing
the dependence on initial conditions, and it exposes the
ubiquitous presence of a broad range of sloppy eigendirections
in parameter space—largely unimportant to the dynamics. We
used this method to study the role of time-scale separation in
enhancing the sloppiness of the susceptibility spectrum in the
particular case of the van der Pol oscillator.

By extending the framework of our sloppy model analysis
to systems where changes in evolution laws are to be studied,
our method offers a simple way to calculate the effects of
broad classes of perturbations. By studying the structural
susceptibility of a dynamical system with two time scales, the
analysis presented here showed that the sloppiness of nonlinear

systems is enhanced by a separation of time scales in the
dynamics. With increasing separation of time scales in the van
der Pol oscillator, the trajectory spends an increasing amount
of time on the slow manifold and a vanishingly small amount
of time in the transition region. The cost of perturbations is
integrated over time and therefore we are unsurprised that the
perturbations that change the slow manifold will accrue the
most cost and therefore manifest as stiff modes of the Hessian
matrix. The remaining directions are sloppy as they only affect
the behavior at the jumps or the fast pieces. These perturbations
manifest as δ functions and their derivatives—significantly
affecting the phase-space trajectory, but over only the fast times
asymptotically ignored in the least-squares cost. It remains a
challenge to connect the separation of time scales to parameter
sensitivity in more complicated systems, but the analogy of the
van der Pol system’s behavior with other nonlinear physical
systems of interest is clear.

Many important dynamical systems have multiple time
scales in their solutions: examples include models in neuro-
science (such as Hodgkin-Huxley model), systems biology or
chemical reaction systems (such as protein network models),
and engineering (such as models of combustion, lasers,
locomotion, etc.). Our analysis suggests that any system with
multiple time scales should become sloppier as the scales
separate for the same reasons that we found in the van der
Pol system: Some parameter combinations will only affect the
fast dynamics and lead to sloppy modes. Perturbations which
affect the slow dynamics will presumably accrue more cost
and be stiff.

More broadly, the sloppiness exposed by our structural
susceptibility analysis has clear implications for attempting
to reconstruct the equations of motion from experimental
data [25] because the true dynamics along any sloppy
eigendirection will be relatively poorly determined. This
discovery has already influenced work on experimental design
optimization: estimating parameters is challenging [8,26],
but extracting predictions without constraining parameters is
straightforward [6]. We further anticipate that the concept of
structural susceptibility will be useful for studying systems
with chaos, bifurcations, and phase transitions; quantifying
the unfoldings of these systems may also be useful for gaining
a deeper understanding of the phenomena they model.
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